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Summary
Numerical computations of hemodynamics inside intracranial aneurysms treated by
endovascular braided devices such as flow-diverters contribute to understanding and
improving such treatment procedures. Nevertheless, these simulations yield high
computational and meshing costs due to the heterogeneity of length scales between
the dense weave of the fine struts of the device and the arterial volume. Homoge-
neous strategies developed over the last decade to circumvent this issue substitute
local dissipations due to the wires with a global effect in the form of a pressure-
drop across the device surface. However, these methods cannot accurately reproduce
the flow-patterns encountered near the struts, the latter strongly dictating the intra-
saccular flow environment. In this work, a versatile theoretical framework which
aims at correctly reproducing the local flow heterogeneities due to the wires while
keeping memory consumption, meshing and computational times as low as possi-
ble is introduced. This model reproduces the drag forces exerted by the device struts
onto the fluid, thus producing local and heterogeneous effects on the flow. Extensive
validation for various flow and geometric configurations using an idealized device
is performed. To further illustrate the method capabilities, a real patient-specific
aneurysm endovascularly treated with a flow-diverter is used, enabling quantitative
comparisons with classical approaches for both intra-saccular velocities and com-
putational costs reduction. The proposed heterogeneous model endeavours to bridge
the gap between CFD and clinical applications and ushers in a new era of numerical
treatment planning with minimally costing computational tools.
KEYWORDS:
Computational Fluid Dynamics, intracranial aneurysm, endovascular treatment, flow-diverter, heteroge-
neous modelling, drag model, Immersed Boundary Method

1 INTRODUCTION

Intracranial aneurysms (IA) are local deformations of cerebral arteries (see Fig. 1a) mostly located in the vicinity of the circle
of Willis [1] and harboured by 3% of the general population [2,3]. A major concern related to this pathology is the rupture of the
aneurysmal wall and the subsequent subarachnoid haemorrhage (SAH), which carries high morbidity and mortality rates [4].

0Abbreviations:CFD: Computational Fluid Dynamics; IA: intracranial aneurysm; IBM: Immersed BoundaryMethod; FD: flow-diverter; PED: Pipeline Embolization
Device
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FIGURE 1 Description of saccular aneurysm and Flow-Diverting type of treatment. a: Untreated configuration with glossary
related to saccular intracranial aneurysms. Typical flow patterns are exhibited with white arrows. b: Flow-Diverter deployed in
the parent artery, intended to reduce the blood flow entrance at the aneurysm’s neck. Taken and adapted from [5].

Over the past decades, many treatment modalities for both ruptured and unruptured IA have emerged. Each one of them
endeavours to limit the flow in the aneurysm to promote intra-saccular thrombosis, thus occluding and stabilizing the aneurysm.
Braided devices such as Flow-Diverters (FDs, see Fig. 1b) are an excellent option in particular to tackle complex aneurys-
mal geometries (wide neck or small dome-to-neck ratio) [6]. As shown in Fig. 1c, these devices consist of a very dense weave
of thin metallic wires with diameters around 30 µm, generally made of Nitinol or Cobalt-Chromium [6]. They redirect blood
into the parent artery and impede the flow at the aneurysm neck, thus reducing intra-aneurysmal velocities. Additionally, they
provide a surface on which neoendothelialisation may occur [7–9], entailing occlusion and potentially volume reduction of the
aneurysm, provided that the device is apposed to the arterial wall at proximal and distal positions [10], i.e. before and after the
neck, respectively. Despite high occlusion and low morbidity and mortality rates [11], unexpected delayed ruptures sometimes
occur in approximately 3% of treated patients [12,13]. Therefore, there is a need to understand all the key mechanisms that can
predict chances of success. To this end, intra-saccular hemodynamics has been thought as one of the essential measures that
could enhance success predictions [14]. Additionally, hemodynamic information could also be used to minimize the quantity of
metal inside patients by studying flow alterations for different devices characteristics. This could help reducing anti-coagulant
quantities for patients who underwent endovascular surgical procedures.
To this end, Computational Fluid Dynamics (CFD) has proven to be an invaluable tool enabling to study the effect of device

implantation on the blood flow inside patient-specific geometries [14–17]. To account for deployed braided devices inside arteries,
themost ’natural’ approach used inmost CFD computations is herein referred to as conformal, which removes devices struts from
the arterial volume via boolean operations. Conformal methods enable to capture the full complexity of flow-patterns induced
by the device presence such as wakes, jetting-flow between wires and wake interactions for very densely packed configurations.
Although being considered as a ground-truth approach, this method carries significant drawbacks, mainly due to the large
difference of length scales between the wires (≈ 30 µm) and the arterial (≈ 5mm) diameters. This scale difference implies a
high manual meshing cost in order to produce a grid with sufficient quality around the wires. Additionally, these meshes contain
a tremendous number of elements, which requires heavy computational resources. These drawbacks are at odds with short time
frames needed by both clinicians for treatment planning and manufacturers for new device numerical experiments with many
sizes and geometries [18].
To circumvent these issues, a few techniques have emerged over the last decade, which will be herein referred to as homoge-

neous. The underlying assumption for all these models is that the source of dissipation caused by each device struts produces
a collective effect, taking the form of a pressure loss across the surface of the device. Therefore, the sum of local flow dissipa-
tions due to the wires can be replaced by a global homogeneous pressure drop to mimic the effect of the device on the fluid. The
porous method originally developed by Augsburger et al. [19] and later enhanced by Raschi et al. [20] was the first kind of such
homogeneous models. It approximates the device as a porous layer that imposes calibrated pressure losses across its surface via
a volume source terms added to the fluid equations. The calibration process of the model was performed by Augsburger et al. [19]
thanks to numerical computations on simplified geometries, and was further refined by Raschi et al. [20] who used porous laws
through braided meshes. Despite reducing computational costs, Li et al. [21] pointed out that porous model assumptions are not
compatible with the very thin structure of endovascular devices. Li et al. [21] went a step further in the modelling of devices
by introducing the so-called screen method. This technique aims at faithfully reproducing the flow redirection when passing
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the device while not taking into account each wire individually [22]. Nevertheless, the screen approach remains a homogeneous
method inherently unable to capture the full complexity of flows around the device struts.
Representing the flow impact of each individual wire at the neck enables to better predict the intra-saccular hemodynamic

environment. In this view, several previous CFD studies [23–26] using a conformal approach showed on one hand that local device
compaction, and thus struts placement and proximity, is strongly impacting downstream intra-saccular velocities, and on the
other hand that device wire density can be optimized to ease treatment decisions for a given case. This strong impact on intra-
saccular velocities has been recently confirmed in-vitro by Chodzyǹski et al. [27] who found that by deploying the same FD
reference (length and diameter) inside a given idealized geometry three times with the same operator, local pore density changes
occurred and caused significant differences in aneurysm filling over the cardiac cycle. One may also anticipate that representing
the velocity gradient and associated shear stress at the struts is useful to better represent the platelet activation and thus the
capability of the device to promote thrombosis, as described in [26]. Nevertheless, these gradients produced by the wires presence
are not accessible via homogeneous methods due to both their assumptions and the spatial discretization levels used.
In order to increase the fidelity of CFD for treated aneurysms, a novel heterogeneous model is introduced. This model aims

at reproducing both the flow redirection when passing through the device and wakes of the struts by modifying the well-known
Immersed Boundary Method (IBM) [28], to cope with the braided nature of the device. Section 2.1 and Section 2.2 present the
core of the method by detailing how the current approach produces localized strut wakes. Validation of the proposed method is
presented in Section 3 for both idealized and patient-specific geometries using conformal simulations as ground-truth data for
each case.

