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Shoulder kinematics plus contextual target 
information enable control of multiple distal 
joints of a simulated prosthetic arm and hand
Sébastien Mick1* , Effie Segas1, Lucas Dure1, Christophe Halgand1, Jenny Benois‑Pineau2, Gerald E. Loeb3, 
Daniel Cattaert1 and Aymar de Rugy1,4

Abstract 

Background: Prosthetic restoration of reach and grasp function after a trans‑humeral amputation requires control of 
multiple distal degrees of freedom in elbow, wrist and fingers. However, such a high level of amputation reduces the 
amount of available myoelectric and kinematic information from the residual limb.

Methods: To overcome these limits, we added contextual information about the target’s location and orientation 
such as can now be extracted from gaze tracking by computer vision tools. For the task of picking and placing a bot‑
tle in various positions and orientations in a 3D virtual scene, we trained artificial neural networks to predict postures 
of an intact subject’s elbow, forearm and wrist (4 degrees of freedom) either solely from shoulder kinematics or with 
additional knowledge of the movement goal. Subjects then performed the same tasks in the virtual scene with distal 
joints predicted from the context‑aware network.

Results: Average movement times of 1.22s were only slightly longer than the naturally controlled movements (0.82 
s). When using a kinematic‑only network, movement times were much longer (2.31s) and compensatory movements 
from trunk and shoulder were much larger. Integrating contextual information also gave rise to motor synergies closer 
to natural joint coordination.

Conclusions: Although notable challenges remain before applying the proposed control scheme to a real‑world 
prosthesis, our study shows that adding contextual information to command signals greatly improves prediction of 
distal joint angles for prosthetic control.
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Background
Myoelectric prostheses in which movements of the pros-
thetic joints are controlled by the activity of remaining 
muscles face a fundamental dimensionality problem: the 
higher the amputation, the more artificial degrees of free-
dom to control with fewer remaining muscles. Despite 

progress in myoelectric signal analysis [1, 2] and in mus-
cle reinnervation surgery that aim at recovering original 
control signals [3, 4], myoelectric signals are inherently 
noisy and hard to process for natural movement control. 
This challenge increases as prosthetic hands with more 
anthropomorphic articulations become available (e.g [5]).

To overcome these limitations, alternative controls 
have been explored, particularly using the kinematics of 
remaining proximal joints, which are far less subject to 
artefacts and difficulties of interpretation. Several studies 
have demonstrated that known regularities in joint coor-
dination during reach and grasp movement with the arm 
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[6–8] could be exploited to reconstruct missing distal 
joints from that of remaining proximal ones for prosthe-
sis control [9–18]. This approach faces a dimensional-
ity problem similar to that associated with myoelectric 
control, because higher amputation still requires more 
distal joints to be controlled by fewer proximal degrees 
of freedom. In this context, it is revealing that most of 
those attempts have been restricted to the sole control of 
an artificial elbow on the bases of actual shoulder move-
ments [9, 10, 15–18]. This is in principle sufficient to 
enable people with trans-humeral amputation to reach 
various positions in space, but it is not good enough for 
them to correctly orient their prosthetic hand to grasp 
oriented objects using the additional degrees of freedom 
(DoF) that are now available in some prosthetic limbs.

The requirement for hand orientation was partly 
addressed by including prediction of forearm pronation-
supination to reach, in a large 3D workspace, cylindrical 
objects with various tilts in the frontal plane [12]. This 
was extended to control hand closure to grasp variously 
oriented objects [13] but accurate performance required 
3–5 training sessions of 15–30 min each and reach-and-
grasp tasks took about twice the time compared to virtual 
reaches using complete arm and hand kinematics. Kin-
ematic control of the two degrees of freedom in the wrist 
(flexion-extension and radial-ulnar deviations) has not 
been demonstrated and would be necessary to efficiently 
grasp randomly oriented objects without requiring large 
compensatory movements by the trunk and shoulder to 
bring the hand to the desired orientation.

We have investigated a solution for the dimensional-
ity problem by adding contextual information about the 
movement goal to predict the desired posture of more 
distal joints of a prosthetic limb. The present experi-
ment aims at assessing the benefit of such an approach by 
comparing a control based only on shoulder kinematics 
with a control based on shoulder kinematics plus coor-
dinates expressing the position and orientation of the 
target to reach. Given recent progress in computer vision 
augmented with gaze information, it is now feasible to 
identify objects of interest [19–21] and to identify the 
position and orientation of the target object with respect 
to the subject. This is relatively easy with simplified real-
world scenes containing uniformly colored objects of 
pre-defined geometric shapes [19, 20]. More recently, 
our research group developed approaches that achieved 
mean accuracy of 75± 3.3% for every-day objects in very 
cluttered natural environments such as kitchens [21].

In the experiment reported here, we collected com-
plete postural data from a single practice session of 
picking and placing a bottle in various positions and 
orientations in a 3D virtual environment. These data 
were used to train neural networks to reconstruct 

postures of the elbow, forearm and wrist, either solely 
from shoulder joint angles (context-unaware network), 
or with additional knowledge of location and orienta-
tion of the movement goal (context-aware network). 
Our results show that subjects using the context-aware 
network achieved close to natural performance and 
moderate compensatory movements without training. 
In contrast, performance deteriorated significantly and 
required substantial compensatory movements when 
using the context-unaware network. It is worth not-
ing that the present experiment assessed the benefit of 
one specific set of contextual information, picked to be 
the most relevant in the framework of a specific task. 
However, one can reasonably expect similar outcomes 
in other cases, even when the choice of coordinates act-
ing as contextual information is suboptimal. Following 
a similar approach, recent reports [22, 23] have investi-
gated how various forms of knowledge about the user’s 
movement intention or goal can improve the control of 
a prosthetic or assistive robotic arm.

The present experiment employs a virtual reality (VR) 
environment to emulate the control of a trans-humeral 
prosthesis with able-bodied subjects. Despite its nota-
ble differences compared to a genuine prosthesis worn 
on a disabled limb, this type of experimental approach 
has proven useful for research on arm prosthetics [13, 
14, 18, 22, 24, 25], especially for exploring and evalu-
ating prototype control schemes. The goal-related 
additional data were available through the virtual envi-
ronment’s simulation engine, which can directly pro-
vide the absolute location of every object involved in 
the simulation, including the goal itself. Obviously, this 
kind of “omniscient” point of view would not be avail-
able for a clinical system usable outside the lab. Instead, 
the computer-vision-based tools previously described 
would provide data from an egocentric point of view. 
In this sense, the present experiment should be seen as 
a proof of concept focused on the benefit of such data 
for prosthesis control in the first place. The question 
of how to acquire such goal-related data is discussed 
along with other technology needed to achieve useful 
function with a clinical prosthesis.

Methods
Participants
The study was conducted on a set of ten naive right-
handed subjects (six male), aged 23–48 (mean 29.6; SD 
7.7) with normal or corrected-to-normal vision. All sub-
jects were able-bodied and none of them suffered from 
any mental or motor disorder that could affect their abil-
ity to perform the task. The experiment duration ranged 
from 45 to 75 min, and no subject reported fatigue at the 
end of the experiment.
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Apparatus
Subjects were seated on a chair and wore a virtual real-
ity headset  (ViveTM Pro, HTC Corporation) adjusted by 
the experimenter to fit their head firmly and comfortably. 
Four motion trackers  (ViveTM Tracker, HTC Corpora-
tion) were attached to the subject’s body using armbands 
or straps, so that the trunk as well as each arm segment 
(upper arm, forearm and hand) had a dedicated tracker 
attached to it (Fig. 1a). Each tracker as well as the head-
set provided measurements of their 3D position and 3D 
orientation relative to the virtual environment’s reference 
frame. The two beacons that receive tracking signals from 
the headset and trackers were placed and calibrated so 
that the virtual environment’s workspace was centered 
on the chair. Additionally, the virtual environment was 
scaled to match real-world dimensions and its ground 
plane was set at the same height as the actual floor.

