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Magnetic miniature swimmers with multiple rigid flagella

Johan Quispe and Stéphane Régnier

Abstract— In this paper, we introduce a novel miniature
swimmer with multiple rigid tails. The tails’ geometry is based
on spherical helices that benefit the swimmers for transporting
objects with their flagellar bundle. When the swimmer is
rotated, their tails provide a considerable propulsive force to
generate a net displacement. Thus, achieving propulsion speeds
up to 6 mm/s at 3.5 Hz (small rotation frequencies) for a 6-mm
in size prototypes. We study the efficiency of different bundle
distribution for a 2-flagella swimmer by varying the phase
angle between tails. Moreover, it is demonstrated that these
swimmers experience a great sensibility when changing their
tail height. Besides, the swimmers demonstrate to be effective
for cargo carrying tasks since they can displace objects up to
3.5 times their weight. Finally, the confinement effect is studied
with multi-tailed swimmer robots considering 2 containers with
20 and 50-mm in width. Results showed speeds’ increments up
to 59% when swimmers are actuated in the smaller container.

I. INTRODUCTION

Over the years, the microworld has drawn much attention

of various research areas because of its fascinating and non-

intuitive way of working. At small scales, inertia and gravity

forces are less significant. Conversely, surfaces forces play an

important role for microorganism propulsion. These species

must perform nonreciprocal patterns in order to propel [12].

Multifarious of such species are provided of single or multi-

ple flagella through an evolutionary process where optimiza-

tion was performed through survival and reducing energy

consumption [11]. Moreover, microorganisms developed dif-

ferent propulsion mechanisms, namely, a bundle rotating in

a corkscrew fashion or a beating flagellum propelling by

planar undulations. The former is inspired by prokaryotic

cells such as E. coli bacteria, R. sphaeroides, Spiroplasma,

and so on [9]. During last decades, single helical flagellum

swimming have been well reviewed in the literature. Great

efforts have been made to find an optimal shape for the

single flagellum. The influence on the swimming efficiency

of parameters such as the pitch [17], pitch angle [18], [16],

number of turns [17], total length [4], magnetization [7],

flagellum thickness [17], and so on have been widely studied

through experiments and simulations [8], [2], [11], [14].

This trend of studying the single-flagellum propulsion born

because real microorganisms present multiple flagella that

frequently generate a single rotating bundle to self-propel.

Nonetheless, organisms such as magnetotactic bacteria in-

clude the strain MO-1 that generates two bundles which

rotate independently from well-defined locations [10]. Each
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bundle is composed of 7 flagellar filaments and numerous

fibrils enveloped in a sheath [13]. The main advantage is

that this structure can propel the bacterium at speeds of up

to 300 µm/s, an order of magnitude faster than many other

flagellated bacteria. In [14] is demonstrated that this structure

with two bundles achieves a better propulsion speed when

bundles are far apart. In addition, this 2-bundle prototype

is proven to escape with ease from surfaces, conversely

to their single-bundle counterparts. Other microorganisms

such as Paramecium have independent beating cilia around

their plasma membranes that allow them to self-propel [9].

Previous studies have demonstrated propulsion enhancement

by increasing the number of flexible flagella [19], [15]. In

those works, straight-flexible flagella were manufactured and

placed on a magnetized head with an offset distance and an

anchoring angle with respect to the robot’s axis of rotation.

When the robot’s body rotates, their tails experienced bend-

ing angles achieving a chiral structure, and thus provoking

a net axial force to propel in the viscous medium. The

authors in [5] studied bio-hybrid microswimmers propelled

by multiple bacterial cells. Such swimmers consist of Serratia

marcescens bacteria attached to a 6 µm-diameter super-

paramgnetic bead. Authors demonstrated that using remote

magnetic control reduces the stochasticity of motion, en-

abling steering control. Besides, a direct proportion between

the number of attached bacteria and the reached speed is

proven as well. Notwithstanding these results, the bundle

shapes was studied in [6] considering rigid millimetric

prototypes using CFD simulations and PIV techniques. The

authors observed that the most efficient configuration is for

a single flagellum. Furthermore, they showed that 2-flagella

configurations with 90 and 180 degrees in phase (angular

tail separation) are ineffective, conversely to previous results

considering flexible tails. In [2], using bead-shell formulation

the authors found different optimal structures considering

the same volume and varying the flagellum helical radius

and pitch angle. Some of these optimal structures are not

found in nature, bringing new criteria for fabricating artificial

microrobots.

