
HAL Id: hal-03373156
https://hal.science/hal-03373156

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

End-to-end acoustic modelling for phone recognition of
young readers

Lucile Gelin, Morgane Daniel, Julien Pinquier, Thomas Pellegrini

To cite this version:
Lucile Gelin, Morgane Daniel, Julien Pinquier, Thomas Pellegrini. End-to-end acoustic mod-
elling for phone recognition of young readers. Speech Communication, 2021, 134, pp.71-84.
�10.1016/j.specom.2021.08.003�. �hal-03373156�

https://hal.science/hal-03373156
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


End-to-end acoustic modelling for phone recognition of young readers
Lucile Gelina,b, Morgane Danielb, Julien Pinquiera and Thomas Pellegrinia
aIRIT, Paul Sabatier University, CNRS, Toulouse, France
bLalilo, France

ART ICLE INFO
Keywords:
child speech
phone recognition
transformer
connectionist temporal classification
transfer learning
low-resource

ABSTRACT
Automatic recognition systems for child speech are lagging behind those dedicated to adult speech
in the race of performance. This phenomenon is due to the high acoustic and linguistic variability
present in child speech caused by their body development, as well as the lack of available child speech
data. Young readers’ speech additionally displays peculiarities, such as slow reading rate and presence
of reading mistakes, that hardens the task. This work attempts to tackle the main challenges in phone
acoustic modelling for young child speech with limited data and improve understanding of strengths
and weaknesses of a wide selection of model architectures in this domain. We find that transfer learn-
ing techniques are highly efficient on end-to-end architectures for adult-to-child adaptation with a
small amount of child speech data. Through transfer learning, a Transformer model complemented
with a Connectionist Temporal Classification (CTC) objective function, reaches a phone error rate of
28.1%, outperforming a state-of-the-art DNN-HMM model by 6.6% relative, as well as other end-to-
end architectures by more than 8.5% relative. An analysis of the models’ performance on two specific
reading tasks (isolated words and sentences) is provided, showing the influence of the utterance length
on attention-based and CTC-based models. The Transformer+CTC model displays an ability to bet-
ter detect reading mistakes made by children, which can be attributed to the CTC objective function
effectively constraining the attention mechanisms to be monotonic.

1. Introduction
Speech recognition systems, enabled by the advent of

high computational capacities, are nowadays widely used in
various applications: human-machine interaction, home as-
sistantship, education, tutoring, entertainment. Being more
and more exposed to numerical technologies, children are
becoming an important part of the public using these sys-
tems. However, although the speech recognition accuracy
is approaching perfection on adult speech, the performance
on child speech is far from it (Potamianos and Narayanan,
2003; Shivakumar and Georgiou, 2020). Tackling the chal-
lenges brought by child speech for speech recognition thus
becomes essential to level up global accuracy levels.

Numerous research projects have been conducted on the
differences between adult and child speech (Potamianos and
Narayanan, 2007; Mugitani and Hiroya, 2012; Lee et al.,
1999; Gerosa et al., 2006). They have shown important
acoustic, linguistic and prosodic variability in child speech.
Acoustic variability is caused by developmental changes in
the early years of life, in particular in the speech produc-
tion apparatus. The small size of the vocal tract induces
shifted fundamental and formant frequencies in high fre-
quencies, slowly transferring to lower frequencies during
growth and reaching adult level around 15 years old (Mugi-
tani and Hiroya, 2012). This evolution causes high inter-
speaker variability across age groups. Research shows high
intra-speaker acoustic variability in the spectral domain, par-
ticularly for young children, due to the stabilisation of pitch
control occurring only around age 8 (Lee et al., 1999). Lin-
guistic and pronunciation variabilities can be attributed to
the slow development of articulatory mechanisms, which
are not fully developed at ages 5-7. Bad positioning of the
tongue and lips can also cause phonological errors among

young children, which show to disappear with age (Fringi
et al., 2015). Finally, prosodic variability is caused by de-
veloping and limited knowledge of the language: prosodic
events, such as lower duration of phones, false starts, hesi-
tations and breathing have been found more frequently from
8 to 10-year-old children’s speech in comparison with older
age groups (Potamianos and Narayanan, 1998).

A common application of speech recognition for children
has educational purposes: reading tutors. Learning to read
is indeed a challenge for young children, whomight need ex-
tra help to master it. Several projects have been implemented
over the years (Mostow and Aist, 2001; Bolaños et al., 2011;
Proença, 2018; Godde et al., 2017), applied to different lan-
guages, age groups and reading tasks. Lalilo1 provides an
online reading assistant for 5-8-year-old children, featuring
reading aloud exercises where children record themselves
reading and get feedback on their reading. It aims at enabling
extra practice in reading aloud, which is often not allowed a
lot of time in class because of practical issues, while provid-
ing feedback and support in areas of difficulty for the stu-
dent. Speech recognition for children learning to read is an
arduous task: non-proficient readers’ speech contains many
disfluencies and readingmistakes that can be laborious to de-
tect automatically. The usage of reading assistants in class-
room environments adds up difficulties due to the common
presence of babble noise on the recordings, sometimes con-
cealing the target student’s speech.

2. Related works
Prior studies on ASR for child speech have shown that

the performance is below that of the latest systems ded-
icated to adult speech (Potamianos and Narayanan, 2003;

1https://www.lalilo.com/
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Shivakumar and Georgiou, 2020). ASR for child speech is
a relatively recent research domain, that has expanded with
the creation of dedicated events, for instance, the Workshop
on Child Computer Interaction (WOCCI)2 and the Child
Speech Recognition Challenge organised during the IEEE
Spoken Language Technology Workshop (Yu et al., 2020).
A study on grade-specific ASR performance shows signifi-
cant gaps of word error rate (WER): 26.9%, 14.6%, 10.5%
and 5.1% among children of age 5, 6, 7 and 8+, confirming
that the younger the children, the lower the accuracy (Ye-
ung and Alwan, 2018). The same study shows promising
results by training children-specific and even grade-specific
ASR models, as long as sufficient data are available to learn
despite the important acoustic variability in child speech.

Due to limited available children data in most languages,
deep neural network-based systems only recently started to
be exploited. Serizel and Giuliani (2014) train a hybrid Deep
Neural Network - HiddenMarkovModel (DNN-HMM) sys-
tem on adult and children mixed data, that serves as ini-
tialisation to train a children-adapted model with only child
speech. An amount of seven hours of child speech train-
ing data, ages 7-13, enables them to reach a 12.4% phone
error rate. For a children language learner application, Met-
allinou and Cheng (2014) present a DNN-HMM that, even
trained on less data, surpasses Gaussian Mixture Model -
Hidden Markov Model (GMM-HMM) systems. Their best-
performing model reaches a 19.3% WER with 430 hours of
child speech training data. Shivakumar and Georgiou (2020)
provide valuable insights on acoustic modelling for child
speech recognition with DNN-HMM, by training models on
adult speech, then adapting them with a dataset of 91 hours
of 6-14-year-old children’s speech, reaching a 17.8% WER.
They also carry a deep analysis of the influence of several
parameters such as the age of the speakers and the quantity
of child data.

End-to-end architectures have shown to equal (or outper-
form) hybrid architectures on a broad range of ASR datasets
(Karita et al., 2019b). Their major advantage is to dis-
card the need for pre-segmenting training data and post-
processing outputs, directly predicting the final label se-
quence, which considerably simplifies the process of decod-
ing utterances. This unification of the whole training process
in a single step prevents potential behavioural mismatches
between modules that have been trained separately. In the
same objective of simplicity, end-to-end systems mostly act
at the character level, since it eliminates the process of con-
verting the word-level transcriptions into phones, thus the
need for a pronunciation dictionary. A first step towards
end-to-end ASR was made by Graves et al. (2006) with
the Connectionist Temporal Classification (CTC) objective
function, used with success with a model based on recur-
rent neural networks (RNN) on the TIMIT phone recognition
task. Sequence-to-sequence (seq2seq) architectures were
then presented, with encoder-decoder structures (Sutskever
et al., 2014; Chorowski et al., 2014, 2015; Lu et al., 2015;
Chiu et al., 2018). The Listen, Attend and Spell (LAS) ar-

2https://sites.google.com/view/wocci

chitecture (Chan et al., 2016) put forward innovative meth-
ods, using an attention mechanism to link the encoder and
decoder modules, based on RNNs, and bypass the condi-
tional independence assumption made by the CTC. Trans-
former architectures (Vaswani et al., 2017; Dong et al., 2018)
made the most of attention mechanisms by replacing the
RNNs usually contained in both encoder and decoder with
multi-head self-attention modules, enabling better versatil-
ity and faster computing. All seq2seq architectures (LAS,
Transformer...) can also be trained with a combination of
cross-entropy (CE) and CTC objective functions, as pre-
sented in Watanabe et al. (2017) and Karita et al. (2019a).
This method aims at constraining the attention to be more
monotonic, as well as helping the system to converge faster.
A recent study demonstrated the superior ASR performance
of the Transformer trained with CE+CTC objectives on di-
verse individual corpora and multilingual tasks, in compar-
ison with LAS-like and hybrid DNN-HMM models (Karita
et al., 2019b).

Due to the limited available child speech data, very few
studies present child speech recognition with end-to-end
models. Methods though exist, like Transfer Learning (TL)
that consists of training an acoustic model on a large out-of-
domain dataset, then retraining it with a small in-domain cor-
pus to retain part of the acquired knowledge and adapt it to
the application domain. It showed significant performance
improvement with hybrid DNN-HMM approaches for adult-
to-children transferring applications (Shivakumar and Geor-
giou, 2020; Tong et al., 2017a; Qian et al., 2016). TL was
also used on end-to-end architectures for low resource lan-
guages (Cho et al., 2018; Tong et al., 2017b).

