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Resolvent analysis has demonstrated encouraging results for modeling coherent structures
in jets when compared against their data-educed counterparts from high-fidelity large-eddy
simulations (LES). We formulate resolvent analysis as an acoustic analogy that relates the
near-field forcing to the near-field pressure field and the far-field acoustics. We use an LES
database of round, isothermal, Mach 0.9 and 1.5 jets to produce an ensemble of realizations
for the acoustic field that we project onto a limited set of resolvent modes. In the near-
field, we perform projections on a restricted acoustic output domain, r/D = [5, 6], while
the far-field projections are performed on a Kirchhoff surface comprising a 100-diameter arc
centered at the nozzle. This allows the LES realizations to be expressed in the resolvent basis
via a data-deduced, low-rank, cross-spectral density matrix. We find that a single resolvent
mode reconstructs the most energetic regions of the acoustic field across Strouhal numbers,
St = [0 − 1], and azimuthal wavenumbers, m = [0, 2]. Finally, we present a simple function
that results in a rank-1 resolvent model agreeing within 2dB of the peak noise for both jets.
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I. INTRODUCTION

The goal of this work is to develop jet-noise mod-
els founded upon the physics of turbulent flows that are
both low-rank and that provide insights into the mecha-
nisms primarily responsible for noise generation. Resol-
vent analysis (McKeon and Sharma, 2010), also known as
input-output analysis (Jovanović, 2021), provides a use-
ful framework for achieving these goals. The central idea
of the resolvent framework is similar to that of an acous-
tic analogy (Goldstein, 2003; Lighthill, 1952), whereby
a forcing term, related to the statistics of the hydrody-
namic near-field turbulence, gives rise, through a linear
operator, to the observed far-field sound. The resolvent
framework differs in two important ways. First, the op-
erator is decomposed into its singular components that
represent the maximal amplification between the forcing
and the output. This permits the resulting acoustic field
to be described as low rank, and thus limits the forc-
ing statistics that must be modeled. Secondly, the full
linearized Navier-Stokes equations are used as the prop-
agator, and we seek a modal basis that represents both
near and far-field coherent structures.

Before recent advances in computational power, the
idea of modeling both the hydrodynamic component
along with the acoustics would have been seen as both
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unnecessary and computationally taxing. However, the
ability to resolve both components of the flow is in fact a
benefit. Starting with the experimental findings of Mollo-
Christensen (1967) and Crow and Champagne (1971),
it has become clear that coherent structures in the hy-
drodynamic near-field are directly responsible for far-
field sound (Jordan and Colonius, 2013). These struc-
tures take the spatio-temporal form of wavepackets and
have been found to be the dominant source for aft-angle
sound (Jordan and Colonius, 2013), as well as partial
contributors to sideline noise (Jeun and Nichols, 2018;
Papamoschou, 2018). These wavepackets may be linked
to the early works of Crighton and Gaster (1976) (and
Michalke (1977)) who hypothesized that coherent struc-
tures could be described as linear instability modes of
the mean flow via modal analysis. However, it has
now become apparent that the correct representation of
wavepackets is that of a highly-amplified response to tur-
bulent fluctuations, which is directly found via the resol-
vent framework.

Resolvent analysis uses the Singular Value Decom-
position (SVD) to decompose the linear resolvent opera-
tor, identifying sets of orthogonal forcing/input and re-
sponse/output modes, and ranking them in terms of the
corresponding energetic gain between the forcing and re-
sponse. This is particularly important as it allows our
model to self-select the most relevant amplification mech-
anisms for noise generation. This allows for a natural
truncation of the resolvent basis that produces a reduced-
order model, or in other words, a reduced-rank acoustic
analogy.
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Several studies have applied resolvent analysis to de-
velop low-rank jet models (Cavalieri et al., 2019; Jeun
et al., 2016; Lesshafft et al., 2019). The existence of rel-
atively low-rank responses in round, turbulent jets was
shown by Schmidt et al. (2018), with significant agree-
ment between structures found through spectral proper
orthogonal decomposition (Towne et al., 2018) (SPOD)
of a high-fidelity experimentally-verified large-eddy sim-
ulations (LES) of jets (Brès et al., 2017, 2018). Of par-
ticular relevance to this study are “acoustic resolvent
modes” induced by performing resolvent analysis with
an output domain defined over a region where fluctua-
tions are purely acoustic. Through implementation of an
acoustic output domain, resolvent analysis is able to fil-
ter out energetic, but acoustically irrelevant structures in
the near-field. Jeun et al. (2016) performed such an anal-
ysis and found that for a Mach 1.5 jet, at Strouhal num-
ber St = 0.33 and azimuthal wavenumber m = 0, that
the first resolvent mode reconstructs 57% of the acous-
tic energy, but through inclusion of the next 23 resolvent
modes the reconstruction improved to 70% of the acous-
tic energy. This study looks to perform a similar analy-
sis, in that we compute many acoustic resolvent modes
and assess how well they reconstruct the acoustic en-
ergy. However, we also look to reduce the rank of the
far-field significantly with the use of an eddy-viscosity
model (Pickering et al., 2020) and generalize the per-
formance of the resolvent framework across frequencies
St = 0− 1, azimuthal wavenumbers m = [0− 2], and for
two turbulent jets at Mach numbers of 0.9 and 1.5.