2 METHODS

When being used for CFD computations of endovascularly treated aneurysms, the conformal approach has proven to be robust
thanks to the application of no-slip boundary conditions on the nodes of the struts, as depicted in the bottom of Fig. 2. Never-
theless, in order to faithfully capture the geometrical and flow complexities induced by the intertwined wires, the mesh has to
be sufficiently refined locally, which introduces at least two major costs: manual-meshing and computational.
To circumvent these issues, homogeneous methods intend to reproduce the local strut dissipation by a global effect in the form

of a pressure loss across the device, which is therefore considered as a porous surface as highlighted in the top of Fig. 2. This
enables to both remove the strong dependence of the fluid mesh on the local struts geometries and coarsen the mesh to reduce
computational costs. Nevertheless, this class of methods carries potential sources of errors due to their underlying assumptions
and cannot represent the local flow heterogeneities produced by the wires.
We propose here a heterogeneous model of flow diversion, which is an intermediate approach in terms of computational costs

and potential sources of errors, as highlighted in Fig. 2. In this heterogeneous model, the wires forming the endovascular device
are replaced by their equivalent 1D neutral fibre. Then, the device is modelled as a collection of linear drag forces F (force
density per unit of length) mimicking the effect of each individual strut on the fluid flow. In this view, the computational mesh is
not restricted by the struts, which provides a drastic reduction of both meshing and computational costs. Moreover, each strut is
modelled by its corresponding drag force, so that the flow heterogeneities downstream of the device (wakes and jet-like regions)
are conserved. These drag forces are applied on fluid regions, highlighted in grey in the middle of Fig. 2, which can be larger
than the struts.
To faithfully mimic the local effect of the struts on the flow without meshing them, the proposed heterogenous model relies

upon the paradigm of Immersed Boundary Method (IBM) [28]. IBM is used to represent fluid-structure interactions without
explicitly meshing the interface between the fluid and solid domains. Instead, the fluid-structure coupling is performed via a
volume source term added to the Navier-Stokes equations so that the fluid flow can feel the presence of the solid domain. This
writes:

�
()u
)t
+ ( ⋅ (u⊗ u)

)
= −∇p + ( ⋅ ̄̄� + f (1a)

( ⋅ u = 0 (1b)
with u the fluid velocity, � the density, p the pressure and ̄̄� the shear stress tensor. In the current approach, f stands for the

volume source term intended to mimic the impact of the device on the flow. Its value is zero everywhere except in the vicinity
of the solid parts, i.e. the wires of the endovascular device.
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FIGURE 2 Overview of CFD modelling strategies for FD-treated aneurysms. When considering costs and potential sources of
errors, the proposed method is lying between homogeneous paradigms such as porous models [19] or the screen approach [22] and
more classical techniques herein referred to as ‘conformal’ [14]. It aims at reproducing the impact of the wires on the flow via a
hydrodynamic force Fwire→f luid (in red) regularized onto a localized volume source term region (in grey) on the fluid mesh.
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FIGURE 3 Main principles of the Immersed Boundary Method (IBM). Steps involving fluid and solid parts are highlighted in
red and green, respectively. The sections involving the main developments are indicated for the ease of comprehension.

Fig. 3 presents the main ingredients of the Immersed Boundary Method [28] which is the foundation of the proposed model.
Starting from a fluid velocity field, the velocity reconstruction step enables to give to the solid parts local velocity information
which in turns is used to model the force generated by the solid onto the fluid. Then, in order for the flow to feel the presence of
those forces, a regularization step adds a volume source term in the fluid Navier-Stokes equations. Solving these equations with
this newly added source term finally impacts the original velocity field, therefore providing a coupling between fluid and solid.
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For the purpose of the intended applications presented herein, only the key steps associated with the most important devel-
opment efforts will be described in dedicated sections (see Fig. 3). The remaining steps do not have specific sections associated
with them but are still tackled in the present manuscript.
These developments based upon IBMwere implemented in the in-house finite-volume YALES2BIO CFD solver https://imag.

umontpellier.fr/~yales2bio/index.html. Inheriting massive parallel capabilities from the YALES2 software [29], YALES2BIO
intends to solve blood related problems at both microscopic [30–35] and macroscopic scales [36–39]. Extensive validations have been
performed over the years, as demonstrated in the aforementioned references. A pressure-projection method is used to handle the
incompressibility constraint Eq. 1b, which leads to solving a Poisson equation for the pressure using a Deflated Preconditioned
Conjugated Gradient solver [40]. Minimally dissipative fourth-order spatial and time discretization schemes are used to explicitly
advance the velocity field. More details on the numerical method of YALES2 can be found in [29].

2.1 Cylinders forces
As already stated, the current model replaces the struts volumes by their 1D neutral fibre, which is equivalent to using the beam
theory in the field of solid mechanics. Therefore, it is considered that each of these 1D struts applies drag forces F onto the fluid
in their close vicinity while being static with respect to the flow. Focus is now made on the computation of these forces for each
edge of the endovascular device.

2.1.1 Working assumptions

D
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t
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l

FIGURE 4 The device is assumed to consist of a superposition of two independent families of infinite parallel cylinders (red
and blue), which entails that the blue wires are not affected by the flow redirection due to the red ones, and vice-versa. Crossings
parts (in green) are also neglected. The device is fully parametrized by the inter-wire distanceW , the wire diameter D and the
small inner angle �. Attached to each cylinder, a local basis (in green) is used to decompose drag forces into normal n, tangential
t and longitudinal l directions. It should be noted that the t unit vector is located in the plane built by all the wires.

This study focuses on braided endovascular devices consisting in two families of crossing struts (see Fig. 4). Three parameters
depicted in Fig. 4 are used to fully characterize the device geometry: the inter-wire distance W , the strut diameter D and
the acute angle formed at the intersections between the struts, �. Typical values of those parameters encountered for Pipeline
Embolization Device (PED) flow-diverters are available in [41]. Attached to each cylinder, a local basis can be built as depicted
in the right of Fig. 4. It consists of normal, tangential and longitudinal unit vectors, denoted n, t and l, respectively. n is normal
to the device, l is aligned with the strut and t is tangential to the device (not the strut) and normal to n and l.
In order to build the drag model needed to obtain the force Fm for each mth edge of the device, the following assumptions

have been made:
H1 The local curvature of the wires, as well as the intertwining are neglected. This amounts to considering straight merged

cylinders as schematized to the left of Fig. 4.

https://imag.umontpellier.fr/~yales2bio/index.html
https://imag.umontpellier.fr/~yales2bio/index.html
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H2 It will prove useful to restrict to situations where the inter-wire distanceW is much larger than the strut diameter (W ∕D > 5,
say). This assumption is not very restrictive and is reasonably met by flow-diverters and intra-saccular types of devices
extensively listed in [6].

H3 The inter-wire distanceW is assumed to be very small compared to the typical size of the aneurysm neck so that edge effects
do not control the flow over the major part of the device. Therefore, from a modeling point of view, the device is considered
to be immersed within an infinite fluid domain. Note that edge effects are partly accounted for, as the flow velocity near the
edges of the neck is strongly slowed down by the presence of the walls of the artery and of the aneurysm.

H4 The device struts are divided into two distinct ’families’ made of parallel infinite cylinders, as described to the right of
Fig. 4. Interactions between cylinders are restricted to their parallel family members, which means, using the color code of
Fig. 4, that the flow deviation caused by blue wires is not taken into account when computing drag forces applied by red
wires onto the fluid, and vice versa. Parallel family interactions will be further referred to as ’intra-familial’ interactions in
the remaining of the paper, as opposed to ’extra-familial’ ones.

H5 The locations where cylinders merge together (in green) herein referred to as ’crossings’ are represented by the superposition
of the drag forces related to the two families of struts, without further modelling effort.

Hypotheses from H1 to H3 are ’geometrical’ since they only depend on the geometric characteristics of endovascular devices.
H4 and H5 are ‘modelling’ hypotheses because they are used to construct the drag forces models at the struts. In view of these
hypotheses, it is assumed that intra-familial interactions between cylinders are negligible in the longitudinal direction l when
compared to the ones present in the normal-tangential plane (n, t). It is equivalent to state that there is an invariance with respect
to the longitudinal direction. This means that the problem reduces to a 2D problem: how does one array of aligned 2D cylinders
interact with each other and what is the resulting drag force applied on the fluid ? Even though the longitudinal direction l is not
taken into account in cylinders interactions, drag forces are still present in this direction and will be described later.
In the remainder of this section, it is assumed that cylinders are immersed in a known, uniform velocity field denoted U∞.

Given this upstream velocity U∞, we propose a model for the drag forces in the directions n, t and l, on the basis of the
assumptions H1-H5, which is a classical way of building drag models. The upstream Reynolds number defined by Re = ||U∞||D

�with � the fluid kinematic viscosity and D the diameter of the wires is sufficient to characterize the drag force experienced by
an isolated 2D cylinder. For an array of 2D parallel cylinders, another non-dimensionalized parameter measuring the closeness
of cylinders, the W̃ ∕D = W sin �

D
ratio, say, has to be introduced (see Fig. 4).

