
This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Absolute instability in shock-containing jets
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We present an analysis of the linear stability characteristics of shock-containing jets.
The flow is linearised around a spatially periodic mean, which acts as a surrogate for a
mean flow with a shock-cell structure, leading to a set of partial differential equations
with periodic coefficients in space. Disturbances are written using the Floquet ansatz
and Fourier modes in the streamwise direction, leading to an eigenvalue problem for the
Floquet exponent. The characteristics of the solution are directly compared to the locally
parallel case, and some of the features are similar. The inclusion of periodicity induces
minor changes in the growth rate and phase velocity of the relevant modes for small
shock amplitudes. On the other hand, the eigenfunctions are now subject to modulation
related to the periodicity of the flow. Analysis of the spatio-temporal growth rates led to
the identification of a saddle point between the Kelvin-Helmholtz mode and the guided
jet mode, characterising an absolute instability mechanism. Frequencies and mode shapes
related to the saddle points for two conditions (associated with axisymmetric and helical
modes) are compared with screech frequencies and the most energetic coherent structures
of screeching jets, resulting in a good agreement for both. The analysis shows that a
periodic shock-cell structure has an impulse response that grows upstream, leading to
oscillator behaviour. The results suggest that screech can occur in the absence of a nozzle,
and that the upstream reflection condition is not essential for screech frequency selection.
Connections to previous models are also discussed.

Key words: Authors should not enter keywords on the manuscript.

1. Introduction

With the development of commercial and military aviation in the last century, the
importance of studies on noise generation by jets has increased substantially. These
studies can be divided into two broad categories, based on the source mechanisms
responsible for noise generation. The first category is shock-free jets, comprising both
subsonic jets and ideally-expanded supersonic jets; the acoustic field of such flows is
usually dominated by the noise generated by organised structures present in the turbulent
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flow (Jordan & Colonius 2013), which underpin both Mach wave radiation (for supersonic
jets), and turbulent mixing noise (subsonic and supersonic cases). The second category
is shock-containing jets, i.e., imperfectly expanded supersonic jets. In this case, the
pressure deficit between the choked nozzle and external medium leads to the appearance
of a spatially periodic coherent structure formed by several shock-cells (Pack 1950).
The appearance of shock cells dramatically impacts the acoustics of these jets, with
the appearance of two other components due to the interaction between the organised
structures and the shocks (Tam 1995): broadband shock-associated noise (BBSAN),
usually peaking at slightly higher frequencies than the turbulent mixing noise, and screech
tones, associated with high intensity pressure fluctuations at specific frequencies.

The earliest description of the screech phenomenon was that of Powell (1953a). Using
schlieren photographs, Powell identified the presence of large-scale turbulent structures
travelling downstream and acoustic waves travelling upstream in shock-containing jets.
Motivated by these observations, he proposed that screech tones are generated by a self-
sustained resonant process involving both waves, where the interaction between the large-
scale structures and the shocks gives rise to acoustic waves that excite new downstream-
travelling structures upon reaching the nozzle lip. As usual in the analysis of resonant
phenomena, both phase and gain conditions for this process were derived (Powell 1953b)
and applied to the study of screeching jets. Powell’s theory managed to predict screech
tones and directivities with relative success, being used as the foundation of several
subsequent analyses, as summarised by Raman (1998) and Edgington-Mitchell (2019).

While the downstream propagation of energy is quite well understood, the process of
upstream wave generation in this cycle is still under investigation. While the original
work of Powell (1953a) proposes a multiple, discrete-source formulation, related to the
position of each shock-cell, other works have proposed alternative views. For instance,
Tam & Tanna (1982) proposed a formulation based on a frequency-wavenumber analysis
of the different waves in the jet, leading to a continuous source distribution in the
turbulent medium. In this previous work (also in Tam et al. (1986)), the authors propose
that screech is a direct consequence of the interaction between shock-cell and large-
scale structures in the wavenumber domain. In this framework, no position for the
generation of upstream waves is imposed, and predictions are performed by analysing
the wavenumbers energised by such interaction. More recently, Gojon et al. (2018) and
Edgington-Mitchell et al. (2018) have shown that the resonance mechanism may actually
be closed by a neutrally stable guided jet mode, as opposed to an acoustic wave. This
mode has specific bands of existence that roughly match the regions where screech tones
are found experimentally. Resonance models using these guided jet modes lead to a better
alignment with experimental data, strongly supporting this hypothesis (Mancinelli et al.
2019, 2020; Nogueira et al. 2020). The work of Manning & Lele (1998, 2000) proposed
a mechanism for generating upstream waves, in which the complex interaction between
vortices and shocks would give rise to acoustic waves. The model managed to reproduce
characteristics of screech observed in experiments (Shariff & Manning 2013; Edgington-
Mitchell et al. 2021b), even with strong simplifications of its underlying assumptions.

While early models for the analysis of jet turbulence, including screech, were based
on experimental observations and classic resonance theory, the development of stability
theory helped to uncover the physics of the problem. Tools based on this theory have
been used extensively in the analysis of flow dynamics and sound generation in subsonic
jets (Michalke 1964, 1965; Crow & Champagne 1971; Michalke 1971; Crighton 1975;
Cavalieri et al. 2012; Baqui et al. 2015; Cavalieri et al. 2019). While most of these tools
were developed using a locally parallel framework, which disregards the spatial evolution
of the mean flow, some recent works managed to account for such effects by using global
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stability (Coenen et al. 2017; Schmidt et al. 2017) and resolvent analysis (Garnaud
et al. 2013; Jeun et al. 2016; Schmidt et al. 2018; Towne et al. 2018; Lesshafft et al.
2019; Pickering et al. 2020). Application of global methods is usually more appropriate
in imperfectly expanded jets due to the strong spatial inhomogeneity induced by the
presence of the shock-cell structure, even though it demands a much higher computational
power. Examples of analyses using such tools in shock-containing jets can be seen in
Beneddine et al. (2015) and Edgington-Mitchell et al. (2021a). In these previous works,
screech can be seen as a global mode of the flow, when the shock-containing mean flow
is considered as the base flow. Even though global methods may accurately capture the
screech frequency and the overall characteristics of the dominant flow structures, they
do not directly reveal the physical mechanisms at play; simpler models can often be used
to gain such insight. This is exemplified in the complementary works of Schmidt et al.
(2017) and Towne et al. (2017): while global modes are used in the first work to extract
both the frequency and structure of trapped acoustic modes in a subsonic jet, the latter
paper elucidates the underlying nature and behaviour of these waves by using weakly
nonparallel analysis.

One way of accounting for the additional streamwise inhomogeneity of shock-containing
flows without resorting to global methods is to consider the periodicity induced by the
shock-cell structure directly in the mean flow, rather than treating the mean flow as
locally parallel. Such methodologies are usually used in studies of secondary instability
in shear flows (Herbert 1988; Brandt et al. 2003). In these cases, the periodicity allows
for the use of Floquet theory, which simplifies the solution procedure of the set of partial
differential equations with periodic coefficients. The concepts of convective and absolute
instabilities were extended to the spatially periodic case by Brevdo et al. (1996); as in the
locally parallel case (Huerre & Monkewitz 1990), stability analysis on spatially periodic
cases can lead to three different scenarios: disturbances can be exponentially damped in
space and time in all directions from the source (stable); they can be exponentially
amplified in a specific direction, but convected away from the source (convectively
unstable); or they can be amplified in both space and time, eventually contaminating
the entire flow field (absolutely unstable). Brevdo et al. (1996) explored these scenar-
ios by solving the Ginzburg-Landau equation linearised around a periodic base flow,
showing that the solution may change its stability characteristics depending on the
magnitude of the coefficients related to periodicity in the equation. In real flows, absolute
instability is generally restricted to hot jets and cold wakes (and some particular flow
cases with specific configurations, as summarised by Huerre & Monkewitz (1990)), where
the flow behaves as an oscillator, with amplified disturbances travelling both upstream
and downstream. This description qualitatively matches the overall characterisation of
the screech phenomenon provided by Powell (1953a). However, while the few extant
global analyses have accurately captured the aforementioned upstream and downstream
propagating waves in a single global mode (see Beneddine et al. (2015), for instance), the
physical mechanism underpinning the relationship between these waves cannot be directly
determined from such an analysis. No link between an absolute instability mechanism
and screech has been made to this date.