For a resolvent jet model to fully reconstruct flow
statistics, and in this case those of the acoustic field,
a resolvent-based model must incorporate sub-optimal
modes (Schmidt et al., 2018) and correctly describe cor-
relations (i.e. covariance) between modes inherent to tur-
bulent flow (Towne et al., 2020). These correlations are
analogous to the concept of “jittering”, used to describe
temporal modulations of acoustic sources, that has been
shown to be critical for accurately describing the acoustic
field in turbulent jets (Cavalieri et al., 2011). In our ap-
proach, such temporal modulations, or jittering, may be
represented through second-order statistics via the sta-
tistical representation of the resolvent operator (Towne
et al., 2018)

Syy = RSffR
∗, (1)

where Syy and Sff are the cross-spectral density (CSD)
tensors of the response and the forcing respectively and
R is the resolvent operator. This equation shows that
if the forcing CSD, describing spatial correlations, can
be modeled (Towne et al., 2017; Zare et al., 2017), then
the resolvent operator identically reconstructs the flow
statistics, Syy. If the forcing were spatially uncorrelated,
Sff = Λ, where Λ is a diagonal matrix, then the eigen-
vectors of Syy, which are the SPOD modes of the outputs,
are aligned with the eigenvectors of RR∗ (Towne et al.,
2018), or the response modes of the resolvent operator,
R. However, the uncorrelated condition is rarely met,
resulting in discrepancies between resolvent and SPOD
modes that must be resolved through modeling Sff .

One approach for modeling, at least partially, Sff
has been through the inclusion of a turbulence model
to the resolvent operator. This approach has been im-
plemented via an eddy-viscosity model in several flow
configurations, from wall-bounded (Hwang and Cossu,
2010; Morra et al., 2019) to free shear flows (Pickering
et al., 2020). The latter study, quantifying the effect on
turbulent jet modeling, found that the use of an eddy-
viscosity model (utilizing only quantities available from
RANS models) significantly improved the agreement be-
tween SPOD and resolvent modes, thus reducing the ef-
fort required to model the effective Sff by diminishing
the magnitude of the off-diagonal terms. We utilize the
same eddy-viscosity model in the present work to better
model the acoustic field.

This paper explores an approach to describe the cou-
pling between resolvent modes that is necessary for recon-
structing the acoustic field with a minimal set of resolvent
modes. The coupling provides directional and energetic
variability in acoustic radiation inherently important for
noise prediction (Cavalieri et al., 2011). Determination
of the coupling between modes is performed by leverag-
ing an ensemble of LES realizations which are projected
on to a limited (i.e. low-rank) set of acoustic resolvent
modes. From these projections we attain a (drastically)
reduced-order cross-spectral density between the retained
modes–a Hermitian, frequency-dependent matrix of size
n× n that accurately represents the acoustic field.

Organization of the manuscript is as follows. We first
briefly describe the LES databases used, the main details
pertaining to resolvent analysis, and present the statis-
tical description of the resolvent framework for recon-
structing the acoustic field and estimating the reduced
order covariance matrix in § II. In § III we present re-
solvent modes and LES reconstructions in the resolvent
basis for one frequency-wavenumber pair for the Mach
1.5 jet before generalizing the approach to both jets over
St = [0, 1] and m = [0, 2], and to both the near- and
far-field acoustic regions. In the near-field section we
compare the impact of including a RANS eddy-viscosity
model to the resolvent operator and find it presents a sig-
nificantly more efficient resolvent basis. We then present
results for the far-field, along an arc at 100D from the
nozzle, and show that reconstructions for both jets may
be found using only the optimal resolvent mode. Finally,
we conclude with a discussion on how the correct forcing
coefficients may be estimated for a predictive jet noise
model.

II. METHODS

A. Large Eddy Simulation database

The LES database and resolvent analysis are fully de-
scribed in Schmidt et al. (2018) and Towne et al. (2018).
Transonic (Mach 0.9) and supersonic (Mach 1.5) jets were
computed using the flow solver “Charles”; details on nu-
merical methods, meshing, and subgrid-models can be
found in Brès et al. (2018) and Brès et al. (2017) along
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with validation cases conducted at PPRIME Institute,
Poitiers, France for the Mach 0.9 jet (Brès et al., 2018).
The Mach 0.9 and 1.5 jets have Reynolds numbers of
Rej = ρjUjD/µj = 1.01× 106 and Rej = 1.76× 106, re-
spectively, where subscript j gives the value at the center
of the jet, ρ is density, µ is viscosity, and Mj is the Mach
number Mj = Uj/cj , with cj as the speed of sound at
the nozzle centerline.

Throughout the manuscript, variables are non-
dimensionalized by the mean jet velocity Uj , jet diam-
eter D, and pressure ρjU

2
j , with the resulting equation

of state p = ρT
γM2

j
, with T denoting temperature and γ

the ratio of specific heats. Frequencies are reported in
Strouhal number, St = fD/Uj , where f is the frequency
in Hertz. The database consists of 10,000 snapshots sep-
arated by ∆tc∞/D = 0.2 and 0.1 for the Mj = 0.9 and
Mj = 1.5 jets, respectively, with c∞ as the ambient speed
of sound, and interpolated onto a structured cylindrical
grid x, r, θ ∈ [0, 30] × [0, 6] × [0, 2π], where x, r, θ are
streamwise, radial, and azimuthal coordinates, respec-
tively. Variables are reported by the vector

q = [ρ, ux, ur, uθ, T ]T , (2)

where ux, ur, uθ are the three cylindrical velocity com-
ponents.

To generate an ensemble of flow realizations for com-
puting statistical averages, the LES database of 10,000
snapshots is segmented into bins of 256 snapshots, with
an overlap of 75%, and under the implementation of a
Hamming window, resulting in 153 realizations of the
flow. Each realization is then decomposed in the az-
imuthal direction and in time. The temporal decomposi-
tion provides a resolution of St = 0.026 and St = 0.0217
the Mj = 1.5 and Mj = 0.9 jets, respectively, and the
azimuthal decomposition is valid up to m = 68, how-
ever, the acoustically relevant azimuthal wavenumbers
are much smaller (Juve et al., 1979) and only azimuthal
wavenumbers m = [0− 2] are considered in this paper.