Relevant ranges for Re and W̃ ∕D have to be considered to make sure that the outcome of the modelling effort will indeed
be useful to biomedical applications. From previous observations and computations, the highest Re values encountered in FD-
treated intracranial aneurysms is approximately Re = 20. This is confirmed by Raschi et al. [20] who states that the highest Re is
usually "around Re = 20, hardly exceeding 60 but still falling in the transition zone between low and intermediate Re". During
the whole cardiac cycle, endovascular wires can experience both low and high Reynolds numbers depending on their position
at the neck. The high Reynolds regimes mainly drive the most important intra-saccular flow features such as large recirculation
regions and incoming jets. Since the ability of endovascular devices to reduce intra-saccular velocities and increase residence
time is critical for high Reynolds flow regimes, i.e.when convective effects are dominant, the current modelling effort focuses on
these regimes. A heterogeneous model which would include both low and high Reynolds is of course very desirable and could
be obtained by combining a model for the diffusive regime with the one proposed in this work. For the remainder of the paper,
we are concerned with modelling the flow through a weaving of wires in the high Reynolds regimes, i.e.when convection effects
dominate. The performances of the model when the Reynolds number gets small will be assessed for the sake of completeness.
Regarding the W̃ ∕D ratio, its values range approximately from 6 to 10 for PEDs flow-diverters according to the data available
in [41].
From the local basis defined in Fig. 4, the drag force Fm exerted by the fluid on each cylinder is decomposed into its normal

Fn, tangential Ft and longitudinal Fl components:
Fm = Ftt + Fnn + Fll . (2)
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As a note of caution regarding units, it should be noted that forces per unit of length are considered for drag forces Fm, since
only 2D cylinders are studied. The local orthonormal basis (n, t, l) is built to ensure that the scalar product of each unit vector
with U∞ is positive. Reynolds numbers associated with each velocity components are then computed as:

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ren =
(
U∞ ⋅ n

)
D

�
,

Ret =
(
U∞ ⋅ t

)
D

�
,

Rel =
(
U∞ ⋅ l

)
D

�
.

(3)

As previously stated, the drag force is assumed to be invariant in the longitudinal direction, so that the 3D problem is equivalent
to that of an infinite series of cylinders aligned with the tangential direction as schematized in Fig. 5.

n

t

W̃

i − 1
i

i + 1 i + 2

ŵ

U∞

�∞

�c

D

FIGURE 5 An infinite single array of aligned cylinders of diameter D and inter-wire distance W̃ is submitted to an upstream
undisturbed velocity fieldU∞; the angle of attack is �∞. The total force exerted on each cylinder by the fluid can be decomposed
in the normal-tangential basis (in green) denoted by (n, t). Green and red regions of width ŵ aim to represent portions of the
fluid influencing and being influenced by the ith cylinder, respectively. In the case displayed here, it is considered that the ith
cylinder only influences one cylinder in its downstream wake, the (i+1)th cylinder and that it is directly influenced by the wake
of a single cylinder, the (i-1)th one. Additionally, the critical angle �c which corresponds to the case where the regions’ edges
lie in the middle of the following and preceding cylinders is depicted with red dotted lines. It is considered that the condition
�∞ < �c entails cylinders wake interactions and thus drag forces modifications compared to the isolated cylinder case.

2.1.2 Normal term Fn
The normal component of the force applied by an array of cylinders subjected to a purely normal incoming flow has already been
studied by Müller et al. [42], who proposed an empirical fit using a combination of existing analytical drag models and numerical
computations. When compared with CFD results, this model provides a maximum error below 4% for the ranges 0 < Ren < 20
and 2 < W̃ ∕D < 20, which encompasses our intended ranges of interest. Following Müller et al. [42], the normal component Fn
is given by:

Fn(Ren, W̃ ∕D) = CD
�
(
U∞ ⋅ n

)2D
2

, (4)
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with � the fluid density and CD the so-called dimensionless drag coefficient that depends on the normal Reynolds number
Ren and the W̃ ∕D ratio. Following Müller et al. [42], its expression writes:

CD = CD,M

(
1 + 1.966Re0.4193n × exp

[
−8.774

(
W̃
D

)−0.3143

Re−0.4688n

])
, (5)

with CD,M being the drag coefficient analytically derived by Miyagi [43] for Stokes flow regime (Re → 0) and 1.43 < W̃ ∕D <
100 ranges. Its expression is given by:

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

CD,M =
16�a0
Ren ,

a0 =
[
1 − 2 ln(2�) + 2

3
�2 − 1

9
�4 + 8

135
�6 − 53

1350
�8 + 1112

42525
�10 − 241643

13395375
�12 + 18776

1488375
�14

]−1
,

� = �D
2W̃

.

(6)

It should be noted that this expression induces that for a given Reynolds number, the drag force increases when the W̃ ∕D
ratio decreases. Moreover, it is worth mentioning that this component only depends on the normal Reynolds Ren.

2.1.3 Tangential term Ft
To the best of the authors’ knowledge, no modelling effort dedicated to tangential drag forces for an array of equally-spaced
cylinders is reported in the literature, at least for the ranges of Reynolds number and W̃ ∕D ratio of interest. For example,
Crowdy [44] focused on an inviscid and irrotational flow, which is not relevant to our configuration. This led us to build such a
tangential drag model using both CFD computations and existing drag models.
Considering an infinite series of cylinders as depicted in Fig. 5, the first step is to consider the case where W̃ ∕D → ∞,

meaning that cylinders are isolated and do not interact with each other. We also consider a purely tangential incoming flow.
Then, the drag force in the tangential direction can be computed using the so-called universal drag model derived byMarheineke
and Wegener [45], applicable to any Reynolds number and incident flow angle, except for purely longitudinal configuration.
Marheineke and Wegener [45] fitted CFD results with existing drag laws at various Reynolds regimes to obtain their continuous
model.
Note that the normal unit vector n in [45] corresponds in our case to the tangential one t. By using our notation convention,

the tangential drag force term for a unique isolated cylinder denoted in the following by F 0t is given by:

F 0t =
��2

D
Re2tCt(Ret) (7)

with Ct being the dimensionless drag coefficient in the tangential direction. It should be noted that it only depends on the
tangential Reynolds number Ret and is given by:

Ct(Ret) = exp
[ 3∑
j=0

(
pt,j

(
lnRet

)j)
]

(8)

with pt,0 = 1.6911, pt,1 = −6.722 × 10−1, pt,2 = 3.3287 × 10−2 and pt,3 = 3.5015 × 10−3. Eq. 8 is valid in the interval
Ret = [0.1, 100], which encompasses the intended range of interest relevant to the proposed heterogeneous model. It should
be noted that the normal force given by Eq. 4 approaches Eq. 7 on the conditions that W̃ ∕D → ∞ and that the corresponding
Reynolds numbers are equal.
The second step aims at taking into account the interactions between cylinders. The main idea is that due to the angle of

attack �∞, the flow seen by a cylinder may result from the interaction with a different number of cylinders. We first consider
a finite series of Nc cylinders aligned in the tangential direction. Each of them is labelled with an index i going from 0 to
Nc − 1, following the order defined by the direction of the tangential velocity as in Fig. 5. They are separated by an inter-wire
distance W̃ and it is hypothesized that they are subjected to a purely tangential incoming flow. Since the infinite assumption is
no more relevant in this case (due to the proximity of the cylinders), each cylinder experiences a drag force which is different
than its neighbours. More specifically, it is postulated that the wakes of the cylinder induce a reduction of the drag forces
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downstream, that is F i+1
t ∕F i

t < 1. Additionally, it is assumed that the rate of decrease is constant for each cylinder, implying
that F i+1

t = qF i
t , ∀i ∈ [0, Nc − 1] with 0 < q < 1. Consequently, this amounts to considering that the force exerted by each

cylinder on the fluid follows a geometric sequence with a common ratio q to be determined later. In order to homogenise the
global effect of thoseNc cylinders onto the fluid, one can consider that each cylinder applies a force Ft equals to the average of
the total force exerted by all the interacting cylinders such that:

Ft =
1
Nc

(Nc−1∑
j=0

F j
t

)
= 1
Nc

(
F 0t

(
1 − qNc

)
1 − q

)
, (9)

where F 0t is the drag force experienced by the first cylinder. Since it does not have any upstream counterpart, it is considered
to be isolated and thus, its drag force expression is given by Eq. 7.
The last step aims at obtaining an expression of the drag force exerted by one cylinder in a infinite array when the incoming

flow is not purely tangential, as depicted by Fig. 5. Starting from Eq. 9, the number of cylinders that are interactingNc and the
geometric common term q are the two main unknowns. To derive an expression forNc , two areas coloured in green and red in
Fig. 5 are defined and are oriented by the angle of attack �∞. Since n and t are oriented according to U∞, �∞ lies in the [0, �∕2]
range. The red/green areas correspond to the domain of influence of the ith cylinder and the zone influencing the drag at the
same obstacle, respectively. They extend up to infinity parallel to the incoming flow direction and have a finite perpendicular
width ŵ, expressed as a linear function of the wire diameterD such that ŵ = NwD,Nw being the number of cylinder diameter
across the influencing region (see Fig. 5). When reaching a critical angle of attack �c , the edge of the green region intersects
the center of (i-1)th cylinder, as shown in Fig. 5 (see the red dotted line). Therefore, the condition �∞ > �c entails no cylinder
interactions and thusNc = 1 since the coloured regions do not overlap downstream and upstream cylinders. On the other hand,
�∞ ≤ �c implies that the ith cylinder is influenced and influencesNc > 1 cylinders upstream and downstream respectively. It is
expected thatNc should increase with decreasing �∞ to reflect that interactions are getting stronger as more cylinders are added
in the influenced region.
Following previous considerations,Nc can be computed such that:

Nc =
⎧⎪⎨⎪⎩

1 if �∞ > �c ,
sin �c
sin �∞

otherwise. (10)

The expression on the second line of Eq. 10 has been chosen so as to obtain Nc = 1 if the edge of the influencing region
touches the (i+1)th cylinder center, i.e. when �∞ = �c . For smaller �∞ angles, this expression compares the length of the
hypotenuses of the black and blue rectangular triangles in Fig. 5. It should be noted thatNc is no more an integer when cylinders
interact due to the previous definition and that it is a function of both �∞ and W̃ ∕D. Plugging Eq. 10 into Eq. 9 entails that
without cylinder interactions, i.e. Nc = 1, the drag force exerted by the ith cylinder is equal to an isolated one F 0t , which is the
expected behaviour of the model.
Accordingly, the critical angle �c is defined as:

�c =
⎧⎪⎨⎪⎩

�∕2 if ŵ > 2W̃ ,

arcsin
(
ŵ
W̃

)
otherwise .

(11)

The first line in Eq. 11 represents the case where interactions between cylinders are occurring for any angle of attack �∞ since
the influencing region always overlaps downstream cylinders.
The focus in nowmade on the expression of the common ratio q. To assess this quantity, it is hypothesized that when cylinders

interact, q obeys to a linear relation with respect to the angle of attack �∞. Otherwise, a constant value of is specified. Therefore,

q =
⎧⎪⎨⎪⎩

1 if �∞ > �c ,(1 − qp
�c

)
�∞ + qp otherwise.

(12)

with qp being the common term when the incoming flow is purely parallel to the tangential direction.
All the previous steps are summarized in the following pseudo Algorithm 1 used to compute the tangential force Ft from flow

and geometry inputs:
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Algorithm 1 Computation of the tangential drag force Ft
Inputs: �∞, W̃ , D, Ret, �, �
Output: Ft

F 0t =
��2

D
Re2tCt(Ret)

Ct given by Eq. 8
ŵ = NwD

if ŵ > 2W̃ then
�c =

�
2

else
�c = arcsin

(
ŵ
W̃

)

end if
if �∞ < �c then

Nc =
sin �c
sin �∞

q =
(1 − qp

�c

)
�∞ + qp

Ft =
1
Nc

(
F 0t

(
1 − qNc

)
1 − q

)

else
Ft = F 0t

end if

It should be noted that the division by zero induced by q = 1 in Eq. 9 when cylinders do not interact is circumvented in
Algorithm 1 by replacing Eq. 9 by F 0t directly.
For the tangential model to be fully complete, there remain two unknowns in the previous expressions: the width of the

interaction area depending on Nw and the common ratio qp. Values for these parameters are determined by optimizing the
agreement between the modelled tangential drag force given by Algorithm 1 with numerical values obtained from conformal
CFD computations. Despite being built using 2-dimensional reasonings, it has been decided to perform 3D computations to
calibrate the presented tangential model so as to partly account for the complex intra and extra-familial interactions between
cylinders. Numerical details as well as boundary conditions of these 3D computations are fully described in Section 3.1 and not
repeated here for the sake of brevity. Details regarding the fitting procedure with these 3D computations as well as the values
forNw and qp are fully described in Appendix B to ease the reading.

2.1.4 Longitudinal term Fl
Though it is not depicted in Fig. 5, the longitudinal direction also experiences drag force from the fluid flow. Due to transla-
tional invariance in the longitudinal direction, it is hypothesized that cylinders are infinite and do not interact with each other
longitudinally. Consequently, Fl is independent of the W̃ ∕D ratio and only depends on the total Reynolds number Re a priori.
This amounts to considering an isolated infinite cylinder subjected to an angle-oriented flow, a situation which has already been
studied by Marheineke and Wegener [45]. Note that the longitudinal direction l notation in the present work corresponds to the
tangential one τ in [45].
As opposed to the previous normal Fn term, the Fl does not only depend on the longitudinal Reynolds number Rel. More

specifically, Marheineke and Wegener [45] formulate that:

Fl(Re) = Fl(Ren,Rel) = ��2

D
RenRelCl(Ren) (13)
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with Cl being the dimensionless drag coefficient in the longitudinal direction. It should be noted that it depends only on the
normal Reynolds number Ren and is given by

Cl(Ren) = exp
[ 3∑
j=0

(
pl,j

(
lnRen

)j)
]

(14)

with pl,0 = 1.1552, pl,1 = −6.8479 × 10−1, pl,2 = 1.4884 × 10−2 and pl,3 = 7.4966 × 10−4. Eq. 14 is valid in the interval
Ren = [0.1, 100], which encompasses the intended range of interest relevant to the proposed heterogeneous model.
Summary
For each wire of the endovascular device, the normal, tangential and longitudinal components are computed thanks to Eq. 4,
Algorithm 1 and Eq. 13, respectively. These formulae are applied for each family of wires (blue and red in Fig. 4) and then
added up. As a note of caution, it should be mentioned that the total force Fm given by Eq. 2 stands for drag force experienced
by each wire. Due to the reciprocity principle, −Fm is regularized by the IBM procedure to mimic the force applied by the struts
onto the fluid.

2.2 Edge-based IBM regularization
Now that the linear force relevant to each wire segment is known, it must be regularized onto the fluid mesh, as illustrated in
Fig. 6. It should be noted that for the proposed model to be applicable, the solid part must have 2 dimensions less than the fluid,
i.e. 1D struts for 3D fluid. Nevertheless, and for the sake of simplicity and explanations, Fig. 6 represents 1D wires immersed
in a 2D view, which can be seen as a slice through a 3D domain, passing through device wires.

4ℎ

Xm

X1

X2

Xm+1Fm+1

ℎ

ri,m
node i

Ωf (fluid)

Ωs (device wire)

FIGURE 6 Edge-based IBM main components and notations. The support of the modified window function w(ri,m) Eq. 16 is
depicted in grey. It has an ovoid shape around the mth edge. The square points represents the fluid nodes which are affected by
the constant linear density of force Fm exerted by the mth edge.

The underlying notations and principles of the proposed edge-based IBM are now introduced. Solid and fluid domains are
denoted by Ωs and Ωf respectively. In Fig. 6, they correspond to the 1D solid wires (thick black lines) and the fluid mesh (thin
black triangles) respectively. Capital letters are relevant to the solid domain while lower case denote fluid quantities. The force
fi at the ith fluid node is given by:

fi =
M∑
m=1
Fmw(ri,m) , (15)
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withM the total number of wire segments in the neighbourhood of the ith node and Fm the linear density of force at the mth
solid edge (see the red vectors in Fig. 6). In the following, it will be assumed that this density is constant for each edge, reflecting
the fact that the wire diameter D is smaller than the inter-wire distance (hypothesis H2 described in subsubsection 2.1.1). In
Eq. 15, the w coefficients are collectively referred to as the modified regularization window; the way they are computed will be
detailed in the remaining of this section. The edge-based methodology developed to compute the w coefficients builds heavily
on the work of Pinelli et al. [46] and the RKPM principle introduced by Liu et al. [47]. Following the notations used by Sigüenza
et al. [48] and for a second-order RKPM, the coefficients w in Eq. 15 write:

w(ri,m) = w(ri,m) ×
[
�0 + �1

(
xi −Xm

ℎ

)
+ �2

(
yi − Ym
ℎ

)
+ �3

(
zi −Zm

ℎ

)

