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Non-Interactive Keyed-Verification Anonymous Credentials

Geoffroy Couteau? and Michael Reichle??

Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract. Anonymous credential (AC) schemes are protocols which allow for authentication
of authorized users without compromising their privacy. Of particular interest are non-
interactive anonymous credential (NIAC) schemes, where the authentication process only
requires the user to send a single message that still conceals its identity. Unfortunately, all
known NIAC schemes in the standard model require pairing based cryptography, which limits
them to a restricted set of specific assumptions and requires expensive pairing computations.
The notion of keyed-verification anonymous credential (KVAC) was introduced in (Chase et
al., CCS’14) as an alternative to standard anonymous credential schemes allowing for more
efficient instantiations; yet, making existing KVAC non-interactive either requires pairing-based
cryptography, or the Fiat-Shamir heuristic.
In this work, we construct the first non-interactive keyed-verification anonymous creden-
tial (NIKVAC) system in the standard model, without pairings. Our scheme is efficient,
attribute-based, supports multi-show unlinkability, and anonymity revocation. We achieve
this by building upon a combination of algebraic MAC with the recent designated-verifier
non-interactive zero-knowledge (DVNIZK) proof of knowledge of (Couteau and Chaidos,
Eurocrypt’18). Toward our goal of building NIKVAC, we revisit the security analysis of a MAC
scheme introduced in (Chase et al., CCS’14), strengthening its guarantees, and we introduce
the notion of oblivious non-interactive zero-knowledge proof system, where the prover can
generate non-interactive proofs for statements that he cannot check by himself, having only a
part of the corresponding witness, and where the proof can be checked efficiently given the
missing part of the witness. We provide an efficient construction of an oblivious DVNIZK,
building upon the specific properties of the DVNIZK proof system of (Couteau and Chaidos,
Eurocrypt’18).

Keywords. Anonymous credentials, keyed-verification anonymous credentials, non-interactive
anonymous credentials, designated-verifier non-interactive zero-knowledge proofs.

1 Introduction

1.1 Anonymous Credentials

Anonymous credentials, introduced in the seminal work of Chaum [14], allow users to authenticate
in an anonymous way to a variety of services. Each user can receive credentials from authorities,
and register pseudonyms with authorities and verifiers. These pseudonyms are associated to the
identity of the user, but should be unlinkable to its exact identity. That is, another entity should
not be able to check whether two pseudonyms are associated with the same identity. Authorities
can issue credentials to users which can be shown to verifiers, and the presentation of a credential
should only leak the information that the user knows the identity associated to the pseudonym, and
owns a credential from the authority for this identity. This guarantees the anonymity of users. In
order for credentials to make sense, they must be unforgeable: a user should not be able to present a
credential without having received one from the authority first. Due to their wide range of real-world
applications, anonymous credentials have received a constant attention from the cryptographic
community [1,2,4,6–9,13,17,22,25,26,29,33].

Non-Interactive Anonymous Credentials. Non-interactive anonymous credentials (NIAC) are
anonymous credentials where the process of showing possession of a valid credential to a verifier
requires sending a single message from the user to the verifier. Non-interactivity in anonymous
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credentials is considered to be a highly desirable security property, and was the focus on an
important research effort [3,4,26]. However, a downside of existing NIAC scheme is that all known
constructions in the standard model require the use of pairing based cryptography, which limits
their efficiency (since pairing are a relatively expensive cryptographic operation) and restricts the
set of assumptions their security can be based on. While some interactive anonymous credential
schemes can be made non-interactive in the random oracle model under the Fiat-Shamir transform,
this is known to provide only heuristic security arguments in the standard model [10,20,24].

Keyed-Verification Anonymous Credential. Most commonly, anonymous credential schemes
allow for a single credential to be shown more than once to multiple verifiers. The notion of
keyed-verification anonymous credentials (KVAC) was introduced in [13]; it restricts credential to
only be valid with respect to one verifier and requires the authority and verifier to share a secret key.
The key observation of [13] is that such restricted anonymous credentials can be instantiated very
efficiently, using algebraic message authentication codes. Therefore, in numerous applications where
the restriction to keyed-verification is not an issue, they can be used to allow for more efficient
instantiations. Think for example of a bus company issuing monthly pass, where the pass must be
shown each time a user boards a bus; here, it is reasonable to assume that the bus device can share
a secret-key with the bus company (since both belong to the same organisation).

A downside of the KVAC scheme of [13], however, is that the process of showing possession of
a credential requires an interactive protocol between the user and the verifier. This protocol can
be made non-interactive, but this either requires the Fiat-Shamir transform (leading to a protocol
secure in the random oracle model only), or the use of pairing-based cryptography, nullifying the
efficiency advantages of KVAC with respect to their publicly verifiable counterpart.

1.2 Our Contribution

In this work, we construct the first non-interactive keyed-verification anonymous credential scheme
(NIKVAC) in the standard model, without relying on pairing-based cryptography. Our NIKVAC is
very expressive: it natively supports multi-show unlinkability (i.e., when showing possession of a
credential multiple time to a verifier, the latter cannot tell whether these correspond to the same
user) or pseudonyms (the verifier knows a pseudonym that he can link a credential to, but that
he cannot link to the actual identity of the user), without any additional cost (i.e., we do not
require to generate an additional commitment to the identity and prove knowledge of its content
to obtain pseudonyms, as in most alternative approaches; rather, such commitments are natively
and implicitly defined by our scheme). Our NIKVAC is also attribute-based (it supports vectors of
attributes as opposed to identities, and can handle a variety of relations on the attributes), and
supports anonymity revocation (there exists a global trapdoor which a trusted authority can use to
revoke the anonymity of a misbehaving user, efficiently extracting his identity from any accepting
credential).