Considering the LES database only extends to r/D =
6, we implement a Kirchhoff surface (as described in (Fre-
und, 2001)), to the azimuthally and temporally trans-
formed realizations of the flow. In doing so, we cre-
ate an ensemble of far-field realizations located along
an arc, with angle φ, of 100D from the nozzle at each
frequency and azimuthal wavenumber. As done in Brès
et al. (2017), and associated experiments (Schlinker et al.,
2009, 2008), we specifically compute the acoustics for the
aft-angle sound from φ = 100 − 160 and find our acous-
tic far-field is in close agreement (within 2dB) with the
far-field of the LES calculation.

B. Resolvent analysis

For the round, statistically-stationary, turbulent jets
considered in this manuscript, the compressible Navier-
Stokes, energy, and continuity equations are linearized
via a standard Reynolds decomposition and Fourier
transformed both in time and azimuthally to the com-

pact expression

(iωI−Am)qm,ω = Lm,ωqm,ω = fm,ω, (3)

where ω = 2πSt is the frequency, m is the azimuthal
wavenumber, I is the identity matrix, Am is the fre-
quency independent linear operator, Lm,ω is the total
forward linear operator, qm,ω is the response in each vari-
able, and fm,ω constitutes the nonlinear forcing. Mean-
flow quantities used in the operator are derived from a
RANS model, fitted closely to the LES mean flow. Al-
though the mean flows are similar, the computation of a
RANS model, using the standard κ−ε closure equations,
also provides an eddy-viscosity field that may be included
in the resolvent operator. This is done following results of
Pickering et al. (2020) that presented substantially im-
proved agreement between SPOD and resolvent modes
with the inclusion of an eddy-viscosity model. The eddy-
viscosity used here are computed as µT = cCµk

2/ε, where
c and Cµ are scaling constants (c = 0.2, Cµ = 0.0623 for
the Mj = 0.9 and Cµ = 0.0554 for Mj = 1.5 jet), k is the
turbulent kinetic energy field, and ε is the turbulent dissi-
pation field. We stress that the constants of Cµ are only
altered here for a close comparison to the LES and to
allow for a demonstration of the ability of strictly RANS
quantities to be used for computing accurate resolvent
modes. These values should not be considered general or
as recommended values of Cµ for future studies.

Continuing with the derivation of the
resolvent/input-output operator, we rewrite equa-
tion (3) by moving Lm,ω to the right-hand side to give,

qm,ω = L−1
m,ωfm,ω = Rm,ωfm,ω, (4)

where Rm,ω = L−1
m,ω is the standard resolvent operator.

To then specify particular domains for both the response
and forcing, we may write the above as

qm,ω = Rm,ωBfm,ω, (5)

and define the output variable

ym,ω = Cqm,ω, (6)

where B and C are input and output matrices. The
latter matrix, C, is used to isolate the acoustics in the
near-field, or propagate fluctuations to the far-field. Each
of these cases are detailed in Appendix A. Inserting equa-
tion (5) into equation (6) gives the input-output relation-
ship,

ym,ω = CRm,ωBfm,ω = Hm,ωfm,ω, (7)

where Hm,ω = CRm,ωB is the resolvent input-output
operator from fm,ω to ym,ω. Then by introducing the
compressible energy norm of Chu (1965),

〈q1, q2〉E

=

∫ ∫ ∫
q∗1diag

(
T̄

γρ̄M2
, ρ̄, ρ̄, ρ̄,

ρ̄

γ(γ − 1)T̄M2

)
q2rdxdrdθ

= q∗1Wq2, (8)
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(where superscript ∗ denotes the complex conjugate
transpose) via the matrix W to the forcing and response
(Wf = Wy = W ) the weighted resolvent input-output

operator, Ĥm,ω is obtained:

Ĥm,ω = W 1/2
y Hm,ωW

−1/2
f . (9)

Resolvent modes may then be found by taking the singu-
lar value decomposition of the weighted resolvent input-
output operator giving

Ĥm,ω = Ûm,ωΣm,ωV̂
∗
m,ω, (10)

where the optimal response and forcing modes are

contained in the columns of Um,ω = W
−1/2
y Ûm,ω,

with Um,ω = [u1
m,ω,u

2
m,ω, ...,u

N
m,ω], Vm,ω =

W
−1/2
f V̂m,ω, Vm,ω = [v1

m,ω,v
2
m,ω, ...,v

N
m,ω], and

Σm,ω = diag(σ1
m,ω, σ

2
m,ω, ..., σ

N
m,ω) are the optimal

gains (Towne et al., 2018). The unweighted resolvent
input-output operator may then be recovered as:

Hm,ω = Um,ωΣm,ωV
∗
m,ωWf . (11)

C. Statistics

The statistics we are interested in are contained
within the cross-spectral density tensor, which may be
found for the desired output space by multiplying the re-
solvent equation by its complex conjugate transpose and
taking the expectation (Towne et al., 2018)

〈ym,ωy∗m,ω〉 = 〈Hm,ωfm,ωf
∗
m,ωH

∗
m,ω〉, (12)

giving
Syy,m,ω = Hm,ωSff,m,ωH

∗
m,ω, (13)

where Syy,m,ω and Sff,m,ω are the CSD tensors of the
response and the forcing, respectively. For brevity, we
drop the subscripts m and ω and note that all CSD ten-
sors and resolvent matrices must be defined for specific
m and ω pairs in the remainder of the manuscript.