+�4
(
xi −Xm

ℎ

)(
yi − Ym
ℎ

)
+ �5

(
xi −Xm

ℎ

)(
zi −Zm

ℎ

)
+ �6

(
yi − Ym
ℎ

)(
zi −Zm

ℎ

)

+ �7
(
xi −Xm

ℎ

)2

+ �8
(
yi − Ym
ℎ

)2

+ �9
(
zi −Zm

ℎ

)2
]
,

(16)

with xi = (xi, yi, zi) andXm = (Xm, Ym, Zm) the coordinates of the ith fluid node and themiddle of themth solid edge, respectively.
ri,m stands for the distance between the ith fluid node and the point projected onto the mth solid edge, as depicted in Fig. 6. The
original window function w(ri,m) appearing in Eq. 16 is written as:

w(ri,m) =
⎧⎪⎨⎪⎩

1 + cos
(�ri,m
2ℎ

)
if ri,m < 2ℎ ,

0 otherwise,
(17)

with ℎ the characteristic length scale of the fluid mesh (see Fig. 6). The expression for w(ri,m) ensures that the volume source
term added to the Navier-Stokes equations is zero everywhere except in the vicinity of solid edges, i.e. inside the 4ℎ ovoid
grey region in Fig. 6. In other words, it enables to restrict the extent to which the fluid can feel the solid parts and increases
as approaching the wires. The 4ℎ width of the window function support for edge-based IBM is a classical value in node-based
IBM [30,48], but it is actually a free parameter. More precisely, it has been found in our tests that a width of 6ℎ offers a good
compromise between errors and numerical stability while properly representing on the fluid mesh the jetting-flow taking place
between consecutive struts.
The RKPM coefficients �k in Eq. 16 stand for the 10 unknowns coefficients of the correction polynomial which are calculated

to ensure conservation of solid quantities when being regularized onto the fluid. Specific details on how these coefficients are
obtained for each edge can be found in Appendix A.

3 VALIDATIONS

In order to validate the heterogeneous model and its implementation, two sets of numerical simulations have been performed:
idealized and patient-specific. In the following, results labelled by ‘edge-based IBM’ will refer to the proposed model. They
will be compared to conformal computations which we refer to as the gold standard. All conformal and IBM simulations are
performed with the same fluid properties and numerical discretization schemes. Broadwell Intel Xeon E5-2690V4 2,60 GHz
cores with 128 GB of random-access memory were used for all computations.

3.1 Idealized device geometry
Numerical setup
An idealized configuration is first considered: an infinite planar device consisting of two sets of parallel straight wires intersecting
at an inner angle � = �∕2 is subjected to an incident velocity U∞. U∞ is varied, as well as the spacing between the struts, with
the constraint that W̃ ∕D = W ∕D ≫ 1. To compute such a flow, a reduced computational domain is used (see Fig. 7), with
periodic boundary conditions enforced at the left-right and front-bottom faces. The size of the domain is detailed in Fig. 7. At
the inlet, the uniform velocity field U∞ is applied (see the red section in Fig. 7). The outlet section (black section in Fig. 7) was
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placed further downstream to prevent any interactions with the wakes of the wires. A convective outflow condition was applied
at the outlet.

WW

3D

5D

15D

D

FIGURE 7 3D bi-periodic domain of width W . No-slip boundary conditions are applied on the struts surfaces. The angle
between the wires is �∕2. Inlet and outlet sections are highlighted in red and black, respectively. Periodic boundary conditions
are enforced at the left-right and front-bottom faces. The probing line which was used to compute the error defined by Eq. 18 is
also depicted downstream of the cylinders (line with ◦ symbols).

Compared to the 2D configuration depicted in Fig. 5, the imposed unperturbed velocity is now free to be outside the (n, t)
plane. The definition of �∞ in the (n, t) plane still holds and is now denoted by �n,t∞ ; the second angle necessary to define
the orientation of the unperturbed velocity is denoted by �l,t∞ and lies in the (l, t) plane. In the following, two values of �l,t∞have been considered: 0 and �∕3, the latter being chosen to study the situation where the flow is not aligned with any of
the wires, which is the general case in real flow conditions. The following ranges have been considered for the other varying
parameters: W ∕D ∈ [6, 20], �n,t∞ ∈ [�∕20, �∕2] and Re = ||U∞||D

�
∈ [2.5, 20]. Computations at Re = 2.5 were performed

so as to assess the behaviour of the model when being used outside its working range, i.e. at low Reynolds numbers. In other
words, this flow condition cannot be used to validate the model. For each operating point defined by values of (Re, W

D
, �n,t∞ , �

l,t
∞),a conformal and an edge-based IBM simulation were performed, resulting in 580 numerical computations in total. For all

conformal computations, no-slip boundary conditions were applied at the strut surface.
Both conformal and IBM meshes have been built using Gmsh [49]. A smooth mesh size coarsening when moving away from

cylinders locations has been specified. In the conformal domains, at the cylinders surface, a mesh size ℎ was enforced to be a
function of the perimeter such that ℎ = �D

N c
ℎ
with N c

ℎ = 40. For edge-based IBM grids, the mesh size ℎ was given as a function
of the inter-wire distance W such that ℎ = W

N IBM
ℎ

with N IBM
ℎ = 20. Several IBM computations have also been performed for

N IBM
ℎ = 10 to demonstrate the independence of the results with respect to the grid discretization. The larger conformal mesh

that has been built forW ∕D = 20 computations consists of 19M tetrahedral elements in total.
Tab. 1 summarizes the 3D simulation parameters used to validate the proposed model. It should be noted that this validation

step aims at verifying that the whole heterogeneous methodology, i.e. the drag models and the edge-based IBM, is producing
realistic results. In this view, the undisturbed velocity U∞ is artificially given as an input to the drag models since it is fully
known at the inlet section.
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Re W ∕D �n,t∞ �l,t∞ Mesh size ℎ
Conformal

{2.5∗, 5, 10, 15, 20} {6, 8, 10, 20} �
20

→ �
2

{0, �
3
}

�D
40

Edge-based IBM {W
20
, W
10
}

TABLE 1 3D conformal and edge-based IBM computation parameters.

Since YALES2BIO solves the unsteady Navier-Stokes equations, temporal convergence of the simulations was assessed by
measuring the forces integrated over the cylinders’ walls for conformal simulations, thus enabling to obtain a physical steady
time for each operating point. Edge-based IBM computations were ran until the conformal physical steady time was reached.
Conformal and IBM results were compared qualitatively using velocity magnitude contours on specific slices. Quantitative

errors were also computed on downstream velocity profiles. More precisely, a probing line of lengthL diagonal to the numerical
domain and located three diameters downstream of the device was used to get velocity profiles for both IBM and conformal
results (see Fig. 7). Then, the relative error E in % was computed as:

E = 100 × 1
L

L

∫
0

||UIBM − Uc||
||U∞|| dl , (18)

with UIBM and Uc being the IBM and conformal velocity vectors along the probing line, respectively.
All post-processing steps were performed using the Visualtization Toolkit (VTK) library [50] and Paraview [51] software. Each

parallel computation has been performed using one processing unit every approximately 100, 000 tetrahedra, which yields a
good balance between communication and computation costs for the current applications. The number of processors ranged
from 28 to 196, the latter being reached forW ∕D = 20 meshes.
Results
Fig. 8 gives a qualitative insight into velocity fields on a slice placed diagonally to the 3D domain for both conformal and
IBM modalities when the angle �n,t∞ decreases, for the typical operating point (Re, W̃ ∕D, �l,t∞) = (5, 8, 0). Very good trends are
obtained with the heterogeneous model, whatever the inclination angle of the incident velocity. However, it appears that edge-
based IBM downstream velocities are systematically underestimated compared to conformal ones when �n,t∞ > �∕2, which is
particularly visible when the incoming velocity is close to being purely tangential. Conversely, it is not the case when �n,t∞ =
�∕2 since the recirculation region appears to be longer for conformal computations. These trends have also been found for
other (Re, W̃ ∕D, �l,t∞) operating points (not showed here). This suggests that for non-normal incoming flow situations, the drag
forces applied on the fluid are too high and overestimate the incoming flow blockage. This overestimation increases with the
tangential component of the incoming flow. Nevertheless, the current model correctly reproduces relevant velocity patterns such
as redirection due to the cylinders’ presence, downstream wakes and jetting-flow between the wires compared to conformal
fields, using grid sizes coarser by a factor of 6 approximately.
Quantitative comparisons between IBM and conformal approaches can be found in Fig. 9 for all the parameters ranges given

in Tab. 1. For each value of �n,t∞ , the solid line represents the mean error and the opaque filling goes from the minimum to the
maximum error for all the W̃ ∕D ratios studied.
As expected, the computations performed outside the intended range of applicability of the model, i.e. at a diffusive flow

regime where Re = 2.5, exhibit very high errors, reaching almost 140% for tangential inflow conditions. As already stated,
these computations were performed to demonstrate that the model cannot be used for diffusive regimes. Therefore, the results
presented in the following section only focus on computations performed for Re > 2.5.
The overall agreement is very good: errors above 25% were attained by only 11% of all computations. Among all the oper-

ating points, the maximum error reached 59% and was obtained for (Re, W̃ ∕D, �n,t∞ , �
l,t
∞) = (5, 6, �∕20, �∕3). Studying each