As for end-to-end models for child ASR, Andrew et al.
(2015) show improvement on child speech with a CTC-
based system jointly trained on very large quantities of
mixed adult and child speech data. Usage of seq2seq mod-
els for child speech recognition is a new research subject,
as show the extremely recent communication of technical
reports on this matter (Ng et al., 2020; Chen et al., 2020).
Both studies use the same dataset, containing 59 hours of
Mandarin speech from 7 to 11-year-old children. The for-
mer uses transfer learning for adult-to-child adaptation and
reports a 23.6% character error rate (CER) with a CE+CTC
multi-objective RNN-based seq2seq model. On the other
hand, the latter mixes adult and child speech and announces
18.8% CER with a convolutional-augmented Transformer
model and data augmentation techniques. An even more re-
cent study reports a comparison of diverse end-to-end sys-
tems for automatic child speech recognition, but they use a
substantial amount of data (223 hours) from children that
are quite older (9-11 years old) than in our study, and fo-
cus on conversational speech over read speech (Shivakumar
and Narayanan, 2021). They obtain a 9.2% CER and 16.0%
WER on matched test data with a self-attention-based en-
coder trained with a CTC objective function. On test data
with a wider age range (6-16), they obtain a 33.6% WER
with a Time-Depth Separable Convolution Network, with
significant performance degradation for 5-8 years old chil-
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dren due to acoustic differences across ages and higher intra-
speaker variability in young children’s speech. While these
recent works do character recognition, as end-to-end sys-
tems were designed for, in this work we stick to modelling
phones instead, in agreement with our final application: pro-
nunciation assessment of children learning to read. Further-
more, these studies lack a detailed evaluation of the strengths
andweaknesses of seq2seqmodels in comparison with state-
of-the-art hybrid DNN-HMM approaches, when applied to
child speech in a low-resource scenario.

Our work attempts to furnish valuable insights in this
new research domain. We apply a wide catalogue of end-
to-end ASR systems to child speech, to:

• Compare recent end-to-end models (RNN, LAS,
Transformer) to a baseline hybrid DNN-HMMmodel
for phone recognition;

• Show the efficiency of transfer learning on end-to-end
models for adult-to-child adaptation, even with very
low amounts of child data;

• Analyse the influence of different components of end-
to-end architectures, such as the attention mechanism
or the connectionist temporal classification (CTC) ob-
jective function, on the performance;

• Evaluate the models on different reading tasks: iso-
lated words and sentences;

• Assess the impact of CE+CTC multi-objective train-
ing for evaluation of utterances containing reading
mistakes;

This article is organised as follows. Section 3 presents
the adult and child speech material used in this study, and
offers a detailed description of young readers’ typical mis-
takes. Section 4 provides comprehensive explanation of our
transfer learning strategy. Section 5 presents the acoustic
models that we apply to child speech in this paper: the base-
line, a hybrid DNN-HMM model, as well as several end-to-
end models. Section 6 shows the validation of our models
on adult speech, and studies the results obtained on child
speech. Finally, section 7 offers analyses that provide fur-
ther insights on end-to-end acoustic models’ behaviour when
confronted with different reading tasks and reading levels.

3. Speech material
We use two datasets of French speech: the Common

Voice adult corpus3, and an in-house child speech corpus,
hereinafter called Lalilo. Tables 1 and 2 display general in-
formation on these data.
3.1. Adult dataset: Common Voice

The Common Voice corpus is created through a partic-
ipatory online platform, where everyone can record himself

3Corpus available at: https://voice.mozilla.org/fr

Table 1
Information on Common Voice (CV) adult speech dataset

Dataset Train Valid Test

Duration (h) 148.9 2.4 7.2
Speakers 1276 372 1113
Avg time 420.1 23.5 23.4per spk (s)
SNR (dB)
Mean 34.4 34.3 34.3
Std 14.7 14.5 14.7

reading sentences. Being composed of recordings with dif-
ferent equipment in different environments, it is thus par-
ticularly adapted to our reading speech task in classrooms.
Nonetheless, since speakers usually record themselves alone
in their computer room, the data does not contain babble
noise and has a high mean signal-to-noise ratio (SNR). In
French, the Train, Valid and Test sets we used for these ex-
periments contain respectively 148.9, 2.4 and 7.2 hours of
speech (see Table 1). The Test set has been designed to max-
imise the number of distinct speakers while keeping the same
average time per speaker as in the Valid set. Each recording
is validated by two annotators, thereby the corpus contains
a limited quantity of miscues.
3.2. Child dataset: Lalilo

The Lalilo corpus contains recordings of Kindergarten
to second-grade children, aged 5-8, reading aloud isolated
words and sentences. These two tasks are commonly given
by teachers to beginning readers, according to their reading
level. Detailed information is displayed in Table 2. The
recordings have been gathered either in person directly in
schools or through a reading-aloud exercise in the Lalilo web
platform. In the first case, the environmental conditions are
somewhat clean: a good-quality microphone is used, and the
noise level is controlled. In the second case, however, teach-
ers usually let a small group of students play on the platform,
with reduced supervision, which inevitably implies a highly
variable level of babble noise on the recordings. Because
schools do not always benefit from headsets, computer built-
in microphones are sometimes used, which record a wide
range of ambient noise. Table 2 displays the mean SNR for
each train and test sets and shows that the Lalilo corpus con-
tains more noise than the Common Voice corpus (see Table
1).

The training set contains sentences and isolated words,
with an equal proportion of isolated words and words from
sentences. Similarly, we use a validation set that contains
both isolated words and sentences. The reading assistant of-
fers children to read either isolated words or sentences, ac-
cording to their reading level, thus we constructed a test set
that can be split in two, each corresponding to one task. They
are named Test W (for words) and Test S (for sentences) in
Table 2.

Phonetically transcribing with exactitude what has been
read by non-reader children is a challenging task, due to ar-

Lucile Gelin et al.: Preprint submitted to Elsevier Page 3 of 17
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Table 2
Information on Lalilo child speech dataset. The "Test W"
and "Test S" respectively designate the isolated words and
sentences test sets. The "% correct read" designates the per-
centage of phones belonging to an utterance that contains no
reading mistake.

Dataset Train Valid Test Test W Test S

Duration (h) 13.0 0.41 1.32 0.84 0.48
Speakers 3014 459 685 425 262
Avg time 15.2 3.2 6.9 7.0 6.7per spk (s)
% correct read 100 100 57.6 48.5 64.0
SNR (dB)
Mean 20.9 20.1 20.6 22.2 22.8
Std 13.1 12.7 12.6 13.2 12.1

ticulation mechanisms in the process of being acquired, po-
tential hesitations and stammering, or even the presence of
acoustically non-existing phones. Although it is not an im-
possible task, it is very time-consuming and costly, and we
have chosen not to invest in phone-level transcriptions for
the whole corpus at the moment. Accordingly, only cor-
rectly pronounced and fluently read utterances that are iden-
tical to the prompted text, were included in the training and
validation data for both the acoustic and language models.
Only the test data, containingwords and sentenceswith read-
ing mistakes, has been phonetically transcribed to enable the
computation of performance scores. The transcriptions have
been made manually by two human judges, and recordings
have been discarded in case of disagreement.
3.3. Reading learners’ speech

Reading learners have heterogeneous reading levels, ac-
cording to their age, grade, time spent reading and other fac-
tors. Their speech hence contains a wide variety of reading
rates and amount of reading mistakes.

Students’ reading rates are measured by teachers with a
Word Correct Per Minute (WCPM), i.e. the number of cor-
rectly read words in a minute interval. They compare this
score to national standards to assess their students’ progres-
sion. Very slow and very fast readings can severely damage
the recognition by causing insertions and deletions.

Mistakes done by reading learning children are diverse
and sometimes unique, which makes the manual annotation
of data quite difficult for human experts, and can cause all
the more confusion for an ASR system. Reading mistakes
can be categorised into two main categories, word-level and
sentence-level, then into several subcategories. Understand-
ing the different types of reading mistakes can help analyse
the system’s behaviour when encountering these.

Reading mistakes at the word level can usually enter in
one (or both) of the following categories:

• Hesitation: presence of intra-word silence(s) due to
the child hesitating when reading;

• Substitution: a phone is substituted by another.

Example: cat is read cut;
• Insertion: a phone is inserted inside a word.

Example: cat is read cart;
• Deletion: a phone is deleted from a word.

Example: cat is read at.
For substitutions, insertions and deletions, the resulting

word can either exist or not.
Reading mistakes can also occur at the sentence level,

like repetitions of one or several words, false starts (the child
attempts to read the word but the word is not read entirely),
or hesitations between words.

Word-level mistakes are more difficult to detect (for both
humans and machines) than sentence-level mistakes, as they
usually concern one or two phones: in particular, substitu-
tions and insertions of phones are easy tomiss. Furthermore,
the data we gathered comes from the Lalilo reading assistant
that adapts the difficulty of exercises to each child’s read-
ing level: children who were asked to read isolated words
were more susceptible to having a lower global reading level
than children who had to read sentences, causing the isolated
word recordings to contain very laborious readings. The
Lalilo Test W set thus offers a particularly arduous task.

A word is considered as erroneously read when it con-
tains at least one of the reading mistakes listed above. A sen-
tence is considered as such when it contains at least one erro-
neous word or a sentence-level reading mistake. Table 2 dis-
plays the percentage of phones included in correctly-read ut-
terances in Lalilo Test W and S sets: respectively 48.5% and
64.0% of phones belong to utterances that contain no read-
ing mistake. These percentages are in agreement with the
recordings gathered on the Lalilo platform: children reading
at lower levels are given words to read, thus more than half
of isolated words contain a reading mistake, while more ad-
vanced students are giving sentences to read and statistically
make fewer reading mistakes.