In this article, miniature robot designs with multiple flagella

are introduced. Such structures consider some of the previ-

ous discussed points, namely, a multi-flagellated structure,

a chiral shape inspired by spherical helices, and a large

helical radius, in such a manner to create a shape not seen

before in nature but with effective propulsion. Although their

geometries are quite different from real micro-species, their

propelling mechanism remains the same. The experiments

with these millirobots were performed in a low Reynolds

regime using pure glycerol. However, even if gravity force
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Fig. 1. Experimental set-up and swimmer prototype. (a) The system is
mainly composed of a side camera with an endoscope, a top camera, and
a 3D Helmholtz coil system for the magnetic actuation. (b) The swimmer
prototype is composed of multiple 3D printed tails with a disc magnet placed
inside the cylindrical head.

at this regime is smaller than viscous forces, the gravity term

will act as a perturbation term for the swimmer dynamics. We

study the bundle distribution of a 2-flagella swimmer finding

an optimum distribution when tails are separated a phase

angle of 1800. Moreover, the in-phase distribution (phase

angle 00) is ineffective since the swimmer does not achieve to

propel, confronting the results in [6] with the typical helical

geometries. Furthermore, the proposed 2-flagella swimmer

with 3-mm in tail height demonstrates to be susceptible to

tail height variations. Results demonstrate that just an small

increment of 1-mm of the height can duplicate the speed

while the decrease of 1-mm can cause a null propulsion

speed. In addition, this swimmer could be helpful for cargo

carrying applications. Its great helical radius allow it to

carry objects with even 3.5 times its weight. Finally, the last

contribution relies on the analysis of the confinement effect

for different symmetric bundle distributions of 2, 3 and 4 tails

in 2 containers with 20 and 50-mm in width. The swimmers

in all cases achieve increments on propulsion speed, reaching

an increment up to 59% for a 3-flagella robot. In this study

as well, it is demonstrated that the 2-flagella distribution is

the most effective for this class of robots.

The manuscript is organised as follows: in section II, the con-

ception and actuation of the robot are presented. Moreover,

the theoretical background for modeling the proposed robot

is treated with finite element method (FEM) formulation

through a commercial software, COMSOL Multiphysics. In

Section III, we present simulation and experimental results

accompanied by a brief discussion. Results are related to

geometric optimization, maximum cargo, and confinement

effect experimented by the proposed robot. Finally, in section

IV, we synthesize discussion preceding of conclusions, and

perspectives for future work.
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Fig. 2. Robot designs with multiples tails 2,3 and 4. The magnet is found
inside the cylindrical head with 1.6mm in diameter and 2mm in height. The
real printed prototypes are flanked respectively the CAD’s. For the case
study with finite elements we use the 2-tailed robot, the rest is used for the
confinement effect experiments.

II. CONCEPTION, MODELING AND SIMULATION

A. Conception and actuation

The millimetric prototypes are composed of spherical

helical tails conceived by 3D printing with Visijet M3 black

as a UV curable plastic material. The magnetization is given

through a disc-shaped neodymium magnet (φ = 1.0mm

in diameter, and δd = 0.5mm in thickness) attached to a

cylindrical head (cf. figure 1.b). The tail geometry follows

the next parameterization:

x =
√

R2 − t2cos(t/s) (1a)

y =
√

R2 − t2sin(t/s) (1b)

z = t (1c)

This parameterization stands for a helical flagellum drawn

on a spherical surface with radius R. Parameters t and s

determine the number of turns and helix curvature. In most

of experiments we keep R = 3, except for the experiments

concerning the tail height. Variable t is strong correlated

with R, and in order to not obtain a complex number in

the parameterization, t might range from 0 to R. Finally,

by convenience we kept the parameter s equal to R in

all experiments, thus maintaining helix shape for the tail

height experiments. The experiments were carried out in pure

glycerol with the finality of reproducing a low Reynolds

environment. The robots are guided harnessing magnetic

fields generated by a 3D nested Helmholtz coil system (cf.

figure 1.a). The maximum magnetic field achieved by the

system is 12mT. However, the robots were just actuated by

8mT rotating magnetic field to avoid high temperatures in

the workspace.

B. Modeling and simulation - finite element formulation

The finite element method is an alternative discretization

method for solving partial differential equations (PDEs).



Fig. 3. Kinematics of the 2-flagella robot. (a) Depicts the robot displace-
ment and the fluid speed around for 4 frames.(b) shows a graph representing
the position and speed reached during 0.9 seconds. (c) Draw the isocurves
of speed for the top and side views.

This method approximates the solutions of these PDEs by

subdividing a large system into smaller, simpler parts that

are called finite elements.