As mentioned earlier, this representation shows that
if the forcing CSD tensor is known, then the resolvent op-
erator reconstructs the response statistics. However, the
forcing CSD is generally unknown. There are at least
two potential avenues for modeling it. The first is to di-
rectly model Sff . To aid in such modeling efforts, Sff
may be computed directly from full LES data (Towne
et al., 2017), or estimated from limited flow statistics
(Towne et al., 2020). A second approach is to modify the
resolvent operator by supplementing the governing lin-
earized equations with an appropriately linearized turbu-
lence model. In Pickering et al. (2020), an eddy-viscosity
model was considered and LES data was used to deter-
mine an optimal eddy viscosity field that would align,
insofar as possible, the modes of Sqq (i.e. the full re-
sponse statistics) with those of RR∗ (identical to HH∗

when C = B = I). They found this to substantially re-
duce the magnitude of the off-diagonal terms of Sff , at
least as the near-field coherent structures were concerned,

consequently simplifying the number of terms that must
be modeled.

In this study, we combine both modeling approaches.
We first utilize the eddy-viscosity approximation of Pick-
ering et al. (2020) and then estimate a low-order approx-
imation of the forcing CSD for the acoustic field. To do
the latter, we return to equation (13) and expand the re-
solvent input-output operator through its singular value
decomposition,

Syy = UΣV ∗WfSffWfV ΣU∗ (14)

and define a covariance matrix Sββ = V ∗WfSffWfV ,
where β is the projection of the forcing upon the resolvent
input modes, β = V ∗Wff . This gives

Syy = UΣSββΣU∗ (15)

which can be rearranged to solve for the covariance ma-
trix,

Sββ = Σ−1U∗SyyUΣ−1. (16)

In its current state, the covariance matrix is exact,
maintaining a full size of the system and permitting
approximately 1011 degrees of freedom (i.e. Sββ ∈
C5NxNr×5NxNr ). To obtain a low-rank model of Sββ from
the LES data, we compute Sββ with a truncated set of

n resolvent modes, Ũ ∈ C5NxNr×n, as,

S̃ββ = Σ̃−1Ũ∗SyyŨΣ̃−1. (17)

This reduces the size of the covariance matrix to n×n, in
that the degrees of freedom are now drastically reduced
to O(100 − 101).

With S̃ββ , we may ask several questions: How well

does S̃ββ reconstruct Syy in the truncated resolvent ba-
sis, where the reconstructed CSD is computed as

S̃yy = ŨyΣ̃S̃ββΣ̃Ũ∗y . (18)

May S̃ββ be further reduced (e.g. neglect off-diagonal

terms) and can S̃ββ be modeled? For the latter two ques-
tions, we reserve discussion to § III C, where we both pro-
pose a forcing model and neglect the off-diagonal terms.

III. RESULTS

A. Near acoustic field

We begin by providing detailed results for a single
frequency and azimuthal wavenumber pair of the Mj =
1.5 jet using the RANS eddy-viscosity resolvent operator
and a near-field acoustic C output matrix (r/D = [5, 20]
in the fluctuating pressure field, details provided in A 1).
Figure 1 presents the first three resolvent modes com-
puted with the restricted acoustic output domain and
then recast in the full domain by setting C = I and cal-
culating Uq = L−1Vy for Mj = 1.5, St = 0.26, and
m = 0. The associated gain of these modes, normalized
by the first resolvent gain, are [1, 0.17, 0.15] (and slowly
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FIG. 1. The first three resolvent modes of fluctuating pressure, qp′ . Red and blue contours vary from ± 20% of the maximum

fluctuating pressure of each mode, ±0.2||qp′ ||∞. Mj = 1.5, St = 0.26, m = 0.
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FIG. 2. Three LES realizations (left) and their associated three-mode resolvent reconstructions (right) of the pressure field

at Mj = 1.5, St = 0.26, m = 0. Red and blue contours vary from ± 20% of the maximum fluctuating pressure of each LES

realization, ±0.2||qp′ ||∞.

decreasing with higher modes), indicating the first resol-
vent mode has at least six times the amplification to its
associated forcing as the following resolvent modes.

The resolvent response modes show a particular pat-
tern of acoustic beams. For the first mode there is a
single, energetic acoustic beam, propagating at a shallow
angle to the jet axis. The first suboptimal mode consists
of two acoustic beams, similar to what was found by Jeun
et al. (2016). This pattern is shown by the next subopti-
mal mode, with three beams located at the perimeter of
the first suboptimal. Although not shown, this behavior
continues for further suboptimal modes.

Figure 2 compares three specific realizations of the
m = 0, St = 0.26 field from the LES, q, to the three-
mode reconstructions of these fields found by projec-
tion. The reconstructions are found by q̃ = Ũqα̃, where

α̃ = Ũ+∗
z Wzz and z is an acoustic subset of the LES

domain (r/D = [5, 6] of the pressure field) and Ũ+∗
z is

the psuedoinverse projecting the LES domain z and re-
solvent output domain y. Further details using the psue-
doinverse to project resolvent modes on other spaces is
provided in Appendix B. From figure 2 we see that the
three resolvent modes are able to accurately reconstruct
the different radiation patterns evident in the LES re-
alizations. Clearly there is constructive and destructive
reinforcement amongst the three resolvent modes in order
to produce the LES realizations.

For a more quantitative assessment of the ability of
the resolvent modes to reconstruct the acoustic field, we
compute and compare the power spectral density (PSD)
of the acoustic field, which is located in the diagonal
terms of Syy, by dB,

∆dB = 10log

(
diag(S̃yy − Syy)

)
, (19)
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FIG. 3. Comparison of pressure PSD values by dB at r/D = 6 for the LES ensemble and reconstructions in the resolvent basis

using 3, 5, and 10 resolvent modes.
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FIG. 4. PSD of resolvent reconstructions of the Mj = 1.5 jet with a RANS eddy-viscosity model at radial surface r/D = 6

from St = [0, 1] and x/D = [0, 30] for three azimuthal wavenumbers, m = [0, 2], from top to bottom and using n = 1, 3, 5, 10, 20

modes from left to right. The right most column presents the LES values and the contour levels associated with each row.

at r/D = 6 in figure 3. This is again performed for
St = 0.26, m = 0, but is now averaged over all k = 153
realizations. In addition to the three resolvent mode set,
results are also shown for 5 and 10 mode sets. With
just three modes we see that the peak directivity is well
captured, with minor improvements (and diminishing re-
turns) in the off-peak directivity with increasing numbers
of modes.

