
HAL Id: hal-03373091
https://hal.science/hal-03373091

Submitted on 11 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Two-Round OT Extension and Silent
Non-Interactive Secure Computation

Geoffroy Couteau, Elette Boyle, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, Peter Scholl, Idc Herzliya

To cite this version:
Geoffroy Couteau, Elette Boyle, Niv Gilboa, Yuval Ishai, Lisa Kohl, et al.. Efficient Two-Round OT
Extension and Silent Non-Interactive Secure Computation. CCS ’19: 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, Nov 2019, Londre, United Kingdom. pp.291-308,
�10.1145/3319535.3354255�. �hal-03373091�

https://hal.science/hal-03373091
https://hal.archives-ouvertes.fr

Efficient Two-Round OT Extension and
Silent Non-Interactive Secure Computation

Elette Boyle1, Geoffroy Couteau2, Niv Gilboa3, Yuval Ishai4,
Lisa Kohl5, Peter Rindal6, and Peter Scholl7

1 IDC Herzliya
2 CNRS, IRIF, Université Paris-Diderot
3 Ben-Gurion University of the Negev

4 Technion
5 Karlsruhe Institute of Technology

6 Visa Research
7 Aarhus University

Abstract. We consider the problem of securely generating useful instances of two-party corre-
lations, such as many independent copies of a random oblivious transfer (OT) correlation, using
a small amount of communication. This problem is motivated by the goal of secure computation
with silent preprocessing, where a low-communication input-independent setup, followed by local
(“silent”) computation, enables a lightweight “non-cryptographic” online phase once the inputs are
known.
Recent works of Boyle et al. (CCS 2018, Crypto 2019) achieve this goal with good concrete efficiency
for useful kinds of two-party correlations, including OT correlations, under different variants of
the Learning Parity with Noise (LPN) assumption, and using a small number of “base” oblivious
transfers. The protocols of Boyle et al. have several limitations. First, they require a large number
of communication rounds. Second, they are only secure against semi-honest parties. Finally, their
concrete efficiency estimates are not backed by an actual implementation. In this work we address
these limitations, making three main contributions:
– Eliminating interaction. Under the same assumption, we obtain the first concretely efficient

2-round protocols for generating useful correlations, including OT correlations, in the semi-
honest security model. This implies the first efficient 2-round OT extension protocol of any kind
and, more generally, protocols for non-interactive secure computation (NISC) that are concretely
efficient and have the silent preprocessing feature.

– Malicious security.We provide security against malicious parties (in the random oracle model)
without additional interaction and with only a modest concrete overhead; prior to our work, no
similar protocols were known with any number of rounds.

– Implementation. Finally, we implemented, optimized, and benchmarked our 2-round OT ex-
tension protocol, demonstrating that it offers a more attractive alternative to the OT extension
protocol of Ishai et al. (Crypto 2003) in many realistic settings.

1 Introduction

There is a large body of work on optimizing the concrete efficiency of secure computation pro-
tocols via input-independent preprocessing. By securely generating many instances of simple
correlations, one can dramatically reduce the online communication and computation costs of
most existing protocols.

To give just one example, multiple independent instances of a random oblivious transfer8

(OT) correlation can be used for secure two-party computation of Boolean circuits in the semi-
honest model, with communication cost of only two bits per party per (nonlinear) gate, and with
computation cost that is comparable to computing the circuit with no security requirements at
all [GMW87,Kil88,Bea91]. Thus, assuming a fast communication network, protocols based on
correlated randomness can achieve near-optimal performance.

The main challenge in applying this approach is the high concrete cost of securely generat-
ing the correlated randomness. Traditional solutions involve carefully optimized special-purpose
8 In (a single instance of) a random OT correlation, one party obtains a pair of random bits (more generally,
strings) (s0, s1) and the other obtains the pair (r, sr) for a random bit r.

2 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

secure computation protocols that have a high communication cost for each instance of the de-
sired correlation [BDOZ11,DPSZ12]. This holds even for the case of OT correlations, for which
relatively fast OT extension techniques are known [IKNP03,ALSZ13,KOS15]. Moreover, even if
offline communication is cheap, the cost of storing large amounts of correlated randomness for
each party with whom a future interaction might take place can be significant.

Motivated by the limitations of traditional approaches for generating and storing correlated
randomness, the notion of a pseudorandom correlation generator (PCG) was recently proposed
and studied by Boyle et al. [BCGI18,BCG+19]. The goal of a PCG is to compress long sources of
correlated randomness without violating security. More concretely, a (two-party) PCG replaces
a target two-party correlation, say many independent OT correlation instances, by a pair of
short correlated keys, which can be “silently” expanded without any interaction. The process
of generating the correlated keys and locally expanding them should emulate an ideal process
for generating the target correlation not only from the point of view of outsiders, but also
from the point of view of insiders who can observe one of the two keys. Among other results, the
aforementioned works of Boyle et al. [BCGI18,BCG+19] obtain concretely efficient constructions
of PCGs for OT correlations and vector oblivious linear evaluation (VOLE) correlations [NP06,
IPS09,ADI+17] based on variants of the Learning Parity with Noise assumption [BFKL93]. These
PCG constructions are motivated by the goal of secure computation with silent preprocessing,
where a low-communication input-independent setup, followed by local (“silent”) computation,
enables a lightweight “non-cryptographic” online phase once the inputs are known.

However, towards realizing this goal, one major challenge remains: how can the pair of keys
be securely generated? While the keys are short, their sampling algorithm is quite complex
and involves multiple invocations of cryptographic primitives. Thus, even applying the fastest
general-purpose protocols for generating these keys (e.g., optimized protocols based on garbled
circuits [KRRW18]) incurs a very significant overhead.

An alternative approach for distributing the PCG key generation, suggested in [BCGI18,
BCG+19], relies on a recent special-purpose protocol of Doerner and shelat [Ds17] for secure
key generation of a distributed point function (DPF) [GI14,BGI16]. This protocol only makes a
black-box use of symmetric cryptography and a small number of oblivious transfers, and hence
it is also concretely efficient. Using this protocol for distributing the key generation of a PCG for
OT correlations, Boyle et al. [BCG+19] obtained a silent OT extension protocol that generates
(without any trusted setup) a large number of pseudo-random OTs from a small number of base
OTs, using a low-communication setup followed by silent key expansion [BCG+19].

While the silent OT extension protocol from [BCG+19] and other protocols obtained using
this approach have good concrete efficiency, they also have several limitations. First, they require
a large number of communication rounds that grows (at least) logarithmically with the output
length. Second, they are only secure against semi-honest parties. Both of the above limitations
are inherited from the DPF key generation protocol of [Ds17]. Finally, their concrete efficiency
estimates are not backed by an actual implementation, and ignore possible cache-misses and
other system- and network-related sources of slowdown.

1.1 Our Contribution

In this work, we address the above limitations by making the following contributions.

Two-Round Silent OT Extension. We present the first concretely efficient two-round OT
extension protocol, based on a variant of the LPN assumption. The protocol has a silent pre-
processing feature, allowing the parties to push the bulk of the computational work to an offline
phase. It can be used in two modes: either a random-input mode, where the communication
complexity is sublinear in the output length, or a chosen-input mode, where the communication
is roughly equal to the total input length. This applies even to the more challenging case of
1-bit OT, for which standard OT extension techniques that make a black-box use of symmetric

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 3

cryptography [IKNP03,ALSZ13,KK13,KOS15] have a high communication overhead compared
to the input length. A key idea that underlies this improvement is replacing the DPF primitive
in the PCG for OT from [BCG+19] by the simpler puncturable pseudorandom function (PPRF)
primitive [KPTZ13,BW13,BGI14]. We design a parallel version of the distributed key generation
protocol from [Ds17] that applies to a PPRF instead of a DPF.

Our OT extension protocol bypasses a recent impossibility result of Garg et al. [GMMM18] on
2-round OT extension due to the use of the LPN assumption. While our construction (inevitably)
does not fall into the standard black-box framework considered in [GMMM18], it still has a black-
box flavor in that it only invokes a syndrome computation of any error-correcting code for which
the LPN assumption holds. We remark that aside from its concrete efficiency, our 2-round OT
extension protocol can be based on a conservative variant of (binary) LPN in a noise regime that
is not known to imply public-key encryption, let alone oblivious transfer. Concretely, it can be
instantiated by binary LPN in which the Hamming weight of the noise is higher than the n1/2

bound required by the construction of Alekhnovich [Ale03] and its variants.
The technique we use for generating OT correlations in two rounds can also be applied to

VOLE correlations, as well as general protocols for non-interactive secure computation (NISC)
with silent preprocessing.

Malicious Security. We present simple, practical techniques for secure distributed setup of
PPRF keys with a weak form of malicious security. This suffices to upgrade our semi-honest
OT and VOLE protocols to malicious security, at a very low cost. Our main protocols in this
setting have 4 rounds of interaction, but this can be reduced to 2 rounds using the Fiat-Shamir
transform. We can also use this to obtain maliciously secure silent NISC or two-round OT
extension on chosen inputs. These protocols are based on slightly stronger variants of LPN,
where the adversary is allowed a single query to a one-bit leakage function on the error vector.

Implementation. We demonstrate the efficiency of our constructions with an implementation
of our random OT extension protocol. The most costly part of the implementation is a large
matrix-vector multiplication, which comes from applying the LPN assumption. We optimize
this using a variant of LPN with quasi-cyclic codes, similarly to several recent, candidate post-
quantum secure cryptosystems [ABB+19,MBD+18,AMAB+19], and present different tradeoffs
with parameter choices. Our protocols have a very low communication overhead and perform
significantly faster than previous, state-of-the-art protocols [IKNP03,ALSZ13,KOS15] in envi-
ronments with restricted bandwidth. For instance, in a 100Mbps WAN setting, we are around
5x faster, and this improves to 47x in a 10MBps WAN. This is because, while our computational
costs are around an order of magnitude higher, we need around 1000–2000 times less communi-
cation than the other protocols. We expect that additional optimizations of our implementation
and the underlying error-correcting code will further improve the computational cost.

Applications. As well as the new application to NISC with silent preprocessing, our protocols
can be applied to a range of traditional secure computation tasks. Below we mention just a few
areas where we expect silent OT extension and VOLE to have an impact.

– Semi-honest MPC for binary circuits. In the semi-honest “GMW protocol” [GMW87], the
correlated randomness needed to evaluate a Boolean circuit can be obtained from two random
OTs per AND gate. Plugging in our random OT extension, we obtain a practical 2-PC
protocol where each party communicates just 2 bits per AND gate on average. This is around
30x less communication than the state-of-the-art [DKS+17].

– Malicious MPC for binary circuits. Protocols based on authenticated garbling [WRK17a,
WRK17b] and BMR [HSS17] are currently the state-of-the-art in maliciously secure MPC
for binary circuits in a high-latency network. The main cost in these protocols comes from
a preprocessing phase, where the parties use a large number of random, correlated oblivious

4 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

transfers to produce correlated randomness. Our protocol can produce the same kind of
oblivious transfers with almost zero communication, and we estimate this could reduce the
overall communication in these protocols by around an order of magnitude.

– Malicious MPC for arithmetic circuits. The “SPDZ” family of protocols [BDOZ11,DPSZ12,
DKL+13, KOS16, KPR18] uses information-theoretic MACs to achieve malicious security
in MPC based on secret sharing. A large batch of these MACs can be created using a
single instance of a long, random VOLE correlation, with essentially optimal communication.
Plugging in our maliciously secure VOLE construction will reduce the costs of previous works
that use either homomorphic encryption or string-OT to create MACs.

– Private set intersection (PSI). In circuit-based PSI, a generic 2-PC protocol is used to first
compute a secret-sharing of the intersection of two sets, and then perform some useful compu-
tation on the result [HEK12,PSSZ15,PSTY19]. With the improvements to GMW mentioned
above, we can expect to obtain a similar reduction in communication for these families of
PSI protocols.

Concurrent Work. In recent, concurrent work, Schoppmann et al. [SGRR19] presented opti-
mizations and an implementation of the VOLE protocol by Boyle et al. [BCGI18]. Similarly to
our work, they observe that the distributed setup procedure can be parallelized and performed
in only two rounds, although they only apply this to VOLE correlations and not two-round
OT extension. They also give a technique for efficient multi-point DPF evaluation, which allows
batching t evaluations while avoiding the factor t overhead from a naive approach. This allows
for an efficient implementation, without relying on the hardness of LPN for a regular error dis-
tribution as in our implementation. Finally, note that their protocols have semi-honest security,
whilst we also give maliciously secure protocols with very low overhead.

1.2 Technical Overview

We now give an overview of our silent constructions in the semi-honest and malicious settings.
For simplicity, we focus here on the case of 1-out-of-2 oblivious transfer.

We start by recalling the high-level idea of the pseudorandom correlation generators for
vector-OLE (VOLE) and OT from [BCGI18, BCG+19]. These constructions distribute a pair
of seeds to a sender and a receiver, who can then locally expand the seeds to produce many
instances of pseudorandom OT or VOLE. To do so, they use two main ingredients: a variant of
the LPN assumption, and a method for the two parties to obtain a compressed form of random
secret shares v0,v1, satisfying

v1 = v0 + e · x ∈ FN2λ (1)

where e ∈ {0, 1}N is a random, sparse vector held by one party, and x ∈ F2λ is a random field
element held by the other party.

Given this, the shares can be randomized by taking a public, binary matrixH that compresses
from N down to n < N elements, and locally multiplying each share with H. This works because
u = e ·H is pseudorandom under a suitable variant of LPN. Writing v = v0 ·H and w = v1 ·H,
from (1) we then get w = v + ux. This can be seen as a set of random correlated OTs, where
ui ∈ {0, 1} are the receiver’s choice bits, and (vi, vi + x) are the sender’s strings, of which
the receiver learns wi. These can be locally converted into random string-OTs with a standard
hashing technique [IKNP03].

To obtain a compressed form of the shares in (1), the constructions of [BCGI18,BCG+19]
used a distributed point function (DPF) [GI14,BGI16]. Our first observation is that DPF is an
overkill for this application,9 and can be replaced with the simpler puncturable pseudorandom
9 In contrast, we do not know how to replace DPF by PPRF in some of the other PCG constructions
from [BCG+19], including the LPN-based constructions for low-degree correlations and the PRG-based con-
structions for one-time-truth-table correlations.

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 5

function (PPRF) primitive. A PPRF is a PRF F such that given an input x, and a PRF key
k, one can generate a punctured key k{x} which allows evaluating F at every point except for
x, and does not conceal any information about the value F (k, x). A PPRF can be built from
any length-doubling pseudorandom generator, using a binary tree-based construction [KPTZ13,
BW13,BGI14].

In the setup procedure, we will give the sender a random key k and x, and give to the receiver
a random point α ∈ {1, . . . , N}, a punctured key k{α}, and the value z = F (k, α) + x. Given
these seeds, the sender and receiver can now define the expanded outputs, for i = 1, . . . , n:

v0[i] = F (k, i), v1[i] =

{
F (k, i) i 6= α

z otherwise

These immediately satisfy (1), with e as the α-th unit vector. To obtain sharings of sparse
e with, say, t non-zero coordinates, as needed to use LPN, we repeat this t times and XOR
together all t sets of outputs.

Conceptually, this construction is simpler than using a DPF, and moreover, as we now show,
it brings several efficiency advantages.

Two-Round Setup of Puncturable PRF Keys. We present a simple, two-round protocol for dis-
tributed the above setup with semi-honest security, inspired by the DPF setup protocol of
Doerner and shelat [Ds17]. The core of our protocol is the following procedure. For each of t
secret LPN noise coordinates αj ∈ [N] known to the receiver, the sender generates a fresh PRF
key kj , and wishes to obliviously communicate a punctured key kj{αj} and hardcoded punctured
output zj = PRF (kj , α) +x to the receiver. Combined, this yields a secret sharing of the vector
x · e, as required. To do so, for each k{α}, the parties made use of ` = logN parallel OT execu-
tions: the sender’s ` message pairs correspond to appropriate sums of partial evaluations from a
consistent GGM PRF tree and his secret value x, and the receiver’s ` selection bits correspond
to the bits of his chosen path α.

Compared with previous works based on distributed point functions [BCGI18, BCG+19,
Ds17], the number of rounds of interaction collapses from O(logN) to just two, given any two-
round OT protocol. This is possible since the punctured point α is known to the receiver, whereas
when α is secret-shared as in a DPF, the OTs in the setup procedure seem hard to parallelize.

Two-Round OT Extension and Silent NISC. We observe that in the two-round setup, the receiver
can already compute part of its output before sending the first round message. In the case of
OT, this part corresponds to its random vector of choice bits u. This means that the receiver
can already derandomize its OT outputs in the first round, by sending in parallel with its setup
message the value u + c, where c is its chosen input vector. Since the sender can compute its
random OT outputs after the first round, this leads to a two-round OT extension protocol that
additionally enjoys the “silent preprocessing” feature of pushing the bulk of the computation to
an offline phase, before the inputs are known. This can be generalized from OT to VOLE and
other useful instances of non-interactive secure computation (NISC) [IKO+11], simultaneously
inheriting the silent preprocessing feature from the PCG and the minimal interaction feature
from an underlying NISC protocol. See Section 3 for a more detailed discussion of our new notion
of NISC with silent preprocessing.

Maliciously Secure Setup. In the above semi-honest setup procedure, a malicious receiver has no
cheating space; altered selection bits merely correspond to a different choice of noise coordinate
α′ ∈ [N]. However, a malicious sender may generate message pairs inconsistent with any correct
PRF evaluation tree, or use inconsistent inputs x across the t executions (in which case the
outputs are not valid shares of x · u for any single x). For example, by injecting errors into one
of the two messages within an OT message pair, the sender can effectively “guess” and learn a
bit of α, and will go unnoticed if his guess is correct.

6 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

We demonstrate that with small overhead, we can restrict a malicious sender to only such
selective-failure attacks. This is formalized via an ideal functionality where the adversarial sender
can send a guess range I ⊆ [N] for α, a “getting caught” predicate is tested as a function of the
receiver’s true input, and the functionality either aborts or delivers the output accordingly. We
then show that paired with an interactive leakage notion for LPN, this suffices to give us PCG
setup protocols for VOLE and OT with malicious security.

Our basic maliciously secure protocols have 4 rounds, but this can be compressed to two
rounds with the Fiat-Shamir transform, in the random oracle model. Just as in the semi-honest
protocols, we can convert the setup protocols into NISC protocols, this time under a slightly
stronger variant of LPN with one bit of adaptive leakage on the error vector. This leads to
efficient two-round OT extension and VOLE protocols with malicious security.

2 Preliminaries

2.1 Puncturable Pseudorandom Function

Pseudorandom functions (PRF) are keyed functions which are indistinguishable from truly ran-
dom functions, have been introduced in [GGM86]. A puncturable pseudorandom function (PPRF)
is a PRF F such that given an input x, and a PRF key k, one can generate a punctured key,
denoted k{x}, which allows evaluating F at every point except for x, and does not conceal any
information about the value of F at x. PPRFs have been introduced in [KPTZ13,BW13,BGI14].

Definition 1 (t-Puncturable Pseudorandom Function). A puncturable pseudorandom func-
tion (PPRF) with key space K, domain X , and range Y, is a pseudorandom function F with an
additional punctured key space Kp and three probabilistic polynomial-time algorithms (F.KeyGen,
F.Puncture, F.Eval) such that

– F.KeyGen(1λ) outputs a random key K ∈ K,
– F.Puncture(K,S), on input a key K ∈ K, and a subset S ⊂ X of size t, outputs a punctured

key K{S} ∈ Kp,
– F.Eval(K{S}, x), on input a key K{S} punctured at all points in S, and a point x, outputs
F (K,x) if x /∈ S, and ⊥ otherwise,

such that no probabilistic polynomial-time adversary wins the experiment Exp-s-pPRF represented
on Figure 1 with non-negligible advantage over the random guess.

