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Abstract

In vivo optical imaging is a fast growing field that offers great perspectives for

biomedical applications. In particular, imaging in the shortwave infrared window

(SWIR: 1000-1700 nm) represents major improvement compared to the NIR-I region

(700-900 nm) in terms of temporal and spatial resolutions in depths down to 4 mm.

SWIR is a fast and cheap alternative to more precise methods such as X-ray and opto-

acoustic imaging. Main obstacles in SWIR imaging are the noise and scattering from

tissues and skin that reduce the precision of the method. We demonstrate the combi-

nation of SWIR in vivo imaging in the NIR-IIb region (1500-1700 nm) with advanced

deep learning image analysis allows to overcome these obstacles and making a large

step forward to high resolution imaging: it allows to precisely segment vessels from tis-

sues and noise, provides morphological structure of the vessels network, with learned
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pseudo-3D shape, their relative position, dynamic information of blood vascularization

in depth in small animals and distinguish the vessels types: artieries and veins. For

demonstration we use neural the network IterNet that exploits structural redundancy

of the blood vessels (L. Li, et.al., The IEEE WACV, 2020), which provides a useful

analysis tool for raw SWIR images.

1 Introduction

The field of in vivo optical imaging for biomedical applications is expanding rapidly over

the last two decades leading to more precise diagnostic of early stage diseases and to ad-

vanced image-guided-surgery system already available for clinical applications.1 One of these

breakthroughs is related to the development of innovative imaging systems in the shortwave

infrared (SWIR) spectral window, called also NIR-II, between 900 and 1700 nm. SWIR has

demonstrated a major improvement in terms of spatial and temporal resolution, reaching

deep in tissue down to 4 to 6 mm compared to the Visible (400-700 nm) and NIR-I (700-

900 nm) regions. The benefit moving forward from NIR-I to SWIR is mainly associated to

the weak auto-fluorescence and reduced scattering from the living tissues at longer wave-

lengths.2 For instance, it was shown recently the striking improvement of detection with

higher signal-to-noise ratio selecting the SWIR sub-windows NIR-IIb (1500-1700 nm) for in

vivo imaging.3–5 The concomitant progress of the sensor technology in the SWIR range and

of the formulation of new bright and biocompatible SWIR emitting organic and inorganic

contrast agents6–9 has enabled to use these optical systems for intra-operative surgery in

small animals10,11 and recently in human.12 One of the most appealing field of applications

for SWIR imaging concerns the (micro)vascularization, with success to monitor in real time

non-invasively different pathologies such as vascular disorders, (neo)angegiogenosis in cancer,

wound healing, implants.7,13–15

Despite these major steps, we are still far to reach the spatial resolution below one

micron at high depth achieved by X-ray imaging.16 Other recent optical imaging systems
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based on full field optical coherence17 and high-resolution opto-acoustic imaging18 lead to

spatial resolution down to 1.7 um but with a quite limit field of view that requires long time

acquisition to image the whole animal. A promising strategy to overcome this issue relies on

the image analysis using deep neural networks. This field shows exponential growth in recent

years due to growth in computational power of modern parallel computers, and the quality

of feature extraction, detection and segmentation made by deep neural networks has made

a major step forward. In particular, several networks built on a popular fully connected

convolutional neural network (CNN) U-Net,19 were very successfully applied in the context

of a classical problem of the segmentation of retina vessels using as a training set a series

of open annotated databases for retina vessels. As a result, several developed deep neural

networks from the leaderboard show the performance above 97% precision tested against

ground truth. Thus, a logical extension of these networks would be the application of these

developments for SWIR images. Although the nature of the images is different: shadows

of the visible light passing through the tissue versus fluorescent NIR signal directly from

the vessels, the structure of the vessels representing continuous interconnected lines with a

certain redundancy enables the generalization of the developed networks to the case of SWIR

images. It allows segment the vessels from the background, reduce scattering light originated

from the tissues, and detect 3D blood vessels structures, thus providing essential information

for a full structural analysis via skeletonization of the vessel network and enhanced statistics:

number of branching points, average length of the vessels, the thickness of the vessels, relative

length of vessels of different categories, etc. Thus, combination of fast and relatively cheap

SWIR method with advanced deep learning image analysis may contribute to fill the gap in

resolutions between SWIR and X-ray.