4. Tackling the low-resource configuration
Transfer learning (TL) can be done on many ASR appli-

cations, such as adaptation between languages (Abad et al.,
2020; Tong et al., 2017b; Cho et al., 2018), between differ-
ent speech types, such as broadcast news and conversational
speech in Abad et al. (2020), or between native and non-
native speech (Duan et al., 2020). According to the appli-
cation, the available quantity of target data, or the similarity
between the source and target domains, it will be applied
differently. In our case, adult-to-child adaptation, the source
model is a model trained on adult speech, while the adap-
tation data is child speech data. This particular adaptation
is very sensitive to the amount of target data and the target
children’s age, since their vocal apparatus and speech qual-
ity are so different than adults, and vary greatly during chil-
dren’s growth (Shivakumar and Georgiou, 2020). We follow
the findings of Shivakumar and Georgiou (2020): overall,
they find that the best adaptation configuration is either to
adapt the whole network or to adapt two layers at the bottom
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and two layers at the top, both strategies obtaining the same
score. However, for young (6-8 years old) children, they
show that the high complexity and variability in acoustic and
prosodic characteristics of their speech necessitate more pa-
rameters (hence layers) to be fully captured, suggesting that
the first option should be chosen. A minimum amount of
adaptation data is nevertheless required (~10 hours): below,
adapting the whole network would hurt performance due to
noise introduced by high variability. When sufficient adap-
tation data are provided, the network is able to learn young
child speech variability. In these conditions, adapting all the
layers of the model performs better than only some layers.
Our training child corpus containing approximately 13 hours
of speech from very young children (5-8 years old), we fol-
low the advice and choose to apply transfer learning by re-
training all the layers of the sourcemodel in our experiments.

For each acoustic model architecture presented in the
next section, we trained a model on adult speech to serve
as a source model, then used TL to adapt this model with
our child speech data.

5. Phone-level acoustic models
This study aims at comparing the performance of state-

of-the-art end-to-end and baseline hybrid DNN-HMM ASR
systems when applied to the challenging task that is child
speech recognition at the phone level, with a low quantity of
data and a noisy environment. This section will present the
different acoustic models that we review in this work. We
will train, with each architecture, two separate models:

• Adult model, trained on Common Voice data with al-
most 150 hours;

• TL model, using the adult model and adapting it with
Lalilo child speech data (~13 hours).

5.1. TDNNF-HMM: the baseline
Acoustic models for speech recognition were originally

built from a Hidden Markov Model (HMM), linked to either
a single Gaussian distribution or a more refined Gaussian
Mixture Model (GMM). The latter models the state-output
distribution in an unsymmetrical and multi-modal manner,
in opposition to the former, enabling the accurate modelling
of speaker, accent or gender differences in speech (Gales
and Young, 2008). With the advent of deep neural net-
works (DNN), the GMM-HMM models were progressively
replaced by hybrid DNN-HMM acoustic model architec-
tures. This change of paradigm introduces a slight change
in probability computing: while GMM directly provide the
posterior probability P (xt|s) of an observation x at time
t given a state s, used by the HMM, the DNN computes
P (s|xt), from which P (xt|s) can be computed with Bayes’
rule. Although GMM-HMM models are not anymore used
for acoustic modelling, they keep the purpose of generating
the alignments on which DNN-HMM models are trained.

Time-Delay Neural Networks (TDNN), introduced for
phone recognition by Waibel et al. (1989), showed to be

particularly adapted for ASR, with their ability to represent
relationships between acoustic events in time while provid-
ing time-invariance of the features learnt by the network. It
introduces delays in the weighted sum of inputs which, in
practice, are implemented as spatially expanded units over a
certain number of frames. Context width varies depending
on the layers: bottom layers learn short duration acoustic-
phonetic characteristics, while top layers learn more com-
plex features of longer duration. For instance, TDNNs have
been used with success for vowel recognition on children’s
speech in a small-resource language (Yong and Ting, 2011).

We use as a baseline a Factorised Time-Delay Neural
Network (TDNNF) (Povey et al., 2018), a refinement of
TDNN models, with a Lattice-Free Maximum Mutual In-
formation (LF-MMI) criterion (Povey et al., 2016). These
models are currently state-of-the-art in speech recognition
and have shown to reach an 11.7%WER on 55 hours of child
speech data (Wu et al., 2019).

We use the Kaldi toolkit (Povey et al., 2011) to train our
TDNNF acoustic models, which follow available recipes4,5.
A 3-state GMM-HMM monophone model provides align-
ments to train the TDNNF: it gave better results than us-
ing triphone GMMmodels, due to a small number of occur-
rences of each triphone in the child speech training dataset,
as well as the presence of non-existing phones (reading mis-
takes) in the testing set. The network has a chain model ar-
chitecture (Povey et al., 2016), and is trained with the LF-
MMI criterion, similarly to Veselý et al. (2013). The net-
work contains 12 TDNNF layers of dimension 1024 as hid-
den layers, each comprised of one TDNN layer of dimen-
sion 1024 and two bottleneck layers of dimension 128. A
smaller number of layers led to worse results, both on adult
and child speech. The input features are 40-dimensional
Mel-frequency cepstral coefficients (MFCC) with Cepstral
Mean and Variance Normalisation (CMVN), as do Bayerl
and Riedhammer (2019), as well as classical Kaldi recipes.
Chain models operate a 3-frame sub-sampling for compu-
tation acceleration, which additionally enables to perform
frame-shifting data augmentation. Adult and TL models are
trained on 990 and 89 epochs respectively, both with a learn-
ing rate of 5e-4 and a l2 regularisation rate of 1e-2. The adultand TL models have a size of 7.6M parameters, and respec-
tively took 46 and 2.1 hours to train on a single GTX 2080
Ti GPU.
5.2. End-to-end systems

Hybrid approaches have made possible the use of recur-
rent neural networks –which are highly efficient for mod-
elling time series (Graves et al., 2013)– for sequence la-
belling, by combining them with HMMs that provide pre-
segmentation of the input sequence for training and post-
transformation into the output label sequence. However,
the training process of DNN-HMM models is quite com-
plex, with the need of generating alignments of each speech
utterance and then using lattices to infer a label sequence.

4https://colibris.link/script-TDNNF
5https://colibris.link/script-TDNNF-TL
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Furthermore, its functioning relies on several parts (acous-
tic model, language model, pronunciation model), which are
trained independently with different objectives, causing be-
havioural mismatches between components.

End-to-end architectures aim at simplifying and unifying
the training process of a speech recognition system, by en-
compassing all components into a single neural network. In
this objective, end-to-endmodels are usually trained on char-
acters, which can be directly derived from words, instead of
phones that can only be obtained with a pronunciation dic-
tionary. In this work, we will stick with phones, since it suits
better for modelling the grapheme-phoneme correspondence
that children learn when starting reading.

Given a sequence of input speech features X =
(x1, ..., xT ), and the corresponding phone-label output se-
quence Y = (y1, ..., yN ), with T the number of frames in the
speech utterance andN the length of the phone sequence, the
objective is to learn the conditional probability of yi givenprevious outputs y<i and input X:

P (Y |X) =
N
∏

i=1
P (yi|X, y<i) (1)

During the inference process, these probabilities are
computed from the input test audio frames and the previ-
ously predicted phones (not having access to the reference
output phones). A beam search algorithm is then applied,
with a beam size of 5 and a maximum hypothesis length of
30 phone labels for the Lalilo word set, and 130 for the Lalilo
sentence set and the adult set. No language model is used, as
we found that it tends to reconstruct existing words and cover
up children’s reading mistakes, while we aim at detecting as
accurately as possible the phones uttered by children, may
they form existing words or not.

Among the existing end-to-end systems, two paradigms
stand out in the literature: the CTC-based and the seq2seq ar-
chitectures. Different methods have been implemented with
the latter, using recurrent neural networks and/or attention
mechanisms. Combinations of the two paradigms have also
shown great performance. The following sections present
the different end-to-end architectures we explored and ap-
plied to child speech recognition.
5.2.1. RNN-CTC model

The CTC paradigm, introduced by Graves et al. (2006),
discards the obligation of having an HMM by learning au-
tomatically alignments between the input and output se-
quences. In phone recognition applications, it aligns the
speech frames X = (x1, ..., xT ) and their phone sequence
Y = (y1, .., yN ), with the condition that N ≤ T , where T
and N are respectively the number of frames in the speech
utterance and the length of the phone sequence. The length
difference between T and N is coped with the addition of
a "blank" label, represented by "-", which activation cor-
responds to the probability of observing no label. During
alignment, the system learns a set of possible paths that are
phone-label sequences of length T and which probability is
the product of all probabilities ptk of observing a label k at

time t. Considering a phone-label sequence Y , it can be ob-
tained through a set �Y of paths �, the total probability of Y
being defined as follows:

P (Y |X) =
∑

�∈�Y

T
∏

t=1
pt�t (2)

CTC-based networks are trained with gradient descent
and the maximum likelihood function, which maximises
the log probabilities of the target labels. The probability
P (L|X1,...T ) of each individual labellingL is computed with
the CTC forward-backward algorithm, which divides the
sum over T -long paths �1,...,T ∈ �L1,...,T

into an iterative sum
over t-long paths �1,...,t ∈ �L1,...,t

. The iterations are then
dynamically computed with forward and backward propa-
gation, which makes possible the computation of the many
possible paths.

We use, in this work, an end-to-end CTC architecture,
named RNN-CTC and shown in Figure 1, which is com-
posed of a simple encoder with recurrent neural networks.
The input features are 40-dimensional MFCC with CMVN,
as do Bayerl and Riedhammer (2019). The RNNs are com-
posed of Bidirectional Gated Recurrent Unit layers (BiGRU)
(Chung et al., 2015). They contain one Bi-GRU input layer
with 120 cells, then four Bi-GRU hidden layers with 2×160
cells in each layer, and finally a linear output layer of dimen-
sion 34, corresponding to 33 French phones and the CTC
blank label. For an increased speed and better concentra-
tion of information, we reduced the time resolution of the
input by concatenating pairs of consecutive input frames.
On the output of each hidden layer is applied a 10% dropout
rate. The output layer uses the log-softmax activation func-
tion. Models were trained on up to 100 epochs, with an early
stopping mechanism linked to the validation loss. Training
was done with the Adam optimizer. A grid search on the
hyper-parameters was done. The adult RNN-CTC models
were trained with a batch size of 100 and a 9e-5 learning
rate. TL models were trained with a batch size of 50 and a
1e-4 learning rate. We used a learning rate scheduler that
divided by 10 the learning rate after 2 epochs with no im-
provement in the validation loss. The adult and TL models
took an average of 24.3 and 4 hours to train on a single GTX
2080 Ti GPU. They each contain a total of 2.1M trainable
parameters.
5.2.2. Seq2seq LAS model

At first presented for machine translation tasks, where an
input sequence of words in a language needs to be translated
to an output sequence of words in another language, seq2seq
architectures aim at addressing the problem of performing
sequence labelling with variable-length input and output se-
quences without relying on HMMs like in hybrid DNN-
HMM approaches (Sutskever et al., 2014). This framework
has shown to be generalisable to many applications: image
captioning (Vinyals et al., 2015; Xu et al., 2015), conver-
sational modelling (Vinyals and Le, 2015), and, of course,
acoustic modelling for speech recognition. ASR tasks are
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Figure 1: Architecture of the RNN-CTC model

characterised by long input sequences (speech frames) in
comparison with other tasks. Unlike CTC-based models,
seq2seq models do not assume that the label outputs are con-
ditionally independent of each other, which enables greater
freedom but can also cause more frequent confusions.