While our scheme is the first NIKVAC in the standard model without pairings, we observe
(this is in fact the starting point of our work) that there is a relatively natural construction of
a NIKVAC which is obtained by starting with the (interactive) scheme of [13], and replacing the
underlying zero-knowledge proof system by the designated-verifier non-interactive zero-knowledge
proof system of [11]. While this observation is interesting in itself, the security analysis of the
resulting construction does not present major technical difficulties (although it is not entirely
straightforward). In this work, we refine this approach, adopting a different strategy to better
exploit the structural properties of the proof system of [11]. Our optimized approach provides strong
efficiency improvements (which we detail in Section 1.6) over the previous alternative.

1.3 Our Approach

Our starting point is the interactive KVAC scheme of [13]. In this scheme, a credential is an
algebraic MAC signature on the identity of the user. Anonymous presentation of a credential is done
(informally) by masking the credential, and providing some zero-knowledge proofs of knowledge
of the identity together with the masking informations satisfying the appropriate relation, which
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allows the verifier (who knows the secret MAC key) to check that the masked credential does indeed
verify correctly with respect to the (hidden) identity of the user.

To make this scheme non-interactive, the basic observation is that it suffices to rely on a
designated-verifier non-interactive zero-knowledge (DVNIZK) proof of knowledge of the appropriate
values. Unlike their publicly-verifiable counterpart, there exists efficient constructions of DVNIZK
proof systems which does not rely on pairings. However, until recently, all known constructions of
DVNIZK proof systems [12,16,18] suffered from two important downside, each of them preventing
their use in a NIKVAC scheme:

– they can only deal with existential statements, while anonymous credentials crucially rely on
proving knowledge of the signed identity, and

– they only satisfy a bounded notion of security, where the soundness of the proof is only guaranteed
to hold if the prover is restricted to query a verification oracle an a priori bounded number of
times. In an anonymous credential system, however, the users can interact freely with a verifier
and receive feedback on whether proofs of credential possession was accepted or not; hence, for
all of these scheme, a malicious user could forge a credential which is accepted by the verifier
even though it was not issued by the authority, by interacting a sufficient (polynomial) number
of times with the verifier.

This situation recently changed with the introduction in [11] of the first DVNIZK proof system
which allows to provide proofs of knowledge of a witness, for a wide variety of algebraic statements,
where soundness is unbounded (it holds even if the prover is given arbitrary access to a verification
oracle). Furthermore, the framework of [11] allows for efficient DVNIZK proofs, directly proportional
to the size of the algebraic statement to be proven.

A natural approach toward building a NIKVAC scheme is therefore to rely on the KVAC scheme
of [13], and to replace the underlying zero-knowledge proofs by appropriate DVNIZK, using the
framework of [11]. However, while this approach should lead to a secure NIKVAC, it misses the
opportunity to exploit the specific structure of the scheme of [11] to get improved efficiency
guarantees. Therefore, we choose instead to tackle the problem directly and construct an optimized
NIKVAC system, heavily building upon the specific structure of the DVNIZK of [11].

1.4 Our Techniques

To describe our strategy, it is helpful to start from a natural but insecure approach. As in [13], a
credential will simply be a signature on the identity of the user using an algebraic MAC. To show
possession of a credential, the user can simply send this credential (but not his identity) and prove
with a DVNIZK that he knows an identity such that the MAC verification algorithm returns 1 when
given as input this identity and the credential. A first observation is that this approach allows for a
straightforward optimization: in the most common setting, the verifier must know a pseudonym
associated to the user (which cannot be linked to his identity), which will usually take the form of
a commitment to the identity of the user. We observe, however, that a DVNIZK proof of knowledge
within the framework of [11] does already include an encryption of the witness, and the proof of
knowledge property does in particular guarantee that the witness whose knowledge is proven is
indeed the one encrypted in the proof. Therefore, it is not necessary to add a commitment to the
identity and prove that the committed value is the one for which the user knows a credential; rather,
the user can simply compute this encryption ahead of time (this does not require knowing the
credential) and send it to the verifier, which will store it as being the user pseudonym. Then, each
time the user wants to authenticate, he only have to generate the “missing part” of the proof with
respect to this encryption. This strongly reduces the size of the proof (since the proof does not need
to include an explicit proof regarding a commitment anymore), and allows to reuse a significant
portion of the proof across many authentications.

However, the natural approach of disclosing a credential σ and proving knowledge of an identity
that verifies correctly with respect to σ fails, for two reasons:

– First, the above approach does not guarantee anonymity, because the verifier (who knows the
secret MAC key) could find out the identity of the user simply by colluding with the authority,
and evaluating the MAC verification algorithms on all identities previously submitted to the
authority, to find out which one verifies correctly with respect to this credential.
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– Second, and more importantly, the MAC verification requires knowledge of the secret MAC key,
which the user does not know; hence, he cannot possibly issue a proof that his credential verifies
correctly, since checking this statement does already require knowing the secret MAC key.