Recent study has demonstrated the significant improvement of contrast and spatial res-

olution of SWIR in mice using Monte Carlo Restoration which enabled to perform segmen-

tation analysis of small animal presenting vascular disorder.20 In this work we explore the

advantages of using deep neural networks specially designed to extract blood vessels structure
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trained on large datasets of retina vessels in order to predict the structure of vessels in SWIR

images. We use one of the best neural networks in prediction of vessels structures IterNet21

on in vivo SWIR NIR-IIb imaging to demonstrate the high potential of this method to go

one-step further to high-resolution optical imaging that could be easily transferred in clinics

and hospitals.

2 Deep Neural network for SWIR images

Fully connected convolutional neural network is a popular neural network U-Net19 using

strong data augmentation to significantly reduce the number of training images. Its suc-

cessor, deep neural network IterNet21 is build on U-Net and combines iteratively N − 1

mini-networks U-Net after one segmentation with U-Net. It goes further in precision and

uses the structural redundancy or self-similarity of blood vessels that allows the network to

find obscured details of the vessel from the segmented vessel image itself, rather than from

the raw input image. In fact, IterNet can learn from as few as 10–20 annotated images

(ground truth) to provide a good accuracy.

Figure 1: A) Original SWIR image used for training of the network and obtained with a 50
mm lens (n.a.= 1.4) at 100 ms exposure; B) Example of the annotation of ground truth,
microvessels are not annotated; C) Result of the training in form of the receiver of operating
characteristic (ROC) curve showing the performance of the training on SWIR images. Area
under the curve: 0.90; Area under precision-recall curve: 0.57, Jaccard similarity: 0.89.

IterNet is one of the leaders in leaderboard in ratings for the performance in segmentation
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of retina blood vessels. The performance is tested on open databases of blood retina vessels

on three mainstream data sets, DRIVE,22 CHASE DB123 and STARE,24 which are used as

as a gold standard for the performance benchmark and comparison between segmentation

networks for blood vessels. It has a high accuracy measured in terms of the receiver oper-

ating characteristic curve (ROC), which is plotting True Positive Rate (TPR) versus False

Positive Rate (FPR). This measure is implemented in TensorFlow25 and the corresponding

Area Under the ROC Curve (AUC) gives a numerical measure of the performance of the

network training. The provided training weights21 of IterNet network give AOCs of 0.9816,

0.9851, and 0.9881 for the classical benchmarks of the data sets of retina vessels: DRIVE,

CHASE DB1, STARE, respectively.

To test the performance of the network for in vivo SWIR images of nude mice, we

have performed several setups with different cameras, lenses and different distances from

the sample. The quality of prediction was then tested on ex vivo post-mortem sample with

removed skin. This allows to evaluate the structure of vessels with high magnification camera

in order to confirm the prediction of microvessels.

2.1 SWIR in vivo images

SWIR imaging was performed using a Princeton camera 640ST (900-1700 nm) coupled with a

laser excitation source at λ = 808 nm (100 mW/cm2). We used a short-pass excitation filter

at 1000 nm (Thorlabs) and a long-pass filter on the SWIR camera from Thorlabs (LP1500

nm). 25 mm or 50 mm lenses with numerical aperture (n.a) = 1.4 (Navitar) were used to

focus on the mice placed at 30 cm working distance. 25 mm and 50 mm lenses provide a

theoretical spatial resolution of 400 microns and 150 microns respectively. NMRI nude mice

(Janvier, France) were anesthetized (air/isofluorane 4% for induction and 1.5% thereafter)

and were injected intravenously via the tail vein (200 µL of Indocyanine Green (ICG) at

500 µM in PBS). In vivo SWIR imaging was performed using 25 mm or 50 mm lenses and

LP1500 nm at different exposure times from 100 ms to 1 s.
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2.2 Training of the neural network