Seq2seq models are usually composed of an encoder that
extracts information from the audio input and maps it into
a variable-length vector, and a decoder that takes this vec-
tor and generates an output sequence of tokens (characters,
phones or any other speech units), one at a time. The use
of an attention mechanism (Bahdanau et al., 2015), which
searches through the encoder output to locate parts of the se-
quence that are valuable for predicting target tokens, greatly
improves the performance. This mechanism generates at
each decoder step an attention vector, which conveys some
context information from the encoder to the decoder.

Figure 2: Architecture of the LAS and LAS+CTC models

One of the seq2seq models used in this paper is sim-

ilar to a LAS architecture, recently introduced by Chan
et al. (2016). Although our architecture, shown in Figure 2,
slightly differs from the initial one, we will in the next sec-
tions borrow the name "LAS" for our systems.

The input features to the encoder are 40-dimensional fil-
terbanks with first and second derivatives. We use identical
inputs for LAS and LAS+CTC models, following Watan-
abe et al. (2017). The encoder contains three layers of bidi-
rectional Long-Short TermMemory (bLSTM) layers, which
output a matrixH = (ℎ1, ..., ℎU ), where each ℎ has a dimen-
sion 256 and U corresponds to the number of audio frames.
A dropout rate of 0.2 is applied to the encoder layers. The
decoder takes as input, at each step i, the 512-dimension em-
beddings of the label output yi, and passes them through a
LSTM layer that outputs a state s(1)i following Equation 3.
A second LSTM layer outputs a state s(2)i from the output of
the previous layer s(1)i and the previous state of the current
layer s(2)i−1 (see Equation 3).

s(1)i = bLSTM(s(1)i−1, yi−1, ci−1)

s(2)i = bLSTM(s(1)i , s
(2)
i−1)

(3)

The ci component is the context vector of dimension 512,
computed by the attention mechanism from the current state
s(2)i and the encoder outputH with Equation 4. We use here
a simple dot-product attention mechanism, which considers
the decoder state s(2)i as the query, and the encoder outputH
as both the keys and values.

ci = DotProductAttention(s(2)i ,H)

= Softmax(s(2)i HT )H
(4)

Finally, a Multi-Layer Perceptron (MLP), composed of
two linear layers (size 512) separated by a tanh activation
layer, provides the probability p(yi|X, y<i) of equation 1,
taking as input the decoder state s(2)i and the attention con-
text ci:

p(yi|X, y<i) = MLP(si, ci) (5)
Our LAS models are trained with the Adam optimizer,

using l2 regularisation at a rate of 1e-5, and a learning rate
of 1e-4, the latter being halved after each epoch the vali-
dation loss did not improve. Scheduled sampling (Bengio
et al., 2015) is used to train the LAS models. This method,
which consists of feeding the decoder either the reference
label or the lastly predicted label, aims at helping the model
converge faster and providing more robustness to inference
mistakes. The system chooses to input the lastly predicted
label instead of the reference label with a fixed probability
of 10%. All models are trained on 50 epochs, where only the
best-validated model is kept. The adult and TL models take
an average of 50.7 and 3.9 hours to train on a single GTX
2080 Ti GPU. The final models each contain a total of 7.6M
parameters.
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5.2.3. Seq2seq LAS+CTC model
The simple attention mechanism used in the LAS is

too flexible for ASR tasks, because it allows non-sequential
alignments, while speech recognition inputs and outputs are
generally sequential (Watanabe et al., 2017). Another char-
acteristic of speech recognition is that the input and out-
put sequences can vary greatly in length, especially with
reading learners with different reading levels, which makes
the alignments more difficult to track. Since CTC enables
to compute constrained monotonic alignments, it was pro-
posed by Watanabe et al. (2017) to combine both paradigms
into a hybrid CTC/attention-based system. During training,
a CE+CTC multi-objective learning method combines the
two losses. Two outputs, one from the encoder CTC and the
other from the attention-based decoder, can generate output
sequences.

The CTC-attention hybrid models follow the same ar-
chitecture and use the same hyper-parameters as the LAS
models described in the previous section. It also uses the
same input features, filterbanks of dimension 40, with first
and second derivatives, as doWatanabe et al. (2017). Sched-
uled sampling is applied with a 10% rate. The CTC loss is
combined with the attention loss following Equation 6, with
� = 0.2. Other values of � (0.5, 0.8) gave worse results, as
found by Watanabe et al. (2017).

loss = � × lossCTC + (1 − �) × lossCE (6)
The attention-based decoder and encoder CTC outputs

are taken separately to generate two sets of hypothesised la-
bel sequences. Two scores will thus be presented for the
LAS+CTC model, which will be denoted as LAS+CTC enc
and LAS+CTC dec for the encoder CTC and attention-based
decoder outputs, respectively.
5.2.4. Seq2seq Transformer model

Presented by Vaswani et al. (2017) and adapted to speech
recognition by Dong et al. (2018), the Transformer model
follows a Seq2seq encoder-decoder architecture, but relies
solely on attention mechanisms, instead of recurrent neural
networks in classical Seq2seq systems. The recurrence, es-
sential to extract position information in speech frames, is
replaced by positional encodings concatenated to the input
encodings, as well as multi-head self-attention mechanisms
and position-wise feed-forward neural networks in the en-
coder and decoder blocks. Discarding the need for recurrent
neural networks enables to compute dependencies between
each pair of positions at once, instead of one by one. It al-
lows for faster training and more parallelisation in compari-
son with LAS systems presented in previous sections.

Figure 3 presents the architecture of our Transformer,
with the optional CTC module (see section 5.2.5).

The Transformer models’ encoder takes as input the au-
dio sequenceX = (x1, ..., xT ), where xi is a 80-dimensional
filterbank vector. The inputs are processed with linear and
normalisation layers of size dmodel = 256. Positional en-
codings give information about the relative position of the
tokens in the sequences, replacing the recurrence or convo-

Figure 3: Architecture of the Transformer and Trans-
former+CTC models

lution used in classical models. These encodings have the
same dimension (256) as input/output embeddings to ease
the summation between the two vectors. As in literature
(Vaswani et al., 2017; Dong et al., 2018; Karita et al., 2019b),
we use sinusoidal positional encodings, defined as:

PosEnc(pos,2i) = sin(pos∕100002i∕dmodel )

PosEnc(pos,2i+1) = cos(pos∕100002i∕dmodel )
(7)

where pos is the audio frame or label position, and i the i-th
dimension of the positional encodings, with 0 ≤ i < dmodel.The encoder contains six layers, each layer being com-
posed of two sub-layers: a multi-head self-attention module,
and a position-wise feed-forward fully connected neural net-
work module. Each of these modules is followed by a nor-
malisation layer with residual connection (He et al., 2016).
The first sub-layer contains a multi-head scaled dot-product
attention (Vaswani et al., 2017), which relates different posi-
tions of inputs to create more valuable representations. Each
of the i ∈ {1..ℎ, ℎ = 4} heads follows Eq. 8, where Qi, Kiand Vi represent respectively the i-th linear projection of thequery, keys and values, and dk = 256 is the dimension ofQ,
K and V . The scaling by 1∕

√

dk restrains the dot product
from growing too large when dk is large, which would give
very small gradients with the softmax function. The final
output of this module is a linear projection of the concate-
nation of these 4 heads. The second sub-layer is composed
of a position-wise feed-forward neural network that consists
of two linear layers separated by a ReLU activation and is
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applied to each position separately.
headi = ScaledDotProductAttention(Qi, Ki, Vi)

= Softmax
(

QiKT
i

√

dk

)

Vi
(8)

The inputs of the decoder, which are the reference phone
labels during training, and the previously decoded phone la-
bels during inference, are offset by one position with the
start-of-sequence (<sos>) token, and go through an embed-
ding layer of dimension 256. As for the encoder inputs, posi-
tional encodings are computed and summed to the decoder’s
inputs. Unlike LAS models, which decode token by token,
the Transformer’s decoder takes as input the whole utterance
at the same time, enabling it to parallelise and decode faster.
This characteristic however prevents from using scheduled
sampling as defined by Bengio et al. (2015), where the pre-
viously predicted token is needed to predict the current to-
ken.

The four layers of the decoder each contain three sub-
layers. The first is the same self-attention module as in the
encoder, with the difference that it is masked. This mask,
combined with the offset by one position of the phone-label
embeddings serving as inputs to the decoder, ensures that
for a position i, the predictions depend only on prior i − 1
positions, sole known positions in inference mode. The sec-
ond sub-layer is another multi-head attention module, which
functions as the attention mechanisms in other seq2seq sys-
tems: the encoder stack outputs the keys and values, while
the query is provided by the prior sub-layer of the decoder.
The third sub-layer is a position-wise feed-forward neural
network, which is identical to the second sub-layer of the
encoder.

The decoder output is finally processed through a classi-
fication network composed of a linear projection and a soft-
max operation, which yield the final phone-label sequence.