Using SteamVR (Valve Corporation) as middleware, 
the headset and trackers’ 3D positions and orientations 
were tracked at 90 Hz sampling rate, while the virtual 
environment was displayed synchronously to the subject 
at 90 Hz refresh rate. The virtual scene’s contents and 
interaction with the subject were managed by the Unity 
simulation engine (Unity Technologies).

Virtual arm calibration
The scene included a virtual arm, whose skeleton con-
sisted of three rigid segments (upper arm, forearm and 

hand) linked to each other by spherical joints. After the 
subject was equipped with the headset and trackers, a 
calibration procedure was carried out to “link” this virtual 
arm to the trackers, so that its motion mimicked the sub-
ject’s right arm motion from the shoulder to the wrist: 

1 The method described in [26] was used to estimate 
each of the subject’s joint centers’ locations relative 
to its parent tracker: shoulder relative to the trunk 
tracker, elbow relative to the upper arm tracker, and 
wrist relative to the forearm tracker.

2 Motion data was collected as ten-second recordings 
during which the subject was asked to perform slow 
movements using all of their arm’s degrees of free-
dom: shoulder flexion-extension, abduction-adduc-
tion and humeral rotation, elbow flexion, forearm 
pronation-supination, wrist flexion-extension and 
radial-ulnar deviation. The estimated joint centers 
were displayed as red spheres in the virtual scene so 
that the experimenter could check the accuracy of 
the method’s output. During this step, the trackers’ 
silhouettes were also displayed and worked as ana-
tomical landmarks to compare the estimated loca-
tions with those of the actual joints. In the event of 
an insufficiently accurate output, the first step was 
redone until a satisfying estimation was obtained.

3 The virtual arm’s skeleton was locked in a reference 
posture, scaled to match the dimensions of the sub-

Fig. 1 Experimental setup. a Subject equipped with the four motion trackers and headset. Subject about to pick (b) and place (c) the bottle. 
Corresponding virtual arm, next to the layout of the two target sets in the virtual scene, from an egocentric (d) or side (e) point of view. The whole 
target set includes positions of all spheres (yellow and green), and the target subset includes only the positions of green spheres. The five possible 
target orientations are shown on the top row
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ject’s arm and placed so that its shoulder coincided 
with the subject’s estimated shoulder location.

4 The subject was asked to put their arm in the same 
posture by overlaying the red spheres, which repre-
sented estimated joint centers, on the virtual arm’s 
joints. When an appropriate overlaying was found, 
the calibration procedure ended: the red spheres and 
trackers’ silhouettes disappeared and the virtual arm 
was unlocked to be able to mimic the subject’s arm 
motion.

Task
During the experiment, the subject was asked to use 
the virtual arm to reach and pick a cylindrical bottle at 
a given location in the virtual scene (Fig. 1b), then place 
it at another location (Fig. 1c). The goal was to complete 
a fixed sequence of tasks in the shortest total time. Here, 
the word “task” will be used to refer to only one part of 
this process: either the bottle-picking or the bottle-plac-
ing. Given that subjects had no control over the virtual 
fingers, the task did not involve closing or opening the 
hand to grasp or release the bottle. Instead, the task was 
achieved by holding the virtual hand inside a target zone 
for one second. In the six-dimensional space of hand 
locations (3D position × 3D orientation), this target zone 
corresponded to the region containing all hand loca-
tions with the same position and orientation as the tar-
get, within a margin defined by a spatial tolerance and an 
angular tolerance. The former defined the maximum dis-
tance between the hand’s center and the target’s center, 
while the latter defined the maximum angle between the 
hand’s axis and the target’s axis.

During a bottle-picking task, the virtual hand was 
empty and the target corresponded to the bottle itself. 
Accordingly, the target’s center was placed at the middle 
of the bottle’s height and its axis was the bottle’s orienta-
tion in the frontal plane. During a bottle-placing task, the 
hand was holding the bottle and the target corresponded 
to a small rectangular plate. Accordingly, the target’s axis 
was perpendicular to the plate’s plane and its center was 
placed so that a correct hand positioning would bring the 
bottom of the bottle against the plate. This adjustment 
was made so that the task’s instruction i.e. “place the bot-
tle on the plate” would remain intuitive to the subject. 
Additionally, a semi-transparent arrow was attached to 
the virtual hand (see Fig. 1) to indicate the hand’s center 
(base of the arrow) and axis (direction of the arrow). 
When the target zone was entered, the bottle turned red 
to indicate that a correct hand location was reached. Col-
lisions were ignored; the virtual hand could go through 
the bottle or plate during a trial without affecting the tar-
get’s location.

The subject was allowed a maximum of 15 s to com-
plete each task. Failure to complete the task within this 
allotted time triggered the end of the current trial, indi-
cated by a short audio cue. The target state of the hand 
i.e. either open and empty, or closed and holding the 
bottle, was automatically set to completion at the end of 
each trial regardless of success. The subject’s trunk was 
not restrained, but the subject was instructed to keep it 
against the backrest of the chair unless trunk motion was 
required to perform the task.

Target sets
Each target i.e. each bottle-picking or bottle-placing loca-
tion used in this experiment was defined by four spatial 
parameters. The first three parameters were the Carte-
sian coordinates of the target’s center in the virtual scene. 
The last parameter was the angle by which the corre-
sponding object (either bottle or rectangular plate) was 
rotated in the frontal plane only, selected from − 45◦ ; − 
22.5◦ ; 0 ◦ ; 22.5◦ ; 45◦ (positive = counterclockwise). Pos-
sible positions for target centers were distributed along 
a 3D orthogonal grid with a regular unit spacing of 8 
cm along the three dimensions. The grid was five-units 
high (top to bottom), five-units wide (left to right) and 
two-units deep (front to back) for a total of fifty posi-
tions (Fig. 1d, e). With respect to the subject, the center 
of the grid was roughly aligned with the shoulder. As a 
result, the target grid spanned a relatively small portion 
of the subject’s overall peripersonal space corresponding 
to comfortably unconstrained reaches. After the calibra-
tion procedure, an estimation of the subject’s arm length 
allowed to check that all positions in the grid were reach-
able without putting the arm in an extreme or uncom-
fortable posture.

The experiment made use of two distinct target sets. 
One is referred to as the whole target set and included all 
the combinations of the fifty positions with the five ori-
entations, for a total of 250 targets. The other is referred 
to as the target subset and included the combinations of 
only twenty-four positions with the five orientations, for 
a total of 120 targets. These twenty-four positions were 
obtained by excluding the leftmost, rightmost and lowest 
positions in the grid as discussed below (green spheres in 
Fig. 1d, e).

For each subject, two target orders were generated from 
these two sets. A target order defines a sequence alternat-
ing between picking locations (bottles) and placing loca-
tions (rectangular plates). Following a target order, tasks 
were performed one after another without subjects hav-
ing to go back to an initial state. In this way, the virtual 
hand’s location at the end of a task was its location at the 
beginning of the next trial. At the end of a placing task, 
the bottle and the plate were instantaneously moved to 
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the next target locations, so that the next pick-and-place 
process could begin immediately afterwards.