By F.FullEval(K) we denote the algorithm that on input a key K ∈ K evaluates F on all
inputs X and returns the vector of outputs.

Experiment Exp-s-pPRF

Setup Phase. The adversary A sends a size-t subset S∗ ∈ X to the challenger. When it receives S∗,
the challenger picks K $← F.KeyGen(1λ) and a random bit b $← {0, 1}.

Challenge Phase. The challenger sends K{S∗} ← F.Puncture(K,S∗) to A. If b = 0, the challenger
additionally sends (F (K,x))x∈S∗ to A; otherwise, if b = 1, the challenger picks t random values
(yx $← Y for every x ∈ S∗) and sends them to A.

Fig. 1. Selective security game for puncturable pseudorandom functions. At the end of the experiment, A sends
a guess b′ and wins if b′ = b.

A PPRF can be constructed from any length-doubling pseudorandom generator, using the
GGM tree-based construction [GGM86,KPTZ13,BW13,BGI14]. The construction proceeds as
follows: On input a key K and a point x, set K(0) ← K and perform the following iterative

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 7

evaluation procedure: for i = 1 to ` ← log |x|, compute (K
(i)
0 ,K

(i)
1) ← G(K(i−1)), and set

K(i) ← K
(i)
xi . Output K(`). This procedure creates a complete binary tree with edges labeled by

keys; the output of the PRF on an input x is the key labeling the leaf at the end of the path
defined by x from the root of the tree.

– F.KeyGen(1λ) : output a random seed for G.
– F.Puncture(K, z) : on input a key K ∈ {0, 1}k and a point x, apply the above procedure and

return K{x} = (K
(1)
1−x1 , . . . ,K

(`)
1−x`).

– F.Eval(K{x}, x′), on input a punctured key K{x} and a point x, if x = x′, output ⊥.
Otherwise, parse K{x} as (K

(1)
1−x1 , . . . ,K

(`)
1−x`) and start the iterative evaluation procedure

from the first K(i)
1−xi such that x′i = 1− xi.

To obtain a t-puncturable PRF with input domain [n], one can simply run t instances of
the above puncturable PRF and set the output of the PRF to be the bitwise xor of the output
of each instance. With this construction, the length of a key punctured at t points is tλ log n,
where λ is the seed size of the PRG.

2.2 Learning Parity with Noise

In this work, we rely on variants of the Learning Parity with Noise (LPN) assumption [BFKL93]
over either F2 or a large finite field F, where the noise is assumed to have a small, fixed Hamming
weight. In particular, our constructions use the dual form10 of decisional LPN, defined below,
where for efficiency reasons we choose the matrix from a family of codes that supports (nearly)
linear-time matrix-vector multiplication.

In the following we define the LPN and dual-LPN assumptions over a general finite ring R
with error distribution D(R). For the case of OT we will let R = F2, and for the case of VOLE
R will typically be a big finite field. 11

Definition 2 (LPN). Let D(R) = {Dk,N (R)}k,N∈N denote a family of distributions over a ring
R, such that for any k,N ∈ N, Im(Dk,N (R)) ⊆ RN . Let C be a probabilistic code generation
algorithm such that C(k,N,R) outputs a matrix A ∈ Rk×N . For dimension k = k(λ), number of
samples (or block length) N = N(λ), and ring R = R(λ), the (D,C,R)-LPN(k,N) assumption
states that

{(A, b) | A $← C(k,N,R), e
$← Dk,N (R), s

$← Fk, b← s ·A+ e}
c
≈ {(A, b) | A $← C(k,N,R), b

$← RN}

Here and in the following, all parameters are functions of the security parameter λ and
computational indistinguishability is defined with respect to λ. When R = F2 and D is the
Bernoulli distribution over FN2 , where each coordinate is 1 with probability r and 0 otherwise,
this corresponds to the standard binary LPN assumption. Note that the search LPN problem,
of finding the vector can be reduced to the decisional LPN assumption as defined above above
when the code generator C outputs a uniform matrix A [BFKL93, AIK09]. However, this is
less relevant for us as we are mainly interested in efficient variants with more structured codes.
See [DI14] for further discussion of search-to-decision reductions in the general case.

10 We could also use the standard primal form of LPN, but this leads to worse communication complexity in our
constructions.

11 While our current malicious VOLE protocol fails when applied over general non-field rings, the semi-honest
variant is secure whenever the LPN assumption is secure. We leave the security analysis of LPN over non-field
rings to future work.

8 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

LPN with Fixed Weight and Regular Noise. For a finite field F, let HWt(F) be the distribution
of uniform, weight t vectors over FN ; that is, a sample from HWt(F) is a uniformly random
non-zero field element in t random positions, and zero elsewhere. The corresponding assumption
used in our constructions is denoted by (HWt(F),C,F)-LPN(k,N).

To increase efficiency in our constructions, we also consider a regular noise distribution.
This is as in the fixed weight case, except the noise vector in Fn is divided into t consecutive
sub-vectors of length bn/tc, where each sub-vector has a single noisy coordinate.

If the block length N and noise weight t are such that k random coordinates will be all noise-
less with non-negligible probability (e.g., when t is constant and N = Ω(k2)), these structured
variants can be broken via Gaussian elimination (cf. [AG11]). This attack does not apply to our
constructions, which always have N = O(k).

Definition 3 (dual LPN). Let D(R) and C be as in Definition 2, n,N ∈ N with N > n, and
define C⊥(N,n,R) = {H ∈ RN×n : A ·H = 0, A ∈ C(N − n,N,R), rank(H) = n}.

For n = n(λ), N = N(λ) and R = R(λ), the (D,C,R)-dual-LPN(N,n) assumption states
that

{(H, b) | H $← C⊥(N,n,R), e
$← D(R), b← e ·H}

c
≈ {(H, b) | H $← C⊥(N,n,R), b

$← Rn}

We will slightly abuse our notations by omitting to explicitely mention the code C and writing
(D, H,R)-dual-LPN(N,n) for above dual-LPN assumption with a matrix H ∈ C⊥(N,n,R).

The search version of the dual LPN problem is also known as syndrome decoding. For any
fixed family of codesC and error distributionD, the decisional version defined above is equivalent
to the primal variant of LPN from Definition 2 with dimension k = N − n and N samples. One
direction (transforming an LPN instance into dual-LPN) follows from the simple fact that when
H is the parity-check matrix of the code generated by A, we have (s·A+e)·H = s·A·H+e·H =
e ·H. The reverse direction can be shown similarly to, e.g. [MM11, Lemma 4.9].

Attacks on LPN. We recall here the main attacks on LPN, following the analysis of [BCGI18].
We refer the reader to [EKM17] for a more comprehensive overview. We assume that D is a
noise distribution with Hamming weight bounded by some integer t.

– Gaussian elimination. The most natural attack on LPN recovers s from b = s ·A+ e by
guessing n non-noisy coordinates of b, and inverting the corresponding subsystem to verify
whether the guess was correct. This approach recovers s in time at least (1/(1−r))n using at
least O(n/r) samples (r = t/N). For low-noise LPN, with noise rate 1/nc for some constant
c ≥ 1/2, this translates to a bound on attacks of O(en

1−c
) time using O(n1+c) samples.

– Information Set Decoding (ISD) [Pra62]. Breaking LPN is equivalent to solving its
dual variant, which can be interpreted as the task of decoding a random linear code from its
syndrome. The best algorithms for this task are improvements of Prange’s ISD algorithm,
which attempts to find a size-t subset of the rows of B (the parity-check matrix of the code)
that spans e · B, where t = rN is the number of noisy coordinates. The state of the art
variant of Prange’s information set decoding attack is the BJMM attack [BJMM12], which
was analyzed in [TS16], and in the NIST candidate BIKE [ABB+19, Section 5.2], which also
take into account the effect of the DOOM attack [Sen11] which applies to the specific case
of LPN with quasi-cyclic codes.

– The BKW algorithm [BKW00]. This algorithm is a variant of Gaussian elimination
which achieves subexponential complexity even for high-noise LPN (e.g. constant noise rate),
but requires a subexponential number of samples: the attack solves LPN over F2 in time
2O(n/ log(n/r)) using 2O(n/ log(n/r)) samples.

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 9

– Combinations of the above [EKM17]. The authors of [EKM17] conducted an extended
study of the security of LPN, and described combinations and refinements of the previous
three attacks (called the well-pooled Gauss attack, the hybrid attack, and the well-pooled
MMT attack). All these attacks achieve subexponential time complexity, but require as
many sample as their time complexity.

– Scaled-down BKW [Lyu05]. This algorithm is a variant of the BKW algorithm, tailored
to LPN with polynomially-many samples. It solves LPN in time 2O(n/ log log(n/r)), using n1+ε

samples (for any constant ε > 0) and has worse performance in time and number of samples
for larger fields.

– Low-Weight Parity Check (cf. [ADI+17, Zic17]). Eventually, all the previous attacks
recover the secret s. A more efficient attack (by a polynomial factor) can be used if one
simply wants to distinguish b = s ·A+e from random: by the singleton bound, the minimal
distance of the dual code of C is at most n+ 1, hence there must be a parity-check equation
for C of weight n+1. Then, if b is random, it passes the check with probability at most 1/|F|,
whereas if b is a noisy encoding, it passes the check with probability at least ((N−n−1)/N)t.

Example Instantiations. Our constructions will rely on dual-LPN with N = s · n and a fixed,
small noise weight t, where s is a small constant and the dimension n is very large; for example,
n ≈ 106, s = 2, t ≈ 120. We also use a regular error distribution to improve the efficiency of our
implementation. Finally, we instantiate the code family with random, quasi-cyclic codes, which
allow fast Õ(n) time syndrome computation.

This leads an assumption that is almost the same as was recently used in code-based post-
quantum cryptosystems [MBD+18,ABB+19,AMAB+19], the only differences being that we use
a much larger dimension n and a regular error distribution, which as far as we know does not
lead to significantly better attacks. For further discussion on our instantiation, security analysis
and example parameters, see Section 7.1.

As discussed in [BCGI18], alternative choices of codes are possible, and can even be linear-
time encodable based on [DI14] or LDPC codes. Optimizing and implementing such linear-time
implementations is an interesting direction for future work.

2.3 Secure Computation and NISC

We use standard definitions of (composable) secure two-party computation. Our protocols can
be analyzed and used either in a standalone setting, as formalized in [Can00,Gol04], or in a UC
setting [Can01,PVW08, IKO+11]. It will be convenient to cast our protocols in a hybrid model
that allows parallel calls to an ideal oblivious transfer functionality. These calls can be instanti-
ated by any composable OT protocol (e.g., the “PVW protocol” [PVW08] when considering UC
security against malicious adversaries in the CRS model). We use λ to denote a computational
security parameter, which we view as a public parameter that is available to all algorithms even
when not explicitly stated.

We will specifically be interested in 2-round protocols for “sender-receiver functionalities” that
take an input x from a receiver R and input y from a sender S, and deliver an output f(x, y)
to R. The communication consists of a single message from the receiver to the sender followed
by a single message from the receiver to the sender. Such protocols can be viewed as being
non-interactive in that the receiver can publish its message x̂ (which depends only on its input
x) and then go offline, before even knowing who the sender will be. Then x̂ can be used by any
sender S (in fact, in some cases even multiple senders) by sending the encrypted output ẑ to the
receiver’s mailbox. We use the term non-interactive secure computation from [IKO+11] (NISC
for short) to highlight this qualitative advantage. When described in the OT-hybrid model, NISC
protocols involve only one round of parallel OT calls. They can additionally involve a message
from R to S and a message from S to R, as long as these messages (in an honest execution) do
not depend on outputs of the OT oracle. Such NISC protocols in the OT-hybrid model can be

10 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

converted into NISC protocols in the plain model (or CRS model for malicious security) using
any 2-round (parallel-)OT protocol.

2.4 Pseudorandom Correlation Generators

A (two-party) pseudorandom correlation generator (PCG) securely generates long correlated
pseudo-randomness from a pair of correlated keys. Defining a PCG requires care, since the
natural simulation-based definition is not realizable. Instead, the following relaxed definition
has been proposed in [BCGI18,BCG+19].

The ideal output distribution of a PCG is specified by a (long) target correlation (R0, R1),
e.g., n independent instances of an OT correlation. This target correlation is specified by PPT
algorithm C, called a correlation generator, where C(1λ) outputs a pair of strings. We furthermore
restrict C to be reverse-samplable in the following sense: there exists a PPT algorithm RSample
such that for σ ∈ {0, 1}, the correlation obtained via:

{(R′0, R′1) |(R0, R1)
$← C(1λ), R′σ := Rσ, R

′
1−σ

$← RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).
Examples for standard and useful correlations, all of which are reverse-samplable, include

Oblivious Transfer (OT) correlation, where R0 includes n independent pairs of bit-strings (si0, s
i
1)

and R1 includes (ci, s
i
ci for random bits ci, and Vector-OLE (VOLE) correlation over a finite

field F, where R0 = (u,v) for random u,v ∈ Fn, and R1 = (x,ux+ v) for random x ∈ F.

Definition 4 (Pseudorandom Correlation Generator (PCG) [BCG+19]). Let C be a
reverse-samplable correlation generator. A pseudorandom correlation generator (PCG) for C is
a pair of algorithms (PCG.Gen,PCG.Expand) with the following syntax:

– PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs a pair of seeds
(k0, k1);

– PCG.Expand(σ, kσ) is a polynomial-time algorithm that given party index σ ∈ {0, 1} and a
seed kσ, outputs a bit string Rσ ∈ {0, 1}n.

The algorithms (PCG.Gen,PCG.Expand) should satisfy:

– Correctness. The correlation obtained via:

{(R0, R1) |(k0, k1)
$← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ)}

is computationally indistinguishable from C(1λ).
– Security. For corrupted party σ ∈ {0, 1}, the following two distributions are computationally

indistinguishable:

{(kσ, Rσ̄) | (k0, k1)
$← PCG.Gen(1λ),Rσ̄ ← PCG.Expand(σ̄, kσ̄)} and

{(kσ, Rσ̄) | (k0, k1)
$← PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ),

Rσ̄
$← RSample(σ,Rσ)}

where σ̄ = 1− σ and RSample is the reverse sampling algorithm for C.

As shown in [BCG+19], a PCG as defined above can be used as a drop-in replacement
for ideal correlated randomness generated by C in any application that remains secure even
when C is replaced by the following corruptible version C̃. In C̃ the corrupted party can choose
its own randomness, and the randomness of the honest party R1−σ is obtained by applying
RSample. It turns out that in most concretely efficient MPC protocols that consume correlated
randomness, security still holds even with this corruptible variant. In particular, this holds for the
simple protocols that implement standard (chosen-input) OT or VOLE from the corresponding
correlations. However, applying PCGs, the pair of keys (k0, k1) to be generated either by a
trusted dealer or by a secure protocol realizing PCG.Gen.

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 11

3 PCG Protocols and Silent NISC

We now define two new cryptographic primitives we introduce in this work: A pseudorandom
correlation generation protocol (PCG protocol for short) and a non-interactive secure computation
protocol with silent preprocessing (silent NISC for short).

3.1 PCG Protocols

The above notion of PCG gives a deterministic procedure for securely generating long sources of
correlated randomness from short but suitably correlated seeds. It does not explicitly address the
question of generating the seeds. In the following we formalize a natural generalization of PCGs
to a low-communication protocol for securely generating long sources of correlated randomnness
from scratch. By “low communication” we means that the total communication complexity is
sublinear in the output length.12

We take the following natural definition approach: a PCG protocol for an ideal correlation
C is a secure two-party protocol (in the usual sense) for the corruptible correlated randomness
functionality C̃ described below.

Definition 5 (PCG protocol). Let C be a reverse-samplable correlation generator. Define a
randomized functionality C̃ that takes from a corrupted party σ a string r̃σ as input, and outputs
to the honest party σ̄ a string rσ̄ sampled by RSample(σ, r̃σ). If no party is corrupted, C̃ outputs
to both parties a fresh pair of outputs generated by C. A (two-party) PCG protocol is a two-party
protocol realizing C̃ in which the communication complexity grows sublinearly with the output
length. In the case of security against semi-honest adversaries, we still allow the ideal-model
corrupted party (if any) to pick its input r̃σ for C̃ arbitrarily, whereas the real-model adversary
must follow the protocol.

As a simple corollary of an MPC composition theorem, a PCG protocol for C can serve as a
substitute for ideal correlated randomness C in any higher-level application that remains secure
even when C is replaced by C̃. Indeed, this is the case for standard MPC protocols that rely
on OT correlations or other types of simple correlations, both for semi-honest and malicious
security.

A general way of obtaining a PCG protocol is by distributing the randomized key generation
functionality PCG.Gen of a PCG (as in Definition 4) via a secure two-party computation protocol,
and then locally applying PCG.Expand. Indeed, this is the approach suggested in [BCG+19] for
the purpose of applying PCGs in the context of “MPC with silent preprocessing.” However, our
notion of a PCG protocol is less stringent than an alternative definition that requires securely
emulating PCG.Gen for some PCG, while at the same time being as good for applications. We
make use of this extra degree of freedom in our PCG protocols for the malicious model.

A central contribution of this work is the construction of two-round PCG protocols, namely
ones involving only a message from R to S followed by a message from S to R. We refer to such
a protocol as a non-interactive PCG protocol. We use the following syntax to highlight the fact
that the message of R can be published as a “public key” before the sender(s) are known.

Definition 6 (Non-interactive PCG protocol). A non-interactive PCG protocol is defined
by 4 algorithms with the following syntax:

– R.Gen(1λ)→ (skR, pkR)
– S.Gen(pkR)→ (skS,mS)
– R.Expand(skR,mS)→ rR
– S.Expand(skS)→ rS

12 In fact, in all protocols presented in this paper, the communication complexity only grows polylogarithmically
with the output length, under widely believed variants of the LPN assumption.

12 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

We say that the above algorithms define a non-interactive PCG protocol for a reverse-samplable
correlation C if the two-round protocol they naturally define (where each party outputs the output
of Expand) is a PCG protocol for C as in Definition 5.

In a non-interactive PCG protocol as above, the two Gen algorithms can be viewed as defining a
cheap setup that results in short, correlated keys. The two Expand algorithms are used to locally
perform “silent preprocessing” that generates useful correlated randomness (e.g., many instances
of an OT correlation, or few instances of a long VOLE correlation). In the most useful special
case of OT correlations, we will refer to a non-interactive PCG that makes a small number of
parallel OT calls as a non-interactive (or 2-round) silent OT extension protocol.

3.2 Silent NISC

In this section we define our new notion of non-interactive secure computation with silent prepro-
cessing, or silent NISC for short. A silent NISC protocol for f can be viewed as a “best-of-both-
worlds” combination of a non-interactive PCG protocol (see Definition 6) and a NISC protocol
(see Section 2.3). That is, a 2-round (chosen-input) secure computation protocol that supports
“silent preprocessing” followed by a light-weight (and often “non-cryptographic”) online phase,
without additional interaction.

Combining non-interactive PCG and NISC protocols in a generic way does not achieve the
above goal, since it involves 4 rounds: two to generate the correlated randomness, and two to
use it. To collapse these 4 rounds into two, we rely on the following feature of our concrete
non-interactive PCG constructions. For useful NISC correlations such as OT and VOLE, the
receiver’s piece of the correlated randomness rR can be split into two parts: rinR , which is used to
mask its input, and routR , used to unmask the output. The key feature is that the construction
allows R to locally generate rinR from its public key pkR alone, independently of the sender. This
enables R to prepare to a future NISC before the sender is even known.