In this paper, we explore the formulation developed by Brevdo et al. (1996) for a locally
parallel stability analysis which accounts for the spatial periodicity of the mean flow –
the spatially periodic linear stability analysis (SP-LSA). This is applied for the first time
to the study of screech in shock-containing jets. The formulation goes one step further in
complexity when compared to the locally parallel case, while still neglecting the spatial
spread of the mean flow to permit a much faster computation than a global stability
analysis. This also allows for a clearer characterisation of the stability of the flow, with an
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extraction of mechanisms leading to screech. The paper is organised as follows: in section
2, the spatially periodic formulation using the Floquet ansatz is detailed. The impact of
the inclusion of a periodic shock-cell structure on the different waves supported by the
flow and on the stability characteristics of the flow is explored in section 3. A discussion
about the relationship between the present results and previous analyses is performed in
§4, and the paper is concluded in §5.

2. Stability analysis of a streamwise periodic flow

The present formulation is based on the spatio-temporal linear stability analysis
as developed by Briggs (1964), Bers (1975) and Huerre & Monkewitz (1985). The
compressible inviscid linearised Navier-Stokes equations can be written in the matrix
operator form as

∂q′

∂t
+ Lx

∂q′

∂x
+ Lr

∂q′

∂r
+ Lθ

∂q′

∂θ
+ L0q

′ = 0, (2.1)

where the disturbance vector is given by q′(x, r, θ, t) = [ν ux ur uθ p]
T, which includes

specific volume, streamwise, radial and azimuthal velocities, and pressure. Normal modes
are assumed in time and azimuth, such that q′ can be written as a function of the
azimuthal wavenumber m, the frequency ω and the spatial coordinates (x, r) as

q′(x, r, θ, t) = q̂(x, r)exp(−iωt+ imθ). (2.2)

Thus, (2.1) can be rewritten as

−iωIq̂ + Lx
∂q̂

∂x
+ Lr

∂q̂

∂r
+ imLθq̂ + L0q̂ = 0, (2.3)

The operators Lx, Lr, Lθ and L0 are dependent on the spatial derivatives and the
mean flow quantities q̄(x, r) = [ν̄ Ux Ur Uθ P ], which are also a function of (x, r). In
the present study, both the radial and azimuthal components of the mean velocity are
considered to be negligible; with this assumption, we consider relatively weak shocks
in the analysis. In the locally parallel case, normal modes would also be considered
in the streamwise direction, and the disturbances would be written as function of the
streamwise wavenumber k. Here, instead of considering the flow to be locally parallel, a
spatial variation in the form of a sinusoidal wave is considered as an analogue for shock
structures in the flow. Thus, the time-averaged streamwise velocity is considered to have
a dependence in the streamwise direction as

Ux(x, r) = U(r) [1 +Ash cos (kshx)] , (2.4)

where ksh = 2π/λsh is the shock-cell wavenumber, U(r) is the radial shape of the mean
flow, and Ash is the strength of the shock-cell structure. For the present case, the
temperature is obtained from a Crocco-Busemann approximation (Lesshafft & Huerre
2007), pressure is obtained from a spatial integration using the streamwise momentum
equation (Van Oudheusden et al. 2007), and the specific volume is computed using the
ideal gas law. All quantities are normalised by the jet diameter D, the ambient sound
speed c∞, and the ambient density ρ∞.

As in Michalke (1971), the radial shape of the mean flow normalised by the ambient
sound speed c∞ is given by
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U(r) = M

[
0.5 + 0.5tanh

(
0.5

(
0.5Dj

r
− r

0.5Dj

)
1

δ

)]
, (2.5)

where Dj is the ideally expanded diameter for a simple convergent nozzle (Tam 1995),

andM = Mj

√
Tj/T∞ is the acoustic Mach number, computed using the ideally expanded

jet Mach number Mj and the temperature ratio. The parameter δ defines the shear layer
thickness of the jet. It is worth noting that the oscillatory part of (2.4) is similar to
the one proposed by Tam & Tanna (1982) and Tam (1995) for the velocity variation
induced by the shock-cell structure. Equations (2.4) and (2.5) are considered as a first
approximation of the shock-cell structure, retaining some of its key characteristics, such
as streamwise dependence and some features of radial shape as derived by Pack (1950), at
least of the dominant term of the series that represents the shock-cell structure. Choice of
other radial shapes are expected to lead to similar results, as the streamwise periodicity
is the key element of this analysis, as will be shown in the next sections. The mean
streamwise velocity (and all other mean flow quantities) have an x-periodicity given by

Ux(x, r) = Ux(x+Nλsh, r), (2.6)

where N is an integer. Thus, (2.3) becomes a set of partial differential equations (PDEs)
with x-periodic coefficients. Following Herbert (1988) and Brevdo et al. (1996), such
periodicity allows us to use the Floquet ansatz and consider solutions in the shape

q̂(x, r) = q̃(x, r)eiµx, (2.7)

where q̃(x, r) has the same periodicity of the base flow. In this formulation eiµλsh is called
the Floquet multiplier, and µ = µr + iµi is the Floquet exponent. It is straightforward
to see that, for the locally parallel case, where q̃(x, r) = q̃(r), the Floquet exponent is
simply reduced to the streamwise wavenumber k in the normal mode ansatz. Due to its
periodicity in x, q̃(x, r) can be expanded as a Fourier series (Herbert 1988),

q̃(x, r) =

∞∑
n=−∞

q̃n(r)einkshx. (2.8)

Thus, solutions related to the Floquet exponent µ+Nksh (with integer N) can be written
as

q̂(x, r) =

∞∑
n=−∞

[
q̃n(r)einkshx

]
eiµxeiNkshx =

∞∑
n=−∞

[
q̃n(r)ei(n+N)kshx

]
eiµx, (2.9)

which means that solutions related to µ and µ + Nksh cannot be distinguished, as one
can be obtained from the other by simply reordering the Fourier coefficients.

By substituting (2.7) into (2.3) we obtain

−iωIq̃ + Lx

[
∂

∂x
+ iµ

]
q̃ + Lr

∂q̃

∂r
+ imLθq̃ + L0q̃ = 0, (2.10)

which allows us to write an eigenvalue problem for the complex Floquet exponent,

Lq̃ = Lµµq̃. (2.11)

The operators L and Lµ can be found in Appendix A.
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Equation 2.11 has exactly the same form as the locally parallel spatial stability analysis;
in fact, when µ = k both analyses are identical (as the streamwise derivatives in the
operators above can also be neglected in the local analysis). When Ash = 0, the solution
of the eigenvalue problem will give rise to modes following the relation µ = k + Nksh
in the eigenspectrum. However, if Ash > 0, i.e. the flow has a spatial variation within a
wavenumber length, such modulation may change both the eigenvalues (related to phase
velocity and growth rate of the different waves supported by the flow), and the shapes
of the modes. Similar to the locally parallel case, downstream-travelling modes with
µi < 0 will be exponentially amplified in space (unstable modes), and all modes can be
classified by continuation from this previous case. The distinction between downstream-
(µ+) and upstream-travelling (µ−) modes can be made by using Briggs’ criterion, as used
for parallel base flows (Briggs 1964; Tam & Hu 1989; Towne et al. 2017). One should note
that waves in real shock-containing jets are not composed by a single wavenumber (and
its respective modulations), but have wavenumbers varying in the streamwise direction,
with their development being a function of the jet spreading. While this simple perfectly
periodic configuration may not be representative of the entire dynamics of the flow, it may
be able to capture some of its main characteristics. The spatially periodic formulation can
be viewed as the Floquet-equivalent of the locally parallel analysis in shock-free flows; this
simple tool is able to obtain the same kinds of results as the local analysis (such as phase
velocities and growth rates), with the consideration of a periodic structure embedded in
the mean flow. Moreover, it can also uncover some of the physical mechanisms at play
in the flow, such as the absolute instability, that was first discovered in free shear layers
using a local analysis (Huerre & Monkewitz 1985). Consideration of the jet spreading
(and the development of the wavenumbers of the different waves) may be explored using
a WKBJ approximation, as in Crighton & Gaster (1976); Monkewitz et al. (1993).