The order generation process consisted of randomly 
drawing targets from a given set in a way that prevented 
two consecutive targets from being located at neighbor-
ing positions. The process ended when no appropriate 
target could be drawn to follow the last-picked target. As 
a consequence, target orders could have different sizes 
depending on the subjects. However, a rule was imple-
mented so that orders included at least 200 targets if gen-
erated from the whole set, and 100 targets if generated 
from the subset. Performance of various neural networks 
was compared for the same target order in a given subject 
in order to facilitate comparison of performance metrics.

Protocol
The experimental protocol was divided into five dis-
tinct phases, each comprising several trials of the task. 
Within a phase, trials were grouped in blocks of fifty 
tasks consisting of twenty-five repetitions of the pick-
and-place process. Short pauses ( < 1min ) were allowed 
between blocks so that subjects could rest and relax their 
arm if needed. Additionally, the completion time of the 
last block was shown during a pause, and subjects were 
encouraged to complete the next block within a shorter 
time, as long as this was not at the cost of accuracy or 
task success.

Familiarization
The first phase of the experiment was a familiarization 
phase during which subjects performed a single block 
of fifty trials with the virtual arm mimicking their right 
arm’s motion. No data were recorded from these trials. 
This phase’s targets followed the first fifty items of the 
order generated from the whole target set.

The 15 s time limit condition was disabled so that the 
subject would not be interrupted during a familiarization 
trial and could therefore explore the apparatus freely. In 
the case of a subject getting stuck on a given trial, the 
experimenter could manually skip to the next so that the 
familiarization could go on.

Initial data acquisition
The second phase of the experiment was dedicated to the 
acquisition of motion tracking data in the framework of 
the task. This phase’s targets followed the order gener-
ated from the whole target set, for a total of at least 200 
trials. These trials were performed with the virtual arm 
mimicking the motion of the subject’s right arm. The 
time limit condition was enabled again, and the spatial 
and angular tolerances were set at 2 cm and 5 ◦ , respec-
tively, based on preliminary experiments.

Motion tracking data was recorded throughout this 
phase, in the form of 3D positions of estimated joint 
centers and 3D orientations of the virtual arm’s seg-
ments. Recordings also included target positions and ori-
entations along time, as well as the beginning and end of 
each trial.

Neural network training
The data acquired during the second phase was filtered 
to include only samples during which the virtual hand’s 
location was inside the target zone. Then, these samples 
were processed to build a training dataset.

Joint angles were computed based on the recorded 
segment orientations. The kinematic model of the arm 
underlying the computation of these angles comprised 
three segments and seven DoFs: three at shoulder level 
(flexion-extension, abduction-adduction and humeral 
rotation), one at elbow level (flexion-extension), one at 
forearm level (pronation-supination), and two at wrist 
level (flexion-extension and radial-ulnar deviation).

Additionally, contextual information was computed 
from the position of the shoulder estimated by the earth-
based motion tracking and the location and orientation 
of the target already known to the simulation system. It 
consisted of the 3-dimensional vector from the estimated 
shoulder center to the target’s center plus the target’s 
rotation angle. In this way, a sample of target-related con-
textual information is given as a quadruplet including 3 
spatial coordinates and 1 angular coordinate, expressed 
in an egocentric frame attached to the subject’s shoulder. 
For a wearable prosthetic control system, an earth-based 
reference frame would not be available but similar con-
textual information could be computed using other tech-
nology described in the Discussion.

The dataset of joint angles and contextual information 
was then fed to two artificial neural networks to train 
them to predict the four distal joint angles (elbow, fore-
arm and wrist DoFs). These networks shared the same 
output but worked with different inputs (Fig. 2). The first 
network only received the three shoulder angles as input 
whereas the second network received these angles as well 
as the contextual information (three Cartesian coordi-
nates and one angle). Accordingly, the former is referred 
to as the context-unaware network (labeled C−) while 
the latter is referred to as the context-aware network 
(labeled C+).

Except for their input layer (size 3 and 7, respectively), 
both networks shared the same structure: two dense lay-
ers of 256 neurons each, a dropout layer with a drop frac-
tion of 0.5, a dense layer of 64 neurons, and an output 
layer of 4 neurons. We employed Tensorflow [27] as the 
backend and Keras [28] as the programming interface to 
implement and train these networks.
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Test
During the third and fourth phases of the experiment, 
the virtual shoulder kept mimicking the subject’s shoul-
der motion but the virtual forearm and hand stopped fol-
lowing the corresponding trackers. Instead, the virtual 
elbow, forearm and wrist were driven based on online 
predictions from one of the two networks. This hybrid 
control strategy was designed to emulate the behavior of 
a trans-humeral prosthesis, where the wearer’s residual 
limb motion is combined with the prosthesis’s actuation 
to perform a movement with the whole arm. As a con-
sequence, the virtual arm’s behavior did not necessar-
ily match the subject’s real arm motion, the latter being 
invisible to the subject inside the virtual environment. 
Subjects were advised of this condition and instructed 
to achieve the best performance with whatever strategy 
they could devise. The criteria for a successful trial were 
relaxed to 4 cm and 10◦.

These two phases are referred to as test phases, as they 
were dedicated to the evaluation of performance in the 
framework of the task, in order to compare the quality of 
arm control achieved with each network. Each of the test 
phases was performed with joint angle predictions from 
one of the two networks, either C+ or C−. The order was 
counterbalanced over subjects so that half of them per-
formed their first test phase with network C+ while the 
other half began with network C− (Fig. 3).

Test phase targets followed the order generated from 
the target subset, for a total of at least 100 trials (see “Tar-
get sets” section). In this way, the network’s prediction 
corresponded to targets located on the inside of the por-
tion of space that was covered by the training data col-
lected throughout the first phase. This was designed to 
avoid the detrimental effects of potentially poorer pre-
diction accuracy for input data on the edge of the whole 
target set. Indeed, preliminary pilot testing revealed that 

hybrid control deteriorated substantially for some targets 
located on and beyond the boundaries of the space cov-
ered in the second phase used to train the networks.

Baseline
During the fifth phase of the experiment, the virtual arm 
went back under its original control i.e. mimicking the 
subject’s complete arm motion. This phase is referred to 
as the baseline phase, as it was dedicated to the evalua-
tion of performance achieved with natural arm control 
in the framework of the task. For the sake of comparison 
with test phases, targets also followed the order gener-
ated from the target subset and the spatial and angular 
tolerances were kept to their test values of 4 cm and 10◦ , 
respectively. Instructions and recordings remained the 
same as before.

Data reduction and analysis
Offline assessment of network performance
The quality of joint angle prediction achieved by the 
trained networks was assessed offline in order to evalu-
ate how well each network was able to fulfill its function. 
As “ground truth”, this assessment made use of motion 
tracking data from the initial data acquisition and base-
line phase, during which the virtual arm followed the real 
arm’s behavior.

For each subject, the assessment made use of two 
datasets that were fed to both the context-aware and 
context-unaware networks. The first dataset was the 
training dataset built from the recording of the second 
phase; the second was built from the recording of the 
fifth phase (baseline) following the same method, includ-
ing only samples during which the virtual hand’s location 
was inside the target zone. For a given dataset, the net-
work’s output was the array of four predicted distal joint 
angles, with as many samples as the dataset. The quality 

Fig. 2 Diagram of the neural networks’ inputs and outputs. ShFlex 
shoulder flexion, ShAbd shoulder abduction, HumMed Humeral lateral 
rotation, ElFlex elbow flexion, ForSup forearm supination, UlnDev ulnar 
deviation, WrExt wrist extension

Fig. 3 Experimental design. Subjects are divided in two groups of 
same size, each corresponding to a different order of conditions 
during test phases. C+ context‑aware network, C− context‑unaware 
networ, N natural arm motion
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of prediction was evaluated by computing the root mean 
square error (RMSE) between this array of predicted 
angles and the corresponding actual angles. In this way, 
a value of RMSE was computed for each combination of 
subject, network (C+ or C−) and type of dataset (train-
ing or baseline).

