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Abstract

This paper presents an extension of a recently proposed hierarchical control
framework applied to linearization-based unconstrained control of a cryogenic
refrigerator. The extension concerns the validation of the framework in the pres-
ence of both nonlinear models and constraints. It is also shown that real-time
handling of these features requires a specific complexity reduction technique.
This technique performs the distribution of the optimization process over cycli-
cally changed decision variables aiming at limiting the number of iterations per
updating period. Numerical simulations are proposed in order to show the im-
pact of the parameters choices and to assess the real-time implementability of
the proposed framework.

Keywords: Hierarchical MPC,Cryogenic refrigerator, Fixed-point iteration,
Real-time, Modular Control Design, Constrained Control.

1. Introduction

Cryogenic refrigerators are necessary to cool down the superconducting devices
in many applications including nuclear fusion reactors as well as particle acceler-
ators [1, 2]. In fact, theses refrigerators are composed of many subsystems that
span over large areas. For many reasons, it is common to make changes in these
subsystems (PID re-tuning, valve changing) without any consistent assessment
of how these changes might affect the overall system behavior. Several cen-
tralized architectures have been proposed and experimented on a experimental
station at CEA1/IRIG2/DSBT3. However, these control methods appear to be
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non scalable and even inappropriate from an operational point of view. This is
in particular true when some actuators need to be changed or some sub-systems
need to be turned off/on. Hence, the need for scalable and modular design that
smoothly accommodates for changes in local sub-systems level triggered interest
in distributed/hierarchical design investigation leading to the framework pro-
posed in [3] which the present work extends.

In the last decades, non-centralized control architectures [4, 5, 6, 7, 8, 9] at-
tracted attention within the control community due to their ability to break the
problem into smaller tractable ones inducing modularity, security, and easiness
of implementation. These approaches can be split into two categories: Dis-
tributed and Hierarchical.

Distributed architectures involve subsystems exchanging information with ad-
jacent neighbors. In contrast, in hierarchical frameworks, the subsystems com-
municate only with a coordinator that uses the information received from the
subsystems to compute new evaluation of the coupling signals that are then sent
back to the subsystems in order to enhance the overall quality of the system
behavior. The survey book [5] listed more than 35 different approaches to such
frameworks.

This paper is an extension of the framework proposed in [3] where the reader can
find the precise positioning concerning the landscape of available approaches as
well as the first application to a cryogenic refrigerator. Nevertheless, the follow-
ing items recall the main points that enable to position the framework studied
in this paper and [3] in the landscape of related contributions:

X Many studies have focused on the optimality and/or the fulfillment of
constraints by assuming the closed-loop behavior to be stable [6, 7, 8]. This
strong assumption is not required for the fixed-point iterations proposed
in [3] and which is revisited in the present paper. Although this method
is not proven to be stable when constraints and nonlinearities are present,
it enforces at least local closed-loop stability. The examples provided in
this paper partially assess its effectiveness even when nonlinearities and
constraints are present.

X In several studies, the same assumption is re-introduced by stipulating a
weak coupling between subsystems. More precisely, it is assumed that the
coupling signals do not lead to the destabilizing effect.

X In many works, the structure of the coupling between the subsystems is
constrained. For instance, in [9], it is assumed that there is only a coupling
through control input actions. In [10], a hierarchical structure is proposed
where the higher level is coupled with the control input provided by the
lower level. Such structural assumptions on the coupling are not used
here since they might highly compromise the scalability and the scope of
application. Instead, in order to overcome the challenge of strong coupling

2



in the scheme proposed in [3], the coordinator takes appropriate explicit
actions in order to stabilize the iterations with local subsystems.

The present work extends the results of [3] in three directions:

X This paper proposes an extended set of numerical experiments in which the
feedback used in the subsystems level is a constrained and/or Nonlinear
Model Predictive Control NMPC. More precisely, constrained NMPC is
used for the Brayton cycle while constrained linear MPC is used for the
Joule-Thomson cycle (see Fig. 1(a)).

X Due to the non negligible computation time associated with constrained
nonlinear framework which has to be performed several times in a sin-
gle sampling period (due to the fixed-point iterations), it is shown that
standard use of the state-of-the-art numerical software [11] leads to a non-
implementable scheme. The paper proposes a complexity reduction tech-
nique based on the ideas proposed in [12] in order to derive a real-time
implementable version of the framework.

X As far as the comparison with a decentralized framework is concerned,
while in [3] the local controllers (at the subsystems level) assume nominal
values of the coupling signals, in this paper, local observers are imple-
mented which highly improve the performance of the decentralized setting
rendering the comparison fairer and more challenging for the hierarchical
settings.

The paper is organized as follows: Section 2 describes the system and states
the control problem. Section 3 recalls the hierarchical framework and its for-
mulation as stated in [3] in a more general nonlinear and constrained setting.
Section 4 proposes a method to distribute the optimization over time towards
achieving real-time implementability. The simulation results and analysis are
given in section 5 while section 6 concludes the paper and gives hints for future
investigations.

2. Problem description

2.1. Brief Description of the Cryogenic Refrigerator

This section briefly describes the cryogenic refrigerator that is studied in this
paper4. This plant is used for the purpose of conducting experiments (testing
cryogenic components, study of super-fluid helium, etc) aiming at improving the
design and operation of cryogenic refrigerators. Fig.1(b) shows the ideal under-
lying Claude thermodynamic cycle in the (entropy -temperature) coordinates.

4The system is located at CEA/IRIG/DSBT, Grenoble
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Figure 1: Block diagram of the 400@1.8K experimental refrigerator (in the 400W@4.4K con-
figuration) at CEA/IRIG/DSBT [3]. Fig.1(a) shows the system can be decomposed into four
parts: the Warm compression station (WCS), Precooling stage, Brayton cycle and Joule-
Thomson cycle. Fig. 1(b) illustrates the ideal entropy -temperature diagram, which is imple-
mented by the 400@1.8K refrigerator.

Fig.1(a) shows the decomposition of the overall process into four intercon-
nected subsystems. More precisely, the system can be viewed as the interconnec-
tion of four subsystems: Joule-Thomson (J-T) cycle (S1), Brayton cycle (S2),
LN2 precooling (S3), and warm compression station (WCS) (S4).

A cryogenic refrigerator provides cooling power by using a cryogenic turbine
(the one following the valve CV156 in S2 of Fig.1(a)) to extract thermal energy
from the fluid and by exchanging heat power through a series of heat exchang-
ers (represented by NEFx in Fig.1(a)). The main objective is to reject the
disturbance represented by the heat power induced by the operation of the ex-
perimental facility. In our experimental facility, this disturbance is represented
by the heat source denoted by NCR22 (see S1 on Fig.1(a)). A compressor is
used to close the thermodynamic cycle in the so-called warm compression sta-
tion (S4). The role of this subsystem is to maintain the pressures (denoted by
Hp (high pressure) and Bp (low pressure) in Fig.1(a)) within some tightly im-
posed bounds which correspond to an optimal operation regime of the overall
system.
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Concerning the dynamic model of the cryogenic refrigerator, a library has been
developed in [13] in which nonlinear models of all the cryogenic components
necessary for system modeling (valves, heat exchangers, Helium bath, turbines,
compressor) are implemented and connected before a linearization is performed
around the operational point of the refrigerator. All the details concerning this
library can be found in [13] and the references therein.