More concretely, let f(x, y) be a sender-receiver functionality with receiver input x and
sender input y. Useful examples for which we get efficient solutions include: (1) n instances
of string-OT; (2) bitwise-AND of two n-bit strings; (3) inner product of two length-n vectors
over F; (4) a general function f represented by a Boolean circuit, which can be efficiently and
non-interactively reduced to (1) via garbled circuits (see [IKO+11, AMPR14,MR17] for such
black-box reductions for the malicious model).

A NISC protocol with silent preprocessing (or silent NISC) for f is defined by 8 algorithms:

– R.Gen(1λ)→ (skR, pkR)
– R.Expandin(skR)→ rinR
– S.Gen(pkR)→ (skS, pkS)
– R.Expandout(skR, pkS)→ routR

– S.Expand(skS)→ rS
– R.Msg(rinR , x)→ x̂
– S.Msg(rS, x̂, y)→ ẑ
– R.Dec(routR , x, ẑ)→ z

The security requirement is that the 2-round protocol obtained by executing the above algorithms
in any consistent order satisfies the security requirement of a (standard) NISC protocol for f .

To clarify the intended use and the features of our model for non-interactive secure com-
putation protocols with silent preprocessing, we provide on Figure 2 a pictural representation
of the protocol flow, illustrating the interdependencies between the algorithms, and we identify
the main features of each of the algorithms (whether they require small communication, or only
silent computation; whether they require cryptographic or non-cryptographic computation).

The 3 Expand algorithms define the “silent preprocessing” phase, that can be executed before
the inputs are known. The last 3 algorithms define the online part of the NISC protocol, which

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 13

Small Communication

pkR, pkS are short.

Silent Computation Non-Cryptographic Computation
From here on, algorithms are
input-dependent and can be ex-
ecuted multiple times with fresh
portions of (rinR , r

out
R , rS).

receiver
algorithms

sender
algorithms

= sender-independent

R.Gen

R.Expandout

R.Expandin

R.Msg R.Dec

S.Gen S.Expand S.Msg

1λ skR

rinR

pkR

skS

pkS
rS ẑ

routR

x̂

x

z = f(x, y)

y

Fig. 2. Pictural representation of the protocol flow for non-interactive secure computation with silent preprocess-
ing. The receiver input is y, the sender input is x, and the target output is z = f(x, y).

is carried out once the inputs are known. Among the four examples given above, this part is
“non-cryptographic” in the first three cases, and makes a black-box use of symmetric crypto in
the last one.

We will be particularly interested in silent NISC realizing many parallel OTs using few parallel
OTs, which can be viewed as a non-interactive, chosen-input variant of silent OT extension.
While here one cannot make the communication complexity sublinear in the input length, our
goal (which we achieve both in theorem and in practice) to make the communication very close
to the total input length. This is the case even for the more challenging case of 1-bit OT, for
which standard OT extension techniques that make a black-box use of cryptography [IKNP03,
ALSZ13,KK13,KOS15] have a high communication overhead compared to the input length.

4 Improved PCGs for VOLE and OT

4.1 Simplified subfield VOLE generator

We provide a construction of a PCG for subfield-VOLE correlations in Fig. 3. Recall that in
subfield-VOLE, one party receives random vectors u ∈ FNp and v ∈ FNpr , while the other party
gets a random x ∈ Fpr , and w = ux+v. The construction follows the informal description from
Section 1.2 (where we described the special case p = 2, which is equivalent to correlated OT),
and is essentially the same as the construction in [BCG+19], with a puncturable PRF instead
of a DPF. Likewise, the security analysis is essentially identical to the analysis of [BCG+19].

4.2 Instantiating the puncturable PRF

We use a simple puncturable PRF based on the GGM approach [GGM86] (as defined in Sec-
tion 2). To build a PPRF supporting t punctured points, we simply create t independent GGM
PRFs, each punctured once. Evaluation of the final PPRF is defined by adding the evaluations
of all t GGM-based PRFs.

More Efficient Puncturing Strategy. The key size for the above t-puncturable PRF is t ·λ log(N).
It is possible to reduce this size to t ·λ log(N/t) with a more optimized puncturing strategy; how-
ever, this alternative construction is not compatible with our optimized distributed generation

14 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

Construction GsVOLE

Parameters: 1λ, n,N, t, p, r ∈ N, where N > n. A matrix H ∈ FN×np and a weight-t error distribution
Dt,N over FNp .
Correlation: After expansion, outputs (u,v) ∈ Fnp ×Fnpr and (x,w) ∈ Fpr ×FNpr , where w = ux+v.
We view Fp as a subfield of Fpr , via some fixed embedding and representation of field elements.
PPRF is a puncturable PRF with domain [N] and range Fpr .
Gen: On input 1λ:

1. Sample e $← Dt,N . Let S = {α1, . . . , αt} ∈ [N]t be the sorted indices of non-zero entries in e, and
yi = eαi ∈ F∗p.

2. Sample x $← Fpr .
3. Sample kpprf

$← PPRF.Gen(1λ), and k∗pprf ← PPRF.Puncture(kpprf , S).
4. For i = 1, . . . , t, let zi ← x · yi − PPRF.Eval(kpprf , αi)
5. Let k0 ← (k∗pprf , S,y, {zi}i∈[t]) and k1 ← (kpprf , x).
6. Output (k0, k1).

Expand: On input (σ, kσ):

1. If σ = 0, parse k0 as (k∗pprf , S,y, {zi}i) and do as follows:
(a) Define e ∈ FNpm using y, {zi}i as above.
(b) For j ∈ [N], define the j-th entry of vector v0 as

v0[j] =

{
zi if j = αi ∈ S
−PPRF.Eval(k∗pprf , j) if j /∈ S

(c) Output (u,v)← (e ·H,−v0 ·H).
2. If σ = 1, parse k1 as (kpprf , x) and do as follows:

(a) Compute v1 ← PPRF.FullEval(kpprf) in FNpr .
(b) Output (x,w ← v1 ·H).

Fig. 3. PPRF-based PCG for subfield vector-OLE

protocols of Section 5 and Section 6. It is nonetheless useful in a setting where a trusted dealer
is available to distribute the PCG seeds, or where computation is not a bottleneck compared to
long-term storage. For a formal treatment, see Appendix B.

4.3 PCG for OT Correlation from Subfield-VOLE

In Fig. 4, we recall the construction of a PCG for OT correlations from a PCG for subfield-
VOLE, introduced in [BCG+19]. The PCG produces a set of n random 1-out-of-p OTs based
on a correlation robust hash function and the LPN assumption over Fp (where p is any prime
power, not necessarily prime).

5 Semi-Honest PCG Protocols and Two-Round OT Extension

In this section, we show how to securely compute the Gen algorithm from Fig. 3, in just 2 rounds
(assuming any 2-round OT). Using the construction of Fig. 4, this also leads to a distributed
protocol for generating random OT correlations, assuming in addition a correlation-robust hash
function. Then, we observe that our protocols satisfy a specific feature, which allows them to be
derandomized into chosen-input VOLEs and OTs, without increasing their round complexity;
this leads to 2-round OT extension and VOLE extension protocols, with silent preprocessing.
Our construction relies on the GGM puncturable PRF [GGM86] constructed from any length-
doubling pseudorandom generator G (Section 2.1).

On VOLE and reverse VOLE. Note that in a typical (chosen-input) VOLE, the sender inputs
(u,v), while the receiver inputs x and gets w = ux + v. In our two-round protocols, however,

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 15

Construction GOT

Parameters:

– Security parameter 1λ, integers n, r and prime power p with pr = O(2λ).
– An Fp-correlation-robust function H : {0, 1}λ × Fpr → {0, 1}λ.
– The subfield-VOLE PCG (GsVOLE.Gen, GsVOLE.Expand) with parameters (n, p, r).

Correlation: Outputs (R0, R1) =
(
{(ui, wi,ui)}i∈[n], {wi,j}i∈[n],j∈[p]

)
, where wi,j $← {0, 1}λ and

ui
$← {1, . . . , p}, for i ∈ [n], j ∈ [p].

Gen: On input 1λ, output (k0, k1)← GsVOLE.Gen(1
λ).

Expand: On input (σ, kσ):

1. If σ = 0: compute (u,v′)← GsVOLE.Expand(σ, kσ), where u ∈ Fnp ,v′ ∈ Fnq . Compute

vi ← H(i, v′i) for i = 1, . . . , n

and output (ui, vi).
2. If σ = 1: compute (x,w′)← GsVOLE.Expand(σ, kσ), where x ∈ Fq,w′ ∈ Fnq . Compute

wi,j ← H(i, w′i − j · x) for i = 1, . . . , n, ∀j ∈ Fp

and output {wi,j}i,j .

Fig. 4. PCG for n sets of 1-out-of-p random OT

we obtain a variant called reverse VOLE [ADI+17], where the sender inputs (x,w), while the
receiver inputs u and learns v = w − ux. These two variants are equivalent when the inputs
are random, so the distinction does not matter when constructing a PCG. In the chosen-input
case, a reverse VOLE can be used to construct standard VOLE with one additional message (as
observed in [ADI+17]), so our protocols give rise to 3-round chosen-input VOLE.

5.1 Distributed GGM-PPRF Correlation

We first consider a functionality where a party R holds a PPRF key kpprf ∈ {0, 1}λ for the GGM
PPRF [GGM86], and a point α = α1 · · ·α` where ` = `(λ) is logarithmic in λ, and a party S
holds a value β ∈ {0, 1}λ. The functionality computes and gives k{α}, β − PPRF.Eval(k, α) to
R. The functionality is represented on Figure 5.

Functionality FPPRF-GGM:

Parameters: 1λ, `, p, r ∈ N. PPRF is the GGM puncturable PRF with domain {0, 1}`, key space
{0, 1}λ, and range Fpr .

Inputs:

– S inputs β ∈ Fpr and a PPRF key kpprf ∈ {0, 1}λ.
– R inputs α ∈ {0, 1}`.

Functionality:

– Compute k∗pprf = PPRF.Puncture(kpprf , α).
– Send k∗pprf and t = β − PPRF.Eval(kpprf , α) to R.

Fig. 5. Functionality for distributing a PPRF correlation

16 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

Theorem 7. Assuming a black-box access to a PRG, there exists a 2-party protocol for FPPRF-GGM,
with semi-honest security in the OT-hybrid model, and the following efficiency features. The
computational complexity is dominated by O(2`) calls to a length-doubling PRG G : {0, 1}λ 7→
{0, 1}2λ. The interaction consists of ` parallel calls to FOT and has communication complexity
λ+ (3λ+ 1)`.

Proof. We represent the protocol ΠPPRF-GGM satisfying the requirements of Theorem 7 on Fig-
ure 6. At a high-level, our protocol proceeds as follows: at each level i of the GGM tree, the
holder of the PRF key k computes the XOR iiR of all odd-numbered nodes, and the XOR tiL
of all even-numbered nodes. Using a single 1-out-of-2 OT, the receiver obtains one of (tiL, t

i
R).

The protocol maintains the invariant that at the level i− 1, the receiver can compute (from the
previously stored information) all node values except one, implying that at level i, the receiver
can compute all node values except two; recovering one of (tiL, t

i
R) allows him to compute ex-

actly one of those two values, maintaining the invariant. At the end of the protocol, the receiver
has stored ` intermediate keys (` being the depth of the tree) which allow to compute all PRF
outputs, except one. Transmitting a single additional value allow the sender to reveal him this
value up to an offset β.

Correctness. We first show that the siα∗i values form a correct PRF key punctured at α.
We need that for each i, siα∗i equals the GGM tree value that is sibling to the unique node on
level i lying on the path to leaf α. This clearly holds for the first level, i = 1. On subsequent
levels, R first computes the 2i− 2 values at level i that it can obtain from the previous values it
knows, and then uses these to compute the final missing value siα∗i . It does this by XORing (resp.
summing over Fpr , for the last level) with the i-th OT output all-but-one of the odd-indexed,
or even-indexed, values, depending on the choice αi. Since the sender’s OT inputs contain the
XOR (resp. sum over Fpr , for the last level) of every odd- or even-indexed value, the receiver
ends up with the value of the sibling node to siαi . To see correctness of the final correction value
t, a similar reasoning as above shows that t = β − PPRF.Eval(k, α), as required.

Security. We exhibit a simulator Sim that generates a view indistinguishable from an honest
run of the protocol as long as a single party is corrupted.

Case 1: S is corrupted. The simulation of R is straightforward, since R does not send any
message directly to S in the protocol; R only send inputs to FOT.

Case 2: R is corrupted. Sim receives the input α and the target output ({siα∗i }i∈[`], t) of R.
Sim defines t1 · · · t` and the values (sij)i,j inductively, starting with t1 ← s1

α1
and following the

output procedure of R (see Figure 6). Eventually, Sim computes

c′ = t−

t` +
2`−1∑

j=0,j 6=α
s`2j+α`

 .

Then, Sim simulates the OT sender using input (ti, di) as input if αi = 0, and (di, t
i) as input

otherwise, where di is an arbitrary dummy value; Sim also sends c′ in parallel to the OTs.
The indistinguishability of the simulation follows directly from the definition of FOT and by
construction of c′.

5.2 Semi-Honest Non-Interactive PCG Protocol for Subfield-VOLE Correlations

We now construct a semi-honest non-interactive PCG protocol for the subfield-VOLE correlation
in the FPPRF-GGM-hybrid model, by describing a 2-message, 2-party protocol to distributively
execute the procedure GsVOLE.Gen. This is modelled by the functionality FGen in Figure 7. When
p > 2, the implementation requires in addition a single (subfield-) reverse VOLE on vectors
of length t. Reverse VOLE can be implemented in two rounds under an appropriate variant

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 17

Protocol ΠPPRF-GGM:

Parameters: 1λ, `, p, r ∈ N. PPRF is the GGM puncturable PRF with domain {0, 1}`, key space
{0, 1}λ, and range Fpr , constructed from a length-doubling PRG G : {0, 1}λ 7→ {0, 1}2λ, and a second
PRG G′ : {0, 1}λ 7→ (Fpr)2 used to compute the PRF outputs on the last level of the tree.

Inputs:

– R inputs α ∈ {0, 1}`.
– S inputs β ∈ Fpr and a PPRF key kpprf ∈ {0, 1}λ.

Protocol:

1. R and S execute in parallel ` calls to FOT, where for i = 1 to `− 1:
– R uses as input the choice bit αi;
– S computes the 2i partial evaluations at level i of the GGM tree defined by k, denoted
si0, . . . , s

i
2i−1 (in left-to-right order) and uses the two OT inputs

tiL =
⊕

j∈[0,2i−1)

si2j , tiR =
⊕

j∈[0,2i−1)

si2j+1.

and for the last OT,
– R uses as input the choice bit α`;
– S computes the 2` evaluations of the GGM tree defined by k, denoted s`0, . . . , s`2i−1 ∈ (Fpr)2

`

(in left-to-right order) and uses the two OT inputs

t`L =

2`−1∑
j=0

s`2j , t`R =

2`−1∑
j=0

s`2j+1.

2. In parallel to the OT calls, S sends c = β − (t`L + t`R) to R.

Output: R computes its output as follows:

1. Let t1 be R’s output in the first OT. Define s1α1
= t1.

2. For i = 2, . . . , `− 1:
(a) Compute (si2j , s

i
2j+1) = G(si−1

j), for j ∈ [0, . . . , 2i−1), j 6= α1 · · ·αi−1.
(b) Let ti be the output from the i-th OT.
(c) Define α∗i = α1 · · ·αi−1αi. Compute

siα∗
i
= ti ⊕

⊕
j∈[0,2i−1),
j 6=α∗

i

si2j+αi

3. Compute (s`2j , s
`
2j+1) = G′(si−1

j), for j ∈ [0, . . . , 2`−1), j 6= α1 · · ·α`−1.
4. R receives c, and computes

t = c+ t` +

2`−1∑
j=0,j 6=α

s`2j+α`

5. R outputs the punctured key {siα∗
i
}i∈[`], and the final correction value t.

Fig. 6. Protocol ΠPPRF-GGM for distributing a GGM-based PPRF correlation with semi-honest security in the
FOT-hybrid model

18 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

of LPN [ADI+17] or using linearly homomorphic encryption. We represent the functionality
Frev-VOLE on Figure 8. Note that in a reverse VOLE protocol, the sender is the one holding the
input x (while in a standard VOLE, x is held by the receiver).

Functionality FsVOLE-Gen

Parameters: 1λ, N, t, p, r ∈ N. PPRF is a puncturable PRF with domain [N], key space {0, 1}λ, and
range Fpr .

Inputs:

– R inputs a weight-t vector e ∈ FNp . Let S = {α1, . . . , αt} ∈ [N]t be the sorted indices of non-zero
entries in e, and yi = eαi ∈ F∗p.

– S inputs x ∈ Fpr and a PPRF key kpprf ∈ {0, 1}λ.

Functionality:

1. Compute k∗pprf ← PPRF.Puncture(kpprf ,S).
2. For i = 1, . . . , t, let zi ← x · yi − PPRF.Eval(kpprf , αi)
3. Let k0 ← (k∗pprf ,S,y, {zi}i∈[t]) and k1 ← (kpprf , x).
4. Output k0 to R and k1 to S.

Fig. 7. Functionality for the Generation Procedure of the Subfield-VOLE Generator

Functionality Frev-VOLE

Parameters: t, p, r ∈ N.

Input: The sender S inputs a pair (b, x) ∈ Ftpr × Fpr . The receiver R inputs a vector y ∈ Fp.

Functionality: Compute c← yx− b and output c to R.

Fig. 8. Reverse Vector-OLE Functionality over a Field Fp

Theorem 8. There exists a 2-message protocol ΠsVOLE-Gen which realizes the functionality
FsVOLE-Gen(1λ, N, t, p, r), with semi-honest security in the (FPPRF-GGM, Frev-VOLE)-hybrid model,
using t calls to FPPRF-GGM, a single call to Frev-VOLE(t, p), and no further communication. Fur-
thermore, when p = 2, the functionality can be implemented directly using t calls to FPPRF-GGM,
and no call to Frev-VOLE.

We present the protocol ΠsVOLE-Gen in Figure 9. Correctness follows easily by inspection: for
i = 1 to t, we have zi = wi + ci = (bi − PPRF.Eval(kpprf , αi)) + ci = x · yi − PPRF.Eval(kpprf , αi).
Security is straightforward. We note that when p = 2, since y is a weight-t vector, it always hold
that yi = 1, hence computing a share of x · yi = x is trivial and does not require a call to the
VOLE functionality.

Implementing FPPRF-GGM with the protocol ΠPPRF-GGM and FOT with any 2-round semi-
honest OT protocol, this immediately leads to a semi-honest non-interactive PCG protocol
ΠsVOLE(Fq) for the subfield-VOLE correlation:

– R.Gen(1λ) : sets pkR to be the first message of ΠsVOLE-Gen and skR to be the secret state of
R.

– S.Gen(pkR) : sets mS to be the second message of ΠsVOLE-Gen on first message pkR, and skS
to be the sender output in ΠsVOLE-Gen.

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 19

– R.Expand(skR,mS) : computes the output k0 of the receiver from the state skR and the second
message mS, and outputs GsVOLE.Expand(0, k0).

– S.Expand(skS) : outputs GsVOLE.Expand(1, skS).

Corollary 9. Assuming the (HWt, H,Fq)-dual-LPN(N,n) assumption, ΠsVOLE-Gen is a semi-
honest non-interactive PCG protocol for subfield-VOLE correlations over an arbitrary extension
field Fq of F2, which only makes a black-box use of a 1-out-of-2 semi-honest 2-message OT and
a length-doubling PRG G : {0, 1}λ → {0, 1}2λ. By making additionally a single black-box use of
a 2-message length-t semi-honest reverse VOLE, this can be generalized to arbitrary fields.

