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ARISING FROM D. Panda et al. Nature Communications https://doi.org/10.1038/s41467-018-06371-2

n a recent study, Panda et al.! claim that seasonal strain across

the Himalaya indicates seasonal slow slip on the Main Hima-

layan Thrust (MHT) fault driven by hydrological loading rela-
ted to the monsoon and driving seasonal variations of seismicity.
While we find the analysis interesting, we spell out some reasons
why the claim should be considered with caution.

Global Navigation Satellite Systems (GNSS) station position
time series exhibit strong seasonal horizontal and vertical signals2.
These signals have been primarily attributed to annual surface
mass redistribution of continental hydrology, ice and snow, non-
tidal and atmospheric pressure3. A number of studies have shown
that these signals can be modelled to first order as the response of
a spherically layered elastic Earth to an integrated surface mass
loading derived from the Gravity Recovery and Climate Experi-
ment (GRACE)* or a combination of hydrological, atmospheric
and oceanic loading models®.

Panda et al.! find the horizontal seasonal geodetic signal in the
Garhwal-Kumaun and Nepal Himalaya to be significantly larger
than predicted by such models. They assume that, in absence of
seasonal slow slip on the MHT, and considering predictions from
hydrological and atmospheric loading models, the ratio of the
annual amplitude of horizontal over vertical displacements (H/V)
should not exceed a value of 0.5.

First, it should be noted that current surface load models
explain only up to 30% and 50% of the annual amplitudes of
seasonal horizontal and vertical GNSS observations, respectively,
at the global scale>#-%. Much of the residual seasonal signals are
likely caused by unmodelled geophysical signals, and/or GNSS
errors rather than localized tectonic motion. We therefore find it
useful to review the potential sources of short spatial wavelength
(less than a few hundred km) or site-dependent signals that could
affect the H/V seasonal ratio locally. Their non-negligible con-
tribution results in H/V often exceeding 0.5 for a globally dis-
tributed network of stations, even in regions where no significant
tectonic motion is expected (Fig. 1).

Several geophysical sources, in addition to surface mass var-
iations, can induce seasonal horizontal and vertical displacements
at short spatial wavelengths. Seasonal variations in the Earth
temperature field induce a thermoelastic deformation of GNSS
monuments’ and of the bedrock®, both estimated to reach up to
~1 mm vertical amplitude. Moreover, thermoelastic deformation,
using a realistic Earth model, can induce up to a few millimetres
of horizontal displacements at short spatial wavelengths due to
lateral heterogeneities of shallow mechanical properties of the
Earth®. Similarly, poroelastic deformation may induce compar-
able displacements in areas with large variations of the water
tablel?. Stations suggested to exhibit seasonal slow slip motion by
Panda et al.! in Nepal (BMCL and DRCL) are reported to
be installed on sedimentary or weathered metamorphic bed-
rock (see Data Availability), possibly enhancing both thermo-
elastic and poroelastic seasonal deformation, and contributing to
larger H/V ratios.

In addition to these geophysical sources, systematic errors in
GNSS observations and in their modelling may induce station-
dependent seasonal signals. Unmodelled or mis-modelled semi-
diurnal and diurnal tides may for instance alias into millimetric
annual vertical signals due to the beating with both the GNSS
satellite ground repeat period and the processing of GNSS
observations in 24-h batches!!. Tropospheric delay mismodelling
may also be responsible for millimetric annual vertical signals!2.
Environmental effects such as snow and ice cover, soil moisture
or vegetation growth additionally influence the GNSS antenna
phase centers and local multipath, and may result in apparent
seasonal station displacements. Such station-specific effects are
hard to quantify globally, but examples exist of environmental
changes causing centimetric station position variations?. Besides,
spectral analyses of GPS time series have revealed spurious per-
iodic signals with millimetric amplitudes at harmonics of the GPS
draconitic year (=351.6 days), ie. the period at which the
orientation of the GPS constellation with respect to the Sun
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Fig. 1 Observed horizontal over vertical annual amplitudes (H/V) ratio. H/V ratio is shown at a set of 689 globally distributed Global Navigation Satellite
Systems (GNSS) stations of the International GNSS Service (IGS) that were a part of the second IGS reprocessing campaign (see Data Availability).
Stations for which the North component seasonal signal is shown in Fig. 2c are indicated as bold dots and labelled with their site names. The same ratio is
also shown for 18 GNSS stations located in Nepal. Ratios often exceed 0.5 at the global scale, in regions where not tectonic deformation is expected. In
Nepal, two stations exhibit higher than 0.5H/V ratio, in a limited geographic location.

repeats!3. Possible causes for those draconitic signals are orbit
modelling deficiencies (e.g. solar radiation pressure or eclipse
mismodelling) and the aliasing of station-dependent errors
(multipath, antenna phase centre mismodelling) through 24-h
sampling. Draconitic errors can in principle be separated from
seasonal variations in long enough time series. They may other-
wise interfere with seasonal variations and bias their
interpretation.