We first explain how we address the second concern. Our idea is to build upon the specific malleability
property of the DVNIZK proof system of [11] to build an oblivious DVNIZK proof system, which
allows the prover to issue a proof for a statement even if he does not know himself whether the
statement does hold. This does not contradict the security of the MAC scheme, since the proof
system is not publicly verifiable: hence, even after he builds the proof, the prover cannot check
by himself whether this proof verifies correctly. Intuitively, the prover will construct a “partial
non-interactive proof” which is malleable in the following sense: given this proof and the secret MAC
key, the verifier can reconstruct himself the complete proof that the credential verifies correctly. If
the prover does not know the appropriate witness, the reconstructed proof will not verify correctly.
The partial proof should not leak any more information about the witness held by the prover
than what is leaked by the reconstructed proof; hence, by the zero-knowledge property of the
DVNIZK proof system, this proof will only reveal whether the statement (which depends on both
the prover witness and the secret key known to the verifier) is true. We believe that the concept of
non-interactive oblivious proofs, which allows to prove that a statement is true while knowing only a
part of the witness to a verifier knowing the “missing part” of the witness, might be of independent
interest (we briefly elaborate on this in Section 1.5); in particular, it formalizes the approach taken
(in the interactive setting) in previous works on keyed-verification anonymous credentials [13].

To tackle the first concern, the prover will randomize his credential and mask it with appropriate
random values, and issue a partial proof that the unmasked credential does verify with respect
to the secret key. We formalize both properties at once by introducing a new primitive, oblivious
designated-verifier non-interactive zero-knowledge proofs of knowledge, which can be used to prove
statements non-interactively even when the prover only knows a part of the witness, and can be
simulated by a simulator that does not know neither the witness nor the word for which the proof
is constructed, guaranteeing that the verifier will not only be unable to recover the witness, but
also that he cannot possibly recover the credential, which would allow him to break anonymity by
colluding with the authority.

Next, we provide an optimized construction of an oblivious DVNIZK proof system for the
language of valid credentials, building upon the DVNIZK proof system of [11]. Proving security of
the resulting proof system, however, runs into a subtle issue: when considering the more general
setting of attribute-based anonymous credentials, where the user will have a secret vector of attributes
instead of a secret identity, the unforgeability property of the underlying MAC scheme does not
suffice to prove the soundness of the oblivious proof system. We provide two alternatives to overcome
this issue:

– When the vector of attributes is of length one (i.e., when we restrict our attention to non-
attribute-based anonymous credentials, where the secret of the user is only his identity), we
show that the public parameters of the MAC scheme suffice to reduce the security directly to
the unforgeability of the MAC scheme. This setting already captures many possible applications.

– In the general setting, where the vector of attributes can be longer than 1, we show that the
security can be proven if the MAC scheme satisfies a stronger notion of unforgeability, which we
call extended unforgeability. Then, we revisit the security analysis of one of the two MAC schemes
constructed in [13], which is secure in the generic group model, and prove that this scheme
does in fact already satisfy extended unforgeability. While the second MAC scheme constructed
in [13] (which is based on the decisional Diffie-Hellman assumption) does plausibly satisfy
extended unforgeability, we leave it as an interesting open problem to prove it under a standard
assumption, or to construct a MAC scheme with extended unforgeability under the DDH
assumption. We note that considering algebraic MACs with stronger unforgeability guarantees
is a relatively natural approach in the setting of anonymous credentials (see e.g. [3,4]), but the
specific strengthening we require in our construction was not, to our knowledge, considered in
previous works.

There is an additional requirement which we must take care of: the MAC schemes of [13] are only
proven secure in groups of prime order, while the most natural instantiation of the DVNIZK proof



Non-Interactive Keyed-Verification Anonymous Credentials 5

system of [11] typically requires composite-order groups. While the security of their DDH-based
MAC easily extends to the composite order setting by assuming in addition that it is infeasible for
any polytime adversary to find a generator of a strict subgroup (which is a standard and well-studied
assumption), the proof of their generic-group-model-based (GGM-based) MAC is unconditional,
hence it assumes that the adversary is unbounded, in which case there is an explicit attack on
the composite-order variant of the scheme where the unbounded adversary constructs an invalid
MAC signature in a strict subgroup of the group. We therefore revisit the security proof of the
GGM-based MAC, and show that it holds in the generic group model assuming in addition that
the adversary is polynomially bounded, and that the computational subgroup assumption holds.
Altogether, we show that this gives rise to a highly optimized NIKVAC. In the next section, we
discuss in more details the efficiency of our scheme.

1.5 Applications of Oblivious DVNIZK

Given the intermediate abstraction of oblivious designated non-interactive zero-knowledge proofs, the
construction of NIKVAC follows very naturally. In fact, we could have provided a direct construction
of NIKVAC from this approach, without formalizing the intermediate primitive. However, we believe
that oblivious DVNIZKs can be interesting in their own right. We elaborate below.

Secure computation protocols allow a group of parties to securely evaluate a public function
on their joint private input. We focus in this discussion on the case of two parties for simplicity.
A common approach to secure two-party computation is to first design a scheme secure against
passive adversaries, which do not deviate from the specifications of the protocol, and then to use
zero-knowledge proofs to let all adversaries prove their honest behavior throughout the protocol.
This transformation makes the protocol secure against malicious adversaries, which can deviate
arbitrarily from the specifications of the protocol. To obtain round-efficient compilation of passively
secure computation protocols into maliciously secure protocols, the most natural strategy is to
rely on (designated-verifier) non-interactive zero-knowledge proofs (an alternative is to use implicit
zero-knowledge proofs [5], but this adds two more rounds to the protocol) to prove honest behavior
of each user after each round.