We now extend our comparison to Strouhal numbers
ranging from 0 to 1 and azimuthal wavenumbers 0-2 and

assess the overall ability of the truncated resolvent ba-
sis to reconstruct the acoustic field. Figure 4 compares
the PSD from the LES to its n-rank resolvent-basis recon-
structions with n = 1, 3, 5, 10, and 20. The rank-1 model
results are similar to those of Sinha et al. (Sinha et al.,
2014), who used parabolized stability equations and pro-
jected onto the first SPOD-mode at each St − m pair.
However, we show here that once additional modes are
included, the reconstructions are substantially improved:
the 20-mode model shows close agreement with the LES
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FIG. 5. Error between the LES PSD and the reconstructed

PSD by number of resolvent modes retained (i.e. n =

[1, 3, 5, 10, 20]). Filled symbols indicate modes using the

RANS eddy-viscosity model, while hollow symbols give those

using a turbulent Reynolds number, ReT = 3× 104.

for all frequencies and azimuthal modes, while even the
3-mode model is quantitatively accurate for m = 0 and
m = 1.

To quantify the error between the reconstructed and
LES PSD, as well as succinctly present similar results for
the Mj = 0.9 case, we propose the error metric,

ε =

√∫
St

∫
x

(PSDLES − PSDRecon)2

PSD2
LES

dStdx, (20)

and present them in figure 5. Shown are the errors
for both Mach numbers, three azimuthal wavenumbers,
modes retained (i.e. n = [1, 3, 5, 10, 20]), as well as with
(filled symbols) and without (hollow symbols) the use of
the RANS eddy-viscosity field. The filled symbols for the
Mj = 1.5 case provide a reference between the quanti-
tative measure and the qualitative visualization of figure
4. Comparing the two jet regimes, it is apparent that
a larger number of modes are required to reconstruct
the near acoustic field of the Mj = 0.9 jet. For exam-
ple, about 10 modes are necessary to obtain a similar
quantitative match as compared to just three modes at
Mj = 1.5. This is consistent with multiple past obser-
vations where the Mj = 0.9 jet possesses non-negligible
contributions from suboptimal modes that are correlated,
or, as described in the time domain, as being linked via
“jittering” (Cavalieri et al., 2011), thus requiring many
modes to reconstruct the acoustic field (Freund and Colo-
nius, 2009; Towne et al., 2015).

Figure 5 also shows significant improvements in re-
constructing the near-acoustic field when including the
RANS eddy-viscosity field when compared to results us-
ing a constant turbulent Reynolds number of ReT =
3× 104. We note that previous results (Pickering et al.,
2020) only considered RANS eddy-viscosity resolvent
models with respect to the dominant near-field hydrody-
namic SPOD modes. While the rank-1 models for the
Mj = 1.5 jet are similar with and without the eddy
viscosity, the remaining reconstructions show a strong
and clear advantage to the adopted eddy-viscosity ap-
proach. Particularly as sub-optimal modes are added to

FIG. 6. Schematic of the far-field arc at 100D from the nozzle

exit. The angle along the arc is defined as φ, with 0◦ on the

upstream axis and 180◦ on the downstream axis. The red

portion of the arc denotes the region of interest, φ = 100◦ −
160◦ and the acoustic beam presented is the first resolvent

mode for Mj = 1.5, St = 0.26, m = 0, found for the far-field

region.

the basis, the eddy-viscosity model converges rapidly to-
ward the LES whereas the turbulent-Reynolds-number
model shows little improvement. This result is consistent
with our previous findings (Pickering et al., 2020), which
showed a more profound effect of the eddy viscosity on
sub-optimal modes associated with the Orr-mechanism
than on modes associated with the Kelvin-Helmholtz
mechanism, where the latter are dominant over most of
the frequency-wavenumber space being considered here.

B. Far-Field Results

We now extend the eddy-viscosity enhanced resol-
vent basis to the far-field, and aim to find the modes
that are optimal on an arc 100D from the nozzle and a
range of polar angles from φ = 100◦ to φ = 160◦ (where
φ = 180◦ lies on the downstream axis). The domain is
depicted in figure 6.

Figure 7 presents the magnitude of the first three re-
solvent modes along the arc for both jets at St = 0.26
and m = 0. The same three-beam structure apparent
in figure 1 is evident here, with the dominant one-beam
mode peaking at φ ≈ 150◦. This progression in beam
number and location continues in the higher mode num-
bers not visualized here. Also plotted in figure 7 are the
magnitude of modes found via spectral proper orthogonal
decomposition (SPOD) of the LES data. These modes,
which optimally reconstruct the CSD of the far-field arc,
are useful to compare to the resolvent modes since a close
correspondence between resolvent and SPOD modes in-
dicates that the resolvent mode forcings are mutually un-
correlated (Towne et al., 2018). Indeed, we see a reason-
able agreement between the far-field SPOD and resolvent
modes. The amplitudes and exact locations vary slightly,
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FIG. 7. Magnitude of the first three resolvent (left) and SPOD

(right) modes computed on the far-field arc for the Mj = 0.9

(top) and Mj = 1.5 (bottom) jet at St = 0.26 and m = 0.

but such close agreement suggests that an uncorrelated
model may suffice.

Figure 8 shows the near-field signatures of the dom-
inant three far-field modes plotted in figure 7 for the
Mj = 1.5 jet. This plot should be directly compared
to figure 1, which showed the dominant three near-field
modes. Outside the jet, the modes are nearly indistin-
guishable. Within the jet (along the x-axis), there are
differences that can be associated with the larger hydro-
dynamic wavepacket imprint left in the near-field modes
and missing in the far-field ones.