In order to compare how well subjects performed the 
task depending on the virtual arm’s control, the rest of 
the analysis considered three experimental conditions:

• C+: Hybrid control with predictions from the con-
text-aware network.

• C−: Hybrid control with predictions from the con-
text-unaware network.

• N: Natural control, mimicking the subject’s arm 
motion.

The corresponding dataset included the recordings from 
the test and baseline phases, for a total of thirty recorded 
phases (ten subjects × three conditions), from which 4062 
trials were processed. Over all conditions, the success 
rate was found to be above 90% for twenty-eight out of 
these thirty recorded phases, with only one phase yield-
ing a success rate below 85%. This result motivated the 
design of two quantitative metrics to evaluate the qual-
ity of control by addressing various dimensions of motor 
performance.

Shoulder position spread volume (SV)
Based on the recorded 3D positions of the estimated 
shoulder’s center, this metric evaluates how scattered 
the shoulder’s position was in the virtual environment 
in order to assess the amount of compensatory trunk 
motion performed by the subject. To generate a single 
performance metric, we computed the volume of a shape 
representative of the space covered by all the shoulder 
positions. This shape was an ellipsoid whose dimensions 
were proportional to the shoulder position’s variability 
along each direction of space, and included at least 90% 
of the recorded positions. In this way, a higher volume 
indicates more scattered shoulder positions. Therefore, 
we assume that high values of SV are associated with 
wide and/or frequent compensatory motion performed 
with the trunk or scapula to move the shoulder’s center. 
Conversely, we expect that low values of SV only reflect 
the scapular motion that is part of the upper-body coor-
dinations naturally involved in reaching. For the sake of 
clarity, the wording “shoulder motion” will refer here to 
the motion of the shoulder center regardless of the upper 
body joints actually involved e.g. spine and gleno-scap-
ulo-humeral complex.

This metric assigns one value to each phase by con-
sidering the recorded shoulder trajectory in its entirety. 

For a given recorded phase, we computed the covari-
ance matrix Covsh of the estimated shoulder’s 3D coordi-
nates over all samples. Being a symmetric matrix, Covsh 
is diagonalizable and its eigenvectors form an orthogonal 
matrix. The corresponding change of basis is an isomet-
ric transformation into a reference frame where shoulder 
coordinates “co-variate” purely along the Cartesian axes. 
In this alternative reference frame, we computed the 
volume of the ellipsoid centered on the mean shoulder 
position and whose semi-axes have each a length equal 
to three times the standard deviation along this axis. As 
a reference, assuming 3D shoulder positions followed a 
multivariate normal distribution, such an ellipsoid would 
contain approximately 97% of all positions. Given that 
the alternative frame is obtained through an isometric 
transformation, the volume computed in this frame is 
equal to the volume in the original reference frame.

Approach speed (AS)
This metric evaluates how fast a subject managed to bring 
the virtual hand inside the target zone. It assigns one 
value to each trial where the target zone was entered at 
least once, which occurred on 3918 trials out of the 4062 
trials (> 96%). For any such trial, we were able to compute 
the approach time (AT) i.e. time elapsed since the begin-
ning of the trial until the first entry of the virtual hand 
in the target zone. However, given that trials started and 
ended at various locations in the virtual scene, this time 
measurement is not appropriate as a target-independent 
metric. Instead we used the mean approach speed, which 
is defined as the ratio of the distance to the target’s center 
by the approach time. A lower approach speed means 
that the control was less capable of bringing the virtual 
hand inside the target zone, whereas a higher approach 
speed indicates that the subject could use the control effi-
ciently to drive the virtual hand.

Variability of average reaching postures
In order to investigate how the virtual arm behaved while 
the subject was performing the task, we focused on the 
variability of its postures when dwelling in the target 
zone. A lower variability of these postures would mean 
that the control involved a more homogeneous strategy 
for bringing the virtual hand at the multiple target loca-
tions. Conversely, a higher variability would reveal that 
the subject had to resort to notably different arm pos-
tures to reach the targets, possibly indicating compensa-
tory motion from proximal joints.

Similarly to approach speed, this analysis is only appli-
cable for trials during which the target zone was entered 
at least once. We focused specifically on the last period 
during which the virtual hand stayed inside the target 
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zone, corresponding to the one-second holding period 
when the task was successful. For each sample during 
this period, the virtual arm’s joint angles were computed 
offline based on the recorded orientations of each seg-
ment. Additionally, for trials from conditions C+ and 
C−, postures that would have been displayed by the 
virtual arm should it had kept mimicking the subjects’ 
whole arm motion were computed offline based on the 
tracker’s orientations. Then, these joint angles were aver-
aged over all samples of the holding period, yielding a 
single posture per trial.

This processing resulted in five groups of seven-angle 
arm postures. Three groups correspond to the virtual 
arm’s actual behavior in conditions N, C+ and C−. The 
two remaining groups correspond to the virtual arm’s 
“simulated” behavior if it had kept mimicking the natu-
ral arm’s motion during trials in conditions C+ and C−. 
These groups are labeled respectively MC+ and MC− to 
indicate that they are based on data from hybrid con-
trol conditions but represent a hypothetical mimicking 
arm. Because the virtual upper arm followed the sub-
ject’s shoulder motion in all conditions, shoulder angles 
are identical for groups C+ and MC+ as well as for 
groups C− and MC−. For each phase, we computed the 
standard deviations (SD) of joint angles from the aver-
age reaching postures, resulting in a ten-value sample 
for each combination of DoF and group. Then we sorted 
these samples to form two sets with one group from each 
condition:

• Set corresponding to the virtual arm’s actual behav-
ior, that is: {N, C+, C−}.

• Set corresponding to the mimicked natural motion, 
that is: {N, MC+, MC−}.

Analysis of joint angle synergies with PCA
In addition to the study of joint angle variability, we 
investigated the synergies underlying the virtual arm’s 
joint angles when the target was reached. By compar-
ing these synergies, we assessed how similar each hybrid 
control strategy was to natural arm motion in terms of 
joint coordinations. This analysis was achieved by con-
ducting principal components analyses (PCA) on the 
average reaching postures previously computed. For 
each set of these postures sorted by subject and group, 
a PCA was carried out and yielded seven principal com-
ponents (PC), in the form of vectors in the 7-D space of 
joint angles. As a first step in the analysis of PCA outputs, 
we compared the cumulated ratios of explained variance 
from one to seven PCs, between the five groups (C+, C−, 
MC+, MC−, N). In this context, the amount of variance 
explained by a given number of PCs corresponds to the 

prominence of joint angle synergies in the actual or vir-
tual arm’s motion.

The second step consisted in assessing the simi-
larity between joint angle synergies from different 
groups. This was achieved by evaluating the geomet-
ric proximity between subspaces generated by PC vec-
tors corresponding to two given PCAs. Indeed, for a 
given n < 7 , the first n PCs extracted by a PCA span 
a subspace within the 7-D joint space. As all PCs are 
orthogonal with each other by definition, this sub-
space is n-dimensional. In order to measure a distance 
between two such subspaces, we employed the method 
described in [8], which finds the minimal angle that 
rotates one subspace into the other. A smaller angle 
means a closer proximity between subspaces: 0 ◦ rep-
resents identity whereas 90◦ represents orthogonality. 
It is worth noting that the use of this method is made 
possible by the fact that all values involved in posture 
data are joint angles measured in degrees. As a result, 
all seven dimensions of the joint space are equivalent 
in terms of scale, and their magnitude is immediately 
comparable.