In the above corollary, ΠsVOLE-Gen makes t · dlogNe black-box accesses to the 1-out-of-2
semi-honest 2-message OT, t ·N black-box accesses to a length-doubling PRG, and additionally
computes one matrix-vector multiplication with H. Regarding communication, the size of pkR
is t · dlogNe · NR and the size of mS is t · (λ + dlogNe · NS), where NR (resp. NS) denote the
receiver communication (resp. the sender communication) in the underlying OT protocol; over
general fields, there is an additional +MR(t, q, r) term in the size of pkR and +t ·MS(t, q, r) in
the size of mS, whereMR(t, q, r) (resp.MS(t, q, r)) denote the receiver communication (resp. the
sender communication) in the underlying length-t reverse subfield-VOLE protocol over Fqr .

Protocol ΠsVOLE-Gen

Parameters: 1λ, N = 2`, t, p, r ∈ N. PPRF is a puncturable PRF with domain [N] and range Fpr .

Inputs:

– R inputs a weight-t vector e ∈ FNp . Let S = {α1, . . . , αt} ∈ [N]t be the sorted indices of non-zero
entries in e, and yi = eαi ∈ F∗p.

– S inputs x ∈ Fpr and a PPRF key kpprf ∈ {0, 1}λ.

Protocol:

1. S picks b $← Ftp.
2. R and S call Frev-VOLE(t, p) on respective inputs (y, (b, x)). R receives an output c.
3. For i = 1 to t, R and S call FPPRF-GGM(1

λ, `, p, r) on respective inputs αi and (bi, kpprf). R receives
an output (k∗pprf , wi).

4. For i = 1 to t, R computes zi ← wi + ci. R outputs (k∗pprf ,S,y, {zi}i∈[t]) and S outputs (kpprf , x).

Fig. 9. Protocol for the Generation Procedure of the Subfield-VOLE Generator

5.3 Semi-Honest Non-Interactive Secure Computation with Silent Preprocessing

While the non-interactive PCG protocols of the previous section are interesting in their own
right, we observe that they satisfy the features outlined in Section 3.2, and therefore lead to
2-round protocols, and even silent NISC, for the OT and the VOLE functionalities.

Semi-Honest Two-Round OT with Silent Preprocessing As observed in [BCG+19] (and
shown in Fig. 4), a PCG for subfield-VOLE together with a correlation-robust hash function
lead to a PCG GOT for the ROT correlation. Using our distributed setup protocol ΠsVOLE-Gen
(which can be implemented in two rounds, given any two-round OT and two-round subfield-
VOLE), together with the standard protocol for chosen-input OT from ROT, directly leads to
a two-round OT extension protocol, which performs n OTs on s-bit strings with communication
(2s+ 1) · n+ o(n) (for any s).

20 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

Theorem 10. Assuming the (HWt, H,Fp)-dual-LPN(N,n) assumption, ΠOT is a semi-honest
2-round OT extension with silent preprocessing for generating n 1-out-of-2 OTs, which makes
o(n) black-box uses of a 2-round semi-honest 1-out-of-2 OT, and O(n) black-box uses to a length-
doubling PRG and an Fp-correlation robust hash function.

Assuming further any 2-round semi-honest reverse VOLE, there is a 2-round OT extension
with silent preprocessing for 1-out-of-p OT with comparable costs, using additionnally one black-
box execution of a reverse-VOLE on length-o(n) inputs.

Proof. In the above theorem, ΠOT additionally requires the computation of one matrix-vector
multiplication with H. It has total communication (2s+ 1) · n+ o(n), where s is the bit-length
of the sender messages. We represent the protocol for 2-round OT extension on Figure 10.

Correctness. By the correctness of ΠsVOLE-Gen and GOT, it holds that vi = wi,ui for i = 1 to
n. Therefore, m′i,si − vi = mi,si + wi,ti−si − wi,ui = mi,si since ti − si = ui.

Security. We exhibit a simulator Sim that generates a view indistinguishable from an honest
run of the protocol as long as a single party is corrupted.

Case 1: S is corrupted. Sim simulates R by constructing (e,u) honestly, participating to
ΠsVOLE-Gen as R does (note that this does not require any input of R). Sim simulates t by sending
t′

$← Fnp . Since ΠsVOLE-Gen securely emulates FGen, no information about u leaks to S during
the execution of ΠsVOLE-Gen. By the security of GOT, u is computationally indistinguishable
from random from the viewpoint of S, hence so is t = u + s; therefore, the simulation is
indistinguishable from an honest run of the protocol.

Case 2: R is corrupted. Sim receives R’s input (si)i≤n, R’s random tape, and the corre-
sponding target output (mi,si)i from the OT functionality. Sim simulates S by sampling k1 and
computing the wi,j honestly (this does not require the input of S). Sim computes the random
noise vector e of R using R’s random tape, from which he can compute R’s output k0 = (u,v).
For i = 1 to n, Sim computes m′i,si as mi,si + vi, and picks m′i,j

$← {0, 1}λ for each j 6= si. Sim
sends (m′i,j)i,j to R. By the security of ΠsVOLE-Gen and GOT, the m′i,j for j 6= si are indistin-
guishable from random from the viewpoint of R, hence the simulation is indistinguishable from
an honest run of the protocol.

Protocol ΠOT

Parameters: 1λ, n,N = 2`, t, p, r ∈ N. H ∈ FN×np . PPRF is a puncturable PRF with domain [N] and
range Fpr . Dt,N is a weight-t error distribution over FNp .

Inputs:

– R inputs n field elements (si)i≤n ∈ Fnp .
– S inputs n length-p vectors (mi)i≤n where each mi is over ({0, 1}λ)p.

Protocol:

1. R picks e $← Dt,N . Let S = {α1, . . . , αt} ∈ [N]t be the sorted indices of non-zero entries in e, and
yi = eαi ∈ F∗p. R computes the first part u of GOT.Expand(0, k0) (note that u is computed as e ·H
where e depends solely on e). R sets t← u+ s

2. S samples x
$← Fpr and kpprf

$← PPRF.Gen(1λ). He sets k1 ← (kpprf , x) and computes
{wi,j}i≤n,j≤p ← GOT.Expand(1, k1).

3. R computes and sends to S the first round of ΠsVOLE-Gen on input e, together with t.
4. S computes and sends to R the second round of ΠsVOLE-Gen on input (x, kpprf) together with m′i,j ←

mi,j + wi,ti−j for i = 1 to n and j = 1 to p; R gets an output k0.
5. R computes (u,v)← GOT.Expand(0, k0) and outputs (m′i,si − vi)i≤n.

Fig. 10. Two-Round OT Extension

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 21

NISC for OT with Silent Preprocessing. Our 2-round OT extension protocol directly gives
rise to a non-interactive secure computation protocol for the oblivious transfer functionality, with
silent preprocessing, as defined in Section 3.2. For the sake of concreteness, we frame our OT
extension protocol into the language of NISC with silent preprocessing on Figure 11.

Protocol NISCOT

Parameters: 1λ, n,N = 2`, t, p, r ∈ N. H ∈ FN×np . PPRF is a puncturable PRF with domain [N] and
range Fpr . Dt,N is a weight-t error distribution over FNp .
par← (1λ, n,N, t, p, r,H).

Inputs:

– R inputs n field elements (si)i≤n ∈ Fnp .
– S inputs n length-p vectors (mi)i≤n where each mi is over ({0, 1}λ)p.

Protocol:

– R.Gen(par) : pick e $← Dt,N . Compute the first round of ΠsVOLE-Gen on input e. Set skR to be the
secret state of R after computing the first round of ΠsVOLE-Gen, and pkR be the message computed
by R in ΠsVOLE-Gen.

– R.Expandin(skR) : compute the first part u of GOT.Expand(0, k0) (note that u is computed as e ·H
where e depends solely on e). Output rinR ← u.

– S.Gen(pkR) : sample x $← Fpr and kpprf
$← PPRF.Gen(1λ). Set skS ← (kpprf , x). Define pkS to be the

second round message of S in ΠsVOLE-Gen on input (x, kpprf) after receiving the message pkR from
R.

– R.Expandout(skR, pkS) : compute the output routR obtained by R with state skR upon receiving the
message pkS from S in ΠsVOLE-Gen.

– S.Expand(skS) : compute rS = {wi,j}i≤n,j≤p ← GOT.Expand(1, skS).
– R.Msg(rinR , s) : output ŝ← rinR + s.
– S.Msg(rS, ŝ, (mi)i) : parse rS as {wi,j}i≤n,j≤p. Compute m′i,j ← mi,j +wi,ŝi−j for i = 1 to n and
j = 1 to p and output ẑ = (m′i,j)i,j .

– R.Dec(routR , s, ẑ) : parse ẑ as (m′i,j)i,j . Compute (u,v) ← GOT.Expand(0, r
out
R) and output z =

(m′i,si − vi)i≤n.

Fig. 11. Non-interactive secure computation with silent preprocessing for oblivious transfer

Semi-Honest NISC for Reverse Subfield-VOLE The same derandomization strategy as
above directly implies, starting from the non-interactive PCG protocol for subfield-VOLE of
Section 5.2, a NISC protocol for reverse subfield-VOLE with silent preprocessing, with features
comparable to that of the NISC for OT extension. We omit the details.

Theorem 11. Suppose the (HWt, H,Fp)-dual-LPN(N,n) assumption holds. Then there is a
semi-honest NISC protocol for reverse subfield-VOLE with silent preprocessing for generating
length-n reverse subfield-VOLEs over an arbitrary field Fp, which uses o(n) black-box execu-
tions of a 2-message semi-honest 1-out-of-2 OT, O(n) black-box calls to a length-doubling PRG,
one black-box call to a 2-message semi-honest reverse VOLE, and additionally computes one
matrix-vector multiplication with H. It has total communication (2s+ 1) · n+ o(n).

6 Maliciously Secure PCG Protocols

In this section, we present protocols for VOLE, OT extension and NISC with security against
malicious parties. Our final protocol for OT extension takes place in four rounds, and can be
compressed to two rounds via Fiat-Shamir.

22 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

We begin in Section 6.1 by formalizing and describing an augmented PPRF primitive with
a “malicious key verification” procedure, corresponding to the event of when a selective-failure
attack will (or not) be identified. In Sections 6.2 and 6.3, we describe simple consistency checks
that achieve the selective-failure-only security notion for a single GGM PPRF and for a batch of
t PPRFs (with consistent x), respectively. Then, in Section 6.4, we build atop this functionality
to obtain a PCG protocol for subfield VOLE with standard malicious security. In Section 6.5,
we explain how the PCG protocol for subfield VOLE can be converted into a four round PCG
protocol for random 1-out-of-p OT correlation. Finally, in Section 6.6 we show how to apply
the Fiat-Shamir heuristic to compress the protocol down to just 2 rounds, relying on a slightly
stronger assumption and the random oracle model. To obtain silent NISC for the OT function-
ality, which implies two-round OT extension on chosen inputs, we use the observation (as in our
semi-honest protocol) that the receiver and sender can derandomize their inputs in parallel with
their protocol messages.

6.1 Puncturable PRF with Malicious Keys

In the following sections we will realize a relaxed form of distributed PPRF setup functionality,
where a corrupt sender may choose its own “master key,” defining a PRF evaluation that need not
coincide with any honest GGM tree, provided that it is consistent with the receiver’s punctured
point. The consistency of the keys will serve as the “getting caught” predicate in our ideal
functionality. In this section, we introduce necessary terminology in order for the consistency
check to be formulated.

To check consistency of the punctured key, we modify both the range and domain of the
GGM construction used previously. We extend the domain from [N] to [2N], and the range so
that the values of even-indexed leaves lie in (Fpr)2, whilst those of odd-indexed leaves are in
{0, 1}λ. We will use a pair of PPRF consecutive outputs ((ω,w), γ) ∈ (Fpr)2×{0, 1}λ as follows:
The value w will correspond to the actual output of the PPRF. The value γ will be used to
ensure consistency within a single PPRF keys. The value ω will be used to ensure consistency
across t PPRF keys. To verify a single PPRF key, the punctured point α ∈ [N] is mapped to
an even index in [2N], so that an honest receiver can verify correctness of a punctured key by
computing a hash of all the γ values. The sender computes the same hash and sends this to the
receiver to check.

Formally, we can apply this technique to any PPRF which has the following key verification
property for a maliciously generated key.

Definition 12 (Verification of malicious PPRF keys). Let (PPRF.Gen,PPRF.Puncture,
PPRF.Eval) be a PPRF with keyspace {0, 1}λ, domain X and range Y. We say that PPRF allows
verification of malicious keys for a set K, the malicious keyspace, if there exist efficient algorithms
(Ver,Puncture∗,Eval∗), such that;

– Ver takes as input a malicious key K ∈ K and a set I ⊆ X and outputs 0/1.
– Puncture∗ takes as input a malicious key K and an index α ∈ X and outputs a key k∗pprf

punctured at α.
– Eval∗ takes as input a malicious key K∗, a set I ⊆ X and an index in x ∈ X , and outputs a

value in Y or ⊥.

Futher, we require for all I ⊆ X and K∗ ∈ K:

Consistency check. If Ver(K∗, I) = 1 then for all α ∈ I, x ∈ X \{α}: PPRF.PuncEval(k∗, x) =
Eval∗(K∗, I, α), where k∗ ← Puncture∗(K∗, α).
If this holds then we say that K∗ is consistent with the set I.

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 23

GGM instantiation. In Appendix C.1, we show that the GGM puncturable PRF allows for
verification of malicious keys. The malicious keyspace K will correspond to malicious choices of
the sender’s ` OT message pairs, while the malicious puncturing algorithm Puncture∗ computes
the same punctured key that an honest receiver would, for some maliciously chosen sender key.
For a given malicious key K and subset of the PRF domain I ⊂ [N], Ver(K, I) evaluates to 1 if
the full-domain evaluation vector s = (s0, . . . , sN−1) of K (as defined by Eval∗) is “well formed”
for I: namely, for any possible choice of the receiver’s input α ∈ I, then the sender’s string s
agrees with the corresponding receiver full-domain evaluation string, defined by the received key
k∗ derived from puncturing K (via Puncture∗) at α.

6.2 Malicious Setup for Single-Point PPRF

As mentioned in the previous section, in order to achieve malicious security of a single PPRF
evaluation, we use the redundancy introduced via the domain extension for checking consistent
behaviour, by letting the sender provide a hash of all right leaves of the fully evaluated GGM tree.
The idea is that a sender computing the correct hash value (relative to the receiver’s input α),
either behaved honestly, or guessed a set I such that α ∈ I. This is captured in the functionality
in Figure 12. The functionality is similar to the semi-honest functionality given in Figure 12,
but the adversary is additionally allowed to give a set I ⊆ [N] as guess. If indeed α ∈ I, the
sender will successfully finish the protocol and learn some partial information about α (namely,
whether α ∈ I). Otherwise, the functionality will abort.

In order for the right leaves of the GGM tree to fix a unique tree, we require the PRG of the
last level G′ : {0, 1}λ → (Fpr)2 × {0, 1}λ to satisfy the right-half injectivity property below.

Definition 13 (Right-half injectivity). We say a function f = (f0, f1) : {0, 1}λ → Y ×
{0, 1}λ, x 7→ (f0(x), f1(x)) is right-half injective, if its restriction to the right-half of the output
space f1 : {0, 1}λ → {0, 1}λ is injective.

Remark 14. Note that the standard construction of a PRG from any one-way permutation is
right-half injective [GPS16]. To avoid using a one-way permutation when implementing G′, we
can relax the half injectivity requirement to just right-half collision resistance, if G′ is sampled at
random from a family of hash functions that are collision-resistant in their right-half output. In
practice, if pr = 2λ, we can define G′ : {0, 1}λ → F2

2λ
×{0, 1}2λ and instantiate it with a standard

counter mode PRG based on any block cipher, under the assumption that it is infeasible to find
a collision in the latter 2λ bits of output. Note that here, we extended the latter part of its
output from λ to 2λ bits, for 2λ concrete security against birthday attacks.

Note that the protocol we present implements the functionality for the function PPRF1,
defined as the GGM PPRF used in the protocol, but where evaluation drops the final λ bits of
output (which were used in the consistency check, so are no longer pseudorandom).

We give the protocol for distributed setup of PPRF1 with security against malicious adver-
saries in Figure 13. First, in steps 1–6 the parties run the semi-honest protocol, such that the
receiver holds a key k∗ punctured at α‖0 and the sender a possibly malicious key K. As the tree
is always punctured at an even value, both parties can compute all the right leaves of the GGM
tree. The sender additionally sends a hash of all these leaves to the receiver. The receiver checks
if this hash is consistent with his view and aborts otherwise.

The following theorem is proven in Appendix C.2.

Theorem 15. Assuming a black-box access to a PRG G : {0, 1}λ 7→ {0, 1}2λ, a right-half injec-
tive PRG G′ : {0, 1}λ 7→ (Fpr)2 × {0, 1}λ, and a collision resistant hash function h : {0, 1}λN →
{0, 1}λ, there exists a 2-party protocol implementing Fmal-PPRF (see Fig. 12) for the puncturable
PRF PPRF1, with malicious security in the parallel OT-hybrid model, and the following efficiency
features. The interaction consists of ` parallel calls to FOT, and uses additional communication
of r log p+ λ. The computational complexity is dominated by O(2`) calls each to G and G′.

24 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

Functionality Fmal-PPRF:

Parameters: 1λ, N = 2`, p, r ∈ N. PPRF is a puncturable PRF with domain [N] = {0, 1}`, key space
{0, 1}λ, and range (Fpr)2, supporting verification of malicious keys.

Inputs:

– R inputs α ∈ {0, 1}`.
– S inputs β ∈ (Fpr)2 and a PPRF key kpprf ∈ {0, 1}λ.

Functionality:

– If S is honest:
1. Compute k∗pprf = PPRF.Puncture(kpprf , α).
2. Send k∗pprf and w = −PPRF.Eval(kpprf , α) + β to R, and kpprf to S.

– If S is corrupted:
1. Wait for A to send a guess I ⊆ [N] and a key K∗ ∈ K.
2. Check that α ∈ I and that Ver(K∗, I) = 1. If either check fails, send abort to R and wait for

a response from R. When R responds with abort, forward this to S and halt.
3. Compute k∗pprf = Puncture∗(K∗, α) and

w = −Eval∗(K∗, I, α) + β.

4. Send k∗pprf and w to R, and success to S.

Fig. 12. Functionality for malicious distributed setup of single-point PPRF

6.3 Malicious Setup of t PPRFs with Consistent Offset

For the VOLE setup with malicious security, we require a protocol for distributed setup of t
PPRFs, where the inputs βj of the sender are consistent across all evaluations. By consistent,
we mean that each βj is an additive share of x ·yj , where the receiver knows the other share and
the noise value yj ∈ F∗p. To this end, we introduce a second consistency check, where the sender
has to provide a linear combination of the outputs of each PPRF. We show that a cheating sender
will fail this final check, unless he managed to guess part of the receiver’s input. This guessing is
modelled by the functionality Fmal-t-PPRF (Fig. 15), which is parameterized by a 1-puncturable
PRF with verification of malicious keys.

To carry out this check, we exploit the extended range of the PPRF given by the functional-
ity Fmal-PPRF. The extra Fpr element from each evaluation serves to check consistency, by taking
a random linear combination of all these outputs (for each PPRF), together with a linear combi-
nation of the original outputs, and sending these to the receiver to check. Note that without the
extended range, sending a linear combination of PPRF outputs to the receiver would leak the
sender’s input x; with the extra outputs, however, the sender can use a random value χ which
serves to mask x.