We now assess how well the computed resolvent
modes reconstruct the PSD of the far-field region across
St ∈ [0.1, 1] and m = [0, 1, 2] in figure 9 using the
same PSD error metric as figure 5. For both jets at
m = 0, the rank-1 resolvent reconstruction provides sub-
stantial agreement between the LES, at 30% and 40% for
Mj = 0.9 and 1.5 respectively. The nonzero azimuthal
wavenumbers, with the exception ofMj = 1.5 andm = 1,
require many additional modes to achieve error levels
comparable to the rank-1 m = 0 error. This higher-
rank behavior is similar to what was observed when re-
constructing with near-acoustic-field modes for non-zero
azimuthal wavenumbers in the previous section.

C. A simple fit/model

Considering we may reconstruct (i.e. to 30-40%
error) the far-field acoustics at low-rank, we now ask
whether we can define a simple forcing model. One ap-
proach would be to propose a form of the forcing cross-
spectral density tensor, Sff , and project this form onto
the resolvent input modes to produce a reduced-order
matrix S̃ββ . Despite some clear trends for the depen-
dence of Sff on mean flow quantities (Towne et al.,

2017), there does not yet exist a general form for estimat-
ing Sff . We investigate here an alternative approach of

directly estimating S̃ββ . That is, we focus on modeling
the expansion coefficients rather than the forcing itself.

The estimated covariance matrix S̃ββ presents the
least square reconstruction of the observed data and con-
tains both the amplitudes and correlations necessary to
force each resolvent mode. Where the forcings are uncor-
related, the estimated S̃ββ matrix becomes diagonal and
only n coefficients (albeit at each azimuthal wavenum-
ber and frequency) require modeling. However, even if
the forcing is uncorrelated, minor errors or discrepan-
cies in the data, data-processing, computation of resol-
vent mode, etc., result in a full S̃ββ matrix. Further, as
rank increases, the statistical uncertainty in the terms be-
comes greater, reducing our hope for successful modeling.
Thus, we explore whether neglecting off-diagonal terms
is sufficient for a model, but note that this approach pro-
vides no guarantees for success; precisely stated, the ap-
proximation is not guaranteed to converge as the number
of retained modes is increased (Towne et al., 2018).

To limit uncertainty and prevent over-fitting, we as-
sume that the forcing is uncorrelated (i.e. diagonal) and
that the projection of the data with the first resolvent
mode,

S̃ββ = Σ−1
1 U∗1SyyU1Σ

−1
1 = λβ , (21)

possesses the lowest uncertainty. These values for the
two jets and three azimuthal wavenumbers are shown in
figure 10. For the Mj = 1.5 jet, we see that the forcing
amplitudes for m = 0 and m = 1 fall upon lines of con-
stant slope for the most acoustically significant frequency
ranges, St = 0.1−0.8. The m = 2 data similarly collapse
to a line of constant slope, however, the trend is not as
clear. Similar observations also hold for the Mj = 0.9
jet. We also stress that these curves depend on both the
data and the resolvent gains, Σ. Including the gains is
crucial to collapsing the observed trends.

We now look to fit the data with simple curves of the
form,

λ̃m,ω = amSt
bm . (22)

For the nonzero azimuthal wavenumbers, the data rep-
resent the sum of both the clockwise (m) and counter-
clockwise (−m) directions about the round jet, such that
am represents a+m+a−m, or 2a+m, since a+m ≈ a−m, as
either rotation about the jet is of equal probability. The
exponent, bm is unaffected by this symmetry. Figure 10
provides the lines of best fit, where the fits are computed
over the region of St = 0.13 − 0.7 for the Mj = 1.5
and St = 0.22 − 1 for the Mj = 0.9. This region is ad-
mittedly chosen by observation from the data, however,
necessity for clipping the low-frequency ranges is a result
of a finite domain where modes (as well as the LES data
itself) begin to exit the domain. This results in resol-
vent modes that, although possessing an inner product of
unity, are not fully contained in the domain (introducing
errors in the computed gain values) and give the observed
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FIG. 9. Error between the LES and reconstructed 100D far-

field arc over φ = [100, 160] by number of resolvent modes

retained (i.e. n = [1, 2, 3, 5]). Filled symbols indicate modes

using the RANS eddy-viscosity model, while the red hollow

symbols give the error using the rank-1 model.

plateau in forcing energy. The domain issue is further
supported considering we find the frequency cutoff may
be related by adjusting the Strouhal number by Mach
number, St0.9 = St1.5 × 1.5/0.9, meaning each range
is associated with the same range of acoustic Strouhal
number, Stc∞ . The upper bound for the Mj = 0.9 case
extends to St = 1.17, however, we cap the upper bound
to St = 1 as done throughout this manuscript.

Table I provides the fit coefficients for each jet and
azimuthal wavenumber. At present, we do not have any
physical interpretations of these fits, other than the ob-
vious fact that the power law gives an expected decrease
in energy as frequency increases (and thus the length
scales of the structures decrease). We suspect we may
find similar curves via projection of the resolvent forcing
modes with the turbulent kinetic energy or other mean-
flow quantities, but leave this for future work.