The Transformer models are trained with the Adam op-
timizer with �1 = 0.9, �2 = 0.98 and � = 1e-9. We use the
same specific learning rate scheduler as Vaswani et al. (2017)
for training, defined in Equation 9, with warmup_steps =
4000.

lr = d−0.5model ⋅min(step−0.5, step ⋅warmup_steps−1.5) (9)
Models are trained on 100 epochs and we score with the

best-validated model. The adult and TL models respectively
take on average 30 and 3 hours to train on a single GTX 2080
Ti GPU. The final model contains a total of 14.3M parame-
ters.
5.2.5. Seq2seq Transformer+CTC model

In the same objective as with the LAS+CTC system, we
can optionally use the CTC objective function to improve the
Transformer model training and inferring processes, as has
been shown by Karita et al. (2019a). In the same way, the
CTC and attention objectives can be combined with Equa-
tion 6.

Table 3
PER (%) obtained with adult-trained acoustic models tested
on adult speech

Model Test CV

TDNNF-HMM (baseline) 23.5

RNN-CTC 16.1
LAS 12.6
LAS+CTC enc 16.7
LAS+CTC dec 11.9
Transformer 7.5
Transformer+CTC enc 11.9
Transformer+CTC dec 8.0

The Transformer+CTC models use the same inputs, fil-
terbanks of dimension 80, as do Karita et al. (2019a,b). The
models were trained with the same process as the Trans-
former, and the combination of objectives worked the best
with � = 0.3 as in Karita et al. (2019a). The adult model
trained during 100 epochs, while 10 epochs were sufficient
to train the TL model, resulting in a very short training time
for the latter (below one hour).

In the same way as the LAS+CTC, the Trans-
former+CTC model has two outputs, one from the encoder
with the CTC function and one from the decoder with the
attention mechanism. These outputs are denoted Trans-
former+CTC enc and Transformer+CTC dec, respectively,
in the following.

6. Evaluation
With the implementation of a phone recognition system

for a reading assistant application, we do not aim at recon-
stituting and correcting words based on the detected phones,
but at transcribing accurately what the child has read, in-
cluding potential phone-level reading mistakes. Therefore,
we do not measure performance with the classical WER but
with a Phone Error Rate (PER). The PER metric considers
all mismatches between the recogniser hypothesis and the
manual phone-level annotated reference, and is defined in
Equation (10), with C , I , S, D respectively referring to the
number of correct detections, insertions, substitutions and
deletions.

PER = I + S +D
C + S +D

(10)

6.1. Comparison of models on adult speech
Adult models were trained with about 150 hours (see Ta-

ble 1). We score their performance with the PER metric on
the Test CV adult speech set, as displayed in Table 3.

We observe that the models’ performances follow their
chronological appearance in the literature: the worse is the
baseline, the TDNNF-HMM model with a PER of 23.5%,
and the best is the Transformer with a PER of 7.5%. In ad-
dition to being simpler to train, end-to-end models all per-
form significantly better than the baseline hybrid TDNNF-
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Table 4
PER (%) obtained with acoustic models without (adult-
trained) and with TL, tested on child speech

Model Without TL With TL

TDNNF-HMM (baseline) 45.9 30.1

RNN-CTC 59.4 32.4
LAS 77.9 33.9
LAS+CTC enc 63.5 32.7
LAS+CTC dec 72.9 30.7
Transformer 76.6 28.5
Transformer+CTC enc 60.0 29.3
Transformer+CTC dec 70.9 28.1

HMM model (from 29% to 68% relative improvement on
the PER). Attentionmechanisms show to be particularly effi-
cient: the LAS, LAS+CTC dec and Transformer+CTC dec
systems give lower PER than the RNN-CTC or the TDNNF-
HMM, and the Transformer, which is solely based on atten-
tion, reaches the lowest PER. The CTC objective function
brings valuable information for training (LAS+CTC dec is
better than LAS) but inferring hypothesis sequences with the
CTC output is not as accurate as using the attention-based
decoder output (LAS+CTC enc is significantly worse than
LAS+CTC dec). We did, however, not succeed in exploiting
the previously shown potential of the CTC objective func-
tion for the Transformer, resulting in a slightly worse perfor-
mance for model Transformer+CTC dec in comparison with
the Transformer. As seen on LAS+CTC models, using the
encoder CTC output of the Transformer+CTC for inferring
sequences does not provide comparable performance with
using the decoder output.
6.2. Comparison of models on child speech

In this section, we test the adult-trained model on child
speech and compare their performance with models trained
with transfer learning. We train TL models from adult mod-
els, so they benefit from the 150 hours of adult speech, as
well as the 13 hours of child speech. Table 4 displays the
PER scores for all architectures when trained only on adult
speech (first column) or adapted with child speech (second
column).

The six systems can also be trained directly on the child
training set to obtain child-adapted acoustic models. While
the TDNNF manages to learn from this small amount of
data, reaching a PER of 32.5%, end-to-end models, which
necessitate a bigger amount of data to correctly learn speech
representations, all obtain PER scores above 50%.
6.2.1. Adult models on child speech

The difference in score for adult models on adult speech
(Table 3) and child speech (Table 4) is drastic: all models
lose on average 51 points of PER. These extreme gaps in
performance may be explained by the acoustic and prosodic
difference between adult and child speech.

Contrary to what has been observed for adult models
when tested on adult speech, the TDNNF-HMM performs

significantly better than its end-to-end counterparts when
tested on child speech: its PER score is doubled, while end-
to-end systems’ scores suffer frommultiplicative factors that
go from 3.8 (LAS+CTC enc) to 10.2 (Transformer). Out
of curiosity we tested the TL models back on adult speech,
and the end-to-end systems performed very badly, suggest-
ing that these mechanisms adapt very specifically to acous-
tic characteristics of data they are trained on. The CTC ob-
jective function helps the attention module during training,
as show the comparisons between LAS and LAS+CTC dec
models, and between Transformer and Transformer+CTC
dec models. Additionally, inferring phone sequences with
the encoder CTC output shows better performance than with
the attention-based decoder output for both LAS and Trans-
former models. Finally, the RNN-CTC model obtains a sig-
nificantly better score than attention-based models. These
observations suggest that attention-based systems necessi-
tate matched training and testing sets, while CTC-based sys-
tems can cope with slight mismatches.
6.2.2. TL models on child speech

At first sight, we observe that TL models perform dras-
tically better than adult-trained models, showing the posi-
tive effect of transfer learning even with a quantity of data
as small as 13 hours. We observe a mean relative gain of
50.9% between scores in the first and second column. TL
models were found to perform better than models trained
solely on child speech. The improvement is already sig-
nificant for the TDNNF (7.3% relative), and is much more
important for end-to-end architectures, since child models
displayed scores above 50%.

The attention-based systems (LAS and Transformers)
benefit the most from the transfer learning, and the most
spectacular improvement can be seen in the Transformer’s
performance, corresponding to a relative reduction of 62.8%
of the PER. Models that do not rely on attention, i.e.
TDNNF-HMM and RNN-CTC, benefit from TL to a lesser
extent (resp. 34.4% and 45.5% relative improvements). The
TLmodels obtain PER scores that are included in a relatively
small range (28% - 34%), which is interesting considering
the very wide range of results for models without TL (45% -
78%). This suggests that independently of the architecture,
and due to the small amount of target data, the efficiency of
transfer learning might reach a limit when confronted with
arduous tasks like speech recognition for children learning
to read.

The attention-based systems, whose attention mechani-
sms trained on adult sentences were not able to adapt to the
diverse utterance lengths and mismatched prosodic charac-
teristics of child speech, show to reach, thanks to the transfer
learning, comparable performance with the non-attention-
based systems. The child speech training data, contain-
ing equal proportions of isolated words and sentences, em-
powers the attention mechanisms to adjust to its specifici-
ties. In this way, the models based on the Transformer ar-
chitecture outperform the TDNNF-HMM baseline with rel-
ative improvements up to 6.6%. The best architecture is
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the Transformer+CTC with the decoder output, reaching
a 28.1% PER. The systems that use RNNs are less effi-
cient than TDNNF-HMM and Transformers, suggesting that
they need more data to gain precision on extracting rele-
vant information in child speech. These results concur with
the global ranking between hybrid DNN-HMM, RNN-based
seq2seq and Transformer architectures presented in Karita
et al. (2019b).

If we focus on the influence of the CTC, we observe the
same patterns for LAS and Transformers architectures, al-
though to various extents. It shows highly useful for training
the LAS+CTC, improving by a relative 9.4% the score of the
LAS+CTC dec model in comparison with the LAS model,
and brings a lower improvement between Transformer and
Transformer+CTC dec models (only 1.4% relative).

7. Discussion
We presented different architectures for acoustic mod-

elling and compared their performance when applied to the
specific case of child speech with limited data. Although
PER scores obtained in the previous section may still seem
high, it is important to note that the child speech recordings
can contain high levels of babble noise, typical in children
environments. The mean SNRs of the Lalilo training, val-
idation and testing sets are 20.9 dB, 20.1 dB and 20.6 dB,
respectively (see Table 2), including recordings with SNR
values down to 0 dB. These values are much lower than
those of the Common Voice dataset (~34.3 dB, see Table 1),
which has been gathered in relatively calm environments.
While the best model obtains a 28.1% PER on all record-
ings, it performs significantly better on clean recordings (i.e.
SNR ≥ 20 dB), reaching a 20.0% PER. The presence of
babble noise on recordings highly impacts the performance:
the best model obtains PER values of 33.0% and 44.8% on
recordings with 10 dB ≤ SNR ≤ 20 dB and recordings with
SNR ≤ 10 dB. Babble noise has a high effect on the model’s
amount of insertions and substitutions, which are doubled,
and of deletions, which are tripled.The robustness of the sys-
tem to babble noise could be improved with data augmenta-
tion and multi-condition training techniques (Gibson et al.,
2018; Airaksinen et al., 2019): it would most certainly im-
prove the global performance by providing additional child
speech data, as well as better training the model to recognise
speech in noise.