Since we sacrifice the extended outputs in the consistency check, the functionality Fmal-t-PPRF
which we realize gives us a PPRF with range Fpr , as required, which is defined by simply ignoring
the first element output from the one with range F2

pr .
To create the shares of x · yj , when p > 2 we again need a slightly stronger flavor of reverse

VOLE, presented in Figure 14. Here, we require the functionality to take two inputs by the
sender ((β, χ), (b, x)), and only one input y by the receiver, and return to the sender values γ, c,
such that (β,γ) constitute sharings of x× y (and similar for c). Note that it is not enough for
our protocol to instead call the basic reverse VOLE functionality twice, as a receiver providing
inconsistent inputs in the two calls can learn the input x of the sender in the protocol Πmal-t-PPRF
(Figure 16).

For a proof of the following theorem we refer to Appendix C.3.

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 25

Protocol Πmal-PPRF:

Parameters: 1λ, `, N = 2`, p, r ∈ N. PPRFGGM is the GGM puncturable PRF with domain {0, 1}`+1 =
[2N], key space {0, 1}λ, and range (Fpr)2 × {0, 1}λ, constructed from a length-doubling PRG G :
{0, 1}λ 7→ {0, 1}2λ, and a second PRG G′ : {0, 1}λ 7→ (Fpr)2 × {0, 1}λ used to compute the PRF
outputs on the last level of the tree.

Inputs:

– R inputs α ∈ {0, 1}`.
– S inputs β ∈ (Fpr)2 and a PPRF key kpprf ∈ {0, 1}λ.

Protocol:

1. S samples a random seed kpprf ∈ {0, 1}λ.
2. S computes the 2i partial evaluations at level i of the GGM tree:

(a) S sets s00 = kpprf .
(b) For i ∈ {1, . . . , `}, j ∈ [0, . . . , 2i−1): S computes (si2j , si2j+1) = G(si−1

j).
(c) For j ∈ {0, 1}`: S computes (s`+1

2j , s`+1
2j+1) = G′(s`j) ∈ (Fpr)2 × {0, 1}`.

3. S computes the “left” and “right” halves for i ∈ {1, . . . , `}:

Ki
0 =

⊕
j∈[0,2i−1)

si2j , Ki
1 =

⊕
j∈[0,2i−1)

si2j+1

4. S computes the “right” half for i = `+ 1:

K`+1
1 =

⊕
j∈{0,1}`

s`+1
2j+1

5. For i = 1, . . . , ` = logN (in parallel) the parties run OT where in the i-th OT:
(a) R inputs the choice bit αi.
(b) S inputs the pair (Ki

0,K
i
1).

6. S sends to R the key K`+1
1 and the correction value

c = β −
∑
j∈[N]

s`+1
2j .

7. For the consistency check, S sets γj = s`+1
2j+1 for all j ∈ [N] and sends to R the value Γ =

h(γ0, . . . , γN−1).
8. Let {Ki}`+1

i=1 denote the OT outputs received by R together with the key of the (` + 1)-st level.
Then, R proceeds as follows.
(a) k∗pprf ← Puncture∗({Ki}`+1

i=1 , α).
(b) {sj}j 6=α‖0 ← PPRFGGM.FullEval(k

∗
pprf , α‖0).

(c) R receives c, and computes

w = c−
∑

j∈[N]\{α}

s2j

(d) To verify consistency, R sets γj = s2j+1 for all j ∈ [N], and computes Γ ′ = h(γ0, . . . , γN−1).
9. If Γ = Γ ′, R outputs the punctured key k∗pprf , and the final correction value w. Otherwise, R

aborts.

Fig. 13. Protocol for distributed setup of single-point PPRF with consistency check

Functionality Fg-rev-VOLE

Parameters: t, p, r ∈ N.

Input: The sender S inputs a pair ((β, χ), (b, x)) ∈ (Ftpr × Fpr)2. The receiver R inputs a vector
y ∈ Ftp.

Functionality: Compute γ ← yχ− β and c← yx− b and output (γ, c) to R.

Fig. 14. Generalized Reverse Vector-OLE Functionality over a Field Fp

26 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

Functionality Fmal-t-PPRF:

Parameters: 1λ, N = 2`, t, p, r ∈ N. PPRF is a puncturable PRF with domain [N], key space {0, 1}λ,
and range Fpr , supporting verification of malicious keys.

Inputs:

– R inputs indices α1, . . . , αt ∈ [N] and weights y1, . . . , yt ∈ F∗p. We define S = {α1, . . . , αt}.
– S inputs k1 = ({kj}j∈[t], x), where x ∈ Fpr and kj ∈ {0, 1}λ.

Functionality:

– If S is honest:
1. Compute k∗j ← PPRF.Puncture(kj , αj), for j ∈ {1, . . . , t}.
2. Let zj ← x · yj − PPRF.Eval(kj , αj) for j ∈ {1, . . . , t}.
3. Let k0 ← ({k∗j , zj}j∈[t],S,y).
4. Output k0 to R.

– If S is corrupted:
1. Receive from A t subsets I1, . . . , It ⊆ [N] and a set of keys K∗1 , . . . ,K∗t ∈ K.
2. For each j ∈ {1, . . . , t} check that αj ∈ Ij and that Ver(K∗j , Ij) = 1. If any check fails, abort.
3. Compute k∗j = PPRF.Puncture∗(K∗j , αj) for each j ∈ {1, . . . , t}.
4. Let zj ← x · yj − PPRF.Eval∗(K∗j , Ij , αj) for j ∈ {1, . . . , t}.
5. Output k0 ← (k∗pprf ,S,y, {zj}j∈[t]) to R and success to S.

Fig. 15. Functionality for malicious distributed setup of t puncturable PRFs

Protocol Πmal-t-PPRF:

Parameters: 1λ, N = 2`, t, p, r ∈ N. PPRF is a puncturable PRF with domain [N], key space {0, 1}λ
and range (Fpr)2.

Inputs:

– R inputs distinct indices α1, . . . , αt ∈ [N] and weights y1, . . . , yt ∈ F∗p. We define S = {α1, . . . , αt}
and y = (y1, . . . , yt) ∈ (F∗p)t.

– S inputs x ∈ Fpr .

Protocol:

1. S picks β, b $← Ftpr and χ $← Fpr .
2. R and S call Fg-rev-VOLE(t, p, r) on respective inputs y and ((β, χ), (b, x)). R receives (γ, c) ∈

Ftpr × Ftpr .
3. R and S call Fmal-PPRF(1

λ, N, p, r) t times on respective inputs αj and (βj , bj). R receives k∗j and
(ωj , wj) for each j ∈ {1, . . . , t}. If any of the runs is not successful, R receives abort from the
functionality.

4. R samples τ, τ0, . . . , τN−1
$← Fpr and sends these to S.

5. S computes (vjS,2i, v
j
S,2i+1)← PPRF.Eval(kj , i) for i ∈ [N], j ∈ {1, . . . , t}, and sends X = χ+ τ · x

and VS,j =
∑N−1
i=0 τi · (vjS,2i + τ · vjS,2i+1) for j ∈ {1, . . . , t} to R.

6. R computes (vjR,2i, v
j
R,2i+1) ← PPRF.Eval′(k∗j , i) for i ∈ [N], j ∈ {1, . . . , t}, where PPRF.Eval′ is

an algorithm that outputs (ωj , wj) + (γj , cj) on input (k∗j , αj), and −PPRF.Eval(k∗j , i) else.
7. R checks if VS,j+

∑N−1
i=0 τi ·(vjR,2i+τ ·v

j
R,2i+1) = X ·ταj ·yj for j ∈ {1, . . . , t}. If any of these checks

fail or R received abort from Fmal-PPRF in step 3, R aborts. Otherwise, R sends ok to Fmal-PPRF and
outputs k0 = ({k∗j , zj}j ,S,y).

Fig. 16. Protocol for malicious distributed setup of t puncturable PRFs

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 27

Theorem 16. There exists a 4-message 2-party protocol Πmal-t-PPRF which securely implements
the functionality Fmal-t-PPRF(1λ, N, p, r) for the puncturable PRF PPRF in the Fg-rev-VOLE- ,
parallel Fmal-PPRF-hybrid model, with malicious security, using t parallel calls to Fmal-PPRF, and
only one call to Fg-rev-VOLE, and further communication of (N + t+ 2)r log p bits. Furthermore,
when p = 2, the functionality can be implemented in the parallel Fmal-PPRF-hybrid model, using
no call to Fg-rev-VOLE.

Using an additional pseudorandom generator PRG : {0, 1}λ → FN+1
pr , the communication can

be reduced to just (t+ 1)r log p+λ bits, by sampling τ, τi using a random seed for PRG. We did
not include this in the protocol, to simplify its description and proof of security.

6.4 4-Round VOLE and OT Setup with Malicious Security

The Fmal-t-PPRF functionality can be immediately used to distribute the setup of the subfield-
VOLE PCG from Section 4. To prove this gives secure subfield-VOLE, however, we now need
to assume that the dual-LPN assumption remains secure when an adversary is allowed to query
(on average) one bit of information on the error vector. This reflects the fact that a malicious
sender in Fmal-t-PPRF can try to guess subsets containing the receiver’s αj inputs, which corre-
spond to non-zero coordinates of the error vector. This assumption with leakage is essentially
the same as an assumption recently used for maliciously secure MPC based on syndrome decod-
ing [HOSS18a]. For a formal definition, complete protocol and proof of the following theorem,
we refer to Appendix C.4.

Theorem 17. Let PPRF be a t-puncturable PRF, and suppose that (HWt,C,Fp)-dual-LPN(N,n)
with static leakage holds. The protocol in Fig. 20 securely realizes the functionality FsVOLE

(Fig. 19).

Corollary 18. Suppose that (HWt,C,Fp)-dual-LPN(N,n) with static leakage holds, where N =
O(n) and t = o(n/(λ log n). Then there exists a 4-message, maliciously secure PCG protocol for
the subfield VOLE correlation, which makes o(n) parallel calls to an oblivious transfer function-
ality, with communication complexity o(n) bits.

6.5 4-Round Random OT PCG Protocol with Malicious Security

Given the PCG protocol for the subfield VOLE correlation, we can easily convert this a PCG
protocol for random oblivious transfer using a correlation robust hash function, as in construction
GOT (Fig. 4). To perform 1-out-of-2 OT, the parties run subfield VOLE over F2λ , where the OT
receiver, who acts as VOLE sender, obtains u ∈ Fn2 and v = w+ux ∈ Fn

2λ
, while the OT sender

/ VOLE receiver gets x ∈ F2λ ,w ∈ Fn
2λ
. This can be seen as a correlated OT, where the receiver

has choice bits ui and messages vi, which equal either wi or wi + x. To convert these to random
OTs, the parties use a hash function H, and output respectively

(ui,H(i, vi)), (H(i, wi),H(i, wi + x))

We require the hash function to be correlation robust, namely, for any choices of wi, the pairs
(wi,H(i, wi + x))i are indistinguishable from pairs (wi, U)i, where U is the uniform distribu-
tion [IKNP03, BCG+19]. This then gives a protocol that realizes the corruptible random OT
functionality, where corrupt parties may influence their random outputs, in the FsVOLE-hybrid
model.

Notice that, as observed in [GKWY19], in order to prove security the index imust be included
as an input to H, since otherwise a malicious receiver can break security by choosing its outputs
of the corruptible FsVOLE functionality (where it is VOLE sender).13

The theorem below can be proven similarly to the proof of Theorem 17.
13 In practice, however, we do not know of an attack on our concrete protocol if this is omitted, since a malicious

VOLE sender cannot actually choose its v outputs; this is only needed for the security proof.

28 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

Theorem 19. Suppose that there exists an Fp-correlation-robust hash function, and (HWt,C,Fp)-
dual-LPN(N,n) with static leakage holds for N = O(n) and t = o(n/(λ log n). Then there exists
a 4-message, maliciously secure PCG protocol for the random 1-out-of-p OT correlation, which
makes o(n) parallel calls to an oblivious transfer functionality and communicates o(n) bits.

6.6 2-Round OT Extension and Silent NISC with Malicious Security

We now show how to compress the above protocols down to just two rounds, by applying the
Fiat-Shamir heuristic. Additionally, under a slightly stronger version of the dual-LPN assumption
with one bit of adaptive leakage (see Definition 23 in Section C.4), we can convert the random
OTs/VOLEs into ones on chosen inputs in parallel with the setup messages. This gives a two-
round OT extension protocol with malicious security.

First, observe that the only interaction in the malicious secure protocol for distributing t
puncturable PRF keys (Fig. 16), besides the parallel calls to Fmal-PPRF and Fg-rev-VOLE, is the
random challenges (τ, τ0, . . . , τN−1) from the receiver, and response from the sender. Using the
Fiat-Shamir heuristic in the random oracle model, the sender can instead compute the chal-
lenges by hashing the transcript. From Theorem 15, Fmal-PPRF can be realized with o(n) parallel
calls to OT; also, note that Fg-rev-VOLE can be efficiently realized using any semi-homomorphic
encryption scheme which supports zero-knowledge proofs of knowledge for ciphertext generation
and homomorphic multiplication. For instance, [BDOZ11] shows how to instantiate this under
the Paillier or LWE assumption. In the random oracle model, the zero-knowledge proofs can be
made non-interactive, leading to a two round protocol overall.

Theorem 20. Suppose that (HWt,C,Fp)-dual-LPN(N,n) with static leakage holds, where N =
O(n) and t = o(n/(λ log n), and a semi-homomorphic encryption scheme exists. Then in the
random oracle model, there is a non-interactive, maliciously secure PCG protocol for the subfield
VOLE correlation, which makes o(n) parallel calls to an oblivious transfer functionality and
communicates o(n) bits.

Additionally assuming an Fp-correlation robust hash function, there is a non-interactive PCG
protocol for random 1-out-of-p OT with the same complexity.

To obtain silent NISC for the OT functionality, which implies two-round OT extension on
chosen inputs, we use the observation (as in our semi-honest protocol) that the receiver and
sender can derandomize their inputs in parallel with their protocol messages. In the malicious
setting, this requires an adaptive variant of the dual-LPN with leakage assumption (Defini-
tion 23), since a corrupt sender can see the masked receiver’s inputs before attempting to guess
a few of the LPN error positions. We present the complete protocol for 1-out-of-2 OT in Figure
17.

Theorem 21. Suppose that there exists a correlation-robust hash function, and (HWt,C,F2)-
dual-LPN(N,n) with adaptive leakage holds for N = O(n) and t = o(n/(λ log n). Then in the
random oracle model, there exists a maliciously secure 2-message protocol for realizing n 1-out-
of-2 oblivious transfers, which makes o(n) parallel calls to an oblivious transfer functionality and
communicates o(n) bits.

The above theorem also extends to 1-out-of-p OT for prime p > 2, by additionally assuming
a semi-homomorphic encryption scheme as in Theorem 20.

7 Implementation

7.1 Instantiating LPN with Quasi-Cyclic Codes

Recall that our constructions use the dual-LPN assumption (Def. 3), which requires that given
a parity-check matrix H, the syndrome e · H is indistinguishable from random, where e is

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 29

Protocol Πm-OT

Parameters: 1λ, n,N = 2`, t, 2, r ∈ N. PPRF is a puncturable PRF with domain [N] and range F2r ,
supporting verification of malicious keys. H ∈ FN×n2 is a matrix for which dual-LPN is hard. Dt,N
is a weight-t error distribution over FN2 . RO is a random oracle with output space (F2r)

N+1. H is a
correlation robust hash function.

– R inputs n field elements (si)i≤n ∈ Fn2 .
– S inputs n length-2 vectors (mi)i≤n where each mi is over ({0, 1}λ)2.

Protocol:

1. R picks e $← Dt,N . Let S = {α1, . . . , αt} ∈ [N]t be the sorted indices of non-zero entries in e. R
computes the first part u of GsVOLE.Expand(0, {k∗j , zj}tj=1, e) (note that u is computed as µ · H
where µ depends solely on e). R sets t← u+ s.

2. R sends the first message for the protocol Πmal-t-PPRF with input (α1, . . . , αt). Simultaneously to
the first message, R sends t to S. Let mR denote the accumulation of receiver messages.

3. S samples x $← F2r and kj
$← {0, 1}λ for j ∈ {1, . . . , t}, and uses (x, k1, . . . , kt) as input to

Πmal-t-PPRF. Let mS denote the corresponding accumulation of messages of S in the protocol exe-
cution.
– To replace the second message of R, S calls τ, τ1, . . . , τN ← RO(mR,mS) and computes the

last message of Πmal-t-PPRF with these challenges.
– S computes (x,w′)← GsVOLE.Expand(1, k), where k = {k1, . . . , kt}.
– S computes wi,j ← H(i, w′i − j · x) for i ∈ {1, . . . , n}, j ∈ {0, 1},
– S sets m′i,j ← mi,j + wi,ti−j for i ∈ {1, . . . , n}, j ∈ {0, 1}.
– S sends mS, X, VS,1, . . . , VS,j , {m′i,j}i≤n,j≤2 to R.

4. R receives mS containing k∗j , (ζj , zj) for each j ∈ {1, . . . , t} and further X,VS,1, . . . , VS,j , and
{m′i,j}i∈{1,...,n},j∈{1,2}.
– R verifies all checks in Πmal-t-PPRF with τ, τ1, . . . , τN = RO(mR,mS). If any fails, abort.
– R computes the second message v′ of GsVOLE.Expand(0, {k∗j , zj}tj=1, e).
– R computes vi ← H(i, v′i) for i ∈ {1, . . . , n}.
– R outputs (m′i,si − vi)i≤n.

Fig. 17. Two-Round 1-out-of-2 OT Extension with Malicious Security

sampled from some error distribution. Below, we describe how we instantiate the matrix and
error distribution to achieve good concrete efficiency, and how we choose parameters for security.

Family of codes. We construct H based on quasi-cyclic codes. Recall that cyclic codes admit a
parity-check matrix where every row is a cyclic shift of the previous row. In a quasi-cyclic code,
the parity-check matrix can be written as a block matrix composed of several cyclic matrices.

Let H ′ ∈ FN×n2 be the parity-check matrix of a random, quasi-cyclic code in systematic form.
Writing N = s · n, where in our case we always choose s ∈ Z, we have

H ′ =
(
In rot(h1) · · · rot(hs−1)

)>
where In is the n× n identity, and rot(hi) is the circulant matrix consisting of all n rotations of
the random vector hi ∈ Fn2 . Note that multiplication of a vector with rot(hi) is equivalent to a
polynomial multiplication in Z2[X]/(Xn − 1)).

We then define H to be H ′ with its final row removed (see Security below). Computation
of the syndrome of a vector e ∈ Fs·n2 , viewed as the coefficients of degree-(n − 1) polynomials
e0(X), . . . , es−1(X) ∈ Z2[X], can now be written as

e ·H = trunc

(
e0(X) +

s−1∑
i=1

ei(X) · hi(X) mod (Xn − 1)

)
where trunc(·) drops the last coefficient from its input.

30 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

Table 1. Dual-LPN parameters for estimated κ-bit security, counted as the minimum logarithm of the number
of arithmetic operations for each of the ISD attack [Pra62,BJMM12], the low-weight parity check attack [Zic17]
and the Gaussian elimination attack [EKM17]. The attacks take into account a

√
N speedup from the DOOM

attack [Sen11] which is enabled by our use of quasi-cyclic codes.

n t N/n κ n t N/n κ

104 73 2 80 104 126 2 128
105 72 2 80 105 120 2 128
106 70 2 80 106 118 2 128
107 68 2 80 107 116 2 128

104 37 4 80 104 80 4 128
105 36 4 80 105 72 4 128
106 35 4 80 106 63 4 128
107 34 4 80 107 54 4 128

Fast quasi-cyclic encoding. To efficiently implement multiplication by H, we used the library
bitpolymul [CCK+18] for fast multiplication in Z2[X]. Multiplying two degree n polynomials
has complexity Õ(n) using additive fast Fourier transforms, with an algorithm following the
standard FFT→ PointwiseMult→ FFT−1 structure. We optimize this by preprocessing FFT(hi),
since the hi values are fixed, and postponing FFT−1 until after summing up the s terms in the
multiplication. This reduces computation by around 30–50%.