We identified two types of comparison between 
groups that are relevant for our analysis:

• Between hybrid control and natural control in base-
line phase i.e. C+ versus N and C− versus N.

• Between hybrid control and mimicked real arm 
motion produced in the same test phase i.e. C+ 
versus MC+ and C− versus MC−.

Statistical testing
We carried out statistical testing on the values of RMSE 
computed for the offline assessment of network perfor-
mance. For each type of dataset (training or baseline), 
we compared the quality of prediction achieved by net-
works C+ and C− using paired T-tests.

Tests were also conducted on the results from the two 
quantitative metrics to detect significant differences 
between conditions. Even though approach time was 
not considered a dependent variable, this quantity was 
summarily analyzed to provide reference data. In order 
for each subject to have a similar weight despite slight 
variations in the number of valid trials, we sorted val-
ues of AS and AT by subject and condition, then aver-
aged them over trials. In this way, we obtained samples 
of ten values (one per subject) for each combination of 
metric and condition.

We performed either one-way ANOVAs or Kruskal–
Wallis tests depending on whether the paramet-
ric hypotheses (i.e. normality of distributions and 
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homoscedasticity of samples) were verified. In all the 
cases where these tests indicated significant differences, 
post hoc tests (either paired T-tests or Wilcoxon tests) 
were carried out to identify the pairs of conditions pre-
senting such differences, applying the appropriate Bon-
ferroni correction.

Following the same testing method, we analyzed the 
SDs of joint angles from the average reaching postures. 
For each DoF, we compared the different groups based 
on the sets previously defined: {C+, C−, N} and {MC+, 
MC−, N}. In the case of a shoulder DoF, only one set 
was analyzed, considering that both sets are identical.

Data processing and statistical testing were car-
ried out with custom software developed in Python 
using several packages from the SciPy ecosystem [29]. 
The significance threshold was set at α = 0.05. When 
Bonferroni correction was applied, the threshold was 
adjusted to αcorr = 0.05/3 = 0. 0167.

Results
Offline network performance
With both types of dataset (training and baseline), the 
offline error between actual and predicted joint angles 
was significantly lower for network C+ than for network 
C− ( p < 0.00001 ). On average, when computed on sam-
ples from the training dataset, the RMSE achieved by net-
works C+ and C− were 4.0◦ and 9.7◦ respectively. When 
computed on samples from the baseline dataset, the aver-
age prediction errors were 6.0◦ and 12.7◦ for networks 
C+ and C− respectively. These offline results show that 
adding contextual information to the input data allowed 
the context-aware network to reach significantly higher 
prediction accuracy than the context-unaware network. 
The outputs of statistical tests on the offline error are 
reported in Table 1.

Online performance metrics
A qualitative analysis of mean approach times reveals 
that condition C− elicited the longest approaches. 
Indeed, mean approach times in this condition were over 
1.4 s for all subjects, whereas it was the case for only two 
subjects out of ten in condition C+, and none in condi-
tion N. This analysis also highlights that some subjects 
using hybrid control with network C+ managed to reach 

performance levels similar to those achieved with natural 
control. Overall, mean approach times were 0.82s, 1.22s 
and 2.31s for conditions N, C+ and C− respectively. The 
outputs of statistical tests on the two other online perfor-
mance metrics are reported in Table 2.

Regarding approach speeds, results were significantly 
different for each condition ( p < 0.001 ) and consist-
ent with the pattern obtained with approach times (see 
Fig.  4). In particular, hybrid control with network C− 
elicited slower approach periods (mean AS 13.6 cm/s) 
than with network C+ (mean AS 20.9 cm/s). This sug-
gests that the C− network offered poorer control than 
the C+ network during the task, resulting in subjects 
struggling more often to bring the virtual hand into 
the target zone. As expected, the fastest reaching was 
achieved with natural control (mean AS 26.7 cm/s).

Regarding shoulder position spread volume, the anal-
ysis revealed that the scattering of shoulder positions 
was significantly different for each condition ( p < 0.01 ). 
Natural control (condition N) elicited very little shoul-
der motion from all subjects (mean SV 47  cm3, about a 
third the volume of a tennis ball), likely to correspond 
to the amount of scapular motion naturally involved in 
the reaching of target positions. Conversely, subjects 
performed much more shoulder motion when driving 
the virtual arm with network C− (mean SV 1.12  dm3, 
about the volume of seven tennis balls). This condi-
tion also displays high inter-subject variability: some 
subjects managed to achieve the task with only limited 
shoulder motion (min SV 0.19  dm3) whereas others had 
to resort to wide and/or frequent shoulder motion to 
complete the task (max SV 2.11  dm3). In such cases, 
shoulder motion exceeding the range of scapular 
motion implies that compensatory trunk motion was 
involved. For all subjects, hybrid control with network 
C+ elicited less shoulder position scattering (mean SV 
0.36  dm3, about the volume of two tennis balls) than 
with network C−, sometimes as little as with natural 
control.

Table 2 Output values from  tests on  online  performance 
metrics

Significant differences are indicated by p values in bold

Metric ANOVA/
Kruskal–Wallis 
test

Paired tests—αcorr = 0.0167

C+ vs C− C+ vs N C− vs N

AS F = 41.36 T 7.846 − 4.834 − 11.61

p = 6.024e−9 p 2.585e−5 9.291e−4 1.022e−6
SV H = 20.11 W 0 2 0

p = 4.301e−5 p 0.005062 0.009344 0.005062

Table 1 Output values from tests on offline network RMSE

Significant differences are indicated by p values in bold

Training dataset Baseline dataset

T − 10.69 − 13.89

p 2.047e−6 2.194e−7
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Variability of reaching postures
The outputs of statistical tests on the variability of reach-
ing postures are reported in Table 3. The distributions of 
joint angles’ standard deviations are illustrated in Fig. 5.

Virtual arm actual behavior
This part of the analysis focuses on the postures of the 
virtual arm that was driven by the subject and visible 
in the virtual environment during the experiment. For 
shoulder flexion, no difference between groups was 
revealed by this analysis (mean SDs around 20◦ ). Regard-
ing shoulder abduction, the variability for group N (mean 
SD 12.4◦ ) was lower than from both other groups, C+ 
and C− (mean SDs > 14.8◦ , p < 0.002 ), which were 
not different from each other. Humeral rotation angles 
in group C− (mean SD 24.9◦ ) were significantly more 
variable than in groups C+ and N (mean SDs < 21.6◦ , 
p < 0.006 ) and a slight trend towards difference was 
found between groups C+ and N (mean SDs 21.6◦ and 
18.1 respectively, p = 0.047).

Overall, this pattern of results on two out of three 
shoulder DoFs suggests that joint angles were more vari-
able for hybrid controls C+ and C− when compared to 
N. The analysis also revealed a substantially higher varia-
bility for condition C− than for C+ on one of these DoFs. 

This is consistent with higher compensatory movements 
in condition C− than C+, as well as in both of these con-
ditions when compared to N.