The similarities between the present formulation and the locally parallel analysis
were further explored by Brevdo et al. (1996), who showed that the conditions for
absolute instability in spatially periodic flows are similar to the locally parallel case (as
summarised by Huerre & Monkewitz (1990)): the occurrence of a saddle point (related
to the appearance of a double root in the complex µ plane) for positive imaginary
frequency ωi > 0 is a condition for absolute instability. The impulse response of the
spatially periodic base flow at a fixed position x has an exp(−iω0t) time dependence for
large t, where ω0 = ω0,r + iω0,i is the frequency of the saddle point. As in the locally
parallel case, the two modes involved in the saddle must also move to opposite sides of
the real µ axis for increasingly large ωi, which is the equivalent to the condition that
the saddle should be formed by a k+ and a k− mode in this previous case. The saddle
with maximal ω0,i satisfying this condition is the relevant one for the calculation of the
impulse response, as it is the saddle point obtained with a continuous deformation of
the Fourier inversion contour starting from large ωi to ensure causality of the impulse
response (Huerre & Monkewitz 1990; Huerre 2000). This requirement is also equivalent
to the condition that the absolute value of the Floquet multipliers should move external
to the unit circle (|eiµλsh | = 1) for the first mode, and internal to this circle for the second
mode, in the limit ωi → ∞ (Brevdo et al. 1996). Essentially, writing the equations as
a function of the Floquet exponents leads to a linear problem that inherits most of the
characteristics of the locally parallel case (Brancher & Chomaz 1997); for this reason, it
will be analysed in the same fashion. The detection of a saddle point with ω0,i > 0 implies
that the impulse response of a spatially periodic base flow grows in both downstream and
upstream directions, leading to an oscillator behaviour with frequency ω0,r that spreads
throughout the domain. Around a fixed x, the spatial structure of the impulse response
at large t is given by the eigenfunction q̂(x, r) at the saddle point.
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The eigenvalue problem (2.11) is solved numerically by discretising the computational
field in the radial direction using Chebyshev polynomials, and in the streamwise direc-
tion using Fourier modes (Weideman & Reddy 2000). Radial mapping and boundary
conditions were implemented as in Lesshafft & Huerre (2007), and the problem was
solved numerically using the Arnoldi method (eigs in Matlab). For the cases studied
herein (especially for low Ash), a discretisation of Nr × Nx = 80 × 31 in the radial
and streamwise directions was shown to be sufficient to converge all the relevant modes.
Computation of 400 eigenvalues using this number of points usually takes around 180
seconds on a standard laptop for each choice of parameters.

3. Results

Depending on how far a jet is operated from its design condition, the shock and
expansion structures within the jet core can vary significantly in strength. Far from
the design condition, such as may be the case in rocket propulsion, the shock cells can
be complex structures, involving normal and oblique shocks, and their associated triple
points (Edgington-Mitchell et al. 2014a). Closer to the design point, where the nozzles
of air-breathing engines are likely to operate and screech is more likely to occur, the
shock structures are much weaker, and the compression and expansion may take place
near-isentropically. This work avoids the cases where shocks are complex, dealing with
conditions where the shock cells may be considered as a quasi-periodic structure. In
the present analysis, we focus on two cases with relatively weak shocks (nozzle pressure
ratio NPR = 2.1 and 2.4 for convergent nozzles). Based on experimental data at these
conditions, a shock amplitude of Ash = 0.02 is selected to approximate the oscillations
observed around the fourth shock cell of these jets. Such shock amplitude ensures that
the entire region where the shocks are found in the flow is supersonic. As in Pack (1950),
the shock-cell wavelength is approximated by λsh = π/2.4048

√
Mj − 1, where Mj is the

ideally expanded jet Mach number. Previous results show that the first case (NPR = 2.1)
is dominated by an m = 0 (A1) screeching mode (Edgington-Mitchell et al. 2018), and
the second (NPR = 2.4) was shown to have a competition between A2 (m = 0) and
B (m = 1) modes (Li et al. 2020). Thus, the azimuthal wavenumbers of the analysis
were chosen as m = 0 for the first case, and m = 1 for the second. For the absolute
stability analysis, the shear-layer thickness was chosen as δ = 0.15 for the m = 0 case,
and δ = 0.25 for the m = 1 case. This is in line with the results of Powell et al. (1992),
who showed that screech B modes are associated with a larger jet spread angle (see also
Tan et al. (2017)). For the analysis of the modulation by the shock-cells, δ = 0.15 was
kept for both cases, in order to provide a fair comparison between the effects of the shocks
on the waves associated with both azimuthal wavenumbers.

3.1. Overall characteristics of the modulation

We start by analysing the effect of the periodic shock-cell structure in the different
waves supported by the flow. Figure 1 shows the mean flows for Ash = 0 (equivalent
to the locally parallel case), and Ash = 0.02. Figure 1(b) exhibits some of the leading
characteristics of a shock-cell structure in an under-expanded jet, though with some
differences in shape when compared with experiments (see, for example, Edgington-
Mitchell et al. (2021a)). As noted by Tam & Tanna (1982), the addition of other shock-
cell wavenumbers may lead to a closer agreement in the shape of this structure with
experiments; here, we consider the leading wavenumber to be sufficient to analyse the
effect of such structure on the different waves in the flow. The only streamwise variations
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Figure 1. Mean streamwise velocity for the NPR = 2.1 case normalised by the ambient sound
speed for Ash = 0 (a) and Ash = 0.02 (b).
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Figure 2. Eigenspectrum containing 400 converged eigenvalues for NPR = 2.1, Ash = 0,
St = 0.7 (blue �). The eigenspectrum of the locally parallel analysis is also shown for µ = k
(orange +), µ = k − ksh (purple ×), and µ = k + ksh (yellow ×).

allowed in the shear-layer are those arising from the presence of the shock-cell structure
in the flow.

As a first test, the equivalence of the Ash = 0 case with the locally parallel linear
stability analysis (LSA) is demonstrated. To this end, the eigenspectrum for the NPR =
2.1, m = 0 case and Ash = 0 was compared to results from LSA using the same mean
flow and St = 0.7. The comparison between the eigenvalues is shown in figure 2, where
only 400 eigenvalues are shown. As expected, eigenvalues in the spectrum occur with a
ksh periodicity, such that µ = µ+Nksh, with N an integer; this is observed more clearly
in the modes close to the imaginary axis (the acoustic branch), that also appear close to
µr = ksh, and in the unstable Kelvin-Helmholtz mode, now also present in the µr < 0
part of the spectrum due to this periodicity. Figure 2 also shows that the eigenvalues of
the locally parallel stability align perfectly with those from the periodic case, considering
the periodicity of the solution. Most modes could be captured by the LSA using µ = k
and µ = k ± ksh; the few modes without equivalence seen on the real axis are related
to soft-duct modes of higher wavenumber (Towne et al. 2017). Due to the periodicity
of the solution, all modes from LSA are now observed inside the interval 0 6 µ 6 ksh.
Consequently, the identification of discrete modes and mode branches can be performed
directly by continuation from the locally parallel case.

The introduction of a small value of Ash = 0.02 does not lead to significant changes
in the eigenvalues for the values of NPR analysed herein (variations in growth rate and
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wavenumber are less than 0.01% for real-valued frequencies). However, the eigenfunctions
are non-trivially modified by the introduction of the shock-cell structure. Here, we analyse
this effect on two of the most dynamically significant waves in this flow. The first is the
Kelvin-Helmholtz (KH) mode (Michalke 1965), which is responsible for the appearance
of large scale vortical structures in the flow called wavepackets (Jordan & Colonius 2013),
one of the key structures responsible for sound radiation in turbulent jets (Cavalieri et al.
2019). The second is the upstream-travelling guided jet mode, first identified by Tam &
Hu (1989). Recent works (Gojon et al. 2018; Edgington-Mitchell et al. 2018; Mancinelli
et al. 2019) have shown that screech tones are observed within the frequency bands of
existence of these waves, at least for the axisymmetric mode, suggesting that this wave
might be responsible for closing the resonance loop in screeching jets. The presence of the
guided jet mode was also identified experimentally by Edgington-Mitchell et al. (2018,
2021a), which also highlights the importance of such waves in the dynamics of the jet. The
identification of these waves in the spatially periodic framework is less straightforward
than in the locally parallel case, especially for the guided jet mode. Due to the ksh
periodicity of the spectrum, this mode will now be mixed with critical layer modes and
soft-duct modes (Towne et al. 2017) on the µr axis. Since the eigenvalues for such small
Ash do not change relative to the Ash = 0 case, an auxiliary run of the locally parallel
case was used to identify the modes related to each wave.

The real part of the streamwise velocity of both the Kelvin-Helmholtz and upstream
waves for m = 0, 1 and St = 0.7, 0.47 are shown in figure 3. The frequencies were
chosen to be within the frequency range of existence of the neutral guided jet mode
of radial order 2 and 1, respectively, and close to the screech frequencies observed in
these cases (see Edgington-Mitchell et al. (2018); Li et al. (2020)). Here, the modes are
reconstructed spatially using (2.7), and the imaginary part of the Floquet exponent
was ignored to better visualise the oscillatory behaviour of the modes. The shapes
of the Kelvin-Helmholtz modes follow the usual behaviour for m = 0 and m = 1
disturbances: in both cases, this wave is quite concentrated around the shear layer of
the jet (since the instability is driven by shear), and a phase jump around this position
is also observed. The differences between the m = 0 and m = 1 modes are observed
mainly around the centreline, where the helical modes should reach zero amplitude due
to their natural boundary conditions (Batchelor & Gill 1962). Both Kelvin-Helmholtz
modes depicted in figures 3(a,c) are comparable with the structures educed from a
proper orthogonal decomposition (POD) of experimental data, previously presented
in Edgington-Mitchell et al. (2018) (m = 0 dominated) and Edgington-Mitchell et al.
(2014b) (m = 1 dominated). The guided jet modes for the two cases are also shown in
figure 3 (b,d). These modes also follow the expected symmetry, being equivalent to the
ones presented by Gojon et al. (2018), for each azimuthal wavenumber and radial order.