This paper extends the work of [3] (by addressing the constrained nonlinear
setting as well as the induced real-time implementation issues) while keeping
the framework in which the warm area (subsystem S3 and S4) is assumed to be
properly controlled. Therefore, this paper focuses on the control of the so-called
cold zone, including subsystems S1 and S2. The corresponding control problem
is described in the next subsection. In order to clearly state the control problem,
the inputs, outputs and constraints are first defined in the next section.

2.1.1. The Manipulated Inputs

There are three control inputs which are CV155, NCR22 belonging to Joule-
Thomson cycle (S1) and ∆P156 which is a part of the Brayton cycle (S2). These
actuators are defined below:

1. CV155 ∈ [20%, 90%]: This valve is situated at the inlet of the helium bath.

2. NCR22: This actuator is located inside the helium bath (S1). Note that
this heating resistance is also used to simulate the heat pulses coming
from the operation of physical experiments served by refrigerators. More
precisely, the total power of the resistance is split into two components

NCR22 = NCR
(a)
22 + NCR

(w)
22 , the first component is the control input

inside S1 and the second one is used as a disturbance signal. The value of

NCR
(a)
22 is in the range of [0, 100] W.

3. ∆P156 ∈ [0, 10] bar: The pressure drop between the inlet pressure and
outlet pressure of the valve CV156. It should be noted that the valve
CV156 is used to control the pressure drop ∆P156 between its inlet and
outlet pressure. To do this, the local NMPC of S2 computes and sends an
appropriate value of the pressure drop ∆P156 to the PID controller, which
acts on the opening position of the valve CV156 (Fig. 1(a)).

2.1.2. The Regulated Outputs

There are three regulated outputs (see Figure 1(a). for the notation) :

1. Ltb131: The helium liquid level (%) that must be controlled to ensure that
some thermal charges deposited inside the phase separator (e.g. used to
cool super-critical helium at liquid helium temperature to be ready for the
final customer) are immersed with liquid helium. The set-point is chosen
by the operator. In the usual operation, it is set at Ltbsp131 = 60.5%.

2. Ttb108: The temperature at the inlet of the J-T valve must be tightly
controlled in order to ensure the efficiency of the liquefaction of the helium.
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3. Ttb130: Since the cryogenic turbine is a sensitive component, the tem-
perature at its outlet must be regulated to avoid the risk of solid droplet
forming at the outlet, potentially destructive for the turbine.

2.1.3. The Measured Outputs

The design of the local controllers needs the states of the subsystems to be
reconstructed. This is done through dynamic observers. In order to synthesize
the observers for these two subsystems, the measured outputs need to be spec-
ified. The observer of J-T cycle uses the measurement of Ltb131 and Ttb108
while the observer of the Brayton cycle uses the measurements of Ttb130.

2.1.4. The nominal operation point

The nominal operation point is the usual operating point of the refrigerator.
This operation point is determined by the steady values of the inputs, outputs
and heating loads described above, namely:

CV0
155, NCR

(a,0)
22 , ∆P0

156, Ltb0131, Ttb0
130, NCR

(w,0)
22 (1)

The nominal values are shown in Table 1. These values are used to define the
following deviation variables:

u1 :=
[

CV155 − CV0
155 ; NCR

(a)
22 −NCR

(a,0)
22

]

, (2)

u2 := ∆P156 −∆P0
156 , (3)

y1 :=
[

Ltb131 − Ltb0131 ; Ttb108 − Ttb0108
]

, (4)

y2 := Ttb130 − Ttb0
130 , (5)

w := NCR
(w)
22 −NCR

(w,0)
22 . (6)

In the sequel, the following condensed notation is used to refer to the nominal
values of the controls and outputs to be regulated or constrained for the two
subsystems involved in the study:

U0
1 :=

[

CV0
155

NCR
(a,0)
22

]

, U0
2 := ∆P0

156, (7)

Y 0
1 :=

[

Ltb0131
Ttb0108

]

, Y 0
2 = Ttb0130 (8)

Note that the operation point of the heating power is the sum of NCR
(a,0)
22 and

NCR
(w,0)
22 , namely:

NCR
(0)
22 = NCR

(a,0)
22 +NCR

(w,0)
22 (9)

It is important to notice in order to keep the same operation point NCR
(0)
22 ,

higher values of pre-heating power NCR
(a,0)
22 induce lower values of NCR

(w,0)
22

which leads to the reduction of the amount of real heat disturbance power that
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can be rejected. This is the reason why NCR
(a,0)
22 is chosen at the minimal value,

which it can adopt in real-life configurations with the constraint (NCR
(a)
22 > 0).

Table 1 shows the nominal values of the inputs and outputs described above.

Variable Value Unit Variable Value Unit

CV0
155 55 % Ttb0130 12.31 K

∆P0
156 1.5 bar Ttb0108 5.37 K

NCR0
22 310 W Ltb0131 60.5 %

PHw
16 bar PCw

1.05 bar

Table 1: Steady state values of the inputs and outputs. PHw
and PCw

represent respectively
the high and the low pressures controlled by the warm compression station.

In what follows, the bold-faced notation p denotes the profile of a vector variable
p over a prediction horizon of length N . More precisely:

p = [pT (k), . . . , pT (k +N − 1)]T ∈ R
N ·np

where np is the dimension of p.

2.1.5. The dynamic model

Recall that all the details regarding the physical models are given in [13] and
references therein. Only the formal and compact representation is given here
in order to explain the hierarchical control framework. Using the sub-index
s ∈ {1, 2} to refer to the subsystem Ss, the nonlinear model governing the two
subsystems defined, in terms of the deviation variable mentioned above, takes
the following form:

x+
s = fs(xs, us, ws, vs)

ys = hs(xs, us, vs) (10)

vs′ = gs′(xs, us, vs)

with s′ 6= s, s, s′ ∈ {1, 2}. Note that the model of subsystem S1 is fully
linearized, namely f1(·), g1(·) and h1(·) are linear functions which is compatible
with the linear nature of underlying phenomenon. On the contrary, a nonlinear
model is necessary to describe the dynamics of S2. The notations xs, ys, vs and
ws are defined as follows:

• x1 ∈ R20 and x2 ∈ R20 express the deviations from the steady state values
of subsystem S1 and S2 respectively.

• y1 ∈ R
2 and y2 ∈ R express the deviations of the regulated outputs of

each subsystem.

• v1 ∈ R3 and v2 ∈ R3 are coupling signals by which the two systems
interact dynamically. Indeed as indicated in the last equation of (10), v1
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depends on (x2, u2, v2) while v2 depends on (x1, u1, v1). More precisely,
as illustrated in Fig. 1(a), the coupling variable v1 is given by

v1 := (Ph,Th,Pc)
T ∈ R

3 (11)

where Ph and Th are the pressure and temperature (deviations) at the
downstream inlet of the heat exchanger NEF1, whereas Pc stands for the
pressure at the upstream outlet of the same exchanger. Similarly, the
coupling signal v2 is given by:

v2 := (Mh,Tc,Mc)
T ∈ R

3 (12)

in which Mh stands for the mass flow rate at the downstream inlet of the
heat exchanger NEF1 while Tc and Mc are the temperature and the mass
flow rate at the upstream outlet of the same heat exchanger.