In the scope of phone recognition on young readers’
speech, we will in this section further explore the use of
these models for evaluating specific reading tasks, i.e. iso-
lated words and sentences. An analysis of the behaviour of
the Transformer+CTC dec model in the presence of reading
mistakes will also be carried, with a focus on the beneficial
influence of the CE+CTC multi-objective training for de-
tecting common sentence-level reading mistakes.
7.1. Application to specific reading tasks

Children learning to read are typically offered different
reading tasks, based on their reading level or on the skill they

have to improve. We focus here on two reading tasks: iso-
lated words and sentences. Knowing that acoustic model ar-
chitectures might behave differently depending on the length
of the utterance or the number of words, we take an interest
in detailing each architecture’s behaviour on these two tasks.
Figures 4 and 5 display the models’ performance on the child
speech test sets, respectively Test S (sentences) and Test W
(isolated words).

Figure 4: PER (%) of all TL models on Test S (sentences)

On sentences, Transformers obtain far better scores than
the others, outperforming the TDNNF-HMM baseline by
relative improvements from 10.3% to 24.8%. The Trans-
former+CTC dec obtains the lowest score of 21.8%. A clear
tendency can be observed in Fig. 4 for models using multi-
objective CE+CTC training. It shows to bring improve-
ment: the LAS+CTC dec model shows a relative gain of
10.4% over the LAS model, the Transformer+CTC dec of
4.8% over the Transformer model. For both architectures,
the CTC encoder output seems to bring significantly worse
results than the decoder output that relies on attention. This
observation, combined with the poor score of the RNN-CTC
on sentences, shows that the CTC objective on its own has
difficulties for recognising sentences, probably due to high
complexity in the alignment of sentences uttered by reading
learners, i.e. including reading miscues such as repetitions.

Figure 5: PER (%) of all TL models on Test W (isolated
words)
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The scores on isolated words (Test W) are significantly
higher than on sentences, suggesting that the task is quite ar-
duous. This difficulty is most probably brought by the short
length of utterance, as well as the higher proportion of read-
ing mistakes (in Test W, 51.5% of phones belong to an utter-
ance that contains at least one reading mistake, versus 36.0%
in Test S, see Table 2). On isolated words, the baseline hy-
brid TDNNF-HMMarchitecture is far from being outranked,
reaching a PER of 31.7%, which lies 2.3% absolute below the
second-best model. Very clear patterns can be observed in
Figure 5, with well-defined groups of PER. The three mod-
els that use the CTC as output (LAS+CTC enc, RNN-CTC
and Transformer+CTC enc) form a first groupwith PERs be-
tween 34.0% and 34.3%, which correspond to 7.3% to 8.2%
relative degradation in comparison to the baseline. We can
infer from this that the CTC takes over the attention mech-
anisms when the utterances are too short, and manages to
align the phones properly with a very small context. We
then see a second group, which includes the two models that
are trained with the CTC objective and use the decoder out-
put (Transformer+CTC dec and LAS+CTC dec), as well as
the Transformer model. This floor corresponds to 14.2% to
17.4% relative augmentation over the baseline. Contrary to
sentences, the CE+CTC multi-objective training has miti-
gated effect on LAS and Transformer models. While it is
still highly efficient for LAS models (8.6% relative improve-
ments between LAS and LAS+CTC dec models), it slightly
degrades the performance of the Transformer (-1.6% rela-
tive). The worse result is obtained by the LAS model, with
a 24.9% relative augmentation of the PER in comparison
with the baseline. These four models ranking last on iso-
lated words are all using an attention-based decoder to infer
phone sequences. It shows that attention mechanisms have
difficulties inferring labels from very short audio sequences.
This result echoes the results of Chan et al. (2016), where
their error rate significantly rises for 1-word utterances.
7.2. Application to non-proficient readers’ speech

Aiming at phone recognition for young readers, our sys-
temwill inevitably encounter diverse reading rates andmany
reading mistakes and must correctly recognise the uttered
phones, independently from the number of reading mistakes
and the child’s reading level. However, very slow reading
rates and the presence of reading mistakes can severely hurt
the model’s accuracy. In this section, we evaluate the Trans-
former+CTC dec performance when confronted with slow
reading rates and reading mistakes.
7.2.1. Influence of the reading rate

Following teacher practices, we measure the children’s
reading rate with a Word Correct Per Minute (WCPM) met-
ric. It is computed by taking the number of correctly read
words in an utterance and divide it by the time taken to read
that utterance. Computing the WCPM on short utterances,
while it is usually computed on a whole minute of reading
aloud, results in overestimating it, since the child does not
have to breathe, or change line for example. To avoid too im-
portant biases, we compute it only on sentences. We define

three ranges based on national standards6: "slow" readings
have a WCPM below 50 (level expected in first grade, age
6), and "fast" readings a WCPM above 90 (level expected
in third grade, age 8), and "average" readings a WCPM in-
between those values. The Test S has ameanWCPMof 96.7,
with a standard deviation of 47.0.

Figure 6: PER (%) of the TDNNF and Transformer+CTC dec
TL models on Test S as a function of the estimated reading
speed

Figure 6 displays the PER obtained by the TDNNF and
Transformer+CTC dec models on each WCPM range. We
observe that the Transformer+CTC dec model struggles
with slow readings, for which the PER is doubled in com-
parison with fast readings. This can be explained by the dif-
ficulties to recognise slow readers’ speech, containing dis-
fluencies (intra-word pauses, phone extensions...).It could
be partly resolved by including more slow readers’ speech
in the training set, which currently has a mean WCPM of
114.3 (±40.8). The TDNNF seems to be affected by the slow
reading rates to a lesser extent. However, important WCPM
values degrade its performance: it could be due to the 3-
frame sub-sampling of chain hybrid models (Povey et al.,
2016), that could keep the TDNNF from addressing cor-
rectly very short phone durations. Interestingly, we observe
the opposite for the Transformer+CTC dec, which suggests
the high precision of attention mechanisms to extract infor-
mation from fast read speech.
7.2.2. Influence of reading mistakes

Figures 7 and 8 display the evolution of the PER scores
obtained by the Transformer+CTC dec model in function of
the number of reading mistakes contained in the utterances,
for Test W and Test S, respectively. Figure 8 additionally
includes the results of the TDNNF and Transformer models,
which serve as a comparison to study the influence of the
attention mechanisms and the CTC function.

In Test W, we count the number of mistakes at the word-
level, in terms of phones: for example, a word with a substi-
tuted phone is counted as one mistake, a word with a hesita-
tion and an inserted phone belongs in the 2-and-more mis-
takes category, and a false start or a repeated word where the
child pronounces more than two phones is also classified as
2+ mistakes. As indicated in Table 2, 48.5% of phones ut-

6https://colibris.link/national-standards-WCPM
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Figure 7: PER (%) of the Transformer+CTC dec TL model
on Test W as a function of the number of reading mistakes in
the word

Figure 8: PER (%) of the TDNNF, Transformer and Trans-
former+CTC dec TL models on Test S as a function of the
number of reading mistakes in the sentence.

tered in Test W belong in the no-mistake category, while 1
mistake and 2-and-more mistake categories include respec-
tively 26.0% and 25.5% of the phones. In Test S, on the other
hand, we count the number of mistakes at the sentence-level,
in terms of words: each misread word counts as a mistake,
a false start, a repeated word or a word containing a hes-
itation as well. Test S contains 64% of phones belonging
to correctly read utterances (see Table 2), and other cate-
gories contain (in ascending order) 20%, 6.8%, and 9.2% of
the phones uttered in Test S. In Figure 8, the size of the points
is proportional to the number of reference phones in each
category.

We can easily notice the tendency following which the
more reading mistakes are present in the utterance, the more
degraded is the PER, for both isolated words and sentences.
On Test W, the presence of a single reading mistake aug-
ments the PER by 44.4% relative in comparison with cor-
rect readings. More mistakes occurring in a word degrade
the PER to the same significant extent: a relative degrada-
tion of 40.5% is observed between 1 and 2+ mistakes. On
Test S, the evolution of the PER for Transformer and Trans-
former+CTC dec models is also striking: it drastically in-
creases when the utterance contains reading mistake(s). In
comparison, the TDNNF’s scores increase only slightly until
two mistakes per utterance, then more importantly but still

to a lesser extent.
Analysing further the Transformer+CTC dec perfor-

mance, we see that going from correct reading to reading
with one mistake brings a 42.9% relative degradation. The
score for utterances with two mistakes is only slightly higher
than with a single mistake, while it highly augments for
utterances with more than three reading mistakes (78.9%
relative augmentation over category 2-mistakes). These
drastic degradations can be explained by the characteris-
tics of children’s typical reading mistakes (detailed in sec-
tion 3.3). Beginner readers tend to read with a slow speech
rate and prosody: hesitations inter- or intra-word and phones
of longer duration, for instance. These peculiarities can
cause the attention mechanisms to lose focus and miss out
on some phones. Additionally, substitutions of phones can
sometimes give unusual combinations of phones that do not
exist or are rarely present in the language, which the model
is not trained to recognise. The decoder module in particu-
lar acts like a language model that favours known sequences
of phones. Finally, repetitions are usual reading mistakes (in
sentences in particular), as students often start back from the
beginning of the sentence when they have difficulties, and
can cause great confusion. The attention mechanisms risk
in this case to attend the wrong occurrence of the word, or
to consider two occurrences as a single one. This is prob-
lematic in the common case where the child reads a word a
first time with a mistake, then a second time self-correcting,
because the attention could confuse the two occurrences and
miss the mistake.

In the end, while the TDNNF is significantly less ef-
ficient than the Transformer+CTC dec model on correctly
read or slightly erroneous utterances (up to 2 mistakes), it
handles better severe mistakes. This phenomenon can be at-
tributed to the fact that it uses neither attention mechanisms
nor a language model-like decoder module. The Trans-
former+CTC dec model shows to perform better on read-
ing mistakes than the Transformer, suggesting a beneficial
influence of the CTC multi-objective training.