Figure 3 yields little insight regarding the effect of the shock-cell structure on the
different modes, since the modulation is masked by the phase evolution of the waves.
This effect can be seen more clearly by looking at the absolute value of the velocity for
each case. The locally parallel stability results lead to modes without any streamwise
variation in the absolute value of all flow quantities, while the spatially periodic case
allows the variation following the flow periodicity. This is shown in figures 4 (m = 0)
and 5 (m = 1) for the streamwise and radial velocity components. The changes in the
streamwise velocity of the axisymmetric modes induced by the inclusion of the periodic
shock-cell structure are mainly concentrated around the centreline; the periodic shocks
have little effect around the shear layer. This changes when the radial velocity of the
Kelvin-Helmholtz is considered: modulation for this quantity actually occurs around the
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Figure 3. Real part of the streamwise velocity of the different waves analysed. Top:
Kelvin-Helmholtz (a) and upstream (b) modes for m = 0, NPR = 2.1 and St = 0.7. Bottom:
Kelvin-Helmholtz (c) and upstream (d) modes for m = 1, NPR = 2.4 and St = 0.47.
Spatially-periodic linear stability results for Ash = 0.02. The growth rates of the modes were
removed to allow for a better visualisation of the radial structure.

Figure 4. Absolute value of the streamwise (a,c) and radial (b,d) velocities of the different
waves analysed for m = 0, NPR = 2.1 and St = 0.7. Kelvin-Helmholtz (a,b) and upstream
(c,d) modes for Ash = 0.02. The growth rates of the modes were removed to allow for a better
visualisation of the radial structure.

shear layer. The modulation of the radial velocity for the upstream mode occurs between
the centreline and the first node in the radial direction (where the phase shift occurs).

The behaviour of the modulated helical disturbances is shown in figure 5. For this
case, a slight modulation is observed in the streamwise velocity of the Kelvin-Helmholtz
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Figure 5. Absolute value of the streamwise (a,c) and radial (b,d) velocities of the different
waves analysed for m = 1, NPR = 2.4 and St = 0.47. Kelvin-Helmholtz (a,b) and upstream
(c,d) modes for Ash = 0.02. The growth rates of the modes were removed to allow for a better
visualisation of the radial structure.

mode, mostly around the shear layer and in the outer region of the jet. The modulation
is stronger in the radial velocity of the KH wave and in both components of the upstream
wave. Interestingly, different regions of the jet respond differently to the presence of the
periodic structure; while some regions of the jet follow the same oscillatory behaviour as
the shock-cell structure, other regions may follow the periodicity with a phase shift. This
is observed, for example, in figure 5(c), where disturbances around the shear layer follow
an inverse behaviour compared to disturbances at the centreline. Also, for both m = 0
and m = 1 disturbances, the modulation of the upstream-travelling waves is stronger
than for the Kelvin-Helmholtz mode.

Figure 6(a) shows the modulation in streamwise velocity of both waves studied herein
for NPR = 2.1, m = 0, St = 0.7 and r/D = 0; the mean velocity at the centreline is also
shown for reference. All fields were normalised by their maximum and subtracted from
the initial value at x/D = 0. This plot shows clearly that the shock-cell structure has
opposing effects on the modulation of the different waves in the flow: while a maximum in
the mean velocity is associated with a maximum in the streamwise velocity of the Kelvin-
Helmholtz wave, it is also associated with a minimum of the guided jet mode. Considering
that these waves travel in opposite directions, this difference is possibly associated with
the effect of a wave passing through a shock coming from regions downstream or upstream
of it. Figure 6(a) confirms that the modulation effect is stronger in the upstream-travelling
wave for the m = 0 case. While the modulation of the guided jet mode is rather simple in
shape, the modulation of the Kelvin-Helmholtz mode is more intricate. A slight oscillation
is observed around the mean point between a maximum and a minimum (or a node) of
the mean velocity, and a much stronger oscillation occurs at the position of minimum
velocity.

A direct comparison between the present modulation results and experiments is hard
to perform. Usually, the lack of time-resolved data only allows the identification of the
structure related to the resonance process (the screech mode) using proper orthogonal de-
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composition or other similar modal decomposition tools (Edgington-Mitchell et al. 2014b,
2018; Li et al. 2020). However, the screech mode is composed of several downstream- and
upstream-travelling waves, which hinders the evaluation of such modulation effects in
the different waves of the flow. Still, considering that the screech mode is dominated by
a Kelvin-Helmholtz wavepacket, it could be expected that some of the trends identified
in the present study should be present in POD modes of experimental data. In order to
evaluate if this particular modulation pattern is also observed experimentally, a complex
mode is built using the two first POD modes, as in Edgington-Mitchell et al. (2021a) for
NPR = 2.1; the details about the experiments and numerical procedure can be found
in the cited paper. The streamwise evolution of the screech mode at the centreline is
shown in figure 6(b), where the mean velocity is also shown as reference. Comparing
figures 6(a) and (b), some similar features can be identified. As in the spatially-periodic
analysis, the POD mode also has maxima in streamwise velocity aligned with maxima in
the mean velocity (maxima of the shock-cell structure). Also, oscillations following the
same pattern are observed around the third shock-cell, both associated with nodes and
minima in the mean velocity. Considering a spatial growth of the KH mode enhances the
comparison, as shown in figure 6(c). However, there is no reason to expect quantitative
agreement in growth rate between an inviscid, linear, periodic model and the experimental
data; indeed, there is a significant difference between the values. As the purpose of this
figure is purely to illustrate similar trends in the modulation effect, the growth rate
of the KH mode is reduced to 20% of its value for the purpose of this comparison.
Overall, considering that the only spatial evolution allowed in the present model is the
periodic shock-cell structure, the present model captures some of the experimental trends
quite closely, especially for x/D < 2.5, suggesting a dominance of the KH mode in the
near-nozzle region. This result endorses the suitability of Floquet-based tools in the
study of modulation effects in the different waves supported by shock-containing flows,
but consideration of the shear-layer development and a comparison with modes at non-
resonant conditions is needed to further validate this hypothesis. The part of the POD
mode dominated by resonance (x/D > 2.5) is considered in the next section.

3.2. Saddle points and absolute instability

In the previous section, we showed that the spatially periodic linear stability analysis
manages to capture some of the trends identified in experiments. We also showed that
results from this formulation can be analysed in the same fashion as the locally parallel
case, with modes categorised in a very similar manner to this previous method; in fact,
for Ash = 0, the present method recovers the exact same modes as the local analysis.
As mentioned in the previous section, small changes in the growth rates and peak
wavenumber were identified for Ash = 0.02. Thus, one could erroneously think that
the only effect of such flow periodicity is on the shapes of the different waves supported
by the flow. In this section we show that this is not the case. In fact, the periodicity
changes the nature of the instability mechanism to which the flow is subject, and this
will have a direct effect on the physical interpretation of the screech phenomenon.

In the present section, we follow the formulation developed by Huerre & Monkewitz
(1985), revised in Huerre & Monkewitz (1990), and extended to spatially periodic base
flows in Brevdo et al. (1996). For a clearer interpretation of the results of Brevdo et al.
(1996), the reader can also refer to Brancher & Chomaz (1997). In summary, an absolute
instability occurs if a saddle in the (ω, µ) plane exists for ω0,i > 0, and this saddle must
be formed between an upstream- and a downstream-travelling mode. Considering that all
waves are now in the same region of the spectrum (between 0 6 µr 6 ksh), an interaction
between downstream- and upstream-travelling waves is more likely to occur. In order to
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Figure 6. Comparison between the modulation of the different waves in the spatially periodic
linear stability analysis and the POD mode from Edgington-Mitchell et al. (2018) at the
centreline (r/D = 0) and NPR = 2.1. The spatially periodic modes (a) are normalised by
their maximum and subtracted from their value at x/D = 0, and the imaginary part of the
Floquet exponent was ignored in the spatial reconstruction of the modes. In (b), the POD
mode and mean streamwise velocity are normalised by their maximum. The mean velocity and
the spatially growing KH mode (growth rate reduced to 20% of its original value) (c) are also
normalised by their maximum.

evaluate this, the complex frequencies ω in which the complex eigenvalue related to the
Kelvin-Helmholtz mode approaches the eigenvalue of an upstream travelling wave were
sought for the locally parallel case. Then, second and third runs of the spatially periodic
stability were performed for Ash = 0 and Ash = 0.02, in order to evaluate the effect
of the mean flow periodicity, checking if the shock-cell structure leads to an interaction
between the different modes. In the parametric studies, saddles were sought using the
methodology proposed by Monkewitz (1988).