For any initial state x(k) and any control profile u defined over some prediction
horizon of length N , the corresponding nominal [disturbance-free] trajectories,
denoted by x(·,u, x(k)|v), which are obtained by applying the recursive formula
(10), lead to the following so-called coherence constraints defined for all
i ∈ {0, . . . , N − 1}:

v1(k + i) = g1(x2(k + i,u2, x2(k)|v2), u2(k + i), v2(k + i)),

v2(k + i) = g2(x1(k + i,u1, x1(k)|v1), u1(k + i), v1(k + i)),

These constraints simply express the fact that the signal profiles v := (v1,v2) are
compatible with the system’s nominal coupled equations. This can be shortly
written by introducing the following straightforward notation:

v1 = g1(u2, x2(k),v2) (13)

v2 = g2(u1, x1(k),v1) (14)

Indeed, the r.h.s of (13) and (14) can be viewed as functions of xs(k), us and vs

(for s ∈ 1, 2), since the trajectories xs depend on xs(k), us and vs (for s ∈ 1, 2).

2.2. Overview of the the hierarchical control architecture

In this section, the concept of coordinator that is invoked in the hierarchical
design is introduced. The role of the coordinator is to control the system through
two operation modes which are described hereafter:

1. In the first mode, the objective is to regulate the system around the nom-
inal point x = 0 in spite of the unmeasured disturbances (disturbance-
rejection mode). This is the main objective of the cryogenic refrigerator.

2. In the second mode, the coordinator can temporarily drive the system
to a different steady-state corresponding to a new set-point y 6= 0. For
instance, the operator might decide to change the level Ltb131 of liquid
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helium in the bath or the temperature Ttb108. This corresponds to a
change in the corresponding set-points.

These two modes can be taken into account by using different set-points and
different weighting matrices in the centralized cost function, namely:

Jc(u, x(k), r
d |v) =

2
∑

s=1

Js(us, xs(k), r
d
s , |vs) (15)

where

Js(us, xs(k), r
d
s , |vs) :=

N
∑

i=1

‖rds − hs(k + i)‖2
Q

(s)
c

+ ‖us(k + i) + U0
s ‖

2

R
(s)
c

where hs(k + ·) represents the output profile given by:

hs(σ) = hs(xs(σ,us, xs(k)|vs),us(σ),vs(σ)) (16)

Note that Js(us, xs(k), r
d
s |vs), s ∈ {1, 2} stand for the local costs that are com-

puted for given vs. Q
(1)
c ∈ R2×2, Q

(2)
c ∈ R, R

(1)
c ∈ R(2×2) and R

(2)
c ∈ R+ are

positive semidefinite weighting matrices to penalize the distance of outputs to
set-points, and to penalize the usage of the control action. Note that the output
set-points rd1 ∈ R2 and rd2 ∈ R represent the desired values of the deviation from
the real set-points rds + Y 0

s .

Remark 2.1. It is important to underline the difference between the central cost
used by the coordinator and the stability oriented costs used by the local MPC
controllers. Indeed, stability-oriented MPC formulations (local MPC) need to
incorporate stabilizing terms that are not directly linked to the economic cost
(central) and thus optimize a cost that is not exactly equal to the economic cost.
The coordinator role focuses on the economic cost using the stable results coming
from the local subsystems.

At this stage, we have all we need to state the hierarchical control requirements:

Hierarchical control requirements. A key feature in the proposed hier-
archical framework is the concept of auxiliary set-points. Indeed, while rd

stands for the desired set-points at the central level, there is a need to define the
so-called auxiliary set-points. These are the set-points that are to be used in
the local level so that the central cost function (15) is minimized. These aux-
iliary set-points have no reasons to be equal to the central (original) set-points
as the expressions and the weighting used in the local and the central levels are
different, as mentioned above.

A hierarchical control scheme should be defined where both local MPC and
NMPC (designed for S1 and S2 respectively), receive the appropriate optimal
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auxiliary set-points ropt1 and ropt2 that minimize the central cost (15). Moreover,
the following operational conditions have to be satisfied:

1. S1 and S2 communicate only with the coordinator.

2. The coordinator has no knowledge regarding the mathematical models of
S1 and S2 nor the details of their local controllers’ settings.

3. The modes mentioned before are handled by changing only the desired
set-points rd and the weighting matrices Qc and Rc. This should leave
the local controller formulations and design unchanged.

Therefore, the coordinator computes the optimal auxiliary set-points ropt in
order to minimize the central cost Jc corresponding to the desired set-point rd.
In order to do this, the hierarchical control algorithm illustrated in Fig.2 is pro-
posed. More precisely, the coordinator constructs a grid of auxiliary set-points
G. Then, the fixed-point iteration described in section 3 is executed in order
to evaluate the central cost Jc(r) at all candidate auxiliary set-points r ∈ G.
Using these evaluations, a quadratic approximation Ĵc of the central cost Jc is
obtained.

Having this map at its disposal, the coordinator computes the candidate auxil-
iary set-points roptc by solving a quadratic optimization problem inside a contin-
uously updated trust-region R. A new round of set-point iterations is used to
check whether this presumably optimal value does effectively improve the cen-
tral cost. Depending on the answer, the trust-region size used to define the grid
of auxiliary set-points in the next sampling instant is updated (size is increased
in case of success and decreased otherwise). Depending on the case, the optimal
value ropt(k) to be used is either the one just found, namely roptc or the previous
value ropt(k − 1) adopted in the previous sampling period.

All these steps are successively explained in the remainder of the paper be-
fore a set of numerical investigations is proposed to illustrate the efficiency of
the proposed framework.

3. Recalls on the fixed-point iteration framework

Let us first recall the fixed-point iteration based algorithm proposed in [3] which
is used to evaluate the central cost for any candidate auxiliary set-point r. Then
the way the loop is closed by finding the best auxiliary set-point is explained.

3.1. Computing the central cost for a given auxiliary set-point: The Fixed-Point
Iteration

In this section, a global set-point rd = (rd1 , r
d
2) is given together with a value r

of the auxiliary set-point at some sampling instant k.
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Initialization

Coordinator constructs
a grid G of auxiliary set-points

Fixed-point Iteration
Coordinator evaluates Jc
for each set-point r ∈ G

Optimization
1. Approximate Jc by Ĵc

2. Compute ropt = minr∈R

(

Ĵc

)

Finalization

Coordinator sends ropt to the subsystems
for them to compute the control

to be applied on the plant.

Communication
between the coordinator
and the subsystems.

Figure 2: block diagram of the hierarchical control algorithm.

The task of the coordinator is to evaluate the value of the central cost Jc (15)
if the auxiliary set-point r = (r1, r2) is adopted by the local controllers. This
has to be done in spite of the absence of knowledge regarding the mathemati-
cal model, the current states or control design used at the local subsystems level.

Note that the central optimization problem can be viewed as a problem in
the extended decision variable (u,v) provided that one adds the coherence con-
straints (13)-(14) on v, namely:

min
u1,u2,v1,v2

2
∑

s=1

Js(us, xs(k), r
d
s |vs) (17)

subject to

{

v1 = g1(u2, x2(k),v2)

v2 = g2(u1, x1(k),v1)
(18)

Note that the two individual costs are now conceptually decoupled for any given
choice of coupling signal profiles v1 and v2. The coupling now appears in the
equality constraints (18).