Regarding distal joints, elbow angle variability was 
significantly different between each pair of the set {N, 
C+, C−}. In particular, the angles predicted by network 
C+ were notably more variable than those predicted 
by network C− (mean SDs 10.3◦ vs 5.5◦ , p < 0.0001 ). 
A similar difference between groups C+ and C− was 
found for ulnar deviation (mean SDs 12.9◦ vs 9.4◦ , 
p < 0.0002 ) but not for forearm supination or wrist 
flexion. However, the analysis on these two later DoFs 
revealed that the angle variability was higher for natural 
control (mean SDs 18.6◦ and 9.4◦ respectively) than for 
both hybrid control strategies ( mean SDs < 15.1◦ and 
< 7.1◦ respectively, p < 0.007).

Overall, these results suggest that the distal joint 
angles predicted by network C− display a certain lack 
of variability that may lead to poorer performance, as 
highlighted by the performance metrics. In particu-
lar, the elbow is a key joint whose wide angular range 
is critical to perform reaching across the whole work-
space. In this context, too little variability on this joint 
angle may restrain the fraction of workspace reachable 
only with arm motion, therefore eliciting more com-
pensatory trunk motion.

Fig. 4 Results on performance metrics. Each grey line corresponds to a subject. Boxes show first and third quartiles, whiskers show min and max 
values. Left: approach time, lower is better. Center: approach speed, higher is better. Right: shoulder spread volume, lower is better. Blue: hybrid 
control with network C+; purple: hybrid control with network C−; red: natural control (N). Significant differences are indicated with stars: **p < 0.01 ; 
***p < 0.001
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Mimicked real arm motion
This part of the analysis focuses on how well the subject’s 
real distal arm movements continued to follow the vir-
tual arm’s movements generated by the neural network. 
Real elbow movements elicited under conditions C+ and 
C− were more variable than under condition N (groups 
MC+ and MC: mean SDs > 14.6◦ , group N: mean SD 
8.8◦ , p < 0.006 ). The analysis revealed no significant dif-
ference for forearm supination. Conversely, ulnar devia-
tion variability was higher for group N (mean SD 13.9◦ ) 
than for group MC+ (mean SD 7.8◦ , p < 0.0008 ). Addi-
tionally, the only significant difference revealed for wrist 
extension was between MC+ and MC− (mean SDs 7.1◦ 
VS 11◦ , p < 0.003).

Joint angle synergies
Distribution of explained variance
The first step in the analysis of joint angle synergies 
focused on the explained variance ratios associated with 
the first PCs, which represent the primary postural syner-
gies. The higher this ratio is, the more prominent are the 

corresponding synergies in the posture data. We sorted 
the explained variance ratios by PC and group, and aver-
aged over all subjects. The average cumulated ratios of 
explained variance are shown in Fig. 6.

This revealed that overall, PCs extracted from pos-
tures in group C− explained more variance than those 
in group C+. Indeed, cumulated ratios for two to four 
PCs were higher in group C− than in group C+ for all 
subjects. In particular, the amount of explained variance 
by the first three PCs reached an average of 96% in group 
C− whereas it remained under 90% in group C+. This is 
consistent with condition C− eliciting less differentiated 
control of individual distal arm angles, perhaps related to 
more reliance on compensatory shoulder motion.

Comparison of PC subspaces
The similarity between motor synergies was assessed 
using a measurement of geometric proximity between 
subspaces generated by PC vectors from two given PCAs. 
As detailed in the section “Analysis of joint angle syner-
gies with PCA”, this proximity is measured using the 

Table 3 Output values from tests on joint angle variability

Significant differences are indicated by p values in bold

ShFlex shoulder flexion, ShAbd shoulder abduction, HumMed humeral lateral rotation, ElFlex elbow flexion, ForSup forearm supination, UlnDev ulnar deviation, WrExt 
wrist extension

DoF ANOVA/Kruskal–Wallis 
test

Paired tests—αcorr = 0.0167  

Virtual arm actual behavior C+ vs C− C+ vs N C− vs N

ShFlex F = 0.4457 N/A N/A N/A

p = 0.6450

ShAbd F = 5.136 T − 2.376 4.962 4.328

p = 0.01287 p 0.04153 7.789e−4 0.001912
HumMed H = 9.185 W 0 8 0

p = 0.01013 p 0.005062 0.04685 0.005062
ElFlex F = 23.26 T 7.442 3.390 − 5.236

p = 1.342e−6 p 3.924e−5 0.007999 5.375e−4
ForSup H = 16.47 W 6 0 1

p = 2.656e−4 p 0.02842 0.005062 0.00691
UlnDev F = 5.867 T 6.212 − 1.331 − 8.753

p = 0.007657 p 1.567e−4 0.2158 1.071e−5
WrExt F = 4.772 T 2.446 − 4.166 − 6.056

p = 0.007657 p 0.03697 0.002428 1.890e−4
Mimicked real arm motion MC+ vs C− MC+ vs N MC− vs N

ElFlex H = 16.97 W 20 0 0

p = 2.062e−4 p 0.4446 0.005062 0.005062
ForSup H = 6.227 W 9 17 17

p = 0.04444 p 0.05934 0.2845 0.2845

UlnDev F = 5.593 T − 2.525 − 4.980 − 1.492

p = 0.009284 p 0.03252 7.595e-4 0.1699

WrExt F = 3.516 T − 4.276 − 2.911 1.383

p = 0.04394 p 0.002063 0.01727 0.2001
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minimal angle that rotates one subspace into the other. 
This method requires to choose n the number of PCs 
spanning these subspaces. To identify values of n for 
which such a subspace encompasses the primary joint 
angle synergies revealed by the PCA, we considered the 
cumulated ratios of explained variance. On one hand, at 
least three PCs are required to explain 80% of the vari-
ance or more for all groups. On another hand, using six or 
more PCs notably reduces the benefit offered by the PCA 
in terms of dimensionality reduction. Therefore, we chose 
to focus our analysis on values of n between 3 and 5.

This method was applied to perform two types of com-
parison: on one hand, between hybrid control and natural 
control in baseline phase (C+ versus N and C− versus N); 
on another hand, between hybrid control and the mim-
icked real arm motion produced in the same test phase 
(C+ versus MC+ and C− versus MC−). Using values of 
n ranging from 3 to 5, we computed the angular distances 
corresponding to these four comparisons for each subject, 
yielding four sets of ten angles for each value of n.

These sets of angular distances were compared two by 
two based on the type of comparison and number of PCs, 
using either paired T-tests or Wilcoxon tests depending 
on the normality of samples. Relevant statistical values 
from these tests are reported in Table  4 and results are 
shown in Fig. 7 in the form of boxplots.

Fig. 6 Cumulated ratios of explained variance against number of PCs, 
by group. Blue: condition C+; purple: condition C−; red: condition 
N. Solid line: hybrid control (groups C+ and C−); dashed line: natural 
control (groups MC+ and MC−). The dash‑dotted line indicates 80% 
of explained variance

Fig. 5 Results on joint angle standard deviations. Each grey line corresponds to a subject. Boxes show first and third quartiles, whiskers show 
min and max values. ShFlex shoulder flexion, ShAbd shoulder abduction, HumMed humeral lateral rotation, ElFlex elbow flexion, ForSup forearm 
supination, UlnDev ulnar deviation, WrExt wrist extension. Blue: condition C+; purple: condition C−; red: condition N. Solid: virtual arm actual 
behavior (C+, C− and N); hatch pattern: mimicked real arm motion (MC+ and MC−). Significant differences are indicated with stars: * p < 0.0167 ; 
**p < 0.01 ; ***p < 0.001
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Regarding the proximity with natural control in base-
line phase, the analysis revealed that the angular distance 
between subspaces was significantly higher in condi-
tion C− when considering the first three or five PCs 
( p < 0.015 ). This result shows that the primary motor 
synergies emerging from hybrid control were closer to 
natural motor synergies in condition C+ than in condi-
tion C−. This is consistent with the differences in joint 
angle variability previously reported: SDs of angles pre-
dicted by network C+ were more often similar to those 
in natural control.