Noise distribution. To improve the efficiency of the puncturable PRF full-domain evaluation,
we use a regular error vector e ∈ FN2 , which is the concatenation of t random unit vectors, each
of length N/t. This means we need to compute t full evaluations of PPRFs of domain size N/t,
instead of size N , reducing the computational costs of this step by a factor t.

Security. Recall that for our dual-LPN variant, we require that givenH, e·H is indistinguishable
from a uniform vector, where e is a weight-t, regular error vector. The reason we truncated the
parity-check matrix H ′ to form H, is that with quasi-cyclic codes the parity bit of e ·H ′ only
depends on H and t, so there is a trivial distinguisher [LP19] which truncating avoids. We also
choose n to be prime to ensure that Xn− 1 does not have any non-trivial factors over Z2, apart
from X − 1, avoiding attacks expoiting the quasi-cyclic structure [LJKS+16]. As also observed
in [HOSS18b], we are not aware of any attacks that exploit a regular error distribution and
perform significantly better than usual.

Note that quasi-cyclic codes have been used to construct optimized variants of the LPN-based
cryptosystem of Alekhnovich and the code-based cryptosystem of McEliece [ABD+16,MBD+18],
including several candidates in the ongoing NIST standardization process. Our assumption seems
more conservative than these schemes, which need to embed a trapdoor into H that allows
efficient decoding.

Choosing Parameters. We evaluate the concrete security of dual-LPN for various parameters
(n,N, t), calculating the minimal number of noisy coordinates t such that dual-LPN with di-
mension n, number of samples N , and noise rate t/N requires 2κ arithmetic operations to be
broken using state-of-the-art attacks, for κ ∈ {80, 128}. The main attacks on LPN which apply
in our setting (where the number of samples N is strongly restricted and the noise rate t/N
is very low) are the low-weight parity check attack [Zic17], the Gaussian elimination attack
and its variants [EKM17], and information set decoding (ISD) [Pra62] and its variants, espe-
cially BJMM [BJMM12]. We evaluated the concrete resistance of our LPN instances against all
these attacks. For ISD [BJMM12], we relied on the analysis of [TS16] and of the NIST candidate
BIKE [ABB+19, Section 5.2], which identify the BJMM attack as the most efficient, and provide
a closed formula. Since we rely on quasi-cyclic codes to improve the computational efficiency,
we also take into account the effect of the DOOM (Decoding One Out of Many) attack [Sen11]

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 31

which provides a
√
N computational speedup against variants of LPN relying on quasi-cyclic

codes. The results are summarized in Table 1.

Alternative Codes. Our choice of quasi-cyclic codes over alternative fast codes is mainly moti-
vated by the fact that they are well studied, and fast implementations are available. However,
as discussed in [BCGI18], we note that alternatives such as Druk-Ishai codes [DI14] or LDPC
codes [Ale03,LM10] may be better. Both of these would allow for a linear time syndrome com-
putation (instead of quasilinear), with small constants (less than 3d in the case of LDPC codes,
where d is the row-weight of the sparse parity-check matrix). Moreover, these codes are not sen-
sitive to the DOOM attack [Sen11], so might provide stronger resistance to standard attacks on
LPN. Therefore, using such codes could potentially improve the efficiency of our implementation;
we leave this to future work.

LAN (10Gbps) times WAN (100Mbps) times WAN (10Mbps) times
n n n

Protocol Base type λ τ 107 106 105 104 107 106 105 104 107 106 105 104

This (SH) hybrid 128 4 2,441 208 76 67 2,726 513 422 425 2,756 518 454 422
IKNP base 128 4 268 125 94 91 13,728 1,850 493 459 128,954 13,332 1,756 445

This (SH) hybrid 128 1 7,990 533 130 100 8,252 808 451 422 8,291 815 467 422
IKNP base 128 1 573 157 108 98 15,622 2,030 613 341 129,011 13,285 1,672 429

This (Mal) hybrid 128 4 2,659 280 84 78 2,872 479 457 424 2,846 515 438 422
KOS base 128 4 333 121 110 111 13,722 1,933 589 426 129,052 13,391 1,804 536

This (Mal) hybrid 128 1 8,765 584 141 104 9,055 828 460 423 8,929 831 467 433
KOS base 128 1 674 170 113 106 15,741 2088 702 433 129,771 13,389 1,772 518

Table 2. The running time in milliseconds of our implementation compared to [ALSZ13] in both the LAN (0ms
latency) and WAN (40ms one-way latency) settings, with security parameter λ = 128. λ is the computational
security parameter. We set the compression N/n to 2. τ denotes the number of threads. Hybrid refers to doing
128 base OTs followed by IKNP to derive the total required base OTs.

Total Comm. (bytes) Comm./OT (bits)
n n

Protocol Base type 107 106 105 104 107 106 105 104

This (SH/Mal) hybrid 126,658 98,754 83,394 57,806 0.101 0.790 6.672 46.245
IKNP/KOS base 160,056,360 16,011,518 1,655,784 168,186 128.045 128.092 132.463 134.549

Table 3. The communication overhead of our implementation compared to [IKNP03,KOS15], with N/n = 2 and
λ = 4. See Table 2.

7.2 Results

We implement our semi-honest and malicious secure protocols and report their performance in
several different settings. The source code can be found at https://github.com/osu-crypto/
libOTe. The benchmark was performed on a single AWS c4.4xLarge instance with network la-
tency artificially limited to emulate a LAN or WAN settings. Specifically, we consider a LAN
setting with bandwidth of 10Gbps and 0ms latency and two WAN settings with 100, 10 Mbps
& 40ms one-way latency. We compare with the semi-honest OT extension protocol of Ishai et
al. [IKNP03] (IKNP) and the malicious secure protocol of Keller et al. [KOS15] (KOS) as im-
plemented by a state-of-the-art library. Both our implementations and that of [IKNP03,KOS15]
use the same three round malicious secure base OT protocol of Naor & Pinkas [NP05]. We

https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe

32 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

note that our protocols can be composed with a two round base OT protocol to give a two
round OT extension. In the WAN setting this optimization would reduce the running times by
approximately 40ms for all protocols.

The functionality we realize is to produce n ∈ {104, 105, 106, 107} uniformly random OTs of
length 128 bits. One distinction between our protocol and [IKNP03,KOS15] is that the choice bits
of the receiver are uniformly chosen by our protocol, while [IKNP03,KOS15] allows the receiver
to specify them. These random OTs can then be de-randomized with additional communication.

Table 2 contains the running time of our protocol. A fuller table, with alternative choices
of parameters (security parameter λ, compression parameter N/n, method for computing the
base OTs) is available in Appendix A.1. The primary takeaway is that both of our protocols
achieve extremely low communication while the total running time remains competitive with or
superior to KOS and IKNP. We report running times with each party having 1 or 4 threads,
along with a background IO thread. In the LAN setting with sub-millisecond latency & 10Gbps
we observe that the IKNP and KOS protocols achieve significant performance, requiring just 0.26
or 0.33 seconds to compute 10 million OTs with a single thread. While the computational cost of
IKNP and KOS does outperform our implementation by roughly one order of magnitude, it also
requires between 1000 and 2000 times more communication. This difference means that for more
realistic network settings, such as 100Mbps, our implementation achieves a faster running time.
With 4 threads and a limit of 100Mbps our implementation is up to 5 times faster (counting
total running time, including both local computation and communication costs) and remains
faster even for small n where our communication overheads are asymptotically closer together.

For the constrained setting of 10Mbps our protocol truly stands out with a 47 times speedup
compared to IKNP with n = 107 and t = 4. We see a similar 46 times speedup in the malicious
setting compared to KOS. Moreover, when comparing between the across the different network
settings our protocol incurs minimal to no perform impact from decreasing bandwidth. For
instance, with a 10Gbps connection our semi-honest protocol processes n = 107 OTs in 2.4
seconds while with 1000 times less bandwidth the protocol still just requires 2.8 seconds.

This scalability is explained in Table 3 which contains the communication overhead of our
protocol. A fuller table, with alternative choices of parameters (security parameter λ, compres-
sion parameter N/n, method for computing the base OTs) is available in Appendix A.1. We
parameterize our protocols by the desired security level λ ∈ {80, 128} and a tunable parameter
s = N/n. The latter controls a trade-off between the number of PPRF evaluations and length
of the resulting vectors. To maintain security level of λ bits, increasing s results in fewer PPRF
evaluations and less communication. However, it also increases the computational overhead.
Our smallest running times were achieved with s = 2. However, we also consider s = 4 which
decreases our total communication from 126KB to 80KB for n = 107. In contrast, the IKNP
protocol requires 160MB for the same security level. This represents as much as a 2000 times
reduction in communication. This low communication overhead results in our protocol requiring
as little as 0.038 bits per OT for n = 107 and λ = 80. In our worst case of n = 104 our pro-
tocol still requires between 3 and 6 times less communication than IKNP. Another compelling
property of our protocol is that we incur near constant additive communication overhead when
comparing our malicious and semi-honest protocols.

8 Acknowledgements

E. Boyle, N. Gilboa, and Y. Ishai supported by ERC Project NTSC (742754). E. Boyle addi-
tionally supported by ISF grant 1861/16 and AFOSR Award FA9550-17-1-0069. G. Couteau
supported by ERC Project PREP-CRYPTO (724307). N. Gilboa additionally supported by ISF
grant 1638/15, ERC grant 876110, and a grant by the BGU Cyber Center. Y. Ishai additionally
supported by ISF grant 1709/14, NSF-BSF grant 2015782, DARPA SPAWAR contract N66001-
15-C-4065, and a grant from the Ministry of Science and Technology, Israel and Department

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 33

of Science and Technology, Government of India. L. Kohl supported by ERC Project PREP-
CRYPTO (724307) and by DFG grant HO 4534/2-2. This work was done in part while visiting
the FACT Center at IDC Herzliya, Israel. P. Scholl supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No 731583 (SODA), and the
Danish Independent Research Council under Grant-ID DFF-6108-00169 (FoCC).

References

ABB+19. Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe
Deneuville, Philippe Gaborit, Shay Gueron, Tim Guneysu, Carlos Aguilar Melchor, et al. Bike:
Bit flipping key encapsulation. 2019. URL: https://bikesuite.org/files/round2/spec/
BIKE-Spec-2019.06.30.1.pdf.

ABD+16. Carlos Aguilar, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor.
Efficient encryption from random quasi-cyclic codes. Cryptology ePrint Archive, Report 2016/1194,
2016. http://eprint.iacr.org/2016/1194.

ADI+17. Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron. Secure arithmetic
computation with constant computational overhead. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 223–254. Springer, Heidelberg, August 2017.
doi:10.1007/978-3-319-63688-7_8.

AG11. Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Luca Aceto,
Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I, volume 6755 of LNCS, pages 403–
415. Springer, Heidelberg, July 2011. doi:10.1007/978-3-642-22006-7_34.

AIK09. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant input locality.
Journal of Cryptology, 22(4):429–469, October 2009. doi:10.1007/s00145-009-9039-0.

Ale03. Michael Alekhnovich. More on average case vs approximation complexity. In 44th FOCS, pages
298–307. IEEE Computer Society Press, October 2003. doi:10.1109/SFCS.2003.1238204.

ALSZ13. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious
transfer and extensions for faster secure computation. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 535–548. ACM Press, November 2013. doi:10.
1145/2508859.2516738.

AMAB+19. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe
Deneuville, Philippe Gaborit, Edoardo Persichetti, and Gilles Zémor. Hamming quasi-cyclic (HQC).
2019. URL: https://pqc-hqc.org/doc/hqc-specification_2018-12-14.pdf.

AMPR14. Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure compu-
tation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 387–404. Springer, Heidelberg, May 2014. doi:
10.1007/978-3-642-55220-5_22.

BCG+19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
pseudorandom correlation generators: Silent OT extension and more. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518.
Springer, Heidelberg, August 2019. doi:10.1007/978-3-030-26954-8_16.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages
896–912. ACM Press, October 2018. doi:10.1145/3243734.3243868.

BDOZ11. Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption
and multiparty computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of
LNCS, pages 169–188. Springer, Heidelberg, May 2011. doi:10.1007/978-3-642-20465-4_11.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances in Cryptol-
ogy - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11-15, 1991, Proceedings, pages 420–432, 1991. URL: https://doi.org/10.1007/
3-540-46766-1_34, doi:10.1007/3-540-46766-1_34.

Bea95. Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor, CRYPTO’95, volume
963 of LNCS, pages 97–109. Springer, Heidelberg, August 1995. doi:10.1007/3-540-44750-4_8.

BFKL93. Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic primi-
tives based on hard learning problems. In Advances in Cryptology - CRYPTO ’93, 13th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993, Pro-
ceedings, pages 278–291, 1993. URL: https://doi.org/10.1007/3-540-48329-2_24, doi:10.1007/
3-540-48329-2_24.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions.
In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Heidelberg,
March 2014. doi:10.1007/978-3-642-54631-0_29.

https://bikesuite.org/files/round2/spec/BIKE-Spec-2019.06.30.1.pdf
https://bikesuite.org/files/round2/spec/BIKE-Spec-2019.06.30.1.pdf
http://eprint.iacr.org/2016/1194
http://dx.doi.org/10.1007/978-3-319-63688-7_8
http://dx.doi.org/10.1007/978-3-642-22006-7_34
http://dx.doi.org/10.1007/s00145-009-9039-0
http://dx.doi.org/10.1109/SFCS.2003.1238204
http://dx.doi.org/10.1145/2508859.2516738
http://dx.doi.org/10.1145/2508859.2516738
https://pqc-hqc.org/doc/hqc-specification_2018-12-14.pdf
http://dx.doi.org/10.1007/978-3-642-55220-5_22
http://dx.doi.org/10.1007/978-3-642-55220-5_22
http://dx.doi.org/10.1007/978-3-030-26954-8_16
http://dx.doi.org/10.1145/3243734.3243868
http://dx.doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
http://dx.doi.org/10.1007/3-540-46766-1_34
http://dx.doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/3-540-48329-2_24
http://dx.doi.org/10.1007/3-540-48329-2_24
http://dx.doi.org/10.1007/3-540-48329-2_24
http://dx.doi.org/10.1007/978-3-642-54631-0_29

34 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

BGI16. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 1292–1303. ACM Press, October 2016. doi:10.1145/2976749.
2978429.

BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary linear
codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 520–536. Springer, Heidelberg,
April 2012. doi:10.1007/978-3-642-29011-4_31.

BKW00. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and
the statistical query model. In 32nd ACM STOC, pages 435–440. ACM Press, May 2000. doi:
10.1145/335305.335355.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages
280–300. Springer, Heidelberg, December 2013. doi:10.1007/978-3-642-42045-0_15.

Can00. Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
13(1):143–202, January 2000. doi:10.1007/s001459910006.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001. doi:10.1109/SFCS.
2001.959888.

CCK+18. Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-Yin Yang. Multi-
plying boolean polynomials with frobenius partitions in additive fast fourier transform. CoRR,
abs/1803.11301, 2018.

DI14. Erez Druk and Yuval Ishai. Linear-time encodable codes meeting the gilbert-varshamov bound and
their cryptographic applications. In Moni Naor, editor, ITCS 2014, pages 169–182. ACM, January
2014. doi:10.1145/2554797.2554815.

DKL+13. Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart.
Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In Jason
Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages
1–18. Springer, Heidelberg, September 2013. doi:10.1007/978-3-642-40203-6_1.

DKS+17. Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider, Shaza Zeitouni,
and Michael Zohner. Pushing the communication barrier in secure computation using lookup tables.
In NDSS 2017. The Internet Society, February / March 2017.

DPSZ12. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012. doi:
10.1007/978-3-642-32009-5_38.

Ds17. Jack Doerner and abhi shelat. Scaling ORAM for secure computation. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 523–535. ACM Press,
October / November 2017. doi:10.1145/3133956.3133967.

EKM17. Andre Esser, Robert Kübler, and Alexander May. LPN decoded. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 486–514. Springer, Hei-
delberg, August 2017. doi:10.1007/978-3-319-63715-0_17.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal
of the ACM, 33(4):792–807, October 1986.

GI14. Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 640–658. Springer,
Heidelberg, May 2014. doi:10.1007/978-3-642-55220-5_35.

GKWY19. Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multiparty computation
from fixed-key block ciphers. Cryptology ePrint Archive, Report 2019/074, 2019. https://eprint.
iacr.org/2019/074.

GMMM18. Sanjam Garg, Mohammad Mahmoody, Daniel Masny, and Izaak Meckler. On the round com-
plexity of OT extension. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 545–574. Springer, Heidelberg, August 2018. doi:10.1007/
978-3-319-96878-0_19.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987. doi:10.1145/28395.28420.

Gol04. Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University
Press, New York, NY, USA, 2004.

GPS16. Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the cryptographic hardness
of finding a nash equilibrium. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part II, volume 9815 of LNCS, pages 579–604. Springer, Heidelberg, August 2016. doi:10.1007/
978-3-662-53008-5_20.

http://dx.doi.org/10.1145/2976749.2978429
http://dx.doi.org/10.1145/2976749.2978429
http://dx.doi.org/10.1007/978-3-642-29011-4_31
http://dx.doi.org/10.1145/335305.335355
http://dx.doi.org/10.1145/335305.335355
http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/s001459910006
http://dx.doi.org/10.1109/SFCS.2001.959888
http://dx.doi.org/10.1109/SFCS.2001.959888
http://dx.doi.org/10.1145/2554797.2554815
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1145/3133956.3133967
http://dx.doi.org/10.1007/978-3-319-63715-0_17
http://dx.doi.org/10.1007/978-3-642-55220-5_35
https://eprint.iacr.org/2019/074
https://eprint.iacr.org/2019/074
http://dx.doi.org/10.1007/978-3-319-96878-0_19
http://dx.doi.org/10.1007/978-3-319-96878-0_19
http://dx.doi.org/10.1145/28395.28420
http://dx.doi.org/10.1007/978-3-662-53008-5_20
http://dx.doi.org/10.1007/978-3-662-53008-5_20

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 35

HEK12. Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits better
than custom protocols? In NDSS 2012. The Internet Society, February 2012.

HOSS18a. Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Concretely efficient
large-scale MPC with active security (or, TinyKeys for TinyOT). In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 86–117. Springer,
Heidelberg, December 2018. doi:10.1007/978-3-030-03332-3_4.

HOSS18b. Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. TinyKeys: A new
approach to efficient multi-party computation. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 3–33. Springer, Heidelberg, August 2018.
doi:10.1007/978-3-319-96878-0_1.

HSS17. Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC combining
BMR and oblivious transfer. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part I, volume 10624 of LNCS, pages 598–628. Springer, Heidelberg, December 2017. doi:10.1007/
978-3-319-70694-8_21.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer, Heidelberg,
August 2003. doi:10.1007/978-3-540-45146-4_9.

IKO+11. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Efficient non-
interactive secure computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632
of LNCS, pages 406–425. Springer, Heidelberg, May 2011. doi:10.1007/978-3-642-20465-4_23.

IPS09. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no honest
majority. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 294–314. Springer,
Heidelberg, March 2009. doi:10.1007/978-3-642-00457-5_18.

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 20–31, 1988.
URL: https://doi.org/10.1145/62212.62215, doi:10.1145/62212.62215.

KK13. Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short secrets.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
54–70. Springer, Heidelberg, August 2013. doi:10.1007/978-3-642-40084-1_4.

KOS15. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal over-
head. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215
of LNCS, pages 724–741. Springer, Heidelberg, August 2015. doi:10.1007/978-3-662-47989-6_35.

KOS16. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 830–842. ACM Press, October
2016. doi:10.1145/2976749.2978357.

KPR18. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great again. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS,
pages 158–189. Springer, Heidelberg, April / May 2018. doi:10.1007/978-3-319-78372-7_6.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung, editors, ACM CCS 2013, pages 669–684. ACM Press, November 2013. doi:10.1145/2508859.
2516668.