In [3], a method has been proposed to estimate the central cost defined by (17)
using a fixed-point iteration in which, given a pair of set-points r = (r1, r2), the
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coordinator starts with some initial guesses regarding the coupling signals:

v
(σ)
1 ,v

(σ)
2 ; σ = 0 (19)

These current guesses are sent to the subsystems Ss, s ∈ {1, 2} so that each
subsystem can compute the corresponding optimal control profile (should the
coupling signal profile be correct), namely:

uopt
s (rs, xs(k)|v

(σ)
s ) (20)

In order to compute uopt
s , given the candidate auxiliary set-points rs and cou-

pling profile v
(σ)
s , the local controllers solve in parallel and independently their

local stability-oriented optimization problems, namely:

Ps : min
us

N
∑

i=1

(

i

N

)q
[

‖xs(k + i)− xsp
s (rs)‖

2
Qs

(21)

+‖us(k + i)− usp
s (rs)‖

2
Rs

]

subject to :

xs(k + i) = xs(k + i,us, xs(k)|v
(σ)
s )

us ≤ us ≤ us

where

X (xsp
s (rs), u

sp
s (rs)) is the steady pair that is consistent with the candidate

set-point rs and the given exogenous signal v(σ).

X xs(k+ i) = xs(k+ i,us, xs(k)|v
(σ)
s ) is the predicted state of the subsystem

Ss at instant k+ i given the control profile us, the initial state xs(k) and

the presumed coupling profile v
(σ)
s .

X Q1 ∈ R20×20, Q2 ∈ R20×20, R1 ∈ R2×2 and R2 ∈ R are the weighting
matrices on the states and the control inputs of subsystems S1 and S2,
respectively.

Remark 3.1. As mentionned in [3], the time-dependent weighting term (i/N)q

for some q ∈ N allows to put high weight on the tail of the prediction horizon by
choosing non-zero values q.

Note that the steady pair (xsp
s (rs), usp

s (rs)) corresponding to the candidate
set-point rs, s ∈ {1, 2}, is computed by solving the optimization problem below:

12



Psp
s : min

x
sp
s ,u

sp
s

‖ysps − rs‖
2
Q

sp
s

+ ‖usp
s ‖Rsp

s
(22)

subject to :

ysps = hs(x
sp
s , usp

s , vends ) (23)

xsp
s = fs(x

sp
s , usp

s , ws, v
end
s ) (24)

where vends := v
(σ)
s (k +N − 1) is the last element of the exogenous profile v

(σ)
s ,

whereas Qsp
1 ∈ R2×2, Qsp

2 ∈ R, Rsp
1 ∈ R2×2 and Rsp

2 ∈ R are respectively the
weighting matrices on output and input. Note that (24) is the stationary con-
dition associated to the set-point rs.

Once the control input profiles uopt
s , s ∈ {1, 2}, are obtained, each subsystem

computes the corresponding coupling profile and sends it to the coordinator :

S1 sends to coordinator → v̂
(σ+1)
2 := g2(u

opt
1 , x1(k),v

(σ)
1 )

S2 sends to coordinator → v̂
(σ+1)
1 := g1(u

opt
2 , x2(k),v

(σ)
2 )

In order to force the convergence of the iteration, a filtering dynamics has been
proposed in [3] which is defined by:

v
(σ+1) = F (v(σ), v̂(σ+1))

= (I −Π) · v(σ) +Π · v̂(σ+1) with v
(σ) =

[

v
(σ)
1

v
(σ)
2

]

(25)

The computation of the Π matrix and the resulting proof of convergence (in the
linear unconstrained case) are described in [3].

The filtered estimates v
(σ+1)
s , are sent by the coordinator to the subsystems.

Based on these values, the subsystems are able to compute the new optimal
control profiles

uopt
s (rs, xs(k)|v

(σ+1)
s )

and corresponding profile of v̂(σ+2), which is then sent back to the coordinator
for a new iteration. It is important to note that it is only when the iteration
of the fixed point converges to some v

(∞)(r) that the coherence constraints
(13)-(14) become satisfied and the quadruplet:

(

u
opt
1 (r1, x1(k)|v

(∞)
1 (r)),uopt

2 (r2, x2(k)|v
(∞)
2 (r)),v

(∞)
1 (r),v

(∞)
2 (r)

)

(26)

can be viewed an admissible sub-optimal solution to the constrained central
problem (17)-(18). Practically, the iterations are stopped if one of two termina-
tion criteria is reached:

σ ≥ σmax or ǫ := max(|v(σ+1) − v
(σ)|) ≤ ǫmax (27)
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Then, each subsystem computes its contribution to the central cost (using the
central rd), namely:

Js(u
opt
s (rs), xs(k), r

d
s |v

(∞)
s (r))

and send it to the coordinator. After receiving these evaluations, the coordinator
computes the central cost (15), which is now considered as a function of the
auxiliary set-point r := (r1, r2), r

d and v
(∞)(r):

Jc(r|r
d,v(∞)(r)) :=

2
∑

s=1

Js

(

uopt
s (rs), xs(k), r

d
s |v

(∞)
s (r)

)

(28)

Note that the estimation process of the central cost (left-hand side of (28)) by
the coordinator, as described above, does not involve the knowledge of the state
xs(k) nor the knowledge of the optimal control uopt

s (rs) but the estimation of
the local costs and the coupling signals sent by the subsystems. Indeed, the
estimation of local costs depends on the coupling signals profiles v(∞)(r) which
encompasses all the information inaccessible to the coordinator and which are
transmitted to the latter upon the convergence of the fixed point iterations. The
previous discussion is summarized in Fig.3 and Algorithm 1.

Fixed-point:

v
(σ+1) = F (v(σ), v̂(σ+1))

v̂
(σ+1)
2 , J1(u

opt
1 (r1), x1(k), r

d
1 |v

(σ)
1 ) v̂

(σ+1)
1 , J2(u

opt
2 (r2), x2(k), r

d
2 |v

(σ)
2 )

r1, r
d
1 r2, r

d
2v

(σ)
1

v
(σ)
2

J1(·, x1(k), r
d
1 |v

(∞)
1 ) J2(·, x2(k), r

d
2 |v

(∞)
2 )

JMPC
1 (·, x1(k), r1|v

(σ)
1 ) JNMPC

2 (·, x2(k), r2|v
(σ)
2 )

Compute u
opt
1 (r1, x1(k)|v

(σ)
1 ) Compute u

opt
2 (r2, x2(k)|v

(σ)
2 )

Compute J1(u
opt
1 (r1), x1(k), r

d
1 |v

(σ)
1 ) Compute J2(u

opt
2 (r2), x2(k), r

d
2 |v

(σ)
2 )

v̂
(σ+1)
2 ← g2(u

opt
1 (r1), x1(k),v

(σ)
1 ) v̂

(σ+1)
1 ← g1(u

opt
2 (r2), x2(k),v

(σ)
2 )

Figure 3: Schematic view of the fixed-point iteration at instant k [3]. The states x1(k), x2(k)
and the set-points rs and rds are considered frozen. Note that subsystem S2 uses NMPC as a
local controller.