The effect of increasing ωi in the eigenspectrum is exemplified in figure 7. The Kelvin-
Helmholtz mode is directly identified as the only unstable mode (µi < 0) for ωi = 0.
As expected for an unstable downstream-propagating mode, increasing ωi leads to an
increase in the value of µi; for larger imaginary frequencies, this mode will cross the real
axis and remain in the µi > 0 region of the spectrum. The opposite happens with the
guided jet mode, identified as the discrete mode closest to the continuous neutral acoustic
branch for ωi = 0. Since this mode is upstream propagating, increasing the imaginary
frequency leads to a decrease in µi. The contrasting behaviour of these two modes leads
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Figure 7. Trajectories of the different modes in the complex µ plane, for NPR = 2.1, m = 0,
Ash = 0.02 and St = 0.685, for several values of ωi.

them to be located quite close to each other for some values of ωi, which could allow for
an interaction between the downstream- and upstream-travelling modes.

The trajectories of the eigenvalues related to Kelvin-Helmholtz (KH) and guided-
jet/upstream (Ups) modes in the complex µ plane for increasing St number are shown
in figure 8. These trajectories were computed for ωi = {0.436, 0.446} (m = 0) and ωi =
{0.180, 0.204} (m = 1), and in the interval 0.682 6 St 6 0.689 and 0.442 6 St 6 0.452
respectively. In both figures 8(a,b), KH modes travel from left to right for increasing St,
and upstream modes move from right to left. For Ash = 0, the trajectories of both modes
approach each other, but continue straight in their original path; considering that the
Ash = 0 case is exactly equivalent to the locally parallel case (except for the periodicity
of the modes in the complex µ plane), this is not surprising: no absolute instability is
observed between these two modes, as they originally inhabited different regions of the
spectrum in the locally parallel case. As the periodicity is included (Ash = 0.02), the
trajectories of these modes deform around a given point µs of the spectrum. Close to this
point, both modes move towards each following a specific direction, and are repelled in
a perpendicular direction for higher St. This is a direct symptom of a double root in the
µ(ω) relation, characterising a saddle point. As in the locally parallel case, these two waves
move in opposite directions of the real µ-axis for increasingly large ωi, being equivalent
to k+ (KH mode) and k− (upstream mode) waves (see Huerre & Monkewitz (1990) for
more details). In the spatially periodic framework, this also means that for ωi →∞, one
of the modes travels internally to the unit circle for the Floquet multiplier (|eiµλsh | = 1)
and the other travels externally to that circle. These two conditions, associated with the
fact that the saddles occur for ω0,i > 0, define the absolute instability of a spatially
periodic system, as derived by Brevdo et al. (1996). Thus, the impulse response of the
spatially periodic shock-cell pattern grows in both downstream and upstream directions,
leading to an oscillator behaviour that spreads throughout the domain for large times.

Considering that these modes have similar trajectories for several values of ωi, this
phenomenon occurs twice for this periodic flow: once when the KH mode is on the
bottom part of the spectrum (low ω0,i, figures 8(a,b)), and again when this mode is at
the top part of the spectrum (higher ω0,i, figures 8(c,d)). These two saddles are formed
by the same modes, and are very close to one another. The spatio-temporal growth rates
associated with these are also similar, suggesting that both saddles are representative
of the same phenomenon. With that in mind, mode shapes and wavenumber spectra



Absolute instability in shock-containing jets 15

displayed in the remainder of this paper are related to the second saddle (higher ω0,i),
as it dominates the impulse response of the flow for large t.

An interaction between the KH mode and a mode from the acoustic continuous spec-
trum is also observed in figure 8(c). Given that the upstream component of screech was
historically assumed to be characterised by free stream acoustic waves, such interaction
may at first seem of significance. However, care must be taken in its interpretation for a
number of reasons. Modes from this branch are discrete representations of a continuous
branch associated with sound waves radiating in several directions (Gloor et al. 2013), and
are related to a branch cut in the Briggs-Bers analysis, as shown by Huerre & Monkewitz
(1985). In this previous work, the authors have also shown that the contribution of this
continuous branch decays for large times, and was neglected in the absolute instability
analysis. Also, as the KH and guided jet modes switch identities at the saddle, it is hard
to determine if the interaction between the discrete mode and the acoustic branch is
formed between downstream- and upstream-travelling waves; thus, such interaction may
be entirely due to the partial identification of this mode as a guided jet mode, which
ejects from the acoustic branch for a given frequency (see Towne et al. (2017)), and may
still be able to interact with such branch. No saddle with acoustic modes was found for
imaginary frequencies far from the saddles related to the guided jet mode, suggesting
that the interaction between the KH and guided jet mode drives the interaction with
the acoustic branch, and that the saddle between the discrete modes is the dominant
mechanism. In practice, the interaction with the acoustic branch is harder to analyse, as
the positions of the particular modes that represent this continuous branch are dependent
on the radial mesh and the maximum radial position (see Gloor et al. (2013)), so it is
virtually impossible to define a single mode of the branch that will participate in this
interaction.

The phenomenon may also be examined in the context of triadic interactions. The total
solution of the periodic system (equation 2.10) may be expanded explicitly as function
of the solution associated with a central wavenumber k0, and the ones associated with
modulation wavenumbers k0 + nksh, where the integer n ranges −N 6 n 6 N , and N
is the number of harmonics considered in the analysis. Considering the simple sinusoidal
mean flow used in the analysis, the final structure of the NS operators will be tridiagonal,
with the solution associated with modulation wavenumber k0 +nksh being dependent on
the solution associated with wavenumbers k0 +(n−1)ksh and k0 +(n+1)ksh, via the off-
diagonal terms of the equations. This means that modes can potentially exchange energy
triadically due to the periodicity of the flow. If the amplitude of the shock-cells is zero, the
modes will still display a ksh periodicity in the eigenspectrum due to the consideration
of Fourier modes in the solution. However, the off-diagonal terms of the periodic NS
equations are zero for this case, rendering any interaction between solutions at different
wavenumbers impossible. This explains why no pinching is observed for Ash = 0 in figure
8.

Figures 8(a-d) show that saddle-points between Kelvin-Helmholtz and guided jet
modes can be found in spatially periodic flows, such as shock-containing jets; unlike for
the ideally expanded case where an absolute instability is only observed in low-density
jets (Monkewitz & Sohn 1988), the presence of a periodic structure, such as the train of
shock-cells, can allow for the interaction of modes that could not interact in the locally
parallel framework. The connection between the present absolute instability mechanism
and screech can be accessed by the analysis of both the frequency of the saddle (or the
frequency of interaction between the two modes), and the shapes of the modes close to
the saddle, keeping in mind the approximations of the current model. Table 1 shows the
comparison between the frequencies of the saddles, reported in terms of the Strouhal
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Figure 8. Trajectories of the Kelvin-Helmholtz (KH) and guided jet (Ups) modes in the complex
µ plane, for both m = 0 (a,c) and m = 1 (b,d) cases, for ωi = 0.436 (a), ωi = 0.180 (b),
ωi = 0.446 (c) and ωi = 0.204 (d). Modes are shown in the interval 0.682 6 St 6 0.689 for the
axisymmetric case, and 0.442 6 St 6 0.452 for the helical case. All modes are named according
to their identity at the lowest Strouhal number in each plot. In (c), the trajectory of a mode
from the continuous acoustic spectrum (Ac) is also shown.

NPR Spatially periodic analysis Experiments/Simulation Reference

2.1 St0 ≈ 0.684 Stscreech = 0.67 Edgington-Mitchell et al. (2018)
2.4 St0 ≈ 0.447 Stscreech = 0.4237 Li et al. (2020)

Table 1. Approximate frequencies of the saddle in the spatially periodic analysis compared
with screech frequencies from simulations/experiments.

number St0 = ω0,r/(2πM), for both m = 0 and m = 1 cases, and the experiments
of Edgington-Mitchell et al. (2018) and simulations of Li et al. (2020). Interestingly,
the frequencies predicted by the spatially periodic analysis are quite close to the ones
from these previous works, for both values of NPR and azimuthal wavenumbers. This
agreement supports the hypothesis that the absolute instability mechanism captures
some features of the screech phenomenon, and that the frequency of the resonance loop
is actually given by the frequency where the saddle point is identified.