Oblivious DVNIZK allow for an alternative compilation strategy, which starts from a protocol
with stronger security guarantees, but is in general more efficient. Let us call (informally) half-
maliciously secure a secure computation protocol which is passively secure, and such that no
malicious adversary can compromise the privacy of the inputs (but can possibly compromise the
correctness of the computation). Let Π be a half-maliciously secure protocol, securely computing a
function f . Let (x1, x2) denote the inputs of the parties. To convert Π into a fully secure protocol,
we first modify Π to include commitments (c1, c2) to the inputs (if Π does not already include
them). Then, to guarantee full security, one of the parties, which we call the prover, must send a
single oblivious DVNIZK to the other party (the receiver) at the very end of the protocol, which
is a proof that y = f(x1, x2), where y is the output of the protocol, and (x1, x2) is committed in
(c1, c2). Note that the prover does not have the full witness for this statement (since it depends,
in particular, on the private input of the verifier), but the prover and the verifier jointly have the
full witness, allowing the verifier to check the proof without further interaction. This is in contrast
with DVNIZK-based compilation, which requires proving honest behavior of all users at each round
(here, we only prove correctness of the computation in the last round). We leave the formal proof of
this observation to future work.

1.6 Efficiency

There is, to our knowledge, no existing previous construction of NIKVAC in the standard model.
However, as we pointed out previously, there is a relatively natural construction which is obtained
by starting from the scheme of [13], and replacing the underlying zero-knowledge proofs by
DVNIZKs instantiated with [11]. Let us call this construction the CMZ+CC construction. We use
CMZ+CC as a basis for comparison with our improved construction. We focus on the communication
cost of showing possession of a credential, since the computation is directly proportional to the
communication (hence, an improvement factor with respect to communication translates to a
comparable improvement factor with respect to computation), and since the cost of issuing a
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credential depends on the specific secure computation scheme used to implement it, which is not
the focus of our work (we require the same blind issuance of an algebraic MAC as in previous works
on KVAC).

For simplicity, we focus on the cost obtained when implementing the MAC with the more efficient
GGM-based MAC scheme of [13]; when using the other, DDH-based MAC scheme, all costs must be
roughly scaled up by 50% (up to constants), and the improvement factor of our method compared to
the naive approach will be essentially identical. Let β denote the length of the vector of attributes.
In the minimal setting where the verifier knows a pseudonym, implemented as a commitment to
the user’s vector of attributes, instantiating the zero-knowledge proofs in [13] using the DVNIZK
proof system of [11] leads to a proof size of 3β + 3 group elements, and 6β + 2 ciphertexts (in a
typical instantiation of the DVNIZK of [11], the group will be a composite order abelian group, and
the encryption scheme will be the Paillier encryption scheme).

In comparison, our proof of credential possession requires sending β + 2 group elements, and
2β+2 ciphertexts. Furthermore, all the ciphertexts can be sent once for all to the verifier (they form
the pseudonym of the prover); each new credential presentation then requires only generating and
sending β + 2 group elements (in comparison, the pseudonym in [13] is a tuple of β commitments,
hence sending the pseudonym ahead of time saves only β group elements). For the important
case of β = 1 attribute, and instantiating the DVNIZK with Paillier and a 2048-bit modulus, this
corresponds to a factor of improvement of more than 7 in the proof size compared to [13]. In
addition, using an optimization which we describe in Appendix C, the number of ciphertexts can
be further reduced, from 2β + 2 to 2β. We summarize the comparison between our scheme and
CMZ+CC in the table 1.

Eventually, we sketch a straightforward computational optimization (assuming an instantiation
with the Paillier scheme and a 2048-bit modulus for concreteness): the exponents manipulated when
constructing and verifying the proof are either attributes, random coins, or masks. If attributes are,
say, up to 128-bit long, then under the short-exponent discrete logarithm assumption (which states
that it is hard to find x from gx even if x is random but short, e.g. 128-bit long), all exponents
can be taken either 128-bit long (for the attributes and the random coins) or 256-bit long (for the
masks, since they must statistically mask the attributes over the integers). This makes computing
exponentiations and scalar multiplications considerably more efficient than with full-size (i.e.,
2048-bit) values.

Comparison with Plain [13]. We briefly comment on the comparison with the plain scheme
of [13] (which is either interactive, or non-interactive in the random oracle model). Our main
efficiency bottleneck is the fact that we use the DVNIZK of [11], which requires to use a large
order group.1 Therefore, using natural parameters, we manipulate group elements of size 2048 bits,
and ciphertexts of size 4096 bits. In constrast, [13] can work exclusively with group elements and
exponents over any DDH-hard group, e.g. of size 256 bits. However, the proof size of [13] (not
counting the size of the pseudonym) is β + 2 group elements and 3β + 2 256-bit exponents, for a
total of 256 Byte. Our proof system achieves a proof size 756 Byte, less than three times larger in
spite of our use of an 8-time larger group - and unlike [13], it is secure in the standard model (the
ratio remains essentially the same if we instantiate instead the underlying MAC scheme with the
DDH-based scheme of [13]).