3.2. Optimizing the auxiliary set-points

In the previous section, it has been shown how the fixed-point iterations help
the coordinator computing the central cost for a given auxiliary set-point

r. Recall, however, that the role of the coordinator is to optimize the choice of
the auxiliary set-points so that the central cost can be minimized. This section
explains how the coordinator can use successive evaluations of the central cost
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Algorithm 1: Fixed-point-iteration-based-algorithm for a given set-
point vector r

Initialization: σ ← 0,v
(0)
s ← 0, ǫ←∞;

while (σ ≤ σmax ) and (ǫ ≥ ǫmax) do

for s← 1, ..., 2 do

// Parallel computation performed by the subsystems

xsp
s , usp

s ← subsystem Ss solves Psp
s in (22);

xs, us ← subsystem Ss solves Ps in (21);

Subsystem Ss computes v̂
(σ)
s′ (s′ 6= s) and sends it to coordinator;

end

Coordinator computes v
(σ+1)
s by (25) and sends it to subsystem Ss;

ǫ← max(|v
(σ+1)
s − v

(σ)
s |)s=1..2;

σ ← σ + 1
end

for s← 1, ..., 2 do

Subsystem s computes hs then Js, and sends Js to coordinator;
end

Coordinator computes Jc(r)←
∑2

s=1 Js(rs)

for different candidate auxiliary set-points to build a quadratic approximation of
the central cost (as a function of the auxiliary set-points at the current sampling
time k) in order to derive a candidate optimal auxiliary set-point ropt.

3.2.1. Approximating the central cost

Using the fixed-point iteration, the coordinator can compute for each auxiliary
set-point r = (rT1 , r

T
2 )

T the corresponding value of the central cost:

Jc(r|r
d,v∞(r)) (29)

after convergence of the fixed-point iteration.

The central problem in the coordination layer can now be defined as follows:

ropt = argmin
r

Jc(r |r
d,v∞(r)) (30)

In order to solve (30), the central cost (15) will be approximated by a quadratic
function, namely:

Ĵc =
1

2
rTQr + fT r + c (31)

whereQ ∈ Rnr×nr , f ∈ Rnr and c ∈ R, with nr being the dimension of vector r.

These unknown parameters can be identified if the coordinator disposes of the
values of the central cost at, at least, (nr + 1)(nr + 2)/2 different auxiliary set-
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points. The remainder of this section is devoted to explaining the way this is
done by the coordinator. Note that this is a single possibility among many other
possibilities of optimizing a black-box given function through different evalua-
tions of its values at a set of possible points within its domain of definition. This
is linked to the general task of derivative-free optimization.

In [3], the grid of auxiliary set-points G(k) is constructed using a fixed grid
around the original set-point rd. In the present version, a moving grid around
the suboptimal solution found at the last instant. Moreover, the size ρ of the
trust-region is modified, which will be described in section 3.2.2, depending on
the relevance of quadratic approximation. At each sampling instant k, the grid
G(k) of auxiliary set-points for the evaluation (at the sampling instant k) of
the central cost is defined around the previous optimal value ropt(k − 1)
as follows:

G(k) := Pr
(

ropt(k − 1) + ∆(ρ(k − 1)),R
)

(32)

where

• R is an admissible set of r, namely:

R = {r | rmin ≤ r ≤ rmax} (33)

where rmin, rmax ∈ Rnr are a priori defined bounds on possible values of
the set-points.

• for a discrete subset D ⊂ Rnr , the notation Pr (D,R) denotes the discrete
set obtained by projecting all the elements of D on the hypercube R.

• ρ ∈ R+ is positive real (size of the trust region where the quadratic ap-
proximation is presumably relevant).

• ∆(ρ) is a discrete set of displacements in Rnr defined around 0 with dis-
tances that are proportional to ρ so that ropt(k − 1) +∆(ρ) represent the
set of different auxiliary set-points around the previous optimal value to
be visited and where the cost is to be evaluated). More precisely, the
subset ∆(ρ) ⊂ Rnr is defined by (m is supposed to be odd):

∆(ρ) :=
{

−
(m− 1)

2
ρ, . . . ,−ρ, 0, ρ, . . . ,

(m− 1)

2
ρ
}nr

(34)

The trust region size ρ is updated at each instant k, which will be described
later. Recall that the identifiability of the quadratic form coefficients is possible
provided that mnr ≥ (nr + 1)(nr + 2)/2.

Based on the above definitions, the grid G(k) is constructed by using (32),
the evaluation of the central cost Jc(·) at every set-point r ∈ G(k) is performed
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by using the fixed-point methodology introduced in section 3. The values

Jc(r
(j)), j = 1, . . . , nev ≤ mnr

enable to compute the parameters of the quadratic form:

(Coordinator) min
Q,f,c

nev
∑

j=1

∣

∣

∣

∣

Jc(r
(j))−

[

1

2
‖r(j)‖2Q + fT r(j) + c

]
∣

∣

∣

∣

(35)

OnceQ, f and c are available, a candidate optimal set-point roptc (that minimizes
the quadratic approximation) can be computed. Note, however, that since the
central cost is not necessarily quadratic, this candidate optimal cost does not
necessarily induce a decrease in the central cost. This can happen when the
trust-region parameter ρ is too large for the quadratic approximation to be
relevant. In such case, the size ρ should be reduced. This mechanism is discussed
in the next section.

3.2.2. Trust region updating law of ρ

As mentioned previously, the parameter ρ defines the size of the neighbor-
hood of the current desired set-point rd over which the better value is computed
based on the current quadratic approximation of the cost function. On one
hand, ρ must be sufficiently high to ensure a rapid decrease of the cost value.
On the other hand, small values of ρ might be required in order for the quadratic
approximation to be relevant. Hence, ρ should be updated accordingly: ρ is in-
creased if the quadratic approximation induces a decrease of the cost function
while ρ is decreased otherwise.

Concretely, the following quadratic problem is first solved to obtain the
candidate value rc(k)

roptc (k) = argmin
r∈P(k)

Ĵc(r) (36)

where P(k) is given by:

P(k) := Conv{Pr (rd(k) + ∆(ρ(k − 1)),R)} (37)

Once the candidate roptc (k) is obtained, the corresponding cost is computed by
launching the algorithm 1 to obtain Jc(r

opt
c ). The quadratic approximation is

said relevant if it meets the condition below:

Jc(r
opt
c ) < min{Jc(r

(j)) | r(j) ∈ G(k)} (38)

Therefore, the trust-region size ρ is updated according to:

ρ(k) :=

{

β+ · ρ(k − 1) if (38) is satisfied

β− · ρ(k − 1) otherwise
(39)
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where β+ ≥ 1 and β− ∈ (0, 1) denote respectively the expansion and the con-
traction factors. Finally, the updating law for ropt is given by:

ropt(k) :=

{

roptc (k) if (38) is satisfied

ropt(k − 1) otherwise
(40)

where ropt(k − 1) is the solution found at the previous instant k − 1. The so
adopted set-point ropt(k) is then sent to the subsystems with an end-of-iterations
flag, which allows the subsystems to compute their corresponding control pro-
files. Finally, according to the MPC definition, the first action in each profile,
namely:

us(k) := [Inu
s
,Onu

s
, . . . ,Onu

s
]uopt

s (ropts (k), xs(k)|v
(σmax)
s ) (41)

is applied by subsystem Ss during the sampling period [k, k + 1].

Unfortunately, because of the presence of nonlinearity and constraints, the com-
putation of the nev necessary evaluations for central cost approximation might
require a computation time that goes beyond the available sampling time Ts.
The following section proposes a method to reduce the computation time with
a rather little impact on the quality of the resulting closed-loop performance.