Re individually, it appears that the mean and min-max errors are increasing with decreasing �n,t∞ for Re ∈ [5, 10], which is the
opposite for Re = 20. For Re = 15, the errors seem to be constant for all geometric and flow conditions.
Despite not being depicted in Fig. 9, it has been noticed that the maximum errors are obtained for low W̃ ∕D and low �n,t∞values, i.e.when cylinders are close to each others and when the incoming flow is close to being purely tangential, which implies

strong interactions between cylinders. This indicates that both the tangential and longitudinal components of the force model,
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||U|| [m.s−1]0 0.3

�n,t∞ = �
2

�n,t∞ = �
4

�n,t∞ = �
6

�n,t∞ = �
10

FIGURE 8 Velocity fields and contours for conformal (first line) and edge-based IBM (second line) approaches on a plane
placed diagonally to the 3D domain for various �n,t∞ angle of attack. The chosen operating point (Re, W̃ ∕D, �l,t∞) is equal to
(5, 8, 0). A good qualitative agreement is reached by the current model when being compared to conformal velocity fields.

which are higher than the normal one for these situations, do not capture sufficiently well intra-familial interactions between
cylinders and that additional mechanisms such as extra-familial interactions and crossing effects, which have not been modelled
in this work, might be at stake and important to take into account.
The ‘real-flow condition’ where the incident flow is not aligned with the cylinders (�l,t∞ = �∕3) yield similar results as the

case (�l,t∞ = 0), albeit with a small increase in the mean and min-max errors. Nevertheless, these errors were considered to be
acceptable, thus demonstrating the robustness of the current model when being used in any incoming flow-conditions.
No significant differences on the obtained errors were noticed when increasing the mesh size by a factor of two (green line in

Fig. 9).



16 BEROD ET AL
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∞
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FIGURE 9 Errors given by Eq. 18 for �l,t∞ = 0 ( ) and �l,t∞ = �∕3 ( ) at ℎ = W
20

and �l,t∞ = 0 ( ) at ℎ = W
10
. The solid line

and the opaque filling represent the mean and min-max errors for all the W̃ ∕D ratios at a given angle �n,t∞ respectively.
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3.2 Patient-specific device geometry

aneurysm

inlet

outlet

outlet

outlet

90 µm

0.75mm

90 µm

(a) (b)
FIGURE 10 Insights into geometry and meshing characteristics of the aneurysm case. a: 3D patient-specific arterial geometry
harbouring an intracranial aneurysm treated by a flow-diverter (in red). Note that distal and proximal portions of the device
in apposition with the parent artery have been removed. The close-up view shows the surface discretization of the struts. The
black line on the arterial surface represents the intersection with the plane used for further analysis. Inlet and outlet sections are
denoted with black arrows. b: Previously defined plane showing the volume mesh sizes at the aneurysm sac, the parent artery
and the neck. Two successive zooms enable to appreciate the smooth mesh size coarsening when moving away from the wires
(small white holes).

Numerical setup
To illustrate the capabilities of the proposed model, the hemodynamics inside the aneurysm of a patient treated by a commercial
flow-diverter was studied. Starting from medical images, the arterial surface has been reconstructed using the Marching Cubes
algorithm [52]. As depicted in Fig. 10, the arterial geometry consists of a saccular aneurysm (black arrow) located at the ICA
(Internal Carotid Artery) portion of the vasculature. The parent artery extends up to two subsequent arterial bifurcations. The
surface went through multiple pre-processing steps using the VMTK (Vascular Modelling Tool Kit) library [53]. Smoothing and
addition of flow extensions at each opening have been performed. Surface remeshing using distance to centerlines as a meshing
size constraint has been carried out. This provides a constant number of elements across all arterial diameters.
Then, the endovascular device was numerically deployed into the previously pre-processed surface. The length and the diam-

eter of the device were chosen in order to start and end into straight arterial sections without occluding the downstream arterial
bifurcation. The device consists in 48 wires of 30 µm in diameter with an inter-wire distanceW = 0.335mm, thus giving a ratio
W ∕D ≈ 11. Numerical mechanical deployment was performed with the use of beams elements for each wire of the device. The
arterial surface was considered to be rigid and static. The LS-DYNA solver http://www.lstc.com/products/ls-dyna was used to
solve the mechanical deployment and handle the contact between the device and the arterial wall.
Three sets of meshes were then built for each of the CFD computations: device-free, conformal and edged-based IBM. The

device-free volume mesh inherited grid sizes from the previously pre-processed surface. The grid for the IBM simulations has
been obtained by refining the surface and volume of the device-free grid in order to ensure a mesh size ℎ = w∕8 in the vicinity
of the wires. They consist of 3M and 6.5M tetrahedra, respectively.

http://www.lstc.com/products/ls-dyna
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As opposed to the previous ones, generating the conformal mesh required more steps. First, distal and proximal portions of
the device in contact with the arterial walls were removed to save computational costs. Thus only the part immersed in the neck
region has been conserved, has depicted by Fig. 10. Then, circular disks have been extruded along the neutral axis of the wires
outputted by LS-DYNA and boolean unions were applied to link all the wires as one surface. This step has been performed using
both Gmsh and VTK. The device’s surface has been discretized with a mesh size ℎ = �D

15
, which is almost an order of magnitude

finer that commonly applied in the literature [14]. Next, the device surface was removed from the computational domain using the
boolean tool available in the Blender software (https://www.blender.org/). Then, surface remeshing and cleaning was performed
using VMTK and MeshLab (http://www.meshlab.net/), respectively. Finally, a first volume mesh was generated with VMTK
and then refined near the struts with MMG3D [54] to provide a smooth transition from fine to coarse regions of the mesh, as
depicted by Fig. 10. It should be noted that a constant mesh size has been specified in a layer around the wires to better capture
cylinder’s wakes. The final mesh consists of 120M tetrahedra.
To reduce the computational burden, only the stationary case was considered when analysing the performance of the heteroge-

neous model with respect to the conformal case. From a physical point of view, this amounts to considering that the perturbations
induced by the network of wires adapt instantly when the outer flow conditions change. This is indeed well justified since the
typical time scale of the pulsatile flow rate signal through the parent artery (of order 0.1 s, say) is very large compared to the
typical time scale of the flow around each wire (2 × 10−4 s and 5 × 10−5 s for the diffusion and convection times, respectively).
At the inlet, a fully-developed Poiseuille velocity profile has been specified. Peak systolic flow regime was used to simulate a

‘worst-case scenario’, since the maximum velocities are observed during this phase. First, a mean flow rate has been calculated
using the ICA diameter as recommended by Valen-Sendstad et al. [55] and Chnafa et al. [56]. Then, it has been plugged onto
the generalized flow waveform measured on older adults given by Hoi et al. [57], which resulted in a peak-systolic flow rate of
418.8ml.min−1. The inlet Reynolds number was equal to Re = UD

�
= 594, based on the inlet diameter.