The sensitivity of the temporal growth rates and Strouhal number to the shock
amplitude is shown in figure 9(a,b). As suggested by the results in figures 8(a,c), the
difference in frequency between the two saddles is small for Ash = 0.02; figures 9(a,b)
show that this difference decrease as Ash is decreased, and the two saddles coalesce for
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vanishing values of shock-cell amplitude. No saddle is observed for Ash = 0, which points
to the absence of absolute instability in the locally parallel case. Overall, both temporal
growth rates and Strouhal number of the saddle are fairly insensitive to changes in
shock-cell amplitude, as shown in figures 9(a,b). On the other hand, these quantities are
strongly affected by the shear-layer thickness δ. Figure 9(c) shows a monotonic decrease
in the growth rates of the structures associated with both saddles as δ increases, which
is in line with the decrease in the spatial growth rate of the Kelvin-Helmholtz mode with
increase of shear-layer thickness (Michalke 1984). The Strouhal numbers associated with
the saddle increase slightly with the increase of δ, but these values still remain in the
frequency range where screech is expected to occur for this value of NPR (Mancinelli
et al. 2019).

These results altogether suggest that a pocket of absolute instability, obtained in a
periodic stability analysis using velocity profiles from various x stations, might be present
in real shock-containing flows, where the jet spreading will have a stabilising effect on
the disturbances. This is also similar to the studies of pockets of absolute instability in
wakes (Chomaz et al. 1988). Still, differently from the wake case, the absolute instability
in shock-containing jets is triggered by the periodicity induced by the shock-cells, and no
pocket of absolute instability is observed for such jets in the locally parallel framework.
We emphasise that, contrary to former models that needed empirical inputs, the absolute
instability analysis in the spatially periodic framework predicts the screech frequencies
directly as a function of the jet operating condition, at least for the cases where the
shocks are weak; while a similar overall behaviour is expected to be observed for higher
NPR cases, the dynamics may be modified by the inclusion of larger radial velocities,
a Mach disk, and non-linearities in the flow. Increasing the shear-layer thickness leads
to small variations on the predictions within the range of frequencies in which screech is
observed. No other input from experiments is needed.

3.3. Comparison of absolute instability eigenfunctions with data

Further analysis of the structure of the modes close to the the resonant condition may
confirm if the absolute instability mechanism is actually representative of the screech
phenomenon. Here, we wish to discern if the large-time response to an impulse applied
to a spatially-periodic shock cell pattern resembles the dominant coherent structures in a
screeching jet. The axisymmetric modes for NPR = 2.1, St = 0.6841 and ωi = 0.4465 are
presented in figure 10(a,c), where the absolute value of streamwise and radial velocities
are shown, respectively. The spatial growth of SP-LSA modes is also included in the
reconstructions. Comparing figures 10(a,c) to figures 4(a-d), it is clear that the effect
of the modulation by the shock-cell structure is minor close to the resonant condition
(which may be related to the spatial distribution of the modes further downstream in
figure 6(b)), and the interference pattern between the two waves involved in the saddle is
now dominant. This interaction leads to strong modulation of the resulting wavepacket
structure throughout the domain (Edgington-Mitchell et al. 2021a). The structure of the
modes close to the saddle can also be compared to the most energetic coherent structure
coming from a POD of experimental data, presented in Edgington-Mitchell et al. (2018)
and Edgington-Mitchell et al. (2021a), shown in figures 10(b,d). Even though the modes
from the spatially periodic analysis do not capture the growth/decay behaviour of the
wavepacket (which is due to the increasing shear-layer thickness, not included in the
model), the overall modulation pattern is quite well reproduced by the modes. Such
agreement can be especially observed close to the centreline and outside the shear layer,
where a wavy pattern is clearly seen. The POD modes are also more radially spread
across the shear layer and potential core, which is also likely due to the jet spreading.
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Figure 9. Imaginary frequency ω0,i (a,c) and Strouhal number St0 (b,d) of the first and second
saddle points for NPR = 2.1 and m = 0 as a function of shock amplitude Ash and shear layer
thickness δ. Results for δ = 0.15 (a,b) and Ash = 0.02 (c,d).

The spatial reconstruction of the m = 1 mode for NPR = 2.4, St = 0.448 and
ωi = 0.204 is shown in figures 11(a,c). As in the axisymmetric case, the interference
pattern formed by the interaction between the two waves is much stronger than the
modulation by the shock-cell structure alone. Compared to the non-resonant condition,
changes in the mode structure are also seen over the entire mode, especially for the radial
velocity; in this velocity component, an alternation of peak velocities around the shear-
layer and centreline is observed as consequence of the regions of the peak of each wave
(as shown in figures 5(b,d)) and the interference pattern. The only modal decomposition
data available for this operating condition are the DMD modes presented by Li et al.
(2020), where only the real part of the modes are shown, hindering the identification
of the modulation. Thus, a comparison with modes from another operating condition
(NPR = 3.4, studied in Edgington-Mitchell et al. (2014b) and Edgington-Mitchell et al.
(2021a)) is performed here. Even though the flow for this higher Mach number case is
slightly more complicated (especially considering the presence of a small Mach disk) it
is also dominated by an m = 1 screeching mode, as in the present case. It is also worth
highlighting that the shock-cell wavelength for this higher NPR case is larger, so the
modulation wavenumber of the mode close to the saddle will differ from the experimental
result; thus, only qualitative comparisons about the structure of the resonant mode may
be performed in this case. The absolute value of the streamwise and radial velocities for
this case are shown in figures 11(b,d). As in the axisymmetric case, a good agreement
between the structure of the spatially periodic modes and the POD modes is obtained
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Figure 10. Comparison between the shapes of the modes close to the saddle and POD modes
for NPR = 2.1 and m = 0. The spatial growth rates of the modes (µi) are now included in the
reconstruction. Absolute value of streamwise and radial velocities are shown in (a) and (c) for
the spatially periodic stability analysis, and streamwise and lateral velocities of the POD modes
(NPR = 2.1) reported in Edgington-Mitchell et al. (2021a) are shown in (b) and (d). All modes
are normalised by their maximum.

for m = 1 disturbances. The wave-interaction pattern follows the experimental data
quite closely, especially in the outer region of the jet, for the streamwise velocity. For
this component, the viscous effects and the shear-layer development also lead to modes
more radially spread. A remarkable agreement for the radial velocity is observed, with
both fields following the particular peak-shift behaviour between the centreline and the
shear-layer.

The presence of both KH and upstream waves in the mode at the saddle point can
be more clearly observed in the analysis of the wavenumber spectrum of this mode. The
streamwise velocity of the modes are reconstructed in the first ten shock-cells ignoring
the spatial growth rate (µi), in order to isolate the oscillatory behaviour of the modes. It
is desirable to evaluate the streamwise wavenumbers present in the eigenfunctions of each
wave as one approaches the saddle; thus, a spatial Fourier transform of the reconstructed
mode is performed for different values of ωi. This analysis is equivalent to the one
performed by Edgington-Mitchell et al. (2021a) on POD and global stability modes.
Considering that only wavenumbers µr + Nksh are allowed in each mode, the spatial
spectra provides a good estimate of the relative energy of the different wavenumbers
included in each mode, allowing for a clearer identification of the different waves at the
saddle point. Figures 12(a-d) show the wavenumber spectra of the modes related to the
KH (a,c) and guided jet (b,d) waves for ωi = 0, 0.4. These plots show the energy content
of each wavenumber of the reconstructed mode using a fast Fourier transform (fft). The
discrete wavenumbers allowed in the eigenfunctions will appear as most energetic; energy
in wavenumbers other than µr + Nksh must be disregarded, as it is related to contour
interpolation and to the truncation of the domain for the fft, as the wavenumbers λsh
and 2π/µr are not multiples of each other. For zero imaginary frequency, both modes
have peaks at the expected wavenumbers (positive for the KH, negative subsonic for
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Figure 11. Comparison between the shapes of the modes close to the saddle and POD modes
for NPR = 2.4 and m = 1. The spatial growth rates of the modes (µi) are now included in the
reconstruction. Absolute value of streamwise and radial velocities are shown in (a) and (c) for
the spatially periodic stability analysis, and streamwise and lateral velocities of the POD modes
(NPR = 3.4) reported in Edgington-Mitchell et al. (2021a) are shown in (b) and (d). All modes
are normalised by their maximum.