4. Distributing the optimization over time

Since using constrained nonlinear MPC induces a significant increase in the
computation time, it might be impossible to compute a solution ropt (following
the scheme of the previous section) for the next sampling period in the presence
of limited computational resources. In order to overcome this potential issue,
this section proposes a technique inspired by [12] which is based on the idea
of distributing the optimization over time. To facilitate the following explana-
tions, the notation k and k + 1 are used to refer to instants kτu and (k + 1)τu
with τu being the control updating period, namely, the time during which the
computation of a new optimal open-loop sequence is recomputed to implement
the MPC feedback. Note that τu is not necessarily equal to the sampling time
Ts. The process described in this section will be executed during the updating
period [k, k + 1] as long as the computation time does not exceed τu.

Recall that the approximation of the cost function Jc(r) needs the evaluation
of Jc at nev ≥ (nr + 1)(nr + 2)/2 values of the auxiliary set-points. By re-
ducing the number of degrees of freedom (DOF) of vector r to be improved
from nr to nz < nr, only (nz+1)(nz+2)/2 realizations would be needed, which
accordingly leads to a decrease of the computation burden per updating period.

More precisely, a change in the decision variable is cyclically operated by defin-
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ing a reduced dimensional parameterization of r of the form:

r̃ = Mr +Dz (42)

where r̃ ∈ Rnr , M ∈ Rnr×nr and D ∈ Rnr×nz . Moreover, the transformation
matrices M and D are changed in a cyclic way in order to explore all the degrees
of freedom of r after a finite number of successive iterations. This is explained
in a more detailed way in the remainder of this section.

At the beginning of each updating period k, the optimization problem to be
solved is given by:

z⋆(k) = argmin
z

Ĵc(M
(jk)r⋆(k − 1) +D(jk)z) (43)

where the transformation defined by the matrices M (jk) and D(jk) is defined
in order to assign some components of the vector r to be equal to the corre-
sponding components of the previous solution r⋆(k−1) while leaving as degrees
of freedom the nz remaining components that define the reduced dimensional
decision variable z. Note that the definition of the transformation matrices de-
pends on the updating instant k through the upper index jk which is a cyclic
variable defined by:

jk = (jk−1 + 1) mod nr (44)

In the numerical investigation, the following two configurations are tested in
order to illustrate the proposed methodology:

4.1. Configuration 1: nz = 1, nr = 3

M (0) =





0 0 0
0 1 0
0 0 1



 D(0) =





1
0
0



 (45)

M (1) =





1 0 0
0 0 0
0 0 1



 D(1) =





0
1
0



 (46)

M (2) =





1 0 0
0 1 0
0 0 0



 D(2) =





0
0
1



 (47)
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4.2. Configuration 2: nz = 2, nr = 3

M (0) =





0 0 0
0 0 0
0 0 1



 D(0) =





1 0
0 1
0 0



 (48)

M (1) =





0 0 0
0 1 0
0 0 0



 D(1) =





1 0
0 0
0 1



 (49)

M (2) =





1 0 0
0 0 0
0 0 0



 D(2) =





0 0
1 0
0 1



 (50)

Note that the same methodology explained before regarding the definition of
the grid of points is adopted with r and nr respectively replaced by z and nz.
The only difference is that the number of degrees of freedom to be considered
at the beginning of each updating period is reduced, and the significance of the
degrees of freedom in terms of the components of r changes at each updating
period.

When a sub-optimal solution z⋆(k) to (43) is obtained (after the allowed num-
ber of iterations), the corresponding candidate sub-optimal auxiliary set-point
r⋆c (k) is given by

r⋆c (k) = M (jk)r⋆(k − 1) +D(jk)z⋆(k) (51)

This candidate value is then used to update the size of the trust region in
a similar way as explained above. The method can be simply sketched by
Algorithm 2 for a given updating cycle involving nd iterations. More precisely,
for-loop in Algorithm 2 allows to perform nd iterations within the updating
period. Indeed, if the computation time does not exceed the updating period
[k, k + 1], the whole process mentioned in this section can be repeated in order
to improve the sub-optimal candidate auxiliary set-point r⋆c (k).

5. Simulation results

In this section, some numerical simulations are proposed in order to illustrate
the different concepts and solutions introduced in the paper.

5.1. The simulation parameters

First of all, a cost index is necessary in order to evaluate and compare the
performances in terms of closed-loop costs associated to the different framework
settings. The commonly used closed-loop central cost will be adopted, namely:

Jsim =
1

Nsim

2
∑

s=1

Nsim
∑

i=1

‖y(i)− yd‖Qc,s
+ ‖u(i)‖Rc,s

(52)
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Algorithm 2: Pseudo code for the distributed-in-time optimization

for l ← 1, ..., nd do
Coordinator defines a grid of auxiliary set-points
G(M (jk)r⋆(k − 1) +D(jk)∆(ρ(k − 1)),R);

Coordinator evaluates the cost function for each element r in the
grid G(M (jk)r⋆(k − 1) +D(jk)∆(ρ(k − 1)),R);

Coordinator computes the quadratic approximation Ĵc(z) of J(z);
Coordinator finds z⋆(k) by solving (43)
Coordinator computes the candidate auxiliary set-point r⋆c (k)
according to (51);

Coordinator updates ρ and r⋆(k) using (39) and (40).
end

Coordinator sends r⋆(k) to the subsystems.

where Nsim is the length of the simulation (in terms of sampling periods Ts =
5s), Qc,s and Rc,s are the penalty matrices used in the central cost (15). There
are two sets of weighting matrices for the central cost (15), which will be used
in the two distinct modes describes earlier (see the beginning of section 2.2),
namely:

X Mode 1: For disturbance rejecting scenario:

Qc,1 =

[

104 0
0 104

]

, Rc,1 =

[

0 0
0 1

]

(53)

Qc,2 = 106, Rc,2 = 0.1 (54)

X Mode 2: For set-point tracking scenario:

Qc,1 =

[

106 0
0 0.1

]

, Rc,1 =

[

0 0
0 0

]

(55)

Qc,2 = 104, Rc,2 = 0 (56)

Where the second mode is dedicated to the tight regulation of the first output
of the first subsystem, namely the liquid helium level in the bath (Ltb131).

The penalty matrices for the local MPCs are fixed regardless of the scenario
to the following values:

Q1 = CT
1 ·

[

10 0
0 1

]

· C1 + 10 · I20×20 R1 =

[

1 0
0 1

]

Q2 = CT
2 · 10

3 · C2 + 10 · I20×20 R2 = 1
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where C1 is the matrix involved in the expression of the regulated output of the
subsystem S1:

y1(k) = C1 · x1(k) +D1 · u1(k) +Dv1 · v1(k) (57)

Whereas, the matrix C2 is the partial derivative of h2(x2, u2, z2) in (10) with
respect to x2 at an operating point (xop

2 , uop
2 , vop2 ). Note that in each of the

local MPC settings, a penalty on the whole state is used in order to enforce the
stability of the local closed-loop.

The prediction horizon N is chosen to have a length of NTs (where N = 100
and Ts = 5 seconds). This corresponds roughly to 8 minutes. This setting is
currently used at CEA/IRIG/DSBT and is also the one that has been used in
many previous studies involving MPC control design. As for the definition of
the stage costs, the exponents q1 = 1 and q2 = 1 are used for the cost functions
used in the local MPC design [see (21)].