As classically done in hemodynamic simulations of the flow in cerebral aneurysms, blood was assumed to be an incompress-
ible Newtonian fluid with kinematic viscosity � = 3.5 × 10−6m2.s−1 and density � = 1.06 × 103 kg.m−3 [58]. Arterial walls (and
device’s surface for the conformal mesh) were assumed to be rigid with a no-slip boundary condition. At the outlets, a convective
outflow condition was specified such that

)u
)t
+ Uconv

)u
)n

= 0 , (19)
with n the outward normal to the outlet surfaces, and Uconv the convective velocity adjusted at each outlet. Its value was

computed using the ratio of each outlet surface over the sum of the outlet surfaces, which ensures global mass conservation over
the entire flow domain.
When dealing with complex geometries and incident flows as it is the case for this validation step, the concept of unperturbed

upstream velocity U∞ is not as clear as in the idealized validation Section 3.1. Indeed, the flow interacting with the device is
not uniform and its structure is dictated by the shape of the parent artery as well as the corresponding time-dependent flow
rate. The only option to ensure the operability of the model in this situation is to reconstruct U∞ from local and instantaneous
information available in the device region. Since mass conservation is at work in the close vicinity of the wires, it yields that the
normal component of U∞ can be obtained from the flow rate through the diamonds formed by the struts (see the left of Fig. 4).
Reconstructing the other components of the unperturbed velocity U∞ from local quantities is more challenging since there is
no conservation principle at play. To achieve that, a 2D version of the 3D numerical computations presented in Section 3.1 was
used to derive an empirical law linking the measured flow angle at the wires with the imposed �∞ one.
Qualitative and quantitative comparisons between conformal and edge-based IBM results were performed using magnitude

velocity contour on the slice depicted in Fig. 10, as well as by computing the mean velocity magnitude over the aneurysm sac
defined as:

Ua =
1
Va ∫

Ωa

||U||dV (20)

with Ωa the aneurysm sac domain of volume Va manually delineated on ParaView. Ua measures the intensity of the flow in
the sac [14]. Histograms of intra-saccular velocity magnitude were also used to compare both modalities, the conformal results
being considered as the reference data.

https://www.blender.org/
http://www.meshlab.net/
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Results
Qualitative comparisons of blood velocities in the vicinity of the aneurysm neck and in the parent artery can be found in Fig. 11,
which displays velocity magnitude contours and 3D-projected fields for no-device, edge-based IBM and conformal approaches.
Compared to the no-device case, the conformal figure shows that the jet coming from the parent artery is reduced by the implanted
device, yielding a decrease of intra-saccular velocities and a displacement of the center of the recirculating region in the sac.
This trend is well captured by the edge-based IBM model, despite being less pronounced than in the reference results.

||U|| [m.s−1]0 0.6

(a) (b) (c)
FIGURE 11 Velocity field slices for a: no device, b: edge-based IBM and c: conformal configurations. The white arrow shows
the main direction of the flow. Velocity vectors are projected onto the slice to ease flow visualization.

Nevertheless, wakes and jetting-flows between the struts are comparable in the IBM and in the conformal simulations, which
demonstrates the robustness of the model when being employed in a realistic geometry. It should be noted that the maximum
Reynolds number Re reconstructed from the infinity velocity U∞ reached 8 in this case, which is in the middle of the intended
range of applicability of the proposed method.
To further study the qualitative performances of the model, volume rendering of vorticity magnitude ||
|| = ||( × U|| is

depicted in Fig. 12. It should be noted that velocity gradients due to boundary layers close to the arterial wall were automatically
removed from the volume fields to enhance flow visualization. Due to the presence of very large vortices, the opacity transfer
function was chosen to be a non-linear function (see the black line on the color bar).
As showed by Fig. 12, two pair of vortices are created in the parent artery, stemming from the upstream curvature in this region.

These vortices do not appear to be impacted by the presence of the device. Nevertheless, the struts strongly reduce intra-saccular
vorticity compared to the no-device configuration. This behaviour is correctly captured by the proposed model which exhibits
velocity gradients due to the wires that are similar to the conformal approach. Downstream vortices in the second bifurcation
appear to be impacted by the endovascular device, which is also correctly reproduced by the edge-based IBM method.
Quantitative comparisons between no-device, IBM and conformal modalities can be found in Fig. 13 which shows the proba-

bility density function (PDF)' and spatially averaged values of intra-saccular velocitymagnitude. The device entails a significant
decrease of the velocity magnitude and the two peaks PDF produced by the device is well retrieved by the edge-based model.
When being compared to no-device, IBM and conformal induce a reduction of Ua by 58% and 66% respectively. Comparing Ua
values, the proposed IBM model exhibits a relative error of 20% with respect to the conformal situation.
To enable quantitative comparisons of computational costs between IBM and conformal modalities, the memory used by all

the processing units was gathered. Additionally, the two following reduced computational time measures were computed:
⎧⎪⎨⎪⎩

RCT1 = TwcNp

NcNit

RCT2 = TwcNp

(21)
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||
|| [s−1]400 600

(a) (b) (c)
FIGURE 12 Volume rendering of vorticity magnitude ||
|| = ||(×U|| for a: no-device, b: edge-based IBM and c: conformal
configurations for two point of views. The arterial wall is made partially transparent and velocity gradients due to boundary
layers at the wall were automatically removed to enhance flow visualization. The opacity transfer function is given directly over
the color bar (black line). Black arrows show the main direction of the flow.

with Twc the wall-clock time,Np the number of processing units involved in the parallel computation,Nc the total number of
cells in the numerical domain andNit the total number of iterations. RCT1 enables to study the supplementary cost induced by
the proposed model compared to a no-model computation. RCT2 serves to compare two parallel computations when the number
of processors, the mesh and the involved numerical models are different, which is the case here. More specifically, it corresponds
to the wall-clock computational time needed by a single processor to reach the desired physical time of the simulation.
The costs summarized in Tab. 2 demonstrate a drastic reduction of both memory usage and RCT2 by factors of 22 and 5766

respectively. RCT2 reduction can be mainly explained by the time-stepping gain between IBM and conformal, which has been
reduced by a factor 300 approximately. RCT1 indicates that the model increases the computational cost per iteration by 12%,
which is considered to be acceptable with regards to the RCT2 and memory usage reductions.
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FIGURE 13Quantitative results for the patient-specific set-up. Left: probability density function (PDF) ' for the intra-saccular
velocity magnitude. Right: Spatially averaged intra-saccular velocity magnitude given by Eq. 20, as well as standard deviation
of the PDF for errors bars. Colors are the same as for the left part.

Edge-based IBM Conformal Reduction factor
Total memory usage (in Gb) 10.4 236.6 22.75
RCT1 (in s ⋅ Nprocessors∕Ncells∕Niterations) 4.03 × 10−6 3.56 × 10−6 0.88
RCT2 (in s ⋅ Nprocessors) 1.296 × 106 7.473 × 109 5766

TABLE 2 Computational costs: memory usage and reduced computational time. The reduction factor column stands for
conformal over IBM.
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4 DISCUSSION

This study introduces a novel heterogeneous approach intended to numerically solve blood flow for intracranial aneurysms
treated with endovascular devices such as flow-diverters. Mimicking the struts effects on the flow via drag forces regularized
on the fluid mesh, this model endeavours to balance computational costs and low potential sources of errors while reproducing
complex flow patterns near the wires. Several hypotheses regarding geometrical aspects and drag interactions between struts
are formulated in order to build the model. More specifically, it is hypothesized that the overall device’s effect on the flow
stems from the independent superposition of drag forces generated by two sets of infinite parallel wires forming the device.
Each set of wires is treated independently and interactions between wires are only modelled inside each set. Additionally, the
sections where the two sets of cylinders merge together, herein referred to as ’crossings’, are implicitly modelled as the sum
of forces coming from each set. This means that this model is not adapted to very dense weaves, in which crossings cannot
be neglected. The drag force is decomposed into several directions as a function of the geometry. For each component, the
drag force model either comes directly from the literature or is inspired by existing drag laws, modified and calibrated with 3D
CFD computations. It is also emphasized that the different expressions of the drag force components need the knowledge of
an undisturbed infinity velocity U∞, which cannot be simply defined in real cases. Therefore, a numerical strategy intended to
reconstruct this quantity from available local flow measurements is developed, using both conservation principles and 2D CFD
datas. The proposed heterogeneous model is validated with two configurations: 3D idealized and patient-specific, the conformal
approach being considered as ground truth. Providing a good qualitative comparison of velocity fields and correctly representing
the flow heterogeneities near the wires for both configurations, it is found that the maximum error reaches 59% for the idealized
device. These error can be explained by an underestimation of downstream velocities in this situation, suggesting that the drag
forces coming from the model are overestimated in comparison to the conformal ones. Conversely, it has been found that the
drag forces are underestimated in the patient-specific case.
Comparison with the performances of homogeneous models is interesting, but should be led with caution, since bound-