KRRW18. Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimizing authenticated gar-
bling for faster secure two-party computation. In Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Pro-
ceedings, Part III, pages 365–391, 2018. URL: https://doi.org/10.1007/978-3-319-96878-0_13,
doi:10.1007/978-3-319-96878-0_13.

LJKS+16. Carl Löndahl, Thomas Johansson, Masoumeh Koochak Shooshtari, Mahmoud Ahmadian-Attari,
and Mohammad Reza Aref. Squaring attacks on mceliece public-key cryptosystems using quasi-
cyclic codes of even dimension. Des. Codes Cryptography, 80(2):359–377, August 2016. URL: http:
//dx.doi.org/10.1007/s10623-015-0099-x, doi:10.1007/s10623-015-0099-x.

LM10. Jin Lu and José MF Moura. Linear time encoding of ldpc codes. IEEE Transactions on Information
Theory, 56(1):233–249, 2010.

LP19. Zhen Liu and Yanbin Pan. NIST official comment – HQC. NIST Post-Quantum Cryptogra-
phy Project, 2019. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round-1/official-comments/HQC-official-comment.pdf.

Lyu05. Vadim Lyubashevsky. The parity problem in the presence of noise, decoding random linear codes,
and the subset sum problem. In Approximation, randomization and combinatorial optimization.
Algorithms and techniques, pages 378–389. Springer, 2005.

MBD+18. Carlos Aguilar Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, and Gilles
Zémor. Efficient encryption from random quasi-cyclic codes. IEEE Trans. Information Theory,
64(5):3927–3943, 2018. URL: https://doi.org/10.1109/TIT.2018.2804444, doi:10.1109/TIT.
2018.2804444.

http://dx.doi.org/10.1007/978-3-030-03332-3_4
http://dx.doi.org/10.1007/978-3-319-96878-0_1
http://dx.doi.org/10.1007/978-3-319-70694-8_21
http://dx.doi.org/10.1007/978-3-319-70694-8_21
http://dx.doi.org/10.1007/978-3-540-45146-4_9
http://dx.doi.org/10.1007/978-3-642-20465-4_23
http://dx.doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1145/62212.62215
http://dx.doi.org/10.1145/62212.62215
http://dx.doi.org/10.1007/978-3-642-40084-1_4
http://dx.doi.org/10.1007/978-3-662-47989-6_35
http://dx.doi.org/10.1145/2976749.2978357
http://dx.doi.org/10.1007/978-3-319-78372-7_6
http://dx.doi.org/10.1145/2508859.2516668
http://dx.doi.org/10.1145/2508859.2516668
https://doi.org/10.1007/978-3-319-96878-0_13
http://dx.doi.org/10.1007/978-3-319-96878-0_13
http://dx.doi.org/10.1007/s10623-015-0099-x
http://dx.doi.org/10.1007/s10623-015-0099-x
http://dx.doi.org/10.1007/s10623-015-0099-x
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/HQC-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/HQC-official-comment.pdf
https://doi.org/10.1109/TIT.2018.2804444
http://dx.doi.org/10.1109/TIT.2018.2804444
http://dx.doi.org/10.1109/TIT.2018.2804444

36 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

MM11. Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity of LWE
search-to-decision reductions. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,
pages 465–484. Springer, Heidelberg, August 2011. doi:10.1007/978-3-642-22792-9_26.

MR17. Payman Mohassel and Mike Rosulek. Non-interactive secure 2PC in the offline/online and batch
settings. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III,
volume 10212 of LNCS, pages 425–455. Springer, Heidelberg, April / May 2017. doi:10.1007/
978-3-319-56617-7_15.

NP05. Moni Naor and Benny Pinkas. Computationally secure oblivious transfer. Journal of Cryptology,
18(1):1–35, January 2005. doi:10.1007/s00145-004-0102-6.

NP06. Moni Naor and Benny Pinkas. Oblivious polynomial evaluation. SIAM J. Comput., 35(5):1254–1281,
2006.

Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions on Infor-
mation Theory, 8(5):5–9, 1962.

PSSZ15. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set intersection
using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz, editors, USENIX Security
2015, pages 515–530. USENIX Association, August 2015.

PSTY19. Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient circuit-based
psi with linear communication. 2019. https://eprint.iacr.org/2019/241.

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 554–571.
Springer, Heidelberg, August 2008. doi:10.1007/978-3-540-85174-5_31.

Sen11. Nicolas Sendrier. Decoding one out of many. In Bo-Yin Yang, editor, Post-Quantum Cryptography
- 4th International Workshop, PQCrypto 2011, pages 51–67. Springer, Heidelberg, November / De-
cember 2011. doi:10.1007/978-3-642-25405-5_4.

SGRR19. Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Distributed vector-ole:
Improved constructions and implementation. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019. https://eprint.iacr.org/2019/1084.

TS16. Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a sub-linear
error weight. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th International Workshop,
PQCrypto 2016, pages 144–161. Springer, Heidelberg, 2016. doi:10.1007/978-3-319-29360-8_10.

WRK17a. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient mali-
ciously secure two-party computation. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 21–37. ACM Press, October / November 2017.
doi:10.1145/3133956.3134053.

WRK17b. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computation. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 39–56. ACM Press, October / November 2017. doi:10.1145/3133956.3133979.

Zic17. Lior Zichron. Locally computable arithmetic pseudorandom generators. Master’s thesis, School
of Electrical Engineering, Tel Aviv University, 2017. URL: http://www.eng.tau.ac.il/~bennyap/
pubs/Zichron.pdf.

A Details on Implementation

A.1 Detailed Performance Figures

In this section, we provide more extensive numbers regarding the running time and commu-
nication complexity of our implementation, with alternative choices of parameters (security
parameter λ, scaling parameter N/n, method for computing the base OTs). Table 4 contains
the running time of our protocol. Table 5 contains the communication overhead of our protocol.

B An Improved PPRF for GsVOLE

We describe in this section an improved (yet still relatively simple) puncturing strategy for
constructing a t-puncturable PRF from the GGM PRF. This construction is somewhat folklore;
it was explicitely presented in [BCG+19]. Unlike the simple construction presented in Section 4,
however, this construction is not compatible with our distributed generation protocol. Still, it is
useful in setting where computation is not an issue (hence a more costly distributed generation
protocol can be used) but long-term storage is (hence it is important to reduce the size of the
PCG keys), or in settings where a trusted dealer is available to distribute the PCG keys (like in
the commodity-based model of Beaver [Bea95]).

http://dx.doi.org/10.1007/978-3-642-22792-9_26
http://dx.doi.org/10.1007/978-3-319-56617-7_15
http://dx.doi.org/10.1007/978-3-319-56617-7_15
http://dx.doi.org/10.1007/s00145-004-0102-6
https://eprint.iacr.org/2019/241
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/978-3-642-25405-5_4
https://eprint.iacr.org/2019/1084
http://dx.doi.org/10.1007/978-3-319-29360-8_10
http://dx.doi.org/10.1145/3133956.3134053
http://dx.doi.org/10.1145/3133956.3133979
http://www.eng.tau.ac.il/~bennyap/pubs/Zichron.pdf
http://www.eng.tau.ac.il/~bennyap/pubs/Zichron.pdf

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 37

LAN (10Gbps) times WAN (100Mbps) times WAN (10Mbps) times
n n n

Protocol Base type λ s τ 107 106 105 104 107 106 105 104 107 106 105 104

This base 80 4 4 4,507 548 301 227 4,721 780 487 403 4,662 815 543 463
(SH) hybrid 80 4 4 4,261 344 118 65 4,598 616 366 337 4,517 600 375 346

base 128 4 4 4,861 766 421 357 4,932 938 616 539 5,018 929 646 516
hybrid 128 4 4 4,233 276 85 90 4,595 551 391 337 4,615 552 408 352
base 128 2 4 3,373 975 634 528 3,675 1,221 875 687 3,603 1,188 851 747
hybrid 128 2 4 2,441 208 76 67 2,726 513 422 425 2,756 518 454 422

IKNP base 128 - 4 268 125 94 91 13,728 1,850 493 459 128,954 13,332 1,756 445
This base 80 4 1 14,127 1,204 479 305 14,467 1,408 682 505 14,385 1,416 716 534
(SH) hybrid 80 4 1 13,772 812 164 102 13,987 1,067 406 344 13,962 1,060 407 353

base 128 4 1 14,701 1,445 678 480 15,079 1,642 886 681 14,994 1,649 885 685
hybrid 128 4 1 13,996 787 163 101 14,344 1,061 474 346 14,156 1,056 471 361
base 128 2 1 9,414 1,747 1,008 761 9,694 1,973 1,220 964 9,750 1,980 1,226 980
hybrid 128 2 1 7,990 533 130 100 8,252 808 451 422 8,291 815 467 422

IKNP base 128 - 1 573 157 108 98 15,622 2,030 613 341 129,011 13,285 1,672 429

This base 128 4 4 5286 879 463 358 5589 1127 787 670 5624 1123 801 670
(Mal) hybrid 128 4 4 5030 344 116 69 5141 622 387 339 5292 699 372 354

base 128 2 4 3674 1018 643 528 3897 1252 891 726 3836 1217 858 777
hybrid 128 2 4 2659 280 84 78 2872 479 457 424 2846 515 438 422

KOS base 128 - 4 333 121 110 111 13722 1933 589 426 129052 13391 1804 536
This base 128 4 1 16096 1632 707 490 16499 1947 1033 811 16616 1958 1045 813
(Mal) hybrid 128 4 1 15656 968 185 110 15999 1205 489 426 15889 1207 490 426

base 128 2 1 10475 1833 1028 773 10585 2026 1278 1051 10449 2033 1286 1048
hybrid 128 2 1 8765 584 141 104 9055 828 460 423 8929 831 467 433

KOS base 128 - 1 674 170 113 106 15741 2088 702 433 129771 13389 1772 518
Table 4. The running time in milliseconds of our implementation compared to [ALSZ13] in both the LAN (0ms
latency) and WAN (40ms one-way latency) settings. λ is the computational security parameter. s = N/n denotes
the compression parameter such that the PPRF output strings are of length N . τ denotes the number of threads.
Hybrid refers to doing 128 base OTs followed by IKNP to derive the total required base OTs.

Total Comm. (bytes) Comm./OT (bits)
n n

Protocol Base type λ s 107 106 105 104 107 106 105 104

This base 80 4 53,478 45,678 37,878 27,478 0.043 0.365 3.030 21.982
(SH/Mal) hybrid 80 4 47,690 43,850 40,010 34,890 0.038 0.351 3.201 27.912

base 128 4 85,482 68,842 56,362 43,882 0.068 0.551 4.509 35.106
hybrid 128 4 80,238 55,662 49,518 43,374 0.064 0.445 3.961 34.699
base 80 2 91,470 72,750 58,710 44,418 0.073 0.582 4.697 35.534
hybrid 80 2 83,322 74,106 50,810 43,910 0.067 0.593 4.065 35.128
base 128 2 144,558 121,158 89,958 70,986 0.116 0.969 7.197 56.789
hybrid 128 2 126,658 98,754 83,394 57,806 0.101 0.790 6.672 46.245

IKNP/KOS base 128 - 160,056,360 16,011,518 1,655,784 168,186 128.045 128.092 132.463 134.549
Table 5. The communication overhead of our implementation compared to [ALSZ13]. λ stands for the compu-
tational security parameter. See Figure 2.

38 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

Intuitively, to obtain a t-puncturable PRF out of the GGM PRF, it suffices to define a key
punctured at a subset S of leaves to be the smallest set of intermediate PRG values that allows
to reconstruct all leaf values indexed by [n]\S, and does not allow to reconstruct the leaf values
indexed by S. We represent on Figure 18 a labelling algorithm which finds the indices of such
a subset of the keys. The correctness of the algorithm follows easily by inspection; with a little
more effort, one can also show that this algorithm is optimal (i.e., it produces the smallest
possible punctured key satisfying the constraints). The worst-case scenario is easily seen to
happen when all the punctured leaves are regularly spaces, with a distance of n/t between every
two punctured leaves. This observation allows to upper bound the length of a key punctured at
t points by tλ log(n/t), improving over the cost tλ log n of the naive approach.

Algorithm Puncture-Label

Input. A complete binary tree T with n leaves (indexed by [n]), and a size-t subset S of [n]. We
denote by s1 < s2 < · · · < st the indices of the leaves in S.
Output. A labelling Lt of all nodes of T , such that all nodes of [n] \ S, and only them, belong to a
subtree of T whose root belongs to Lt.
Procedure. The labelling proceeds in t steps. Given a leave x and a subtree T ′ of T which contains
x, we denote by Label(x, T ′) the procedure which outputs all nodes of T ′ which have their parent node
in P but are not in P themselves, where P denotes the path from the root of T ′ to x.

– In step 1, set L1 ← Label(s1, T).
– In step i+1, let Ti+1 denote the smallest subtree of T which contains si+1 and whose root belongs

to Li (Ti+1 exists by construction), and let ri+1 denote its root. Set Li+1 ← (Li \ {ri+1}) ∪
{Label(si+1, Ti+1)}.

After all steps are completed, output Lt.

Fig. 18. Labelling algorithm to compute the indices of a subset of keys in the GGM PRF construction which
allows to reconstruct the output of the GGM PRF at all points except exactly t.

C Details for Maliciously Secure Constructions

C.1 GGM Instantiation of Punctured PRF with Malicious Keys

We use the GGM puncturable PRF with domain [2N] and range (Fpr)2 × {0, 1}λ. The un-
derlying PRG of the first ` levels we denote by G : {0, 1}λ → {0, 1}2λ. The PRG of the
last level we denote by G′ : {0, 1}λ → (Fpr)2 × {0, 1}λ. In the following by PPRFGGM =
(PPRFGGM.Puncture,PPRFGGM.Eval,PPRFGGM.PuncEval) we denote the standard GGM PPRF
algorithms. By PPRFGGM.FullEval(k

∗
pprf) we denote the algorithm that on input of a k∗pprf punc-

tured at α ∈ [2N] evaluates the PRF on all values except α and returns the output values
{sj}j∈[2N]\{α}.

In the following we explain how the GGM construction allows verification of malicious PPRF
keys. We set the malicious key space to K = {0, 1}2λ` × ((Fpr)2 × {0, 1}λ). We restrict the
puncturing algorithm Puncture∗ to even inputs α‖0 ∈ [2N], as these will later correspond to the
actual output values. Note that the key K`+1

0 ∈ F2
pr takes a special role. Namely, with this key

we capture a programmibility at the punctured point when it would be undefined otherwise: If
I = {α} consists only of a single point, then the output value at this point α is set to be K`+1

0

by Eval∗ (if |I| > 1 this value is ignored).

Ver: On input K = {(Ki
0,K

i
1)`+1
i=1} and I ⊆ [N], compute k∗α ← Puncture∗(K,α) for all α ∈ I.

Return 1, if and only if for all α, α′ ∈ I, x ∈ [2N]\{α‖0, α′‖0} it holds:

PPRFGGM.PuncEval(k
∗
α, x) = PPRFGGM.PuncEval(k

∗
α′ , x).

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 39

Puncture∗: On input {(Ki
0,K

i
1)`+1
i=1} and α ∈ [N], we set α`+1 = 0 and proceed as follows: Let

α∗i = α1 · · ·αi−1αi for all i ∈ {1, . . . , `+ 1}.
1. Define s1

α∗1
= K1

α1
.

2. For i ∈ {2, . . . , `}:
(a) Compute (si2j , s

i
2j+1) = G(si−1

j), for j ∈ [0, . . . , 2i−1), j 6= α1 · · ·αi−1 and (s`+1
2j , s`+1

2j+1) =

G′(s`j) for j ∈ [N], j 6= α.
(b) For i ∈ {1, . . . , `+ 1} compute:

siα?i = Ki
αi ⊕

⊕
j∈[0,2i−1),
j 6=α∗i

si2j+αi ∈ {0, 1}
λ.

3. Output the punctured key k∗pprf = {siα?i }
`+1
i=1 .

For better readablity, we overload notation and denote by Puncture∗ also the procedure
taking only the required keys {Ki

αi
}`+1
i=1 as input.

Eval∗: On input K = {(Ki
0,K

i
1)`+1
i=1},I and x ∈ [2N] proceed as follows:

1. If Ver(K, I) = 0, return ⊥.
2. If Î = {α‖0 : α ∈ I} consists of the single point x return K`+1

0 ∈ F2
pr

3. Else, compute k∗ ← Puncture∗(K,α) for some α‖0 ∈ Î\{x} and return (ω,w) ←
PPRFGGM.PuncEval(k

∗, x).
Again, we overload notation and for α ∈ [N] denote by Eval∗(K, I, α) also the algorithm that
calls Eval∗(K, I, x) for x = α‖0 ∈ [2N].

It is left to show that the algorithms indeed allow verification of malicious keys. Note that if
Ver(K∗, I) = 1, then for all α ∈ I, x ∈ [2N]\{α‖0} we have:

Eval∗(K∗, I, x) = PPRFGGM.PuncEval(k
∗, x),

where k∗ ← Puncture∗(K∗, α). By step (3) in the verification procedure, we have that this value
is independent of the choice of α. This yields the required.

C.2 Malicious Setup for Single-Point PPRF

Formally, we define the PPRF PPRF1 with domain [N] and range (Fpr)2 as follows: Let PPRF1 =
(PPRF1.Puncture,PPRF1.Eval), such that:

PPRF1.Puncture: On input kpprf ∈ {0, 1}λ, α ∈ [N], return k∗pprf ← PPRFGGM.Puncture(kpprf , α‖0).
PPRF1.Eval: On input kpprf ∈ {0, 1}λ and α ∈ [N], return (ω,w)← PPRFGGM.Eval(kpprf , α‖0).

We give the protocol for distributed setup of PPRF1 with security against malicious adversaries
in Figure 13.

Note that steps (1) to (6) correspond to the protocol in the semi-honest case with an addi-
tional level of PRG evaluation, where for the last level always the sum of the right leaves are
given to the receiver. This will allow the receiver to check the hash value computed by the sender
in step (7).

Theorem 15. Assuming a black-box access to a PRG G : {0, 1}λ 7→ {0, 1}2λ, a right-half injec-
tive PRG G′ : {0, 1}λ 7→ (Fpr)2 × {0, 1}λ, and a collision resistant hash function h : {0, 1}λN →
{0, 1}λ, there exists a 2-party protocol implementing Fmal-PPRF (see Fig. 12) for the puncturable
PRF PPRF1, with malicious security in the parallel OT-hybrid model, and the following efficiency
features. The interaction consists of ` parallel calls to FOT, and uses additional communication
of r log p+ λ. The computational complexity is dominated by O(2`) calls each to G and G′.

40 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

Proof. When neither party is corrupted, the receiver R will indeed compute the correct punctured
key k∗pprf and output value w in a protocol execution (the proof is similar to the semi-honest
case and will be shown in more detail in the paragraph for security against malicious receiver.)
Further, as the tree is punctured at an even value α‖0, both parties hold the same values
γ0, . . . , γN−1 for all odd leaves. Therefore, Γ = Γ ′ in step (6d) of the protocol execution.

Security against malicious receiver. On input α, the simulator forwards α to the functionality.
On output k∗pprf = {ki}`+1

i=1 and w, the simulator proceeds as follows:

– For i ∈ {1, . . . , `} define siα1,...,αi−1αi
= ki and s`+1

α‖1 = k`+1. Set K1
α1

= s1
α1
.

– For i ∈ {2, . . . , `}: Compute (si2j , s
i
2j+1) = G(si−1

j), for j ∈ [0, . . . , 2i−1), j 6= α1, . . . , αi−1.
– Compute (s`+1

2j , s`+1
2j+1) = G′(s`j), for j ∈ [0, . . . , 2`), j 6= α‖0.