We use IterNet21 for prediction of vessels in SWIR images (i) with the released by the

authors universal pre-trained weights trained across multiple datasets.21 They were used

without additional fine-tuning; (ii) weights from specially trained network on manually an-

notated SWIR images used as a ground truth for detection, example is Fig. 1. These images

were added to the training set of DRIVE database, which were gray scaled. The manual

annotation of SWIR training examples was not complete and it was done for the test of

robustness of the prediction of the network. The training was performed with the follow-

ing parameters: batch size=32,repeat=10, minimum kernel=32, epochs=200, iteration=3,

crop size=128, stride size=3 and the resulting performance is shown in Fig. 1C): An exam-

ple of the original image, an example of the annotated image and the resulting ROC curve

showing the performance on SWIR images. Although the annotated images were not as

elaborated as in the vessel databases and despite their small number, the network predic-

tions have 0.9 AOC score on images and manually annotations unseen during training. This

result demonstrates that the network reliably predicts the vessels at least comparable with

the human annotation results on SWIR images.

We use the universal pre-trained weights of IterNet neural network. SWIR images

have 640x512 pixels dimensions and the vessels are smaller than in the original training

database. In order to achieve a good accuracy, SWIR images (dimensions of vessels and

brightness/contrast) should be as close as possible to the training set used for the network

training. SWIR images contain a large number of micro-vessels, almost invisible by eye.

They were not annotated in the training set and in order to segment them the stride size

and the crop size should be reduced to minimum. We use the following parameters that give

the best results for the inference of the vessels with pre-trained weights: Activation=’ReLU’,

dropout=0.1, minimum kernel=32, batch size=128, epochs=600, iteration=3, stride size=1,

crop size=16. The images were processed on a desktop computer equipped with AMD Ryzen

5 5600X processor with 64 GB RAM, Nvidia RTX 3090 graphical card with 24 GB memory,
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Ubuntu 20.04 and Tensorflow 1.1525 through Nvidia-TensorFlow Horovod26 compilation to

ensure back compatibility with RTX 3090 graphical card. With this setup, the speed of

processing of a SWIR image with all GPU overheads, pre-processing, post-processing and

writing the resulting files to the disk is presented in Table 1.

Table 1: Approximate processing time of a SWIR image using Nvidia RTX 3090 graphical
card. Optimization of the workflow would allow to make devices able to perform in near-real
time vessels segmentation and analysis.

Image resolution Time of execution
1280× 1024 4 min 40 s
640× 512 1 min 10 s
320× 256 0 min 18 s

Figure 2: A) SWIR image of a whole body mouse taken at 30 cm working distance before
the injection of the contrast agent without long pass filter; B) few seconds after the injection
of the contrast agent; C) The resulting prediction of vessels from the image of the whole
body mouse in B and D) zoomed image of the segmented blood vessels structure in C.

2.3 Neural network prediction

The performance and the number of vessels predicted by the network largely depends on the

quality of SWIR images, the distance of the camera from the mouse skin and the bright-

ness/noise of the vessels. The example of the predicted vessels is shown in Fig. 2. The

network can not only segment vessels from the background, but it can also detect microves-

sels, predict their correct connectivity and relative position, thus, giving the impression of

pseudo-3D vision.

Figs. 2A and B shows the vascular network of the ventral side of a whole mouse after the

injection of ICG thanks to the detection of its photoluminescence signal above 1500 nm. It

7



Figure 3: A fragment of the original SWIR image showing complex topology of the blood
vessel network with corresponding zoomed insets. It illustrates the predicted blood vessel
structure with junctions and cross-sections of the vessels.

should be noted the absence of autofluorescence from the mice before injection in the NIR-IIb

region. Vessels of different sizes are detected during the first 4 min after the injection due to

the rapid accumulation of ICG in the liver, where it is metabolized by hepatic pathway. Figs.

2C and D show the segmented vessels from the original SWIR image Fig. 2B. The vessel

structure is well visible with the reduction of signal from the skin and the living tissues. We

could see clearlythe anarchic blood network at different depths.