ary conditions, devices, aneurysmal geometries and meshes differ, as well as the metrics to assess the models. Note first that
Raschi et al. [20] showed that their porous medium implementation systematically overestimates the effect of the device and thus
underestimates flow-related quantities (WSS, velocities ...) in the aneurysm sac compared to the conformal results, which is the
opposite of our model. To perform quantitative comparisons, Raschi et al. [20] used the reduction of any hemodynamic quan-
tity Q between no-device and device results such that Qporous∕Qno device and Qconformal∕Qno device are compared. They observed
a maximum of 10% difference between porous and conformal reductions for an index equivalent to Ua (see Eq. 20), the aver-
age velocity inside the aneurysm. Computing the same reduction ratios in the aneurysm simulation presented, one obtains
Ua

heterogeneous
∕Ua

no device
= 41.5% and Uaconformal

∕Ua
no device

= 34%, which entails a 7.5% difference, smaller to the one obtained
by Raschi et al. [20]. The overestimation of the device effect observed by Raschi et al. [20] is also retrieved in the porous model
developed by Augsburger et al. [19], for the shear-driven aneurysms only. Although the errors given in Augsburger et al. [19] are
not computed the same way as in the present work, the order of magnitude are the same with approximately 20% for intra-
saccular velocities errors between porous and conformal methods. 2D steady computations performed with the screen model
by Li et al. [59] exhibit intra-saccular velocities errors from 11% to 60% depending on the stent deployment and porosities, with
a mean value around 30% among all configurations, which is higher than the current 3D errors obtained on the patient-specific
configuration in the present work. The 3D implementation of the aforementioned model inside three patient-specific geome-
tries by Li et al. [22] yielded overestimations and underestimations of intra-saccular velocities for 1/3 and 2/3 of the geometries,
respectively. A direct comparison of errors with the work by Li et al. [22] is not possible, since they assess the errors on the WSS
at several points on the aneurysm surface. Nevertheless, the errors are of the same order of magnitude as in the present work.
Despite exhibiting similar errors with homogeneous methods, the heterogeneous model has demonstrated its capability to

capture very detailed flow gradients near the device wires, which is impossible to obtain with other approaches. This makes
the model highly versatile and capable of studying in details how wires compaction at the neck influences the intra-saccular
environment. Compared to homogeneous models, another advantage is that the heterogeneous model results fromwell-identified
assumptions and sub-models which can be revisited and improved. The proposed model could first be enhanced by taking into
account more complex phenomena such as crossings effects and longitudinal interactions between struts. In particular, one could
envision that the 3D conformal CFD computations used to calibrate the tangential component could be performed with more
geometric and flow conditions, thereby enabling to parametrically study in details drag interactions for all three components of
the forces on the cylinders. This introduces at least two additional parameters on which the drag forces could depend, namely the
�l,t∞ angle and the inter-wire � angle, which has been fixed to �∕2 in this study. Therefore, this would bring the total number of
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relevant parameters to six, namely (Re,w,D, �, �n,t∞ , �l,t∞), which entails a high computational burden. Additionally, performing
this kind of 3D parametric study would give insights into the force exerted by the crossings sections and how they could be
embedded into the edge-based IBM modelling. Another major improvement of the current edge-based model concerns the
diffusive flow regime, which was intentionally not tackled in this work since it was considered to be critical for endovascular
devices to reduce the strongest flow features coming from the parent artery. Specifically designing such a diffusive model would
require to revisit the notion of wakes and to study long-range interactions between closely-packed cylinders, especially for the
tangential and longitudinal components of the force. Combining such a model with the one presented in this work would be of
course very desirable and could be useful to account for all flow conditions encountered by endovascular devices.
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APPENDIX

A EDGE-BASED RKPM

In the following, we detail the computation of the RKPM coefficients �k introduced in Eq. 16 in the case of edge-based IBM.
To simplify the following derivations, the reasoning is made for one edge only since overall conservation is ensured by the
summation over all edges given by Eq. 15.
The main objective of the regularization step is to generate a volume source term f that faithfully represents the constant

linear density of force Fm along the mth edge. Being inspired from nodal IBM considerations stated by Pinelli et al. [46] and
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Mendez et al. [30] who used the RKPM principle introduced by Liu et al. [47], the main constraint for the source term is that the
mathematical moments of Fm are conserved up to a given order. For a second order method, this constraint is given by:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤
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(A1)

with Xm = (Xm, Ym, Zm) the coordinates of the center of the mth edge, X(s) = (X(s), Y (s), Z(s)) the mth edge coordinates
parametrized by the curvilinear coordinate s and x = (x, y, z) the coordinates of the mesh fluid node. The right-hand side of
Eq. A1 represents the solid momentsMs, while the left-hand side stands for the fluid moments mf . The first component ofMs
states that regularization must conserve the integral of the force over the edge. The next three components are linked to the
mechanical moment of the force on the edge, which is zero by definition when being computed on the edge center Xm.
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Since the force density per unit of length Fm is constant along the mth edge, it can be taken out from the integral in Eq. A1.
Therefore,Ms only depends on the geometry of the edge and can be computed analytically such that:

Ms = Fm ×

⎡
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. (A2)

X1,2 = (X1,2, Y1,2, Z1,2) are the end coordinates of the edge of length L (see Fig. 6).
Using the definition of the fluid source term given by Eq. 15 with only one solid edge and simplifying on both sides by Fm,

the equality of moments given by Eq. A1 can be expressed as:
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For the equality Eq. A3 to be satisfied on unstructured meshes, as intended here, we now write w(r∗,m) as a polynomial
correction of the original window function w(r∗,m) following the RKPM principle of Liu et al. [47]:
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(A4)

with �k the 10 unknowns coefficients of the correction polynomial. They are computed to satisfy themoments equality Eq. A3.
For the next steps, it is convenient to introduce the moments ma,b,c of the original window function defined as:

ma,b,c =∫
Ωf

(
x −Xm

ℎ

)a(y − Ym
ℎ

)b(z −Zm

ℎ

)c

×w(r∗,m)dv . (A5)

Using the linearity of the integral operator and the definition of ma,b,c given by Eq. A5, we end up with:

M� =Ms , (A6)
with:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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andMs the right hand side of Eq. A3. Inverting matrix M, one can find all the �k coefficients as:

� =M−1Ms . (A8)
Since solid and fluid domains do not change over time, i.e. the device is fixed and the grid is not re-meshed, Eq. A8 is solved

once for all at the start of the computation and the �k coefficients are stored to be used for the regularization step, enabling a
low computational cost. It should be kept in mind that the �k coefficients are computed for each edge using Eq. A8. Concerning
units, the components of � are equivalent to [m−2] so as to be compatible with the ones in Eq. 15 which are [N.m−3], [N.m−1]
and [1] for fi, Fm and w(r∗,m) respectively. Using these coefficients, the modified window w is used to compute the regularized
volume source term fi at each ith point of the fluid mesh as:

fi =
M∑
m=1
Fmw(ri,m) . (A9)

Due to the summation, a fluid mesh point that lies within the support function of multiple edges receives contributions from
all these edges. This is notably the case near the intersection points of the edges (see Fig. 6).

B 3D CALIBRATION OF THE TANGENTIAL MODEL

As already stated in subsubsection 2.1.3, there remains two unknowns in the tangential drag model corresponding to
Algorithm 1:Nw and qp. The first one is needed to compute the width ŵ = NwD used to determine if cylinders are interacting,
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while the second one represents the homogeneous decay rate when cylinders are subjected to a purely tangential incoming flow
(see Eq. 12). Values of these parameters were adjusted in order to best represent 3D CFD results obtained with the geometry
depicted by Fig. 7 and for all the operating conditions given in Tab. 1 except Re = 2.5, since the model is intended to be used
for convective flow regimes only. A least square fitting procedure using the tangential forces generated by the fluid onto each of
the two cylinder families coming from these conformal, well-resolved CFD simulations was performed.
Comparison of the fitted tangential model with the CFD data is shown in Fig. B1 for all the studied Reynolds numbers

and for only one cylinder family. It has been found that Nw = 12 and qp = 0.5 produce a behaviour similar to 3D CFD
data. More precisely, it reproduces both the increase and decrease of drag force when the incoming flow goes from purely
normal (�n,t∞ = �∕2) to tangential (�n,t∞ = 0), this for various W ∕D ratios and �l,t∞ values. It has been found that in general,
the fitted tangential model goes from overestimating to underestimating forces when the flow becomes purely normal. This
underestimation is even more pronounced when �l,t∞ = �∕3.
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are �n,t∞ ∈ [�∕20, �∕2], �l,t∞ = 0 (top row) and �l,t∞ = �∕3 (bottom row). Several W ∕D ratios are depicted: 6.0 ( ), 8.0 ( ),
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