To determine how well such curves predict the data,
we use the fitted curves to compute,

S̃yy(φ) = λ̃m,ωŨΣ2Ũ∗, (23)

where Ũ represents the truncated resolvent basis to rank-
n. Additionally, as we cannot expect our methods to have
accurately captured such large structures in the finite
domain used, we use the piece-wise function

λ̃m,ω = amSt
bm for St > Stmin (24)

λ̃m,ω = amSt
bm
min for St ≤ Stmin, (25)

where Stmin = 0.22 and 0.13 for Mj = 0.9 and Mj = 1.5,
respectively. Figure 9 provides the reconstruction error
for the rank-1 model for both jets and three wavenum-
bers. For the Mj = 1.5 jet, the rank-1 model yields
a close approximation of the reconstructions at 40% for
both m = 0 and m = 1. For Mj = 0.9, the m = 0 er-
ror is about 10% worse than the projections, but still at
40% for a rank-1 model. The m = 1 case here and both
m = 2 cases perform similarly to the perfect reconstruc-
tions, but each of these is relatively poor at reducing the
error.

With the rank-1 prediction in hand, we conclude
by computing the overall sound pressure level (OASPL)
found by,

OASPL(φ) = 10log10

( Stmax∑
Stmin

2

mmax∑
−mmax

diag(Syy(φ,m, St))

)
.

(26)
Figure 11 presents calculations of the OASPL from both
jets using the 100D Kirchhoff surface values from the LES
and the rank-1 resolvent model considering m = [0, 2]
and St = 0.13 − 1. For the Mj = 1.5 jet, the values are
only close at downstream angles and where the jet is the
loudest. From φ = 140− 155 the model is within 1-3dB.
A striking difference the resolvent model and data, is that
the former peaks at an angle of about 5 degrees higher
than the LES data. Interestingly, a similar experiment
and simulation in Brès et al. (2017) disagreed by the same
angle. Although 100D data from the experiment is not
available, projecting the resolvent modes onto this data
would likely result in better alignment, as shifting the
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Mj = 0.9 Mj = 1.5

Param. m = 0 m = 1 m = 2 m = 0 m = 1 m = 2

am 2.65× 10−11 1.38× 10−11 6.14× 10−12 7.10× 10−10 3.89× 10−10 4.66× 10−10

bm −5.80 −3.77 −3.13 −2.58 −1.7 −1.76

TABLE I. Fit parameters used for the Mj = 0.9 and Mj = 1.5 jets shown in figure 10.

Mj = 0.9 Mj = 1.5
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10-1 100
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FIG. 10. Values of the reconstruction projection coefficient, λβ , of the first resolvent mode for the azimuthal wavenumbers

m = 0− 2 and their associated fits, the parameters of which are provided in table I.

LES data by 5 degrees results in a significantly improved
estimate (within 0.5dB from φ = 135 − 150). However,
as the ultimate source of the discrepancy is unknown,
we avoid making any corrections to the model based on
these observations.

We see similar behavior between the KS surface and
the resolvent model for the transonic case. The rank-1
m = [0, 2] resolvent model presents agreement of the peak
OASPL to within 2dB at peak noise angles. We stress
that this result for the Mj = 0.9 jet is rather surpris-
ing as many previous studies, although computed in the
near-field, found the acoustic field required many modes
to agree within 2dB (Freund and Colonius, 2009; Towne
et al., 2015). This shows that the application of both the
KS surface to 100D and eddy-viscosity model included
in our resolvent analysis significantly reduces the rank
of the acoustic jet problem. Further, we note that this
transonic jet has been extensively verified by experimen-
tal data in the near-field and at ρ = 50D, and, although
we extend the results to 100D, the peak angles of the KS
and the resolvent model are closely aligned when com-
pared to the Mj = 1.5 case.

IV. CONCLUSIONS

We formulated resolvent analysis to serve as an
acoustic analogy by relating the near-field resolvent forc-
ing to both the near- and far-field acoustic regions.
Leveraging the availability of an LES database, we ex-
amined resolvent-based reconstructions of the acoustic

PSD for turbulent Mj = 0.9 and Mj = 1.5 jets. We rep-
resented the forcing cross-spectral density matrix with a
truncated set of resolvent modes and approximated the
amplitudes of the modes with best-fit expansion coeffi-
cients of realizations from the LES acoustic field. We
found that models comprising of just a single resolvent
mode can accurately reconstruct the acoustic field for
the first two azimuthal modes for a Mj = 1.5 jet and
the m = 0 azimuthal mode for the Mj = 0.9 jet. To
reconstruct higher azimuthal modes, the resolvent basis
must be increased to at least 5 modes (i.e. m = 2 and
m = 1, 2 for Mj = 1.5 and Mj = 0.9, respectively). In
both jets, the use of an eddy-viscosity model in the resol-
vent formulation led to clearly superior results compared
to a fixed turbulent Reynolds number.

Based on the ability of the rank-1 reconstructions to
describe the PSD, we investigated a simple model to col-
lapse the forcing coefficients to one scaling function per
azimuthal wavenumber (and Mach number). We found
that a power law representation, with only a scaling and
an exponent, suffices to model the coefficient of the opti-
mal resolvent mode. Fortunately, the first resolvent mode
contains much of the acoustic energy, and reductions of
the gain for this specific mode (related to the KH mecha-
nism) are likely to provide the greatest reductions in the
peak noise of the acoustic field.

The rank-1 m = [0, 2] resolvent models estimate the
peak noise to within 2dB for both theMj = 1.5 andMj =
0.9 jets at peak noise angles. Further, the ability of the
resolvent basis to describe much of the acoustic field with
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FIG. 11. OASPL of the Mj = 0.9 (left) and Mj = 1.5 (right) turbulent jets at 100D from the nozzle over the arc φ. The solid

black line denotes the OASPL from the Kirchhoff surface values found from propagating the near-field LES pressure field, while

the solid line gives the resolvent model estimation. In each case, the OASPL only considers the acoustically relevant m = [0, 2]

and St = 0.13− 1 contributions.

only a handful of modes across multiple Mach numbers, a
large range of frequencies, and the acoustically dominant
azimuthal wavenumbers is promising. This shows that
the resolvent framework already contains the appropriate
acoustic functions to describe jet noise. In future work,
we will seek a fully predictive model by estimating the
forcing coefficients from mean flow quantities available
from RANS.
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APPENDIX A: OUTPUT MATRICES C