– For i ∈ {1 . . . , `+ 1}: Compute

Ki
αi =

⊕
j∈[0,2i−1)

si2j+αi ,

where we set α`+1 = 0.
– Compute

c = w −
∑

j∈[N]\{α}

s`+1
2j .

– Set γj = s`+1
2j+1 for j ∈ [N], and compute Γ = h(γ0, . . . , γN−1).

Finally, the simulator forwards {Ki
αi
}`i=1 (where the i-th key corresponds to the i-th OT mes-

sage), K`+1
1 , c and Γ to the receiver.

Note that the values {Ki
αi
}`+1
i=1 and Γ correspond to the values computed by the sender in a

real protocol execution. We have to show that the key k′∗pprf = {s′α∗i }
`+1
i=1 ← Puncture∗({Ki}`+1

i=1 , α)

computed by the receiver in a protocol execution corresponds to the key k∗pprf = {ki}`+1
i=1 returned

by the functionality. We have:

– s′1α?1
= K1

α1
= k1.

– Assume that we have s′i−1
j = si−1

j for all j ∈ [0, . . . , 2i−1), j 6= α1, . . . , αi−1 for some i. Then
we have the same for level i, as this is true for all values off the path, and further because of

s′iα∗i = Ki
αi ⊕

⊕
j∈[0,2i−1),
j 6=α∗i

si2j+αi = siα∗i .

As siα∗i = ki for all i ∈ {1, . . . , `1}, the keys agree as required.

Further, it holds

c = w −
∑

j∈[N]\{α}

s`+1
2j = −s`+1

α‖0 + β −
∑

j∈[N]\{α}

s`+1
2j

= β −
∑
j∈[N]

s`+1
2j ,

where s`+1
α‖0 ← PPRFGGM.Eval(kpprf , α‖0) (for the key kpprf ∈ {0, 1}λ corresponding to k∗pprf).

Security against malicious sender. On input of the OT messages K = {(Ki
0,K

i
1)`i=1}, key

K`+1
1 , correction value c and a hash value Γ , the simulator proceeds as follows: First, the

simulator computes Γα for each α ∈ [N] as follows:

1. Compute k∗pprf ← Puncture∗({Ki
αi
}`+1
i=1 , α).

2. Compute {sj(α)}j∈[2N]\{α‖0} ← PPRF.FullEval(k∗pprf , α‖0).

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 41

3. Compute
w = c−

∑
j∈[N]\{α}

s2j(α)

4. Set γj(α) = s2j+1(α) for j ∈ [N], and compute Γ ′α = h(γ0(α), . . . , γN−1(α)).

Note that this is exactly how an honest receiver, on input α, would proceed. If the sender behaved
honestly, we should have Γ1 = Γ2 · · · = ΓN = Γ .

Let I ⊂ [n] be the set of α’s consistent with Γ , that is

I = {α ∈ [n] | Γα = Γ}

If I = ∅ then abort. We extract the sender’s input β as follows:

– Pick an α ∈ I.
– For all j ∈ [2N]\α‖0, define sj = sj(α).
– If |I| = 1, set sα‖0 = 0.
– Otherwise, pick α′ ∈ I (with α′ 6= α), define sα‖0 = sα‖0(α′).
– Set

β = −sα‖0 + w.

– Input β,K∗ = {K, (0,K`+1
1)}}, I to the functionality.

We have Ver(K, I) = 1 because of the following.

Claim. Except with negligible probability, all choices of α, α′ ∈ I in the above procedure lead
to the same vector s = (s0, . . . , sN−1).

Proof. The case |I| = 1 is trivial. For |I| > 1, it suffices to show that for all α, α′ ∈ I and
j ∈ [2N] \ {α‖0, α‖0′}, sj(α) = sj(α

′). Suppose for a contradiction that this does not hold,
so there exist j ∈ [2N], α, α′ ∈ [N] such that sj(α) 6= sj(α

′). From the fact that Γα = Γα′

and the collision-resistance of h, we have γi(α) = γi(α
′) for all i ∈ [N], except with negligible

probability. Recall that for each (s2i(α), s2i+1(α)), (s2i(α
′), s2i+1(α′)), where i /∈ {α, α′}, we have

(s2i(α), s2i+1(α)) = G′(ρ) and (s2i(α
′), s2i+1(α′)) = G′(ρ′) , for some ρ, ρ′. From the right-half

injectivity of G′, we have that, if s2i+1(α) = γi = γ′i = s2i+1(α′) then it must hold that ρ = ρ′.
Hence, we must have sj(α) = sj(α

′) for all j ∈ [2N] \ {α‖0, α‖0′}, which completes the claim.

Note that the punctured key returned by the functionality equals the key computed in the real
protocol execution. Next, we show that the correction value w corresponds to the one computed
in the real protocol execution. For |I| = 1 this follows, as Eval∗(K∗, I, α) = 0. For |I| > 1, this
follows as for all α ∈ I, x ∈ I\{α}, k∗pprf ← Puncture∗(K,x), it holds PPRF.Eval(k∗pprf , α‖0) = sα‖0
and thus −PPRF.Eval(kpprf , α‖0) + β = −sα‖0 + β = w as required.

In the real execution the receiver aborts, if Γ ′ 6= Γ . By previous considerations this is
equivalent to α ∈ I. It follows that the functionality aborts if and only if the real protocol
execution would have aborted.

C.3 Malicious Setup of t PPRFs with Consistent Offset

Theorem 16. There exists a 4-message 2-party protocol Πmal-t-PPRF which securely implements
the functionality Fmal-t-PPRF(1λ, N, p, r) for the puncturable PRF PPRF in the Fg-rev-VOLE- ,
parallel Fmal-PPRF-hybrid model, with malicious security, using t parallel calls to Fmal-PPRF, and
only one call to Fg-rev-VOLE, and further communication of (N + t+ 2)r log p bits. Furthermore,
when p = 2, the functionality can be implemented in the parallel Fmal-PPRF-hybrid model, using
no call to Fg-rev-VOLE.

42 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

Proof. If both parties are honest, after execution of the protocol, R and S hold values vjR =

(vjR,0, v
j
R,2, . . . , v

j
R,2N−2), v′jR = (vjR,1, v

j
R,3, . . . , v

j
R,2N−1) and vjS = (vjS,0, v

j
S,2, . . . , v

j
S,2N−2), v′jS =

(vjS,1, v
j
S,3, . . . , v

j
S,2N−1), such that

vjR + vjS = (βj + γj)eαj = χ · yj · eαj and v′jR + v′jS = x · yj · eαj ,

and thus (vjR + τ · v′jR) + (vjS + τ · v′jS) = X · yj · eαj , where X = χ+ τ · x. Computing the scalar
product with (τ0, . . . , τN−1) on both sides of the equation yields the required.

Security against malicious receiver: Receive from A input y = (y1, . . . , yt) ∈ Fp to Frev-VOLE

and (not necessarily distinct) inputs α1, . . . , αt ∈ [N] to Fmal-t-PPRF. For j ∈ [t] we define eαj to
be the αj-th unit vector, and u =

∑t
i=1 yjej . The simulator forwards α1, . . . , αt and y1, . . . , yt

to Fmal-t-PPRF, and for each j ∈ {1, . . . , t} forwards k∗j and zj to A for each j ∈ {1, . . . , t}. On
inputs τ, τ0, . . . , τN−1 of A, the simulator draws X $← Fpr , computes for i ∈ [N], j ∈ {1, . . . , t}:

(vjR,2i, v
j
R,2i+1)← PPRF.Eval′(k∗j , i)

and sends X and VS,j = X · ταj · yj −
∑N−1

i=0 τi · (vjR,2i + τ · vjR,2i+1) to A. It is left to show that
this is indistinguishable from a real protocol execution. Let x be the input of the sender to the
functionality. We set χ = X − τ · x. For j ∈ {1, . . . , t} we have γj + βj = χ · yj , cj + bj = x · yj ,
and (ωj , wj) = −PPRF.Eval(kj , αj) + (βj , bj) (since S is honest). Thus, we have

(ωj , wj) + (γj , cj) = −PPRF.Eval(kj , αj) + (x · yj , χ · yj).

For PPRF.Eval′ (as defined in Figure 16) for all i ∈ [N] this yields

PPRF.Eval′(k∗j , i) = −PPRF.Eval(kj , i) + (x · yj , χ · yj) ·∆i,αj ,

where ∆i,αj = 1 iff i = αj . Let (vjS,2i, v
j
S,2i+1) ← PPRF.Eval(kj , i) for j ∈ {1, . . . , t}, i ∈ [N].

Then, for i ∈ [N], j ∈ {1, . . . , t} we have (vjR,2i, v
j
R,2i+1) = −(vjS,2i, v

j
S,2i+1) + (x · yj , χ · yj) ·∆i,αj .

This yields the required, as for each j ∈ {1, . . . , t} we have
∑N−1

i=0 τi · yj ·∆i,αj = ταj · yj .
Security against malicious sender: On input ((β, χ), (b, x)) to the functionality Fg-rev-VOLE

and (β̂j , b̂j), Ij ,K
∗
j to Fmal-PPRF by A, the simulator draws challenges τ, τ0, . . . , τN−1 ← Fpr

uniformly at random, and forwards all to A. On input X and VS,1, . . . , VS,t by A, the simulator
proceeds as follows:

1. Set δj = β̂j − βj , dj = b̂j − b for j ∈ {1, . . . , t}. If there exists a j ∈ {1, . . . , t} with dj 6= 0,
but δj − τ · dj = 0, abort.

2. For i ∈ [N], j ∈ {1, . . . , t}: Compute

(vjS,2i, v
j
S,2i+1)← Eval∗(K∗i , I, i)

and V̂S,j =
∑N−1

i=0 τi · (vjS,2i + τ · vjS,2i+1). For each j ∈ {1, . . . , t} with dj 6= 0 find α∗j , such
that

V̂S,j − VS,j = τα∗j · (δj − τ · dj), (2)

where τα∗j corresponds to the α∗j -th coefficient chosen by the simulator. If such an α∗j does
not exist or is not unique, abort.

3. For j ∈ {1, . . . , t} set

Îj =

{
Ij ∩ {α∗j} if dj 6= 0,

Ij else
.

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 43

4. Parse K∗j = {(Kj,0,Kj,1)`+1
i=1}. Set

K̂`+1
j,0 =

{
K`+1
j,0 − (δj , dj) if dj 6= 0,

K`+1
j,0 else

.

Define K̂?
j = {(Ki

j,0,K
i
j,1)`i=1} ∪ {(K̂

`+1
j,0 ,K`+1

j,1)}.
5. Input x, Î1, . . . , Ît and K̂∗1 , . . . , K̂∗t to the functionality Fmal-t-PPRF. If the functionality does

not reply success, abort.

We have to show that the probability of the simulation aborting is negligibly close to the prob-
ability that the receiver would have aborted in a real execution.

As τ is chosen at random from Fpr by the simulator, by a union bound over j ∈ {1, . . . , t},
the probability that there exists a j ∈ {1, . . . , t} with δj 6= 0 and δj−τ ·dj = 0 is upper bounded
by t/pr.

Next, we show that passing the verification check, corresponds to guessing the input αj of
the receiver for all j with dj 6= 0.

For j ∈ {1, . . . , t} it holds (ωj , wj) = −PPRF.Eval∗(K∗j , Ij , αj) +(βj , bj) +(δj , dj). Therefore,
for the value vjR ∈ [2N] computed by an honest receiver during the real protocol execution, we
have

(vjR,2i, v
j
R,2i+1) = −PPRF.Eval(kj , i) + ((x, χ) · yj + (δj , dj)) ·∆i,αj ,

for all i ∈ [N], j ∈ {1, . . . , t}. As we have
∑N

i=1 τj(δj + τ · dj)∆i,αj = ταjδj + τ · dj , we see
that the sender passes the check in the real execution of the protocol, if and only if he provides
VS1 , . . . , VSt , such that VS,j = V̂S,j − ταj · (δj − τ · dj) for all j ∈ {1, . . . , t} with dj 6= 0.
Thus, if the sender guessed α∗j such that αj = α∗j for all such j, then the real execution check
would have passed. On the other hand, if Equation 2 does not have a solution, the sender
would have failed the real world check independent of the choices α1, . . . , αt of the receiver. The
coefficients τ0, . . . , τN−1 provided by the simulator are distinct except with probability at most
N/pr, therefore Equation 2 has a unique solution for each j with dj 6= 0 except with negligible
probability.

Finally, by the definition of Eval∗, we have −PPRF.Eval∗(K∗j , Ij , αj) + (βj , bj) + (δj , dj) =

−PPRF.Eval∗(K̂∗j , Ij , αj) + (βj , bj), therefore the output to R corresponds to the output in the
real protocol execution.

Note that for p = 2, we extract x by finding j ∈ {1, . . . , t} such that χj + c · xj = X and set
dj = xj − x.

C.4 Proof of PCG Protocol for VOLE

Definition 22 (Dual-LPN assumption with static leakage). Let H ∈ FN×np , and consider
the following game Gb(λ) with a p.p.t. adversary A, parameterized by a bit b and the security
parameter λ:

– Sample e $← Dt,N . Let S = {α1, . . . , αt} ∈ [N]t be the sorted indices of non-zero entries in
e.

– A sends t sets I1, . . . , It ⊆ [n].
– If αj ∈ Ij for all j ∈ {1, . . . , t} then send success to A, otherwise abort.
– If b = 1, let y = e ·H, otherwise sample y $← Fnp
– Send y to A, who then outputs a bit b′ (in case of abort, define the output of A to be ⊥)

The assumption states that Pr[AG0(λ) = 1]− Pr[AG1(λ) = 1] is negligible in λ.

44 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl

Functionality FsVOLE:

Parameters: n, p, r ∈ N.

Functionality:

– Sample u $← Fnp ,v
$← Fnpr , x

$← Fpr , and let w = ux+ v
• If S is corrupt: receive x,w from A and recompute v = w − ux
• If R is corrupt: receive u,v from A and recompute w = ux+ v

– Output (x,w) to S and (u,v) to R

Fig. 19. Functionality for corruptible subfield-VOLE correlated randomness

Protocol ΠsVOLE:

Parameters: 1λ, N = 2`, n, p, r, t ∈ N. PPRF is a puncturable PRF with domain [N] = {0, 1}`, key
space {0, 1}λ, and range Fpr , supporting verification of malicious keys.
H ∈ FN×np is a matrix for which dual-LPN is hard.

Protocol:

1. R samples a weight-t vector e $← Dt,N . Let S = {α1, . . . , αt} ∈ [N]t be the sorted indices of
non-zero entries in e, and yi = eαi ∈ F∗p.

2. S samples x $← Fpr and kpprf
$← {0, 1}λ.

3. S and R call Fmal-t-PPRF (with the roles of sender and receiver reversed) on inputs (y, α1, . . . , αt)
and (kpprf , x).

4. R receives a punctured key k∗j and value zj ∈ Fpr , for j ∈ {1, . . . , t}.
5. S receives the master keys k1, . . . , kt.
6. R outputs (u,v)← GsVOLE.Expand(0, {k∗j , zj}tj=1, e)
7. S outputs (x,w)← GsVOLE.Expand(1, {k1, . . . , kt}, x)

Fig. 20. Protocol for realizing random subfield VOLE of length n with malicious security

Definition 23 (Dual-LPN assumption with adaptive leakage). Let H ∈ FN×np , and con-
sider the following game Ga

b(λ) with a p.p.t. adversary A, parameterized by a bit b and the
security parameter λ:

– Sample e $← Dt,N . Let S = {α1, . . . , αt} ∈ [N]t be the sorted indices of non-zero entries in
e.

– If b = 1, let y = e ·H, otherwise sample y $← Fnp
– Send y to A
– A responds with t sets I1, . . . , It ⊆ [n]
– If αj ∈ Ij for all j ∈ {1, . . . , t} then send success to A, otherwise send fail
– A outputs a bit b′

The assumption states that Pr[AGa
0(λ) = 1]− Pr[AGa

1(λ) = 1] is negligible in λ.

Theorem 17. Let PPRF be a t-puncturable PRF, and suppose that (HWt,C,Fp)-dual-LPN(N,n)
with static leakage holds. The protocol in Fig. 20 securely realizes the functionality FsVOLE

(Fig. 19).

Proof. The case where both parties are corrupted is straightforward. When neither party is
corrupted, by inspection, the outputs of the honest parties satisfy w = ux+ v, so we just need
to show that these values are uniform subject to this constraint. The VOLE sender’s u output
is pseudorandom under the dual-LPN assumption, since we have u = e ·H, and the receiver’s
x is uniformly random. Finally the sender’s v = v1 ·H value is pseudorandom, since v1 consists
of pseudorandom PPRF outputs, and the matrix H has full rank.

Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation 45

R is corrupted. The simulator SimS proceeds as follows.

1. SimS receives the malicious R’s inputs to Fmal-t-PPRF, y, S = (α1, . . . , αt), and defines the
weight ≤ t error vector e.

2. SimS samples a PPRF key kpprf
$← {0, 1}λ and computes the key k∗pprf = PPRF.Puncture(kpprf , S)

punctured at S.
3. It sends k∗pprf to R, along with random zj

$← Fpr , for j ∈ {1, . . . , t}.
4. SimS computes u,w = GsVOLE.Expand(0, k∗pprf , {zj}tj=1, e) and then sends u,w to FsVOLE.

Notice that the only difference between the simulation and the real execution is the way the zj
values are computed. In the protocol, zj masks the sender’s inputs with PPRF evaluations at the
punctured points, whereas in the simulation zj is random. These two views are indistinguishable,
by the security of PPRF; any adversary that distinguishes the two executions can be used to win
the PPRF selective security game, Exp-s-pPRF, with exactly the same advantage.

S is corrupted.

1. SimR receives from S x ∈ Fpr , the subsets I1, . . . , It and keys K∗1 , . . . ,K∗t ∈ K
2. Sample α1, . . . , αt

$← [N], and for each j ∈ {1, . . . , t}, check that (i) αj ∈ Ij , and (ii)
Ver(K∗j , Ij) = 1. If any check fails, abort.

3. SimR computes the PPRF outputs v1 using Eval∗(K∗j , Ij , x), for all x, j, and uses these to
compute w = v1 ·H that is sent to FsVOLE, along with x.

Notice that the probability of abort is identical in both executions, since SimR samples a noise
vector just as in the real protocol. Also, the outputs of the corrupt VOLE receiver, computed
by SimR, are identically distributed to those in the protocol. The only difference between the
two executions is the way the honest sender’s outputs (u,v) are computed; here, we rely on the
leaky variant of dual-LPN to argue that u is pseudorandom.

In particular, we show that any distinguisher D, who distinguishes the real and ideal ex-
ecutions, can be used against the dual-LPN assumption with static leakage. We construct an
adversary for game G as follows: Invoke D with an execution of ΠsVOLE, and, running SimR, re-
ceive the adversary’s guesses I1, . . . , It. Instead of sampling αj as SimR does, forward the guesses
to game G. If G aborts, send abort to D, otherwise, continue running SimR. At the end of the
execution (if it did not abort) send to D the honest sender’s output (u,v), where u is set to the
y vector received from G, and v = w − ux. Output whatever D outputs.

When b = 1, the view of D is as in the real protocol, whereas when b = 0 it is exactly as in
the simulation, hence, our advantage against the game G is exactly the same as the advantage
of D against the protocol.

	Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation
	Introduction
	Preliminaries
	PCG Protocols and Silent NISC
	Improved PCGs for VOLE and OT
	Semi-Honest PCG Protocols and Two-Round OT Extension
	Maliciously Secure PCG Protocols
	Implementation
	Acknowledgements
	Details on Implementation
	An Improved PPRF for GsVOLE
	Details for Maliciously Secure Constructions