1.7 Organization

In Section 2, we recall necessary preliminaries (further preliminaries are given in Appendix A. In
Section 3, we recall the definition of MAC schemes, introduce a general algebraic MAC scheme, and
define the stronger notion of extended unforgeability. In Section 4, we formally define non-interactive
keyed-verification anonymous credentials and their security properties. In Section 5, we introduce
the concept of oblivious DVNIZK and their security properties, provide an explicit instantiation
tailored to our application, and formally prove its security. In Section 6, we show how to construct
a non-interactive keyed-verification anonymous credential from a MAC scheme and an oblivious
1 In [11], the size of the group must be equal to the size of the plaintext space of a DVNIZK-friendly
encryption scheme, such as Paillier.
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Table 1. Comparison of our optimized NIKVAC to a direct construction from [13] with the DVNIZK of [11].

NIKVAC 1 CMZ+CC This Work This Work (optimized)
β attributes, group element length n, ciphertext size m

Pseudonym Size βn (2β + 2)m 2βm
Proof Size (2β + 3)n+ (6β + 2)m (β + 2)n (β + 2)n
Prover Computation2 (5β + 2)A+ (3β + 1)(B + C) (2β + 3)A (2β + 3)A
Assumption GGM+IND-CPA GGM+IND-CPA GGM+IND-CPA + short-exp dlog

(with Paillier) 1 attribute, group element length 2048, ciphertext size 4096

Pseudonym Size 256 Byte 2048 Byte 1024 Byte
Proof Size 5,38 kB 756 Byte 756 Byte
Prover Computation 7A+ 4(B + C) 5A 5A
Assumption GGM+Paillier GGM+Paillier GGM+Paillier + short-exp dlog

1 We consider a minimal setting where the prover shows possession of a valid credential with respect to an identity
committed in a pseudonym known to the verifier. We use the GGM-based scheme of [13] as the underlying algebraic
MAC (the efficiency gain of our approach is essentially the same if one uses the DDH-based MAC of [13]).

2 A denotes the cost of an exponentiation in the group G, B denotes the cost of an encryption, C denotes the cost of
an homomorphic scalar multiplication. We note that, under the short-exponent discrete logarithm assumptions, all
exponentiations in G (resp. all homomorphic scalar multiplications) can be performed with exponents (resp. scalars)
of length at most 256 bits.

DVNIZK proof system. Eventually, in Appendix B, we prove that the first MAC scheme of [13]
satisfies extended unforgeability in the generic group model (with composite order groups), and
in Appendix C, we describe further improvements to our NIKVAC construction relying on the
short-exponent discrete logarithm assumption.

2 Preliminaries

Throughout this paper, λ denotes the security parameter. A probabilistic polynomial time algorithm
(PPT, also denoted efficient algorithm) runs in time polynomial in the (implicit) security parameter
λ. A positive function f is negligible if for any polynomial p there exists a bound B > 0 such
that, for any integer k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on λ occurs with overwhelming
probability when its probability is at least 1− negl(λ) for a negligible function negl. Given a finite
set S, the notation x $← S means a uniformly random assignment of an element of S to the variable
x. We represent adversaries as interactive probabilistic Turing machines; the notation A O indicates
that the machine A is given oracle access to O. Adversaries will sometime output an arbitrary
state st to capture stateful interactions.

Abelian Groups and Modules. We use additive notation for groups for convenience, and write
(G, ) for an abelian group of order k. When it is clear from the context, we denote 0 its neutral
element (otherwise, we denote it 0G). We denote by ord(G) the order of G. We denote by • the
scalar-multiplication algorithm (i.e. for any (x,G) ∈ Zk × G, x • G = G G . . . G, where the
sum contains x terms). Observe that we can naturally view G as a Zk-module (G, , •), for the
ring (Zk,+, ·). For simplicity, we write G for (−1) • G. We use lower case to denote elements
of Zk, upper case to denote elements of G, and bold notations to denote vectors. We extend the
notations ( , ) to vectors and matrices in the natural way, and write x •G to denote the scalar
product x1 •G1 . . . xt •Gt (where x,G are vectors of the same length t). For a vector v, we
denote by vᵀ its transpose. By GGen(1λ), we denote a probabilistic efficient algorithm that, given
the security parameter λ, generates an abelian group G in which the CSG and DLSE assumption
defined below holds in respect to λ. Note that this implies that the normal discrete log problem is
hard in this group, as well. In the following, we write (G, k) $← GGen(1λ). Additionally, we denote
by GGen(1λ, k) a group generation algorithm that allows us to select the order k beforehand.

RSA Groups. A strong prime is a prime p = 2p′ + 1 such that p′ is also a prime. We call RSA
modulus a product n = pq of two strong primes. We denote by ϕ Euler’s totient function; it holds
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that ϕ(n) = (p − 1)(q − 1). We denote by Jn the cyclic subgroup of Z∗n of elements with Jacobi
symbol 1 (the order of this group is ϕ(n)/2), and by QRn the cyclic subroup of squares of Z∗n (which
is also a subgroup of Jn and has order ϕ(n)/4). By Gen(1λ), we denote a probabilistic efficient
algorithm that, given the security parameter λ, generates a strong RSA modulus n and secret
parameters (p, q) where n = pq, such that the best known algorithm for factoring n takes time 2λ.
In the following, we write (n, (p, q)) $← Gen(1λ) and call abelian groups with order n composite
order groups, if n is a RSA modulus.