A priori, the problem that we face involves fluid-structure

interaction (FSI) formulation since the swimming robot

rotates around its axis generating a net displacements in a

viscous fluid. Nonetheless, this interaction is just one-way

coupled. In other words, since the robot has a rigid structure,

fluid will not be able to deform it. Hence, only the fluid

deformation caused by the rotation of the rigid structure

is considered. This simplification tremendously reduced the

computation time. The one-way coupled FSI problem groups

Navier-Stokes (N-S) equations with the mesh treatment. N-S

equations (Ω f fluid domain) solves the fluid dynamics, the

rotating structure dynamic (Ωs structure domain) is solved by

mesh equations that deal with mesh translation and deforma-

tion. The boundary condition (∂Ω f s fluid-structure boundary)

on the robot-fluid interface relates mesh translation and fluid

dynamics through all time evolution (τ time interval). N-

S equations are composed of the momentum conservation

and the mass conservation equations. They are expressed as

follows:

∂u

∂ t
+ρ(u.∇)u = ∇.Γ+F in Ω f × τ (2)

∂ρ

∂ t
+∇(ρ.u) = 0 in Ω f × τ (3)

Γ =−pI+µ(∇u+(∇u)T ) (4)

With u as the fluid velocity, p pressure, ρ density, µ dynamic

viscosity, Γ depicting the stress on an infinitesimal fluid

volume (∇.Γ surface forces) and F the volume forces.

Concerning the rigid robot structure, a rotation movement

is along the robot helix axis. That can be translated in a

prescribed mesh motion (dX) since there is no structure

deformation.

dX = dX(r,ω, t) in Ωm × τ (5)

Where r is the helix axis, ω is the angular frequency and

t is time and Ωm ⊂ Ωs. The boundary condition in ∂Ω f s

Fig. 4. Dynamics of the 2-flagella robot. (a) separates the total force in
z (green) in its pressure (blue), viscous (red) components. (b) Depicts how
the viscous force (red arrows on the robot’s surface) is opposite to fluid
velocity. (c) shows the total force decomposed in its 3 components in x,
y and z. While the total force in z-component converges rapidly to zero,
the y and x-components shows an harmonic behaviour because of the tail
disposition and symmetry.

that stands for the coupling between N-S equations and the

structure movement is given by:

u = us in ∂Ω f s × τ (6)

us =
∂X

∂ t
in ∂Ω f s × τ (7)

Where us is the solid structure velocity in one point situated

on its surface. Another boundary condition in the limits of

the container (∂Ω f ) is:

u = 0 in ∂Ω f × τ (8)

Null fluid speed in the fluid-container boundary. Finally,

force components are computed by integrating the total stress

(Γ) over all the robot’s surface.

Fi =
∫

∂Ωs

Γn f .eids in ∂Ω f s × τ (9)

Being i = x, y, and z for all different components, n f the

normal vector to the surface of each finite element on the

robot surface, ds the surface element, and finally, ei repre-

senting the unit vectors for x, y, and z of the global frame.

For the robot dynamics we compute the net displacement by

using the Newton’s second law.

m
dvz

dt
= Fz +gV (ρ f luid −ρrobot) (10)

dxz

dt
= vz (11)

Where dxz is the displacement in the forward direction, vz is

the robot speed. The term gV (ρ f luid − ρrobot) (perturbation

term) is the buoyancy force, where g is the gravity and V

is the robot volume. Forces in x and y are not considered



Fig. 5. Convergence study. (a) Segregated solver error. (b) Time-dependent
solver, reciprocal time-step. (c) Mesh effect on speed accuracy. (d) effect
on speed of having the robot with head up or head down.

because we are only interested in the propulsion direction

to obtain the robot’s forward speed as well as reduce the

computation time. For the first simulation, let’s consider as

a case study the 2-flagella (cf. figure 2 - first row) robot

without considering the perturbation term. In this case we

consider a R parameter equal to 3 mm, since the head

geometry is 2 mm in height the robot’s total height is 5

mm. Figure 3.a shows image sequences of the evolving

kinematics of the robot when rotating at a 3.5 Hz as well

as the change on the fluid velocity field at t = 0.01, 0.30,

0.60 and 0.90 s. Moreover, the position of the robot center

of mass and the speed reached during the time evolution is

stand for in figure 3.b. Besides, in fig. 3.c is shown the top

and side view of the fluid speed isocurves at t=0.66s. On

the other hand, the dynamics of this prototype is studied in

figure 4. The total z-force (in the propulsion direction, green

circles) is decomposed in its viscous (red diamonds) and

pressure (blue asterisks) part and depicted in fig. 4.a. The

total z-force through the evolving time becomes zero since

the viscous forces tend to compensate the gradient pressure

forces. Figure 4.b represents the rotating fluid velocity field

(magenta arrows) that are opposite to total viscous force

(red arrows on robot surface). Finally, the total force is

decomposed in its x, y and z-components (green, red and

blue respectively in fig. 4.c). While the z-component is null

through the time evolution, the components in x and y have

an harmonic behaviour because of the symmetry disposition

of the robot’s tails. When solving a multiphysics model, there

are two approaches that can be taken to solving the (usually

nonlinear) system of equations that describe the solution.