the guided jet mode), and small energy peaks related to the modulation analysed in
section 3.1 are also observed. As the imaginary frequency is increased to ωi = 0.4, the
energy of wavenumbers related to upstream waves start to increase in the KH mode
(and equivalently in the upstream wave), until both modes become one at the saddle
point. There, it is impossible to separate both waves, and the resulting mode has energy
peaks at the wavenumbers of both waves, as shown in figure 12(e). At this position, both
modes share the same eigenvalue µ, and only wavenumbers k = µr + Nksh are allowed
in the eigenfunction. Hence, the wavenumbers of both waves that compose the saddle
must observe the relationship kkh − ksh = kupstream, where kkh, kupstream are the peak
wavenumbers of the KH and upstream waves (associated with N = 0,−1, respectively),
identified by a continuation of the wavenumber spectra from ωi = 0 to ωi = ω0,i. This
is exactly the wavenumber relation derived by Tam & Tanna (1982), and confirmed
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Figure 12. Wavenumber spectrum related to the spatial reconstruction of the relevant
eigenmodes (neglecting µi), for NPR = 2.1 and m = 0. Spectra for Kelvin-Helmholtz (a,c)
and upstream travelling modes (b,d) are shown for ωi = 0, 0.4 and St = 0.6846. Spectrum of
the mode close to the second saddle point (ω0,i = 0.446, St0 = 0.6841) is shown in (e). The
same spectrum for the NPR = 2.1 POD mode, from Edgington-Mitchell et al. (2021a), is also
reproduced (f), with the modulation wavenumbers related to the leading KH wavenumber are
depicted by the red lines. All plots are normalised by their maximum, and the magnitudes are
presented in log scale.

by Edgington-Mitchell et al. (2021a). In fact, comparing the wavenumber spectrum of
the mode close to the saddle point and the POD mode for the same Mach number,
shown in figure 12(f) (modulation wavenumbers indicated by the red dashed lines), the
same overall structure is observed. The most energetic wavenumbers in both analyses are
found around the same positions, which provides a further indication that the absolute
instability is the phenomenon at play in screech.

The correspondence between the modes related to the absolute instability and the
most energetic modes in screeching jets, together with the accurate prediction of the
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Figure 13. Sketch of the cut-on/cut-off mechanism of screech mode A1.

screech frequencies by the present analysis, strongly suggests that screech is actually
an absolute instability mechanism, or at least that such mechanism is triggering the
resonance phenomenon. For the cases studied herein, the saddle that characterises this
phenomenon is formed between the Kelvin-Helmholtz mode and the discrete guided-jet
mode, supporting the hypothesis raised by Gojon et al. (2018) and Edgington-Mitchell
et al. (2018) that this upstream mode is responsible for closing the resonance loop.
This also shows that, even though the presence of shocks in the jet changes the overall
characteristics of the flow quite abruptly, the main changes in the dynamics of the jet
are due to the formation of a periodic structure, at least in cases where the position of a
downstream reflection point is not clear, which is the case for free jets.

The acoustic spectrum of a screeching jet as a function of Mach number (as presented
by Mancinelli et al. (2019), for instance) can now be analysed in light of the present
results. For very-low supersonic cases (when screech starts to occur), the shock-cell
wavenumber ksh is too high, and the modes are too far apart in the spectrum to interact.
As the Mach number is increased, ksh decreases, and both modes are now in the same
region, allowing for the occurrence of a saddle point between axisymmetric KH and
upstream modes. Increasing Mj leads to a further decrease in the shock-cell wavenumber;
in this case, the Kelvin-Helmholtz mode crosses the acoustic branch before the guided
jet mode becomes cut-on, and no saddle is found (although the presence of secondary
wavenumbers in the shock-cell structure may provide alternative paths for interaction
(Nogueira et al. 2020)). Still, this decrease in the value of ksh will allow for the interaction
between these waves for m = 1, giving rise to the scar-like plot for the B mode. The cut-
on/cut-off process of screech mode A1 is summarised in figure 13. Currently, no reason for
the switch between B-C-D modes is provided by the model, and such analysis is outside
of the scope of this work.

While the mechanism shown in figure 13 is directly applicable to cold convergent
nozzles, the same ideas could be extended to converging-diverging nozzles at various
conditions. For cold jets in general, the shock-cell wavenumber is a function of the ideally
expanded Mach number Mj , which is a function of NPR, and the effective jet diameter
Dj , which depends on the ratio between Mj and the design Mach number Md (Tam
& Tanna 1982). For these conditions, the wavenumbers of the Kelvin-Helmholtz and
guided jet modes will be mainly a function of the ideally expanded Mach number. This
means that, for cases in which the shocks are weak, screech tones may be expected to be
comparable for different cold converging/converging-diverging nozzles regardless of the
degree of imperfect expansion, if their NPR is the same. Oppositely, trends are expected
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to change drastically with the nozzle temperature ratio; while the temperature does not
seem to play a strong role in determining the shock-cell wavenumber (Liu et al. 2015),
it may affect the characteristics of the Kelvin-Helmholtz mode (Michalke 1984; Gloor
et al. 2013), and will certainly affect the wavenumbers of the guided jet modes (Liu et al.
2015; Mancinelli et al. 2020). Further exploration of this parameter is left as a future
endeavour.

4. Relationship with previous models and impact on the jet dynamics

We can now focus on providing a link between the present results and some of the
models previously developed in the literature for predicting screech. The equivalency
between the original formulation of Powell (1953a) and formulations based on the
standing wave (Panda 1999) and shock-wavepacket interaction (Tam & Tanna 1982)
was derived by Edgington-Mitchell (2019); essentially, all these formulations relate the
phase velocity of the Kelvin-Helmholtz mode with the wavenumber of acoustic waves
using some sort of phase argument based on the shock-cell spacing, or some other
characteristic length. Considering that the phase velocity of the KH mode is well captured
by experiments and linear models (such as the vortex-sheet), and that the wavenumber
of the guided jet mode is usually very close to the wavenumber of upstream-travelling
acoustic waves for a given frequency, these formulations usually manage to approximate
the main ingredients of the screech mechanism using a single real-valued equation. Among
these previous approaches, the one that most closely resembles the absolute instability
mechanism is the one proposed by Tam & Tanna (1982). By considering the interaction
between wavepackets and the shock-cell structure, the authors proposed that the presence
of the shocks would energise the wavenumbers k = kkh ± ksh. The authors were already
considering the periodicity of the spectrum shown in figure 2, even though they did
not consider the relevance of the upstream-travelling mode in the resonance closure
mechanism. Recently, an alternative formulation using the same wavenumber relation
(Nogueira et al. 2020) was used in association with linear stability analysis and the guided
jet mode to predict screech frequencies, leading to accurate results; these wavenumber
relations can be seen as a first approximation of the position of the saddle point in the
present formulation.

It is now well known that screech is associated with a global instability of the jet (see
Beneddine et al. (2015), for example), and the present analysis offers an explanation of
how this global instability is triggered based on the spatial periodicity of the flow. An
alternative formulation based on both phase and magnitude of the resonance loop was
proposed by Mancinelli et al. (2019, 2020), following the formulation of Jordan et al.
(2018). The authors proposed that screech could be explained in the locally parallel
framework as a long-range feedback using a complex resonance model, which depends
on the wavenumbers of the different waves involved in the phenomenon, a character-
istic length (usually chosen as the position of one of the shock-cells), and reflection
coefficients (related to the amount of energy transferred to upstream waves when large-
scale structures travel past a shock). The present analysis proposes a somewhat different
mechanism; in this case, screech is seen as an absolute instability mechanism defined by
the periodicity of the flow, by the bands of existence of the guided jet mode, and by the
characteristics of the Kelvin-Helmholtz mode. Here, the effect of the nozzle is restricted
to its secondary impact on the jet plume, and no upstream/downstream reflections are
directly considered; the jet is absolutely unstable simply due to the periodicity and the
wavenumbers of the relevant modes. This is similar to the effect of back-flow in the
absolute instability of wakes, which may lead to resonance even in the absence of a bluff
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body that generates the wake (Monkewitz & Nguyen 1987; Huerre & Monkewitz 1990;
Pier & Huerre 2001).