Generic Group Model. The generic group model (GGM) was introduced in [35] and is an
idealized model of groups. It captures groups with no additional structure apart from being a group.
In such generic groups, the only possibility of attacking a cryptographic primitive is utilizing generic
algorithms which only make use of group operations.

In proofs, the generic group model is captured by giving an adversary access to the group
through random encodings of the group elements as bitstrings and a group operation oracle. Note
that if a cryptographic primitive is proven secure in the GGM, it only ensures that it can not be
broken with generic algorithms. In order to simulate the oracle in this work, we will require the
following lemma, based on [34].

Lemma 1 (Generalised Schwartz-Zippel). Let (n, (p, q)) $← Gen(1λ),G $← GGen(1λ, n) and
F ∈ Zn[x1, x2, .., xl] with F 6= 0 ∧ deg(F ) = d ≥ 0. Let p′ ∈ {p, q} and P a subgroup of G of order
p′. It holds that

Pr
[
x = (x1, x2, .., xl) $← Pl : F (x) = 0

]
≤ d

p′

2.1 Assumptions

Computational Subgroup Assumption (CSG). The computational subgroup assumption
states that no bounded adversary can output a generator for a non-trivial subgroup. Or more
formally, for all PPT adversaries A , it holds that

Pr

(n, (p, q)) $← Gen(1λ),
G $← GGen(1λ, n),
G← A (G, n),

: G 6= 0G ∧ (p •G = 0G ∨ q •G = 0G)

 ≤ µ(λ)

where µ(λ) = negl(λ).

Decisional-Diffie-Hellman (DDH) Assumption. Let G be a group with order n. For all PPT
adversaries A it holds that∣∣∣∣Pr

[
a, b, c

$← Zn : A (G,A,B,C) = 1
A← a •G,B ← b •G,C ← ab •G

]
−

Pr
[
a, b, c

$← Zn : A (G,A,B,C) = 1
A← a •G,B ← b •G,C ← c •G

]∣∣∣∣ ≤ µ(λ)

2.2 Encryption Schemes

A public-key encryption scheme S is a triple of PPT algorithms (S.KeyGen, S.Enc, S.Dec), such that
S.KeyGen generates encryption and decryption keys (ek, dk), S.Encek, given a plaintext, outputs
a (randomized) ciphertext, and S.Decdk, given a ciphertext, outputs a plaintext. An encryption
scheme must be correct (S.Encdk(S.Encek(m)) = m for every message m) and IND-CPA secure (no
adversary can distinguish between the encryptions of two messages of its choice). We defer to
Appendix A the formal definition of encryption schemes and their security properties.

In this work, we will focus on additively homomorphic encryption schemes, which are homo-
morphic for both the message and the random coin. More formally, we require that the mes-
sage space M and the random source R are integer sets (ZM ,ZR) for some integers (M,R),
and that there exists an efficient operation ⊕ such that for any (ek, sk) $← KeyGen(1λ), any
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(m1,m2) ∈ Z2
M and (r1, r2) ∈ Z2

R, denoting (Ci)i≤2 ← (S.Encek(mi; ri))i≤2, it holds that C1⊕C2 =
S.Encek(m1 +m2 mod M ; r1 + r2 mod R). We say an encryption scheme is strongly additive if it
satisfies these requirements. Note that the existence of ⊕ implies (via a standard square-and-multiply
method) the existence of an algorithm that, on input a ciphertext C = S.Encek(m; r) and an integer
ρ ∈ Z, outputs a ciphertext C ′ = S.Encek(ρm mod M ; ρr mod R). We denote by ρ�C the external
multiplication of a ciphertext C by an integer ρ, and by 	 the operation C ⊕ (−1)� C ′ for two
ciphertexts (C,C ′). We will sometimes slightly abuse these notations, and write C⊕m (resp. C	m)
for a plaintext m to denote C ⊕ S.Encek(m; 0) (resp. C 	 S.Encek(m; 0)). We extend in a natural
way the algorithm Enc over vectors: for vectors m = (mi)i ∈ Z∗M and r = (ri)i ∈ Z∗R of the same
size, S.Encek(m; r) denotes the vector (S.Encek(mi, ri))i. We extend the algorithm Dec to vectors
of ciphertexts in a similar way.

The Paillier Encryption Scheme. The Paillier encryption scheme [30] is a well-known additively
homomorphic encryption scheme over Zn for an RSA modulus n. We describe here a standard
variant [19,28], where the random coin is an exponent over Jn rather than a group element. Note
that the exponent space of Jn is Zϕ(n)/2, which is a group of unknown order; however, it suffices to
draw exponents at random from Zn/2 to get a distribution statistically close from uniform over
Zϕ(n)/2. The IND-CPA security of the Paillier encryption scheme reduces to the DCR assumption,
which states that it is computationally infeasible to distinguish random n’th powers over Z∗n2 from
random elements of Z∗n2 .