In order to estimate the states to be used in the local MPC implementation, each
subsystem uses an appropriate observer whose synthesis is beyond the scope of
this paper. The observer not only estimates the states xs but also estimates the
exogenous input vs (extended observer). For the decentralized settings (without
coordinator), the exogenous signal vs(k) is supposed to remain constant over
the prediction horizon. For the updating rules of the trust region size, the pa-
rameters β−, β+ are set to 0.7 and 1.25, respectively.

In the next sections, the following aspects will be illustrated through the nu-
merical simulations:

The benefit from using nonlinear models

To start, Fig. 4(a) shows the relation between the stationary values of Ttb130
and ∆P156. From this figure, it appears clearly that the visited interval of val-
ues of ∆P156 involves rather high nonlinearities which explains the benefit from
using Nonlinear MPC. Indeed, a comparison between the coordination with Lin-
ear MPC and Nonlinear MPC used in the Brayton cycle is presented (Fig. 5).
It is shown that the temperature Ttb130 is better controlled when using the
nonlinear models which results in an obvious improvement of the cost. This
validates the first purpose of this contribution (need for explicit handling of the
nonlinearities). Therefore, only the Nonlinear MPC design in the Brayton cycle
is used in the forthcoming investigations. However, the related computation
time of S2 exceeds the time limit (subplot(3,3,7) of Fig. 5), which means that
the simulated feedback actions cannot be really implemented.
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Figure 4: Fig. 4(a) shows the evolution of the stationary value of Ttb130 as a function of
∆P155. Fig. 4(b) shows the histograms of the computation times of S1 and S2 during the
simulated scenario.

Fig. 4(b) compares the computation time of S1 and S2 showing that since the
subsystem S1 only involves linear MPC problem, the related computation time
is very small compared to the time needed to solve general non quadratic op-
timization problem that is associated to subsystem S2. The same can be said
regarding the computations done by the coordinator, in view of the fact that it
only performs basic operations.

In what follows, the simulation results aim at showing the benefit of using
the hierarchical control framework (compared to observer-based decentralized
framework) and the effectiveness of the distributed-in-time optimization heuris-
tic, proposed in the previous section, in addressing the computation time and
real-time implementability issue.
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Figure 5: Comparison of closed-loop behavior under the proposed hierarchical framework with
Linear MPC (dash-dot green line) and Nonlinear MPC (solid blue line) used in modeling the
Brayton cycle. The first row presents the outputs, and the second one presents the inputs
of the system. The subplot(3,3,8) illustrates the periodic disturbance applied to the helium
bath. The subplot(3,3,7) shows the computation time when using the Nonlinear MPC. Note
also that the computation time limit is not considered for this simulation (the solver takes the
time needed to perform the assigned computations). The subplot(3,3,9) depicts the evolution
of the cost index Jsim in time.

The benefit from hierarchical design

In this section, the disturbance rejection mode is simulated. The closed-loop
cost of the proposed hierarchical framework is compared to the one obtained
under the extended observer-based decentralized approach. More precisely, two
scenarios are simulated in which the limitation on the available computation
time is respectively enforced or not:
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Without constraints on the computation time

Fig. 6 shows simulations without limitation in the computation time (the de-
cided number of evaluations is assumed to be possible to achieve within the
sampling period Ts). This means that the corresponding uopt

s (k) is implemented
even if its computation time exceeds the available time within the sampling pe-
riod. With the use of the proposed framework, the regulation of the temperature
Ttb130 is highly enforced compared to its behavior in the absence of coordina-
tion. One can also note that the level Ltb131 seems to loosely track the desired
set-point which is expected since in this disturbance rejection mode 1, the focus
is on the temperature Ttb130 as suggested by the choice of the penalty matri-
ces [see (53) and (54)]. This can be simply checked by examining the last plot
that compares the closed-loop index evolutions for the two examined settings.
The comparison with the observer-based decentralized approach shows the ad-
vantage of using the hierarchical scheme should the computation be possible to
perform in the allowed sampling period Ts.
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Figure 6: Closed-loop behavior with coordination (solid blue line) and without coordination
(dash-dot green line). The first row presents the outputs, and the second one presents the
inputs of the system. The hierarchical control method gives a better cost Jsim than the
decentralized method (closed-loop cost decreased by 56%). Note that the cost under linear
MPC (Fig. 5) corresponds to a reduction of only 12% compared to the decentralized control
without coordination). Note also that the computation time limit is not considered in this
simulation.

Enforcing the cpu-constraint (τu ≤ Ts) on the available computa-
tion time

In this section, the constraint induced by the limited available computation time
is taken into account in order to underline the benefit from using the proposed
distributed-in-time optimization framework. In order to take into account the
cost increase induced by the impossibility to compute the solution ropt within
the allocated time, Fig. 7 shows the closed-loop behavior when the subsystems
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apply the previous control uopt
s (k − 1) each time the computation time exceeds

the available computation time Ts. Indeed, in this case, the master cannot dis-
pose of the needed information in order to update the approximation of the cost
function, which is needed to update the value of the auxiliary set-point and the
associated coupling signals that are needed to compute the updated control to
be applied.

Figure 7: Closed-loop cost comparison between the case where the limitation of the available
computation time Ts is taken into account in the hierarchical framework’s implementation
(dash-dot green line) and the ideal case where this constraint is not considered (solid blue
line). The first row presents the outputs, and the second one presents the inputs of the system.
Note in particular how the control of the liquid helium level Ltb131 is visibly deteriorated.

In order to conclude this subsection, Table 2 shows the normalized cost index
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Table 2: The normalized cost index of for the different settings mentioned above.

Jnorm
sim

Without Coordination 100 %
Coordination with Linear MPC 87.57 %

Coordination with Nonlinear MPC
(Enforcing computation time limit)

70.64 %

Coordination with Nonlinear MPC
(Without computation time limit)

44.21%

Jnorm
sim for all the settings mentioned previously. This table clearly shows the

cost increase that is induced by the limitation on the available computation
time. Indeed, the cost increases from 44% to 70.64% of the baseline represented
by the observer-based decentralized scheme.

In the next section, the possibility to partially recover the optimal performance
through the distributed-in-time optimization scheme proposed in section 4 is
investigated.

Impact of the distributed-in-time setting’s parameters

Different configurations of the distributed-in-time optimization parameters (nz,
nd and τu) are simulated, and the corresponding closed-loop costs Jnorm

sim (nor-
malized cost index) are reported in order to give a flavour of the impact of each
choice on the results. More precisely, the testing scenario of a periodic heating
disturbance is simulated again with the distributed-in-time optimization frame-
work being implemented in the hierarchical framework.