the fully coupled approach forms a single large system of

equations that solve for all the unknowns (the fields) and

includes all of the couplings between the unknowns (the

multiphysics effects) at once, within a single iteration. On

the other hand, the “segregated” approach will not solve

Fig. 6. Looking for the optimal position for a second tail to enhance
propulsion. (a) Polar plot depicting the forward speed (mm/s) in the radial
axis vs. angular separation between tails θ (o). The measurements for this
experiment were done 3 times and the error bars were negligible. (b) A
sample of a robot with an angular separation of θ . (c) The angle that
maximizes propulsion speed is 1800.

for all of the unknowns at one time. Instead, it subdivides

the problem up into two or more “segregated steps”. These

individual segregated steps are smaller than the full system

if equations that are formed with the fully coupled approach.

The segregated steps are solved sequentially within a single

iteration, and thus less memory is required. Figure 5.a

depicts the convergence error of the segregated steps per

each iteration. In fig. 5.b is shown the reciprocal of step size

vs. the time step. Besides, a mesh susceptibility study was

performed considering the case study with different mesh

sizes: coarse, normal, fine, finer. We analysed the speed

evolution during 0.1 s of the velocity when setting different

meshes sizes. These results are shown in fig. 5.c. Moreover,

table I gives an extra-information of mesh study concerning

the number of elements for each mesh size and the time

taken for each simulation in a 28 GB RAM computer with 7

cores. Finally, as an additional study, we considered the case

when the robot is propelling in an inverted fashion (with the

head up and down). Results shown a decrease in the forward

speed that can be caused by the change of the aerodynamic

profile when the robot is inverted while going forward.

TABLE I

MESH SENSIBILITY STUDY

Mesh Max. mesh size (mm) # of elements Computation time

Coarse 1.82 59 310 1558 s
Normal 1.40 166 946 4722 s

Fine 0.938 532 977 20658 s
Finer 0.322 1 438 303 110035 s

III. EXPERIMENTAL AND SIMULATION RESULTS

A. Optimal angular position for a second tail

Through experimentation, the optimal angular position for

a second tail is studied. Considering the proposed tail geom-

etry, we fabricated different 2-flagella robots with different

angular separations (cf. fig. 6.b). These robots were actuated

under 8mT rotating magnetic field at 4 Hz. The forward



Fig. 7. Analysis of height influence on propulsion speed. Solid lines and
dashed lines stand for simulation and experimental results, respectively. Blue
and red lines depict results for the 3-mm and 4-mm in tail length robots,
respectively. Simulation and experimental results show an increase of speed
when tail height is increased. The error bars in experiments are calculated
as the standard deviation of 3 trials for each frequency and robot.

propulsion speed was measured for each configuration 3

times (negligible error) and plotted in polar coordinates in

fig. 6.a. The radial axis depicts the forward speed in (mm/s)

while the angular separation is represented by the angles

in the graph. Figure 6.b depicts a robot with an angular

separation θ between tails. The tail on the left is kept

while the other is rotated forming different angles θ . In the

experiments were considered θ = 0, 30, 60, 90, 120, 150,

180 degrees because of the robot symmetry. The in-phase

configuration (θ = 0) demonstrates, in this case, to generate

insufficient propulsion force to get off the ground. Different

from the result obtained in [6]. Finally, in figure 6.c stands for

the optimal angular distribution of tails, being 180 degrees

the most performant. It means that both tails have to be as

far as possible distributed in order to avoid hydrodynamic

interactions between each other and thus achieving high per-

formance. A similar result was obtained recently in [14] for

a 2-bundled robot with each bundle rotating independently.