1. Near-field acoustic output matrix

For analysis of the near-field acoustics, the out-
put matrix C is chosen to only include pressure, p′ =
ρ′T̄+ρ̄T ′

γM2
j

, from x/D = [0, 30], and r/D = [5,20]. Ideally,

the LES domain would extend from r/D = [5, 20] so that
the LES could be directly projected onto the resolvent
basis, however, the LES database (i.e. the saved data
from the LES) only extends to r/D = 6. Although one
could define an output matrix C that only includes that
surface at r/D = 6, the resolvent modes may still con-
tain hydrodynamic behavior (unless allowed to propagate
further from the jet), thus we use the larger domain to
ensure the modes are entirely acoustic. Using the larger
domain presents a clear loss of orthogonality in the space
represented by the LES domain, which is alleviated by
truncating the modes to r/D = [5, 6] (after computing
the resolvent SVD) and implementing a Moore-Penrose
inverse such that a least-squares fit of the LES in the re-
solvent basis can be performed. While previous studies
have suggested the use of a filter based on the turbu-
lent kinetic energy of the jet within the input matrix B
(Towne et al., 2017), we take B to be identity for both
the near- and far-field analyses for the sake of generality.

2. Far-field acoustic output matrix

To define an input-output relationship from the near-
field forcing to the far-field acoustics, we introduce a
Kirchhoff surface and apply it as a linear operator. We
define three radii: R as the radial coordinate of the near-
field cylindrical surface, r as the coordinate pertaining
to the far-field cylindrical surface, and ρ representing the
distance from the nozzle in spherical coordinates (e.g.
ρ/D = 100 for this study). As described in § II B, the
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input-output problem is defined as

qm,ω = Rm,ωBfm,ω, (A1)

ym,ω = CR,ρqm,ω, (A2)

where the output matrix CR,ρ is the total Kirchhoff op-
erator that maps the near-field cylindrical surface, R, to
the far-field spherical surface, ρ. This operator is lin-
early composed of many Kirchhoff surfaces, CR,r, de-
tailed next.

The cylindrical Kirchhoff operator is comprised of
several linear operations to ensure accurate results and
is defined as,

CR,r = D∗HrDPTNCR, (A3)

where CR is a surface selection matrix (∈
RNsurface×5NrNx), N is an interpolation matrix from a
non-uniform grid to a uniform grid with ∆x/D = 0.025
(∈ RNuniform×Nsurface), T is a Tukey windowing ma-
trix (using a taper value of 0.75) that extends over
the Kirchhoff surface to reduce spectral leakage
(∈ RNuniform×Nuniform), P is a padding matrix extending
the uniform grid with a total of 2n points (n is set to
15) for computing the upstream and downstream wave
propagation, as well as ensuring sufficient accuracy in the
transform of the initial surface (∈ R2n×Nuniform), D is the
discrete Fourier transform (DFT) matrix (∈ R2n×2n

),
and H contains the derived Hankel functions of the
Kirchhoff surface from Freund (2001), with entries
along the diagonal for each azimuthal wavenumber, for
a specified radial distance, r, from the surface at R
(∈ R2n×2n

).
However, the above operator only supports one spec-

ified radial distance from the cylindrical surface at R,
and a linear combination of CR,r and a proper selection
of streamwise points is required to construct a spherical
arc. Thus, the linear expression to construct the total
Kirchhoff operator is then

CR,ρ =

NC∑
i=1

Cxi
CR,ri , (A4)

where xi represents the streamwise location in the 100D
arc and ri represents the radial extent to which the Kirch-
hoff surface must propagate from surface R to the far-
field arc ρ for the respective streamwise location. Points
are defined along the arc from φ = 100◦ − 160◦ with a
resolution of ∆φ = 0.5◦.

APPENDIX B: NON-ORTHOGONAL PROJECTIONS OF

RESOLVENT MODES

The statistical relations presented in § II B are valid
when U and V are orthogonal bases in the same space as
y and f , respectively. However, in the case of the near-
field calculations, U is defined over a larger space than
y and a pseudo inverse must be constructed to find the

least-square solution to the above projections. First, we
truncate the output modes U to the output space x/D =
[0, 30] and r/D = [5,6] in the pressure field and define the
associated output matrix as Cz where z denotes the new
restricted space. Applying Cz to both the LES data and
resolvent modes gives the ensemble of realizations z and
resolvent modes Uz. In addition to reducing the domain
space, we also truncate the resolvent response basis to a
limited set of n modes, as discussed above, represented
as Ũz. There are now two important consequences of
reducing the resolvent domain from Cy to Cz. The first
is a correction to the gain to the domain Cz. Since both
output domains share identical input modes we have,

σ2
i,y =

u∗i,yWyui,y

v∗i,fWfvi,f
, σ2

i,z =
u∗i,zWzui,z

v∗i,fWfvi,f
, (B1)

and the gain of the new domain is

σ2
i,z = σ2

i,y

ui,zWzu
∗
i,z

u∗i,yWyui,y
], (B2)

where, by definition, u∗i,yWyui,y = 1. The second is
a loss of orthogonality. Fortunately, we may still de-
termine a least squares fit of the data by computing

the Moore-Penrose inverse of W
1/2
z Ũz, (W

1/2
z Ũz)

+ =

(Ũ∗zWzŨz)
−1Ũ∗zW

1/2
z , and projecting it onto the CSD

of z to estimate S̃ββ

S̃ββ = Σ̃−1
z (W 1/2

z Ũz)
+∗W 1/2

z SzzW
1/2
z (W 1/2

z Ũz)
+Σ̃−1

z .
(B3)

This approach is similar to the one taken by Towne et al.
(2020) for assimilating partially observed flow statistics.
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