Fig. 8 shows the comparison of the behavior of the process when using the
hierarchical control combined with optimization distribution and the one with-
out distribution under time limit constraint. Fig. 9 shows the computation
time for different configuration of nz and nd. Finally, table 3 shows the associ-
ated closed-loop cost for the different configurations of the distributed-in-time
optimization scheme. It comes out that the setting corresponding to nz = 2,
nd = 1 enables to get closer to the ideal cost index drop (44%) corresponding
to the non constrained computation time simulation while being fully real-time
compatible.
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Figure 8: Comparison of the closed-loop behavior under the proposed hierarchical framework
with two different settings: 1) with distributed-in-time optimization being implemented and 2)
without distributed-in-time implementation under available time limitation constraint. The
first row presents the outputs and the second one presents the inputs of the system. The
parameters nz = 2, nd = 1 and τu = 5s are used in the distributed-in-time optimization
framework. subplot(3,3,7) shows the computation time associated to this configuration which
now meet the constraint on the available computation time.
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Table 3: The normalized cost Jnorm
sim

for different configurations nz , nd and τu of the
distributed-in-time optimization.

nz nd τu tmax Jnorm
sim

Decentralized method 100%
Without distribution
(with computation

time limit)
70.64%

Hierarchical method 1 1 3s 2.8s 68.74%
With distribution 1 2 5s 4.7s 59.43%

2 1 5s 4.4s 53.49%
Without distribution
(without computation

time limit)
44.21%

Figure 9: Histogram of computation time of different choices of nz and nd. Note that the
computation time of each configuration is always lower than the updating time τu.

Checking modularity: controlling the system by only tuning the
central cost’s definition

One of the claims of this contribution concerns the possibility to keep the local
controllers unchanged (in terms of penalty) while changing the penalties of the
economic cost (by the coordinator) in order to achieve different behaviors of
the closed-loop system. Here, it is assumed that the operator need to change
the set-point of the helium liquid level Ltb131, for example, in order to embed
a test facility below the liquid level. Thus, the reference tracking scenario is
simulated. More precisely, the closed-loop behavior is compared under the two
different modes defined in section 5.1. This is done in order to illustrate the
fact that the results can be affected in the desired direction by only modifying
the central cost’s definition while keeping the local controllers unchanged.
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For the tracking set-point mode, Fig. 10 shows the comparison of the behavior
of the process between using hierarchical control combined with optimization
distribution and using decentralized control.
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Figure 10: Set-point tracking scenario: closed-loop responses under coordination, using
distributed-in-time optimization in two different mode for the centralized cost on one hand
and without coordination on the other hand. The first row presents the outputs, and the
second one presents the inputs of the system. The set-point on Ltb131 is increased. Two
configurations of Qc and Rc of Mode 1 and Mode 2 are tested. Mode 2 (corresponding to
higher penalty on Ltb131 deviations) allows better reference tracking while mode 1 which is
dedicated to disturbance rejection and not especially to track set-point on the level. With
the set of parameters nz = 2, nd = 1 and τu = 5s. Note that both hierarchical design with
distributed optimization are real-time compatible.

6. Conclusion and future works

This paper extends a recently proposed hierarchical control design framework
with application to a the control of cryogenic refrigerator. It is particularly
shown that the proposed framework enables the incorporation of constraints
and nonlinearity in the involved models of subsystems. Moreover, a dedicated
distributed-in-time optimization scheme is proposed and validated. This mech-
anism enables to recover a great part of the loss of optimality that might be
induced by the impossibility to achieve the associated computation within the
available time.

The undergoing investigations aim at pushing forward the splitting of the system
into subsystems. In particular, the heat exchangers typically introduce many
states with mainly linear relationship except at their boundary conditions. It
should therefore be possible to split the subsystems they belong to into two
subsystems of two categories: linear high dimensional ones and nonlinear small
dimensional ones. However, this implies that the framework should be adapted
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to the case where some of the subsystems do not have controlled inputs and/or
regulated outputs. Some preliminary results are quite encouraging and might
be proposed in future communication.

References

[1] D. Henry, J. Journeaux, P. Roussel, F. Michel, J. Poncet, A. Girard,
V. Kalinin, P. Chesny, Analysis of the ITER cryoplant operational modes,
Fusion Engineering and Design 82 (5) (2007) 1454 – 1459, proceedings of
the 24th Symposium on Fusion Technology.

[2] S. Claudet, P. Gayet, P. Lebrun, L. Tavian, U. Wagner, Economics of large
helium cryogenic systems: experience from recent projects at CERN, in:
Advances in cryogenic engineering, Springer, 2000, pp. 1301–1308.

[3] M. Alamir, P. Bonnay, F. Bonne, V.-V. Trinh, Fixed-point based hierar-
chical MPC control design for a cryogenic refrigerator, Journal of Process
Control 58 (2017) 117–130.

[4] R. Scattolini, Architectures for distributed and hierarchical model predic-
tive control – a review, Journal of Process Control 19 (5) (2009) 723 –
731.

[5] R. Negenborn, J. Maestre, On 35 approaches for distributed MPC made
easy, in: Distributed model predictive control made easy, Springer, 2014,
pp. 1–37.

[6] D. Barcelli and A. Bemporadz and G. Ripaccioli, Hierarchical multi-
rate control design for constrained linear systems, in: 49th IEEE
Conference on Decision and Control (CDC), 2010, pp. 5216–5221.
doi:10.1109/CDC.2010.5717405.

[7] M. D. Doan, T. Keviczky, B. D. Schutter, A Hierarchical MPC Approach
with Guaranteed Feasibility for Dynamically Coupled Linear Systems,
Springer Netherlands, Dordrecht, 2014, pp. 393–406.

[8] M. D. Doan, T. Keviczky, B. De Schutter, A distributed optimization-
based approach for hierarchical MPC of large-scale systems with cou-
pled dynamics and constraints, in: 2011 50th IEEE Conference on Deci-
sion and Control and European Control Conference, 2011, pp. 5236–5241.
doi:10.1109/CDC.2011.6160708.

[9] B. T. Stewart, J. B. Rawlings, S. J. Wright, Hierarchical co-
operative distributed model predictive control, in: Proceedings
of the 2010 American Control Conference, 2010, pp. 3963–3968.
doi:10.1109/ACC.2010.5530634.

[10] B. Picasso, D. De Vito, R. Scattolini, P. Colaneri, An MPC approach to the
design of two-layer hierarchical control systems, Automatica 46 (5) (2010)
823 – 831.

32

http://dx.doi.org/10.1109/CDC.2010.5717405
http://dx.doi.org/10.1109/CDC.2011.6160708
http://dx.doi.org/10.1109/ACC.2010.5530634


[11] J. Andersson, J. Gillis, G. Horn, J. Rawlings, M. Diehl, Casadi: a software
framework for nonlinear optimization and optimal control, Mathematical
Programming Computation 11 (2019) 1–36.

[12] M. Alamir, A framework for real-time implementation of low-dimensional
parameterized NMPC, Automatica 48 (1) (2012) 198 – 204.

[13] F. Bonne, S. Varin, A. Vassal, P. Bonnay, C. Hoa, F. Millet, J.-M. Poncet,
Simcryogenics: a library to simulate and optimize cryoplant and cryodis-
tribution dynamics, IOP Conference Series: Materials Science and Engi-
neering 755 (2020) 012076.

33


	Introduction
	Problem description
	Brief Description of the Cryogenic Refrigerator
	The Manipulated Inputs
	The Regulated Outputs
	The Measured Outputs
	The nominal operation point
	The dynamic model

	Overview of the the hierarchical control architecture

	Recalls on the fixed-point iteration framework
	Computing the central cost for a given auxiliary set-point: The Fixed-Point Iteration
	Optimizing the auxiliary set-points
	Approximating the central cost
	Trust region updating law of 


	Distributing the optimization over time
	Configuration 1: nz = 1, nr=3
	Configuration 2: nz = 2, nr=3

	Simulation results
	The simulation parameters

	Conclusion and future works