– KeyGen(1λ): run (n, (p, q)) $← Gen(1λ), pick g $← Jn, set h ← gn mod n2, and compute δ ←
n−1 mod ϕ(n) (n and ϕ(n) are relatively prime). Return ek = (n, h) and dk = δ;

– Enc(ek,m; r): given m ∈ Zn, for a random r
$← Zn/2, compute and output c ← (1 + n)m ·

hr mod n2;
– Dec(dk, c): compute x← cdk mod n and c0 ← [c · x−n mod n2]. Return m← (c0 − 1)/n.

DVNIZK-Friendly Encryption Scheme. We say that a strongly additive encryption scheme is
DVNIZK-friendly, when it satisfies the following additional properties:

– Coprimality Property: we require that the size M of the plaintext space and the size R of the
random source are coprime, i.e., gcd(M,R) = 1;

– Decodable: for any (ek, sk) $← KeyGen(1λ), the function fek : m 7→ Encek(m; 0) must be efficiently
invertible (i.e., there is a PPT algorithm, which is given ek, computing f−1

ek on any value from
the image of fek).

Note that the Paillier cryptosystem is DVNIZK-friendly: (gcd(n, ϕ(n)) = 1, and any message m
can be efficiently recovered from Encek(m; 0) = (1 + n)m mod n2).

2.3 Non-Interactive Zero-Knowledge Proof of Knowledge Systems

A (designated-verifier) non-interactive zero-knowledge (DVNIZK) proof system for a language
L is a quadruple (Π.Setup,Π.KeyGen,Π.Prove,Π.Verify), as follows: Π.Setup generates the setup
parameters; Π.KeyGen generate the (public) proving key and the verification key (which is private
in a designated-verifier scheme, and public in a publicly-verifiable one); Π.Prove, given the proving
key, a word x an a witness w for x ∈ L , outputs a proof π; and Π.Verify, given the verification key,
x, and π, outputs either accept or reject.

A DVNIZK proof system must be complete (if x ∈ L , the verifier accept), sound (if x /∈ L ,
no malicious prover can cause the verifier to accept; we usually want a stronger security notion,
unbounded extractability, which states that a polytime extractor can extract a valid witness from any
accepting proof, even if the proof was adversarially generated with arbitrary access to a verification
oracle), and zero-knowledge (the proof can be simulated without knowledge of the witness). We
defer to Appendix A the formal definition of DVNIZKs and their security properties.
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The DVNIZK of Chaidos and Couteau. This DVNIZK proof of knowledge system was introduced
in [11] and satisfies composable zero-knowledge, and statistical adaptive unbounded knowledge-
extractability. The proofs are generated for statements defined by a linear map over G:
Let k be an integer, (G, ) be an abelian group of order k, and (α, β, γ) be three integers. LetG ∈ Gα
denote a vector of public parameters, and let C ∈ Gβ denote a public word. This system considers
statements StΓ(G,C) defined by a linear map Γ : (Gα,Gβ) 7→ Gγ×β such that StΓ(G,C coresponds
to the statement “I know x ∈ Zγk such that x • Γ(G,C) = C”. Let S = (S.KeyGen, S.Enc, S.Dec)
denote a DVNIZK-friendly encryption scheme with plaintext space Zk. The algorithms (ΠK.Setup,
ΠK.KeyGen,ΠK.Prove,ΠK.Verify) form a DVNIZK of knowledge ΠK for a statement StΓ(G,C) over
a word C ∈ Gβ , with public parameters G ∈ Gα, defined by a linear map Γ : (Gα,Gβ) 7→ Gγ×β :

– ΠK.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ). Output crs ← ek. Note that ek defines a
plaintext space Zk and a random source ZR. As the IND-CPA and strong additive properties of
S require R to be unknown, we assume that a bound B on R is publicly available. We denote
`← 2λkB.

– ΠK.KeyGen(1λ): pick e← Z`, set pk← S.Encek(0; e) and vk← e.
– ΠK.Prove(pk,C,x): on a word C ∈ Zβk , with witness x for the statement StΓ(G,C), pick
x′ $← Zγk , r

$← Zγ2λB , compute

X ← S.Encek(x; r),
X′ ← S.Encek(x′; 0)	 (r � pk) = S.Encek(x′;−e · r),
C′ ← x′ • Γ(G,C),

and output π ← (X,X′,C′).
– ΠK.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that e � X ⊕ X′ is decodable, and

decode it to a vector d ∈ Zγk . Check that

d • Γ(G,C) = e •C C′.

If all checks succeeded, accept. Otherwise, reject.

3 Message Authentication Codes

In this section, we recall the definition of message authentication codes (MAC), and outline a
general MAC scheme (which we call “abstract MAC”), which unifies several existing MAC scheme
with a natural algebraic structure. Then, we introduce a stronger unforgeability notion for this
abstract MAC scheme. In Appendix B, we prove that one of the MAC schemes of [13] does satisfy
this security notion in the generic group model.

3.1 Definition

Definition 1 (Message Authentication Code). We recall the definition of a message au-
thentication code. A message authentication code (MAC) M is a quadruple of PPT algorithms
(M.Setup,M.KeyGen,M.Sign,M.Verify), such that

– M.Setup(1λ) generates the public parameters pp of the MAC. We assume that pp specifies the
tag space S and the message space M;

– M.KeyGen(pp) generates and outputs a key sk and optionally public issuer parameters ipp.
– M.Signsk(m) given the message m ∈M, outputs a tag σ;
– M.Verifysk(m,σ) given the message m ∈ M and a tag σ ∈ S, outputs a bit b whose value

depends on the validity of the tag σ with respect to m.