The use a 50 mm lens on the SWIR imaging system allows to reach higher spatial resolu-

tion and gain more information on the blood vessels morphology. Fig. 3 top raw depicts the

ventral side of the mouse (with consecutive insets) with a high density of blood vessels of

different sizes up to micrometer resolution and showing a complex vessels topology. Bottom

raw demonstrates the corresponding predicted vessels structure obtained by neural network

and provides extremely detailed information not accessible from the raw image by naked eye

with junctions and overlaps of the vessels as seen in the insets Figs. 3B and C.
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Examining the same segmented image Fig. 3A in inverted colors, Fig. 4 allows to see

a complex morphology of blood vessels structure, their relative position, intersection and

branching, hence leaving an impression of pseudo-3D shape and depth, as illustrated in the

insets of Fig. 4.

Figure 4: Predicted vessels structure from SWIR image of the whole body of the mouse, Fig.
2 and two fragments in the insets with the detail of the original inverted SWIR images and
the corresponding segmented images.

2.4 Validation of the vessels morphology

Detection of SWIR signal from vessels below 4 mm depth and keeping a high spatial resolu-

tion remains highly challenging. In fact, upper skin is still a main obstacles for SWIR signal,

where the light can be scattered and adsorbed. Thus, to confirm microvessels structure pre-

dicted by the neural network and inferred from the original SWIR images, one of the direct

methods would be the removal of the skin post-mortem and validation of small vessels with

high magnification optical camera on ex vivo images of the inner skin.

For that purpose, the mice skin flap of 2 to 3 mm thick were soaked in formaldehyde just

after the mice were sacrificed. High magnification optical images were taken on the inner
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side of the flap with an Andor Ikon-M CCD camera at 1 s exposure time with WD 112 mm

lens from Leica (zoom x0.8) under white light illumination.

Figure 5: A) An overview of the removed inner skin region; B) Closer view of the removed
inner skin region used for inference (zoom x1.7 of image A); C) Predicted vessels structure
inferred from B); D) Optical view with higher resolution of the red fragment (zoom x5.6 of
image A); E) A green fragment of the predicted vessels; F) The same region in optical image
with higher magnification (zoom x15.4 of image A); G) A blue fragment of the predicted
vessels; H) The same region in optical image with higher magnification (zoom x8.8 of image
A).

Fig. 5A corresponds to the optical image of the inner skin of the mouse made with the

Andor camera under the white light (neon light which has a broad excitation). A selected

area in the center of the inner skin flap (Fig.5B) was used for inference of the blood vessels

with the same IterNet neural network and the same parameters that were used for SWIR

images segmentation. The result of the predicted vessels is shown in Fig. 5C. This image

shows main blood vessels and also a number of microvessels. To confirm the existence of these

microvessels, three regions of the predicted vessels were selected to compare with separately

taken optical images with even higher magnification. The results of this direct comparison

are shown in insets with an outline of the same color: red region in Fig. 5C is compared

with an optical image Fig. 5D; green region Fig. 5E is compared with optical image Fig.
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5F and blue region Fig. 5G is compared with Fig. 5H. It is noteworthy, that optical images

that were taken for comparison, are from different images taken on the inner skin sample

regions with higher magnification from x1.7 (Fig.5B) to x15.4 (fig.5F), while neural network

was applied on Fig. 5B.

This indicates a good confidence to use such neural network for processing SWIR images

for inference of blood vessels structure and blood vessel mapping.

3 Blood vessels analysis

Figure 6: A) Consequent frames (one frame per 500 ms) of the original inverted SWIR
image, where the contrast agent propagates through the blood network. B) the corresponding
predicted vessels by IterNet network. Vessels in overexposed regions are not detected, thus
allowing to follow the blood propagation. C) consequent sum of predicted vessels from
individual frames (”SWIR HDR” effect): red corresponds to first frame vessels detection,
next frames are superimposed images from previous frames, each with its own color.