Even though resonance in the spatially periodic model may be closed without the
need for a nozzle, this mechanism may be modified by the presence of an upstream
reflection condition. As observed in previous experiments (Ponton & Seiner 1992; Raman
1997, 1998), the amplitude of the screech tone can be strongly affected by the nozzle lip
thickness, while its frequency usually remains unchanged. This is in line with the present
results, where resonant frequencies are determined by the real part of the frequency of the
saddle point ω0,r. Since only screech amplitude is affected by the nozzle, it is conjectured
that the nozzle will have an effect on the amplification of the resonant mode ω0,i, in
the global framework. Consideration of non-periodicity in the flow (such as in the region
very close to the nozzle) will lead to a decoupling between upstream- and downstream-
travelling waves generated by the absolute instability. This can generate reflected waves
that could constitute an additional source of amplification of the resonant mode. In this
sense, the reflection by the nozzle can still be important in leading to a sufficiently strong
global instability for a high amplitude tone.

That the output of the present model is generally insensitive to the shock-cell amplitude
is perhaps a somewhat counter-intuitive result, but it is consistent with both prior models
and experimental results for screeching jets. In the shock-leakage model of Manning &
Lele (1998, 2000), the same qualitative behaviour was observed whether the incident wave
was a strong shock, a near-isentropic compression wave, or a Gaussian wave. The latter
extension of the model by Shariff & Manning (2013) demonstrated that the “leakage”
behaviour could be preserved even when shock amplitude was entirely neglected as a
parameter in the model. Experimental studies by Raman (1997) and Raman (1999)
have also suggested that while shocks are required for screech, there is little correlation
between shock strength and screech tone amplitude. As mentioned in section 3, results
of the present model are more directly applicable to cases where the shocks are weak;
the actual effect of stronger shocks, which includes the generation of stronger radial
velocities, is yet to be analysed.

The present results also shed light on the analysis performed by Edgington-Mitchell
et al. (2021a). Using experimental data and global modes, the authors showed the
existence of two different waves resulting from the shock-wavepacket interaction in a
screeching mode: the guided jet mode and the soft-duct mode. They also showed that
the superposition between the KH mode and these other waves is quite strong in the
flow field, even though this effect could not be separated from the modulation caused
by the shock-cells. Here, we confirm these previous results, showing that the presence of
both KH and guided jet modes in the flow field is a direct consequence of the absolute
instability mechanism. We also show that the modulation due to the interaction between
the two waves is much stronger than the modulation given by the shocks (compare figures
4 and 10, for instance), supporting this previous analysis. The importance of the soft-
duct mode could not be assessed in the absolute instability framework (since the saddle
must be formed between upstream- and downstream-travelling modes).

Some remarks about the impact of the present findings on the flow dynamics must be
provided; this will be analysed following the interpretation of convective and absolute
instabilities developed by Huerre & Monkewitz (1990). In convectively unstable flow, such
as ideally expanded jets, disturbances are generated by some sort of forcing upstream
(where the flow is most sensitive) and convected away from the source; in the case
of absolutely unstable flows, disturbances spread in both downstream and upstream
directions, and contaminate the entire flow field. For that reason, convectively unstable
flows can be seen as noise amplifiers, while absolutely unstable flows behave as oscillators;
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in the latter case, self-sustained resonant states of the flow may be observed. This is in
line with the original observations of Powell (1953a), who also pointed out the presence
of upstream-travelling waves in the flow, connected to the development of the large-scale
vortical structures. It is also aligned with the classical view that screech is a self-sustaining
resonant phenomenon. Thus, the basis of the overall interpretation of screech as a physical
phenomenon is still applicable for the present case.

It is also important to highlight the applicability of the results, and provide some
caveats concerning the application to spatially developing flows. First, considering that
screech is observed in cold shock-containing jets in several different configurations (see
Edgington-Mitchell (2019)), and that the basic characteristics of the phenomenon is
shared by free jets with different geometries, showing that this phenomenon is actually
a consequence of an absolute instability mechanism also impacts the interpretation of
screech in these other cases. Thus, screech in rectangular, elliptical and twin jets, when
it occurs, could also be considered as an absolute instability phenomenon, when the
equivalent modes are considered in each geometry (keeping in mind the simplifications
of the current model, as highlighted in previous sections). Still, for all these cases, one
should be aware that the spatial development of the flow may have an impact on the
analysis. In practice, one is expected to find regions of the flow in which such a mechanism
is at play. The effect of increasing shear layer thickness further downstream may lead
to flow to switch back to a convectively unstable state, and eventually to a stable state.
Thus, the present model can be seen as an approximation of the overall behaviour of
the flow – but one that captures some of the key features of the flow in the resonating
condition.

5. Conclusions

This work focuses on the application of spatial linear stability analysis to flows
with spatial periodicity, such as shock-containing jets. In order to account for the
periodicity, the Floquet ansatz is used to write the general form of the disturbances, and
streamwise Fourier modes are used to account for the flow periodicity (Brevdo et al. 1996;
Herbert 1988). Solutions of the linearised Navier-Stokes system written as an eigenvalue
problem are obtained numerically using standard methods. This formulation has a direct
connection with the locally parallel case: when the amplitude of the periodic structure is
zero, the locally parallel results are recovered with the periodicity of the flow. This allows
for a clearer categorisation of the different modes based on the locally parallel analysis.
It is shown that small shock-cell amplitudes do not lead to significant changes in the
eigenvalues, but the eigenmodes are significantly modified. Using the spatially periodic
linear stability analysis, the modulation of the different waves involved in screech could
be obtained directly as function of frequency, Mach number and shock-cell amplitude,
with a computational cost similar to the locally parallel analysis. This tool opens new
pathways to analyse shock-containing jets, where the effect of a spatially periodic shock-
cell structure is directly accounted for in the model, resulting in modes that can be
directly compared with experiments in a straightforward manner.

One of the main effects of including the shock-cell structure in the linear stability
analysis is related to a change in the nature of the instabilities supported by the flow.
It is well known that cold jets are subject to a convective instability mechanism, which
gives rise to the Kelvin-Helmholtz mode. By including the periodicity in the analysis,
we show that cold jets can also be subject to an absolute instability mechanism, leading
to disturbances that spread both downstream and upstream. Thus, a mechanism for
the appearance of a globally unstable mode in shock-containing jets (as in Beneddine
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et al. (2015)) is brought to light. The saddle point analysis shows that the absolute
instability is underpinned by an interaction between the Kelvin-Helmholtz mode and the
guided jet mode, supporting the theory that this discrete upstream mode is responsible
for closing the resonance phenomenon in screeching jets (Gojon et al. 2018; Edgington-
Mitchell et al. 2018) for both m = 0, 1 cases. Frequencies and modes related to the
saddle points are markedly similar to the ones obtained by experiments and simulations,
for both axisymmetric and helical disturbances, corroborating the connection between
the present results and the physical mechanism behind screech.

Overall, the present analysis provides a mechanistic interpretation of screech based
on linear models. In particular, the analysis shows that the reflection at the nozzle
is not a necessary ingredient in the selection of the screech frequency, even though
the amplification of the resonant mode may still be impacted by the nozzle geometry.
Knowing which factors dictate the absolute instability mechanism may not only enhance
the understanding of the phenomenon, but also help to design control strategies to
suppress the screech tones. In particular, modifications of the mean flow that affect
the frequencies of existence of the guided jet mode or the characteristics of the Kelvin-
Helmholtz mode can be used to decrease the temporal growth rate of the instability,
which can cause the screech tone to vanish. An example of such strategy is in the
work of Alkislar et al. (2005). By introducing an azimuthal non-uniformity (in the
form of micro-jets), the authors managed to suppress the tones in screeching twin-jets.
Considering that the introduction of streaks in the flow can affect the growth rate of the
Kelvin-Helmholtz mode (Marant & Cossu 2018; Lajús et al. 2019; Nogueira & Cavalieri
2021), these previous results can actually be connected to a mitigation of the absolute
instability presented herein. This is a simple example of how the present analysis can be
applied to experiments and engineering applications.
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Appendix A. Linear operators for spatially periodic linear stability
analysis

Following Towne (2016) and the derivation of section 2, the operator L can be
decomposed as Lc − iωI, where I is the identity matrix, and Lc is given by

Lc =



UxDx − ∂xUx ∂xν̄ − ν̄Dx ∂rν̄ − ν̄(Dr + 1
r ) −im ν̄

r 0

∂xP UxDx + ∂xUx ∂rUx 0 ν̄Dx

∂rP 0 UxDx 0 ν̄Dr

0 0 0 UxDx im ν̄
r

0 ∂xP + γPDx ∂rP + γPDr + γ Pr imγ Pr UxDx + γ∂xUx


,

(A 1)

where Dx and Dr are the streamwise and radial differential operators, and γ is the specific
heat ratio. The operator Lµ can be written as
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Lµ = −



iUx −iν̄ 0 0 0

0 iUx 0 0 iν̄

0 0 iUx 0 0

0 0 0 iUx 0

0 iγP 0 0 iUx


. (A 2)
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