Fig. 9 displays, for an utterance that well represents the
type of reading mistakes a young reader can do, the phone-
level prompted text and actual text read by the child, as
well as the transcriptions obtained with Transformer and
Transformer+CTC dec models. Additionally, it presents the
weights extracted from the attention module that links the
encoder and decoder of the two systems. The spectrogram
of the utterance is also shown for time reference. By compar-
ing the prompted text and the text read by the child, we can
see that the child repeats the first three words (the repeated
phones are in blue on Fig. 9) andmakes amistake when read-
ing the first word (A∼ T instead ofA∼ T R AE). The objective
of our acoustic models is to transcribe exactly what the child
has read, and be particularly accurate on potential reading
mistakes, to help the child learn. A first observation is that
the Transformer does not detect the first attempt of the child,
while the Transformer+CTC dec does, although with a sub-
stitution of a phone (R instead of L, in red on Fig. 9). The
parallel diagonals that are pointed out by a red ellipse on the
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Figure 9: Phone-level prompted text, actual text read by the child and transcriptions obtained with models Transformer and
Transformer+CTC dec of an example utterance. Child’s reading mistakes (repetitions, phone substitutions and phone deletions)
are in blue, and correct detections and errors in models’ transcriptions in green and red, respectively. Attention weights captured
between the encoder and decoder of Transformer and Transformer+CTC dec models are displayed, as well as the spectrograms
for time reference.

Transformer attention weights show that the model confuses
the two occurrences of the repeated words into one. On the
contrary, the Transformer+CTC dec attention weights form
a single diagonal, correctly detecting the two occurrences as
separate. This success may be explained by the influence of
the CTC objective function, which constrains the attention
to be monotonic, enabling the model to correctly detect rep-
etitions.

Another observation is that the child makes several
word-level reading mistakes in the last word of the sentence:
a phone substitution and two phone deletions (E∼D e instead
of E∼ D E K S). The word read by the child does not exist
in the French language and is not represented in the train-
ing data. The Transformer unexpectedly detects the correct
reading, which means it misses the child’s mistake. This is
due to the presence of this same content in the child speech
training data, but read correctly by other students, which has
caused the Transformer to predict the learnt existing word.
On the other hand, the Transformer+CTC dec model does
detect a reading mistake in the last word, forming a non-
existing word, although not the one uttered by the child. We
can infer that since it is able to form non-existing words, it
might show more robustness to children reading mistakes,

as shown in Fig. 8.
The issues that attention mechanisms face when con-

frontedwith repetition or non-existingwords can cause prob-
lematic errors when transcribing young readers’ mistakes.
The child training data, containing only correct readings,
prevents the models to be trained to handle readings with
mistakes. A perspective for improving our model’s perfor-
mance in the presence of reading mistakes is to add some
representations of these mistakes in the child training data.
It would enable the model to better detect incongruous sub-
stitutions and insertions of phones, as well as repetitions,
false starts and hesitations. However, this method would re-
quire manual annotation at the phone level of a significant
quantity of data, which is an arduous and costly task. Syn-
thetic errors could partly remedy the issue: although word-
level mistakes might be thorny to create, utterances with
sentence-level mistakes such as repetitions, false starts and
hesitations could be automatically created and added to the
training data. Our Transformer models could also gain ro-
bustness on child speech peculiarities during inference by
using scheduled sampling methods, adapted to the specific
Transformer structure, during training (Mihaylova and Mar-
tins, 2019; Zhou et al., 2019).

Lucile Gelin et al.: Preprint submitted to Elsevier Page 14 of 17



End-to-end acoustic modelling for phone recognition of young readers

8. Conclusion
Speech technologies are nowadays widening their us-

age domains, including numerous applications designed for
children. However, the speech recognition systems’ perfor-
mance is significantly lower on child speech than on adult
speech. In particular, educational numerical resources for
children learning to read could immensely benefit from ac-
curate speech recognition to detect reading mistakes.

End-to-end architectures have proved their ability to out-
perform hybrid DNN-HMM approaches for ASR. In this
work, we apply end-to-end architectures to child speech
with a limited amount of child data and show that, with the
help of transfer learning strategies, a Transformer+CTC can
reach a 28.1% PER, and outmatch a TDNNF-HMM model
by 6.6% relative, as well as other end-to-end architectures
(RNN, LAS) by 8.5% to 17.1% relative. We specifically
study CE+CTC multi-objective training on diverse end-to-
end architectures, which shows to bring significant improve-
ments. We find degradation of performance for attention-
based models when the utterance length is reduced, while
TDNNF-HMM and CTC-based models seem to better han-
dle very short utterances. Finally, we compare the per-
formance of our best models on diverse reading rates and
in presence of reading mistakes. We show that CE+CTC
multi-objective training indeed constrains the attention to
be more monotonic, which enables the Transformer+CTC
model to better detect common young readers’ mistakes.
The TDNNF, however, stays slightly ahead for severely low-
level readers’ speech. Our detailed studies provide valuable
insights on the end-to-end architectures remaining weak-
nesses for transcribing young readers’ speech. Using differ-
ent speech units, such as syllables or characters, on their own
or in combination with phones, could bring complementary
information on reading learners’ speech. Having seen that
the small amount of child data could limit the potential of
transfer learning, diverse data augmentation methods could
be investigated. The problem of noise could in particular
be tackled with data augmented with child-adapted babble
noise. Creating synthetic child training data with common
reading mistakes, such as repetitions, false starts, or hesi-
tations would enable the models to better handle children
mistakes.

References
Abad, A., Bell, P., Carmantini, A., Renals, S., 2020. Cross lingual transfer

learning for zero-resource domain adaptation. IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP) , 6909–
6913doi:10.1109/ICASSP40776.2020.9054468.

Airaksinen, M., Juvela, L., Alku, P., Räsänen, O., 2019. Data augmenta-
tion strategies for neural network F0 estimation, in: IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
6485–6489.

Andrew, Sak, H., de Chaumont Quitry, F., Sainath, T., Rao, K.,
2015. Acoustic modelling with CD-CTC-SMBR LSTM RNNS, in:
IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU), pp. 604–609. doi:10.1109/ASRU.2015.7404851.

Bahdanau, D., Cho, K., Bengio, Y., 2015. Neural machine translation by
jointly learning to align and translate. CoRR abs/1409.0473.

Bayerl, S.P., Riedhammer, K., 2019. A comparison of hybrid and end-to-
end models for syllable recognition, in: Text, Speech, and Dialogue, pp.
352–360.

Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N., 2015. Scheduled sam-
pling for sequence predictionwith recurrent neural networks, in: Proc. of
the International Conference on Neural Information Processing Systems
(NIPS) - Volume 1, MIT Press. p. 1171–1179. doi:10.5555/2969239.
2969370.

Bolaños, D., Cole, R., Ward, W., Borts, E., Svirsky, E., 2011. FLORA:
Fluent oral reading assessment of children’s speech. ACMTrans. Speech
Lang. Process. 7, 16. doi:10.1145/1998384.1998390.

Chan, W., Jaitly, N., Le, Q., Vinyals, O., 2016. Listen, Attend and Spell: A
neural network for large vocabulary conversational speech recognition,
in: IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 4960–4964. doi:10.1109/ICASSP.2016.7472621.

Chen, G., Na, X., Wang, Y., Yan, Z., Zhang, J., Ma, S., Wang, Y., 2020.
Data augmentation for children’s speech recognition – the "Ethiopian"
system for the SLT 2021 Children Speech Recognition Challenge.
arXiv:2011.04547. working paper.

Chiu, C.C., Sainath, T., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen,
Z., Kannan, A., Weiss, R.J., Rao, K., Gonina, K., Jaitly, N., Li, B.,
Chorowski, J., Bacchiani, M., 2018. State-of-the-art speech recognition
with sequence-to-sequence models, in: IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 4774–4778.
doi:10.1109/ICASSP.2018.8462105.

Cho, J., Baskar, M.K., Li, R., Wiesner, M., Mallidi, S.H., Yalta, N.,
Karafiát, M., Watanabe, S., Hori, T., 2018. Multilingual sequence-to-
sequence speech recognition: Architecture, transfer learning, and lan-
guage modeling, in: IEEE Spoken Language Technology Workshop
(SLT), pp. 521–527. doi:10.1109/SLT.2018.8639655.

Chorowski, J., Bahdanau, D., Cho, K., Bengio, Y., 2014. End-to-end con-
tinuous speech recognition using attention-based recurrent NN: First re-
sults, in: Proc. of the International Conference on Neural Information
Processing Systems (NIPS): Workshop on Deep Learning, pp. 1–10.

Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y., 2015.
Attention-based models for speech recognition, in: Proc. of the Inter-
national Conference on Neural Information Processing Systems (NIPS),
MIT Press. p. 577–585. doi:10.5555/2969239.2969304.

Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2015. Gated feedback re-
current neural networks, in: Proc. of the International Conference on
Machine learning (ICML), p. 2067–2075.

Dong, L., Xu, S., Xu, B., 2018. Speech-transformer: A no-recurrence
sequence-to-sequence model for speech recognition, in: IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5884–5888. doi:10.1109/ICASSP.2018.8462506.

Duan, R., Kawahara, T., Dantsuji, M., Nanjo, H., 2020. Cross-lingual trans-
fer learning of non-native acoustic modeling for pronunciation error de-
tection and diagnosis. IEEE/ACM Transactions on Audio, Speech, and
Language Processing 28, 391–401. doi:10.1109/TASLP.2019.2955858.

Fringi, E., Lehman, J.F., Russell, M.J., 2015. Evidence of phonological
processes in automatic recognition of children’s speech, in: Proc. of the
Annual Conference of the International Speech Communication Asso-
ciation (INTERSPEECH), Dresden, pp. 1621–1624.

Gales, M., Young, S., 2008. The application of hidden markov models
in speech recognition. Foundations and Trends® in Signal Processing
1, 195–304. URL: http://dx.doi.org/10.1561/2000000004, doi:10.1561/
2000000004.

Gerosa, M., Giuliani, D., Narayanan, S., 2006. Acoustic analysis and auto-
matic recognition of spontaneous children’s speech, in: Ninth Interna-
tional Conference on Spoken Language Processing, pp. 1886–1889.

Gibson, M., Plahl, C., Zhan, P., Cook, G., 2018. Multi-condition deep
neural network training. Studientexte zur Sprachkommunikation: Elek-
tronische Sprachsignalverarbeitung , 77–84.