When comparing synergies between hybrid control and 
real arm motion in the same test phase, the only signifi-
cant difference was found for subspaces based on three 
PCs (p = 0.023). Again, synergies in hybrid control were 
closer to those of the subject’s arm in condition C+ than 
in condition C− (mean distances 49.8◦ VS 71.7◦ ). The 
angular distance between subspaces spanned by five PCs 

seemed to display a similar trend, even though no sig-
nificant difference was found (p = 0.070). Overall, these 
results suggest that the joint coordinations produced by 
network C+ are more similar to those underlying the 
subject’s natural arm motion.

Discussion
We have explored the benefits of adding contextual 
information about the movement goal in the process of 
distal joint prediction for prosthesis control. We show 
that a context-aware network reconstructing four distal 
joints enables close to natural performance, with moder-
ate compensatory movements from trunk and shoulder, 
for picking and placing a bottle in various positions and 
orientations. After discussing these results in relation to 
the literature, we identify remaining gaps and perspec-
tives for real-world application for prosthetic control.

Approach time and speed
Remarkably, average approach times performed using the 
context-aware network without any further training from 
the participants were close to natural (1.22 s as compared 
to 0.82 s), and much better than using a context-unaware 
network (2.31 s). Yet, approach speeds with control from 
the context-aware network were significantly lower than 
when the virtual arm was teleoperated by real arm move-
ments in the natural baseline control conducted at the 
end of the experiment, which indicates that there is still 
room for improvements.

Out of the numerous studies that have explored proxi-
mal-to-distal joint predictions for prosthetic control [9–
18], only one included the control of a sufficient number 
of distal joints to enable hand positioning to grasp objects 
with various positions and orientations [13]. Aver-
age movement times obtained in this study were much 
higher than here even after 10 days of practice (9.49 s and 
5.76 s on the tenth session for the reconstructed and nat-
ural controls, respectively), but the task involved multiple 
components i.e. reach and grasp a bottle, bring it to the 
mouth, and release it to a given location. Yet, approach 
times for the first phase only (reach and grasp the bottle) 
remained between 4 and 6 s with the hybrid control, and 
around 3 s with natural movement control. Several rea-
sons might explain the remaining difference with move-
ment times we observed here.

First, we showed that using context-aware network 
greatly improves predictions as well as subject-in-the-
loop performances. However, average approach times 
obtained with our context-unaware control were 2.31 
s, which remains lower than the 4–6 s range in [13]. 
Importantly, an active grasp control was involved in 
[13], whereas in the present study the bottle was auto-
matically grasped upon one second of consecutive 

Table 4 Output values from tests on distances between PC 
subspaces

Significant differences are indicated by p values in bold

3 PCs 4 PCs 5 PCs

C versus N T = − 3.020 T = − 0.075 W = 0

p = 0.01449 p = 0.9419 p = 0.005062
C versus MC T = − 2.727 T = − 1.390 T = − 2.058

p = 0.02334 p = 0.1979 p = 0.06975

Fig. 7 Results on angular distances between PC subspaces. Boxes 
show first and third quartiles, whiskers show min and max values. 
Top row: between hybrid controls and natural control in baseline 
phase. Bottom row: between hybrid controls and mimicked real 
arm motion produced in the same test phase. Blue: condition C+; 
purple: condition C−. Significant differences are indicated with stars: 
* p < 0.05 ; **p < 0.01
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holding within a strict tolerance to the goal position 
and orientation. Although this tolerance was some-
what relaxed in the test phase {4 cm, 10◦ } as compared 
to that employed at initial acquisition {2 cm, 5 ◦ }, it was 
still substantially lower than the {6 cm, 30◦ } used in 
[13]. It remains that active grasp control is likely to have 
elicited longer movement times in [13] and will ulti-
mately need to be included for real-world applications.

Additionally, [13] did not always use artificial net-
works trained on data from the same subject as the one 
operating the prediction-based control. In fact, subjects 
alternated sessions with a network trained on their own 
data versus a network trained on data from the particu-
lar control subject that elicited the worst predictions 
when applied on their own data. That way, subjects 
experienced controls that were tuned to them in both 
the best and worst possible manners. Remarkably, sub-
jects performance were comparable for both cases by 
the end of the training sessions, which indicates that 
they were able to cope with a control based on other 
subjects’ data, as would necessarily be the case for peo-
ple with upper-limb disability, from which obtaining 
baseline natural control data is not an option. Although 
this is promising for future applications of our context-
aware strategy, we only used networks trained on data 
from the same subjects. Therefore, possible deteriora-
tions when using data from other subjects remain to be 
evaluated.

Another difference in the present work relates to 
the restricted volume of the peripersonal space tested. 
Although our target arrangement spanned a sizeable pro-
portion of space used during comfortable unconstrained 
reaches in front of the subjects, it is much smaller than 
the whole peripersonal space exploited in our daily activi-
ties. Furthermore, as soon as the object is in the hand, 
the subject must decide and command what to do with 
it. Although additional control features were included 
in [13] to bring the bottle to the mouth, efficient con-
trol strategies remain to be designed for the wide range 
of possible actions and peripersonal space, as well as effi-
cient mechanisms to select the relevant context-aware 
strategy.

Yet another difference was that trunk movements 
were limited by elastic bands in [13], while discouraged 
but permitted in our case. This was designed to promote 
sufficient success rate to enable meaningful comparison 
on the different dependent variables. Indeed, it was evi-
dent from pilot testing that numerous targets would not 
have been reachable should we have restricted trunk 
movements. In the end, our choice was justified by the 
usefulness of subsequent analyses performed on joint 
coordination and compensatory movements associated 
with our experimental conditions.

Joint coordinations and compensatory movements
Higher shoulder movements observed here in the con-
text-unaware control, as compared to the context-aware 
control, were contingent upon lower variability of arti-
ficial movements for both the elbow and radial-ulnar 
deviations at the wrist. This suggests that wider shoul-
der motion could have been employed to compensate for 
shorter ranges of distal motion.

Postural synergies were found simpler with the context-
unaware control, as indicated by more variance explained 
by the first few components when principal component 
analyses were conducted on joint coordination in the 
context-unaware condition, as compared to both the 
context-aware and the natural control conditions. In the 
absence of additional knowledge of the movement goal, 
predictions from the context-unaware network result 
in reduced distal joints motion that naturally required 
higher compensations from the trunk and shoulder to 
perform the task.

Postural synergies observed in the controlled joint 
coordination were also found to be more similar to those 
of natural movements with the context-aware than with 
the context-unaware control, as indicated by lower angu-
lar separation between subspaces spanned when consid-
ering the first few components that explained a sufficient 
amount of variance [8]. In addition to the overall higher 
performance obtained with lower compensatory move-
ments, the closeness to natural movements associated 
with the context-aware control is potentially important. 
Indeed, we recently showed that human-likeness impacts 
robotic arm endpoint control, possibly through embodi-
ment via increased sense of agency [30].