The detection and segmentation of blood vessels are not the only possibilities for the

neural network analysis. The propagation of the contrast agent across the blood vessels

after the first injection follows non-trivial haemodynamics that can be visualized with an

appropriate setup. To demonstrate the capabilities of the method, the initial vascularization
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Figure 7: A) Inverted original SWIR image of a mouse ear after ICG injection and B)
predicted vessels structure inferred from A. C) Fragment of the original image A. D) Overlay
of predicted vessel structure and the original fragment image c. Arteries (red) and veins
(blue) predicted by SeqNet27 neural network; E) Segmented arteries and veins. Predicted
arteries (red) and veins (blue) by SeqNet neural network.

of the contrast agent was recorded on the flank of the mouse in the first second after i.v.

injection. Very quickly after injection, the constant increase of photoluminescence signal

across the vessels in site with high blood vessel density has converted in overexposed spot,

where single vessel cannot be visualized. In contrast, the regions, where the contrast agent

still has not arrived, are underexposed and there is not enough signal to visualize the vessels,

upper raw, Fig. 6A.

The neural network applied to each of the frames does not pick up the whole structure

of the vessels, because this information is not present in each image, Fig. 6B. However,
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Figure 8: Skeletonization of the predicted blood vessels network. A) Predicted blood vessels
from Fig. 1A; B) Euclidean skeleton of the vessels, which connects directly the branching
points; C) Vessel network overlapped on the original SWIR image.

the SWIR images are the sequence of the frames taken with 500 ms time difference of the

same region and thus, one can employ a technique, very roughly resembling ”High dynamic

range” (HDR) image processing in photography, when several images with different exposure

are superimposed in one image. SWIR images contain information from different vessels in

different time, controlled by the propagation of the contrast agent. Using a different color for

each of the frame inference with deep neural network, one can reflect in a combined image

not only the whole structure of the blood vessels, but also the colors in the image would

reflect the time of the passage of the contrast agent, Fig. 6C. Thus, combined images allow

to follow the kinetics of the circulation of the contrast agent over time during this first 30 s

after injection.

Another important feature that can be extracted by neural network is related to the

differentiation between arteries and veins. The distinction between veins and arteries is

considered critical in angiogenesis and related to the analysis of the couple veins/arteries.

This information can be inferred from the shape and the surrounding of the vessels, e.g. the

thick veins are accompanied by thin arteries going parallel to the veins. This information

can be learned by the neural network carefully trained on well-annotated examples, where

the composition of the vessels is known. This was implemented in the network SeqNet,27

specially trained to distinguish between veins and arteries.

For this purpose we applied SeqNet with provided pre-trained weights to SWIR images,
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that were not optimized and were not included in the training set. Fig. 7A shows the original

inverted SWIR image of the ear mice and Fig. 7B shows the corresponding segmented image

obtained by SeqNet, which segmentation is essentially the same as IterNet. SeqNet network

post-processing enables to predict artery and veins based on their size and their distance

between each other with high confidence even for images, which are very different from the

training set. The resulting distinction in Fig. 7C-E shows a potential to have a much better

differentiation with specially trained networks.

The ability to obtain an accurate prediction of the blood vessel network structure by

neural networks facilitates further post-analysis of the blood vessels structure tortuosity

with more confidence than on the same skeletonization performed on the raw images. This

analysis includes extraction of the skeleton of the network and, consequently, deep statistical

analysis of network structure: the position and number of branching points, measuring

the length of skeleton branches, paths statistics along vessels, density of junctions, vessels,

distances between different kinds of structures, comparison of skeletons in order to detect

new vessels. As an example, we use a segmentation result of Fig. 1A as an input for skeleton

extraction by open source Python library Skan.28 The result is shown in Fig. 8 and the

corresponding video is available in SI.

4 Conclusion

We demonstrated the potential of deep learning applied to the IR optical imaging in general

and in the NIR-IIb (1500-1700 nm) region in particular. This analysis allows to (i) segment

vessels from the tissues and noise due to scattering and adsorption of light in tissues; (ii)

distinguish vessels overlap and junctions; (iii) to get a morphology and depth estimation with

a pseudo-3D shape of blood vessels; (iv) distinguish different hierarchies of vessels types, such

as veins and arteries; (v) obtain a information about haemodynamics and kinetics of blood

flow; and (vi) perform all types of statistics on vessels junctions, connections, branching
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using accurate skeletonization of the blood vessel network. Deep learning methods are a

clear step to move forward making fast in vivo SWIR technique closer to high-resolution

optical imaging systems for future biomedical applications.
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