Godde, E., Bailly, G., Escudero, D., Bosse, M.L., Estelle, G., 2017. Eval-
uation of reading performance of primary school children: Objective
measurements vs. subjective ratings, in: Proc. of the InternationalWork-
shop on Child Computer Interaction (WOCCI), pp. 23–27. doi:10.21437/
WOCCI.2017-4.

Lucile Gelin et al.: Preprint submitted to Elsevier Page 15 of 17



End-to-end acoustic modelling for phone recognition of young readers

Graves, A., Fernández, S., Gomez, F., Schmidhuber, J., 2006. Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks, in: Proc. of the International Conference on
Machine learning (ICML), pp. 369–376. doi:10.1145/1143844.1143891.

Graves, A., Mohamed, A., Hinton, G., 2013. Speech recognition with
deep recurrent neural networks, in: IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649.
doi:10.1109/ICASSP.2013.6638947.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778. doi:10.1109/CVPR.2016.90.

Karita, S., Soplin, N.E.Y., Watanabe, S., Delcroix, M., Ogawa, A.,
Nakatani, T., 2019a. Improving Transformer-Based End-to-End Speech
Recognition with Connectionist Temporal Classification and Language
Model Integration, in: Proc. of the Annual Conference of the Interna-
tional Speech Communication Association (INTERSPEECH), Graz, pp.
1408–1412. doi:10.21437/Interspeech.2019-1938.

Karita, S., Wang, X., Watanabe, S., Yoshimura, T., Zhang, W., Chen,
N., Hayashi, T., Hori, T., Inaguma, H., Jiang, Z., Someki, M., So-
plin, N.E.Y., Yamamoto, R., 2019b. A Comparative Study on Trans-
former vs RNN in Speech Applications. IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU) , 449–456doi:10.1109/
ASRU46091.2019.9003750.

Lee, S., Potamianos, A., Narayanan, S.S.Y., 1999. Acoustics of children’s
speech: developmental changes of temporal and spectral parameters.
The Journal of the Acoustical Society of America 105, 1455–1468.
doi:10.1121/1.426686.

Lu, L., Zhang, X., Cho, K., Renals, S., 2015. A study of the recurrent neu-
ral network encoder-decoder for large vocabulary speech recognition, in:
Proc. of the Annual Conference of the International Speech Communi-
cation Association (INTERSPEECH), Dresden, pp. 3249–3253.

Metallinou, A., Cheng, J., 2014. Using deep neural networks to improve
proficiency assessment for children english language learners, in: Proc.
of the Annual Conference of the International Speech Communication
Association (INTERSPEECH), Singapore, pp. 1468–1472.

Mihaylova, T., Martins, A.F.T., 2019. Scheduled sampling for transform-
ers, in: Proc. of the Annual Meeting of the Association for Computa-
tional Linguistics: Student Research Workshop, Association for Com-
putational Linguistics. pp. 351–356. doi:10.18653/v1/P19-2049.

Mostow, J., Aist, G., 2001. Evaluating tutors that listen: An overview
of Project LISTEN, in: Smart machines in education: The coming
revolution in educational technology.. The MIT Press, pp. 169–234.
doi:10.5555/570950.570957.

Mugitani, R., Hiroya, S., 2012. Development of vocal tract and acoustic
features in children. The Journal of the Acoustical Society of Japan 68,
234–240. doi:10.1250/ast.33.215.

Ng, S.I., Liu, W., Peng, Z., Feng, S., Huang, H.P., Scharenborg, O., Lee, T.,
2020. The CUHK-TUDELFT system for the SLT 2021 Children Speech
Recognition Challenge. arXiv:2011.06239. working paper.

Potamianos, A., Narayanan, S., 1998. Spoken dialog systems for children,
in: IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 197–200 vol.1. doi:10.1109/ICASSP.1998.674401.

Potamianos, A., Narayanan, S., 2003. Robust Recognition of Children’s
Speech. IEEE Transactions on Speech and Audio Processing 11, 603–
616. doi:10.1109/TSA.2003.818026.

Potamianos, A., Narayanan, S., 2007. A review of the acoustic and linguis-
tic properties of children’s speech, in: IEEE 9th Workshop on Multime-
dia Signal Processing, pp. 22–25. doi:10.1109/MMSP.2007.4412809.

Povey, D., Cheng, G., Wang, Y., Li, K., Xu, H., Yarmohammadi, M., Khu-
danpur, S., 2018. Semi-orthogonal low-rank matrix factorization for
deep neural networks, in: Proc. of the Annual Conference of the Inter-
national Speech CommunicationAssociation (INTERSPEECH), Hyber-
abad, pp. 3743–3747. doi:10.21437/Interspeech.2018-1417.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N.,
Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stem-
mer, G., Vesely, K., 2011. The Kaldi speech recognition toolkit, in:
IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU), pp. 1–4.

Povey, D., Peddinti, V., Galvez, D., Ghahremani, P., Manohar, V., Na,
X., Wang, Y., Khudanpur, S., 2016. Purely sequence-trained neural
networks for ASR based on lattice-free MMI, in: Proc. of the An-
nual Conference of the International Speech Communication Associa-
tion (INTERSPEECH), San Francisco, pp. 2751–2755. doi:10.21437/
Interspeech.2016-595.

Proença, J.D.L., 2018. Automatic Assessment of Reading Ability of Chil-
dren. Ph.D. thesis. University of Coimbra.

Qian, Y., Wang, X., Evanini, K., Suendermann-Oeft, D., 2016. Improving
DNN-based automatic recognition of non-native children speech with
adult speech, in: Workshop on Child Computer Interaction, pp. 40–44.
doi:10.21437/WOCCI.2016-7.

Serizel, R., Giuliani, D., 2014. Deep neural network adaptation for chil-
dren’s and adults’ speech recognition, in: Proc. of the Italian Computa-
tional Linguistics Conference (CLiC-it), pp. 137–140.

Shivakumar, P.G., Georgiou, P., 2020. Transfer learning from adult to chil-
dren for speech recognition: Evaluation, analysis and recommendations.
Computer Speech & Language 63, 101077. doi:10.1016/j.csl.2020.
101077.

Shivakumar, P.G., Narayanan, S., 2021. End-to-end neural sys-
tems for automatic children speech recognition: An empirical study.
arXiv:2102.09918.

Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning
with neural networks, in: Proc. of the International Conference on Neu-
ral Information Processing Systems (NIPS), Cambridge, MA, USA. p.
3104–3112.

Tong, R., Wang, L., Ma, B., 2017a. Transfer learning for children’s speech
recognition. Proc. of the International Conference on Asian Language
Processing (IALP) , 36–39doi:10.1109/IALP.2017.8300540.

Tong, S., Garner, P., Bourlard, H., 2017b. Multilingual training and cross-
lingual adaptation on CTC-based acoustic model. Speech Communica-
tion 104. doi:10.1016/j.specom.2018.09.001.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, u., Polosukhin, I., 2017. Attention is all you need, in: Proc. of
the International Conference on Neural Information Processing Systems
(NIPS), Curran Associates Inc., Red Hook, NY, USA. p. 6000–6010.

Veselý, K., Ghoshal, A., Burget, L., Povey, D., 2013. Sequence-
discriminative training of deep neural networks, in: Proc. of the An-
nual Conference of the International Speech Communication Associa-
tion (INTERSPEECH), Lyon, pp. 2345–2349.

Vinyals, O., Le, Q., 2015. A neural conversational model. Proc. of the
International Conference on Machine learning (ICML): Deep Learning
Workshop .

Vinyals, O., Toshev, A., Bengio, S., Erhan, D., 2015. Show and tell: A
neural image caption generator, in: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3156–3164. doi:10.1109/
CVPR.2015.7298935.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.J., 1989.
Phoneme recognition using time-delay neural networks. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing 37, 328–339.
doi:10.1109/29.21701.

Watanabe, S., Hori, T., Kim, S., Hershey, J.R., Hayashi, T., 2017. Hybrid
CTC/Attention architecture for end-to-end speech recognition. IEEE
Journal of Selected Topics in Signal Processing 11, 1240–1253. doi:10.
1109/JSTSP.2017.2763455.

Wu, F., Garcia, P., Povey, D., Khudanpur, S., 2019. Advances in auto-
matic speech recognition for child speech using factored time delay neu-
ral network, in: Proc. of the Annual Conference of the International
Speech Communication Association (INTERSPEECH), Graz, pp. 1–5.
doi:10.21437/Interspeech.2019-2980.

Xu, K., Ba, J.L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R.,
Zemel, R.S., Bengio, Y., 2015. Show, Attend and Tell: Neural image
caption generation with visual attention, in: Proc. of the International
Conference on Machine learning (ICML), JMLR.org. p. 2048–2057.
doi:10.5555/3045118.3045336.

Yeung, G., Alwan, A., 2018. On the difficulties of automatic speech recog-
nition for kindergarten-aged children, in: Proc. of the Annual Con-
ference of the International Speech Communication Association (IN-

Lucile Gelin et al.: Preprint submitted to Elsevier Page 16 of 17



End-to-end acoustic modelling for phone recognition of young readers

TERSPEECH), Hyderabad, pp. 1661–1665. doi:10.21437/Interspeech.
2018-2297.

Yong, B.F., Ting, H.N., 2011. Speaker-independent vowel recognition for
malay children using time-delay neural network, in: 5th Kuala Lumpur
International Conference on Biomedical Engineering 2011, Springer
Berlin Heidelberg. pp. 565–568.

Yu, F., Yao, Z., Wang, X., An, K., Xie, L., Ou, Z., Liu, B., Li, X., Miao,
G., 2020. The SLT 2021 children speech recognition challenge: Open
datasets, rules and baselines. arXiv:2011.06724. working paper.

Zhou, P., Fan, R., Chen, W., Jia, J., 2019. Improving generalization of trans-
former for speech recognition with parallel schedule sampling and rela-
tive positional embedding. CoRR abs/1911.00203. arXiv:1911.00203.

Lucile Gelin et al.: Preprint submitted to Elsevier Page 17 of 17