Comparison to a model-based approach
In this experiment, the network C+ uses knowledge of 
proximal joint angles and target location to predict distal 
joint angles that bring the virtual hand on the target. In 
this context, one can consider that it implicitly performs 
some kind of inverse kinematics (IK) solving despite not 
being model-based. Alternatively, a common approach 
to IK solving would employ a mechanical model of the 
limb to compute the distal joint angles minimizing the 
distance between the target and the hand. However, 
when the upper arm posture would prevent the hand 
from reaching the target, such control is likely to result 
in the distal segments always pointing towards the tar-
get. As a result, these joints may seem to be completely 
out of the user’s control, which could be inappropriate 
in terms of sense of agency [30, 31]. Filtering or motion 
blending methods could be employed to limit the occur-
rence of such unexpected, target-driven distal motion, as 
opposed to subject-driven motion. Systematic evaluation 
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of the performance and user acceptability of model-based 
approaches will be important for future works.

A recent study [22] proposed an alternative model-
based control where IK solving is used in synergy with 
upper-arm motion. This control drives the distal seg-
ments so that the virtual hand’s position stays along the 
straight line joining the shoulder and target. As a result, 
the hand gets closer to the target as the subject brings 
the elbow forward. This “task space”-based control was 
tested in a simplified setup where the distal joint pre-
diction is limited to the elbow and the reaching task 
only covers four targets placed in the same vertical ori-
entation. The performance obtained with this control 
appeared to be on par with that of a simpler joint space 
synergistic control, suggesting that similar motor behav-
iors can be obtained using these two distinct approaches.

Limits and perspectives for prosthetic control
Prosthetic simulations in virtual reality are useful 
research tools [13, 14, 18, 22, 24, 25] but real prostheses 
present additional challenges. Comparison with move-
ment times obtained in related works such as [16, 30, 32] 
is informative, although obtained while reaching unori-
ented targets with simpler control strategies. In a study 
of upper-limb amputees equipped with a real prosthetic 
elbow whose joint velocity was controlled by shoulder 
velocity [16], subjects reached various target positions 
with an average movement time of 2.4 s, more than twice 
that produced by healthy subjects reaching the same 
targets with their own arm (1.1 s). Comparable reaches 
took on average 2.9 s when a robotic arm endpoint was 
teleoperated by subjects’ real arm movements in [30] 
and movement times increased to 4–5 s when a com-
parable robotic interface was controlled from isometric 
forces instead of real movements [32]. This large differ-
ence in movement times might be related to real-world 
mechatronic considerations. A simulated arm in a virtual 
reality setup can “instantaneously” move from one pos-
ture to the other, whereas robotic and prosthetic arms 
are limited by the strength and speed of their motors 
operating against gravity and inertia. Most prosthetic 
limbs have the additional problem of slippage between 
socket and stump, which will introduce errors and even 
instability. In this context, osseointegration is increasing 
the potential applicability of controls based on residual 
motion [16].

Although our results are promising for potential appli-
cation to real-case scenarios in prosthesis control, sev-
eral gaps remain. Among those, we already identified the 
necessity to include an active grasp control, mechatronic 
considerations to realize real movements absent in virtual 
reality testing, and subject-specific tuning of the context-
aware strategy to meet individual requirements of people 

with upper-limb amputation. To these, we can add real 
testing on people with upper-limb amputation, and find-
ing reliable solutions for automatic detection of contexts 
as well as their associated control strategies.

Combining kinematics and myoelectric signals [14, 33] 
could be used to integrate active grasp control to the pre-
sent context-aware strategy. Most transradial prosthesis 
users are already familiar with myoelectric controls for 
hand opening and closing. Poor resolution and delays 
under visual control make it difficult to grasp fragile 
objects without crushing them, but this may be overcome 
by adding tactile sensing and feedback [34, 35]. To avoid 
the burden of noisy and hard to interpret myoelectric 
signals, and preserve advantages of kinematic-based con-
trol, [13] designed a proportional hand closing mecha-
nism based on sternoclavicular protraction. Decoupling 
hand closure from this voluntary repositioning of the 
shoulder proved difficult in that particular instance [13] 
and appears as a general limitation of this strategy. With 
extended daily practice, real prosthesis users may learn 
strategies that escaped our normal volunteers and may be 
able to cope with coadaptation strategies in smart pros-
theses [18, 36]. The addition of vibrotactile feedback in 
lieu of proprioception [37] may also improve sensorimo-
tor integration of the proposed control solutions.

In order to facilitate development and testing of pro-
totype prostheses that will support different control 
schemes, it will be useful to take advantage of multi-
ple robotic platforms that are increasingly accessible to 
researchers [38–40]. Among these, we recently proposed 
one that has the potential to attack most perspectives 
mentioned here [40]. The 3D-printed skeleton and con-
trol interface of this platform make it easy to reconfigure 
both from hardware and software perspectives. Further-
more, this platform is already interfaced with various 
relevant control signals (kinematics, myoelectric, gaze 
information) and control principles (inverse kinematics 
with both analytical and artificial networked-based solv-
ing), and now integrates cameras and prepackaged arti-
ficial intelligence solutions for efficient artificial network 
and computer vision implementations.

Technological simplicity, reliability and cosmesis are 
important personal considerations for prosthesis design 
and use [41–43]. The proposal here to add shoulder pos-
ture sensing plus gaze monitoring and video scene analy-
sis will require substantial additional hardware:

• Complete shoulder and sterno-clavicular joint 
motion can be extracted from easily worn multi-
axis “digital compass” sensors based on micro-
electro-mechanical chips (MEMS, e.g. Honeywell 
HMC6343) affixed to the sternum, acromion and 
trans-humeral socket [13]. These can substitute for 
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the reference-frame sensors used in the present 
experiment and most laboratories.

• Proof of principle for automatic object detection in 
[20, 21] were obtained with an expensive and some-
what heavy system that integrates camera and gaze 
tracking on glasses (Tobii Glasses 2), but lighter and 
more affordable options are starting to become avail-
able for augmented reality systems (e.g. Pupil Labs). 
To enable the proposed control scheme, the 3D posi-
tion of the object detected in the field of view of the 
camera on eyeglasses would also need to be estab-
lished in relation to both the current position and 
orientation of the head and the shoulder center of 
rotation. This could be provided by installing another 
digital compass chip on the eyeglasses.

• Extracting distance of an object is more difficult than 
its orientation and location in azimuth and elevation, 
but technology for extraction from binocular images 
or lidar reflection delay is rapidly improving. It is 
possible that the user’s visual perception of distance 
and kinematic control of reach extension would be 
sufficient without this aspect of machine vision.

Studies such as the one presented here represent demon-
strations of technological feasibility. Clinical acceptance by 
patients will require benefits in activities of daily living that 
outweigh the inevitable increases in financial cost and don-
ning/doffing time and system designs that achieve accept-
able reliability and appearance. Fortunately, the required 
technology is likely to continue to improve in cost, size, 
simplicity and reliability. Effective industrial design will 
require selecting the most useful components and integrat-
ing them into attractive and cost-effective systems.

Conclusion
The experiment reported in this paper shows that add-
ing target-related contextual information can be ben-
eficial to the control of an upper-limb prosthesis based 
on natural joint coordinations. Better reaching perfor-
mance was achieved by a control strategy combining 
command signals from shoulder kinematics with infor-
mation about target location and orientation such as 
can be obtained from gaze and scene analysis. Subjects 
using this combination achieved higher mean approach 
speeds as well as reduced compensatory motion com-
pared to kinematics alone. Overall, the context-aware 
control strategy allowed subjects to achieve close to 
natural performance without training. Regarding appli-
cations in the field of prosthetics, these results are 
promising especially for the control of a multi-DoF 
prosthesis. However, notable challenges have yet to be 
overcome before such a control strategy can be imple-
mented on a wearable, clinically relevant device.
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