B. Height influence

This study is devoted to analyze the effect on forward

speed of the length increment and decrease. The experiments

were carried out through finite element simulations and

corroborated experimentally. Initially, we started considering

3 robots with tails height of: 2, 3 and 4 mm or more

precise with parameter R = 2, 3, and 4. However, the 2-mm

robot tails were not able to provide the enough net force to

displace the robot. hence, figure 7 only include results for

the robots of 3-mm, and 4-mm in tail heights. In both cases,

simulations and experiments, the tail length increased the

forward speed. The robot in 4-mm tail height experienced

an increment of practically 100% in forward speed with

respect to its smaller counterpart just by increasing 1-mm

the tail height. On the other hand, if we reduce in 1-mm the

Fig. 8. Cargo influence on propulsion speed. Solid and dashed lines
represent simulation and experimental data, respectively. Blue, red and
green color represents the cargo weight of 25, 34 and 56 mg respectively.
Simulation and experimental results have the same trend, the larger cargo
amount, the less propulsion speed. The inset on the bottom right shows in
the same frame different positions of the robot with the 25mg cargo. The
experimental error bars are calculated as the standard deviation of three
trials for each frequency and robot.

tail height of the robot in 3-mm tail height, it will not be

able to compensate the robot apparent weight and propulsion

becomes non-achievable.

C. Cargo influence

As part of the study, the feasibility for cargo transporting

was assessed considering spheres with different weights

attached inside flagella of a 2-tailed robot with 3-mm in

tail height. Simulations and experiments were performed in

order to analyze the correlation between the cargo weight and

the propulsion speed. The tested weights for this experiment

were 25, 34, and 56 mg as can be seen in figure 8.

Results confirm the intuition that the heavier cargo, the less

propulsion speed. The interesting part of this is the robot

capacity to transport even objects 3.5 times heavier than its

weight (2-flagella robot’s weight is 16mg).

D. Confinement effect

Future applications in microrobotics involve medicament

delivery in tiny, constrained, and difficult-to-reach environ-

ments; where confinement effect will change drastically the

robot dynamics. Several studies have stated that confinement

effect benefit robot propulsion since speed increases [1], [3].

In spite of this increment, the viscous drag increases as well

as the viscous fluidic torque producing a decrease of cut-

off frequency in case we set the magnetic torque constant.

In other words, in order to avoid a cut-off frequency, we

would need to increase the magnetic field value in order to

increase as well the magnetic torque and overcome the fluidic

torque. The experiment consists of analysing the confinement

effect of 3 different multi-flagella robots with 2, 3, and 4 tails

arranged symmetrically (cf. figure 2). Each robot is placed in

two containers with 20 and 50 mm in diameter respectively,



then, actuated in 8 mT rotating magnetic field at frequencies

ranging from 0 to 3.5 Hz. The obtained results for containers

with 50-mm and 20-mm in diameter are depicted in fig-

ure 9.a and 9.b respectively. The results are divided in FEM

simulations (solid lines) and experimental (dashed lines). In

both cases, comparing frequency by frequency for each robot

in each container (before the respective cut-off frequency),

speed increases considerably. In the inset of figure 9.b, a

bar graph is depicting the increment ratio of the speed of

each robot at cut-off frequencies when placed in the 20-mm

diameter container. This bar graph shows that the maximum a

speed increment is for a 3-tailed robot, achieving a 59% with

respect to the speed when swimming in the 50-mm container.

However, as aforementioned, the problem of the cut-off

frequencies can be overcome if we increases the magnetic

field. Finally, comparing the effectiveness of the multi-tailed

robots, we could see that for the 50-mm container the speeds

of the 2 and 3-tailed were close. However, when analysing

the results for a 20-mm container, the 2-tailed robot resulted

the most effective.

IV. CONCLUSIONS AND PERSPECTIVES

Through these studies, we analysed the optimal position

for a second tail in a miniature robot, the tail height effect

on propulsion, the influence of cargo on propulsion, and

the boundary effect with rigid multi-flagella prototypes (2,

3 and 4 tails). These studies were performed in most of

cases using two approaches: finite element simulations and

experimentation. Thus, corroborating the simulation data. We

found that the optimal angular position for a second tail in

a 2-flagella configuration is 180o, as far as possible from

each other. Furthermore, the influence of the tail height

was demonstrated to be strongly correlated to the forward

speed of the robot. The more tail height the larger speed

value. On the other hand, the influence of the cargo is

inversely proportional to the forward speed. The proposed

prototype demonstrates to carry large amounts of cargo.

However, the forward speed reduces drastically. Besides,

the boundary effect was investigated using three multi-

flagella prototypes with a symmetric tail distribution. For that

experiment, two containers with 20 and 50 mm in width were

used. Simulation and experiments demonstrates an increment

on propulsion speed at same frequencies when robots are

immersed in the container of smaller width. Experimentally

we achieved a relative increment up to 59%. Nonetheless,

the cut-off frequencies is reduced since the fluidic torque

increases in the small container. Finally, the effectiveness

of the multi-tailed robots was discussed showing that the 2-

tailed robot was the best one from our experiments. The next

step of this work is to scale down our flagella prototypes in

order to see their viability for microscale applications.
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