Second, there is no reason that, in absence of subsurface sources
of deformation, the H/V ratio should not exceed the particular
value of 0.5 chosen by Panda et al.l. While the H/V ratio would be
constant for a surface point source loading a homogeneous elastic
half-space Earth model (and equal to (1-2v)/2(1-v) ~0.33, for a
Poisson coefficient v of 0.25), an assumption that has been shown to
perform poorly for modelling seasonal GNSS observations, it varies
with the distance from the loads for a more realistic spherically
layered Earth model. It peaks to 0.5 for a PREM layered structure
and may exceed this value depending on the local depth variations
of elastic properties'4. Figure 2a, b is an attempt at reproducing Fig.
4 of Panda et al.l. Figure 2a shows that, once we added error bars
on H/V ratios (see Fig. 2 caption for details), which were not
included in the original figure of Panda et al.l, only two stations
(DRCL and BYNA) have an H/V ratio significantly larger than 0.5.
Figure 2b, ¢ shows GNSS time series stacked over a year and two
loading model results, respectively, for Nepal stations and a selec-
tion of GNSS sites around the globe in tectonically stable areas
where the discrepancy between the observed and modelled seasonal
signal is as large or larger than at DRCL. Affirming that the seasonal
horizontal geodetic positions is due to seasonal slow slip motion
because it cannot be predicted by a particular choice of hydrological

and atmospheric models disregards the high variability and
imperfect nature of existing surface loading models at the global
scale, particularly where no tectonic deformation is expected
(Fig. 20).

Finally, we recall that the seasonal variation of seismicity is not
peculiar to the area of western Nepal around DRCL and BYNA
and can be explained as a direct effect of the stress variations
induced by seasonal loading!®> without requiring slow slip on
the MHT.

In light of the difficulty in accounting fully for the seasonal
signals present in GNSS time series, whether due to a true response
to seasonal load variations or to technical artefacts, we suggest that
Panda et al's! claim for seasonal slow slip on the MHT should be
treated with caution. This claim hinges on the particularly high
seasonal amplitude and H/V ratios observed at two stations. Such
anomalies certainly deserve scrutiny but are not unusual globally
and probably not related to tectonics in general. While progress has
been made towards a better understanding and modelling of GNSS
seasonal signals since Dong et al, they remain only partially
understood, particularly for the horizontal components, and should
be further investigated.

Data availability

Stations logs are available at: https://www.unavco.org/data/gps-gnss/data-access-
methods/dail/recent.php. Daily IGS repro2 station positions available at: https://cddis.
gfsc.nasa.gov/gnss/products/repro2. Global Navigation Satellite System (GNSS) time
series available at: http://geodesy.unr.edu/index.php. Hydrological loading model
(HYDL) available at: http://rz-vm115.gfz-potsdam.de:8080/repository. Global
Geophysical Fluid Center (GGFC) atmospheric model available at: http://geophy.uni.lu/
ggfc-atmosphere/ncep-loading.html. CATS: GPS coordinate time series analysis software
available at: https://www.ngs.noaa.gov/gps-toolbox/cats.htm
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Fig. 2 Measured annual signals and modelled surface loading contribution. a Ratios of mean amplitudes of horizontal over vertical annual signals (H/V
ratio) with distance to the Main Frontal Thrust (MFT) for Global Navigation Satellite Systems (GNSS) observations (see Data Availability) in Nepal
(black diamonds), Gravity and Recovery Climate Experiment (GRACE) derived loading model (blue contoured dots; Chanard et al.#) and the sum of
HYDL (hydrological loading model) and GGFC (see Data Availability) (Global Geophysical Fluid Centre) atmospheric loading (green contoured

triangles). Mean annual peak to peak seasonal amplitudes and associated error bars have been estimated using the coordinate time series analysis
software, CATS (see Data Availability), and combined in H/V ratio. The amplitudes of annual and semi-annual sinusoidal signals are estimated

together with white and flicker noise from detrended time-series. b, ¢ GNSS time series stacked over a year (grey dots and associated error bars), with
corresponding sinusoidal fit (plain black), GRACE-derived model (plain blue) and the sum of HYDL hydrological loading model and GGFC (see Data
Availability) atmospheric loading (plain green), models for Nepal (b) and a set of globally distributed International GNSS Service (IGS) stations (see
Fig. 1, IGS, repro2) (c).
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