We assume for simplicity that once generated, the public parameters pp are implicitly passed as an
argument to the algorithms (M.KeyGen,M.Sign,M.Verify).

Definition 2 (Correctness of a MAC). A Message Authentication Code M is correct if for any
pp $← M.Setup(1λ), any sk $← M.KeyGen(pp), any message m ∈M and for σ $← M.Signsk(m), it
holds that M.Verifysk(m,σ) = 1.
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Definition 3 (UF-CMVA Security of a MAC). A MAC M is UF-CMVA secure if for any PPT
adversary A , it holds that

Pr

Q← ∅, pp $←M.Setup(1λ),
sk $←M.KeyGen(pp), : M.Verifyk(m,σ) = 1 ∧m /∈ Q
(m,σ) $← A Osk[Q](pp)

 ≤ 1
2 + µ(λ)

for some function µ(λ) = negl(λ). A has access to an oracle Osk[Q] which answers to verification
and signing queries:
– O.Sign(m) sets Q← Q ∪ {m} and outputs M.Signsk(m);
– O.Verify(m,σ) outputs M.Verifysk(m,σ).

In this paper we will need algebraic MACs which means that the signing and verification
algorithms require only group operations to be performed.

3.2 An Abstract MAC Scheme

Let G be an abelian group of order n. Given a vector x = (x0, · · · , xβ) for some integer β, we denote
by Hx : Zβn 7→ Zn the affine function which, on input (m1, · · · ,mβ), outputs x0 +

∑β
i=1 xi · mi.

Consider now the following generic MAC scheme, parametrized with integers (α, β):

– M.Setup(1λ) : pick a generator G of G and output pp← (G, n, G, α, β);
– M.KeyGen(pp) : pick α vectors (ki)i≤α ∈ (Zβ+1

n )α (which can be either random or fixed) of length
β+ 1, and α random group elements (Gi)i≤α $← Gα. Set Hi,j ← k−1

i,j •G for i ∈ [1..α], j ∈ [1..β],
G′i ← ki,0 • Gi for i ∈ [1..α], and ipp ← ((Hi,j)1≤j≤β)i≤α, (Gi, G′i)i≤α). Output sk = (ki)i≤α
and ipp.

– M.Signsk(m) : given a message m = (m1, ..,mβ) ∈ Zβn , pick a random group element U $← G
and output

σ ← (U, (Hki(m) • U)i≤α).
– M.Verifysk(m, σ) : parse σ as (U, (Vi)i≤α) and check that for i = 1 to α, Vi = Hki(m) • U .

Example 1. The scheme MACGGM from [13] is obtained by setting α = 1, and sampling the key
k uniformly at random. This scheme is UF-CMVA-secure in the generic group model. Similarly,
we recover the scheme MACDDH from [13] by setting α = 3, sampling k1, k2 at random, and
setting k3 ← (k3,0, 0, · · · , 0) for a uniformly random k3,0. This scheme is UF-CMVA-secure under
the decisional Diffie-Hellman assumption.

Note that for our construction of an anonymous credential scheme, we will require the security
of the underlying MAC scheme to hold in a group of composite order. In Appendix B, we slightly
modify MACGGM and prove that the modified version is secure in non-prime order groups in the
generic group model.

3.3 Extended Unforgeability

The UF-CMVA security property states that no PPT adversary should be able to forge a MAC
on a message, even given access to signing and verification oracles, as long as this message was
never queried to the signing oracle. One can consider stronger notions of unforgeability, where the
adversary is given access to an additional oracle. In particular, it will be useful in our setting to
consider the following extended unforgeability property for the abstract MAC scheme defined above:

Definition 4 (Extended Unforgeability). An abstract MAC M is XUF-CMVA secure if for any
PPT adversary A , it holds that

Pr

Q← ∅, pp $←M.Setup(1λ),
sk $←M.KeyGen(pp), : M.Verifysk(m,σ) = 1 ∧m /∈ Q
(m,σ) $← A Osk[Q](pp)

 ≤ 1
2 + µ(λ)

for some function µ(λ) = negl(λ). A has access to an oracle Osk[Q] which answers to verification
and signing queries, as well as another specific type of query:



12 Geoffroy Couteau and Michael Reichle

– O.Sign(m) sets Q← Q ∪ {m} and outputs M.Signsk(m);
– O.Verify(m,σ) outputs M.Verifysk(m,σ);
– O.Check((Ai,j)i≤α,j≤β , (Bi,j)i≤α,j≤β) checks

∑β
j=1 ki,j • Ai,j =

∑β
j=1 ki,j • Bi,j for all i ≤ α,

and outputs 1 iff all checks succeed (note: the O.Check oracle could equivalently check whether∑β
j=1 ki,j •Ai,j = 0).

In Appendix B, we will prove that the scheme MACGGM from [13], which was proven UF-CMVA-
secure over prime order groups in the generic group model in [13], is in fact XUF-CMVA-secure in the
generic group model over composite order groups (the use of groups of composite order is required
for compatibility of the MAC scheme with the DVNIZK scheme of [11]), under the computational
subgroup assumption. Note that, while it is uncommon to prove security in the GGM under an
additional assumption, it is necessary here: there exists an explicit attack against the security of
the MAC if the adversary is able to compute a generator of a strict subgroup of G. However, in the
usual formulation of the GGM, the adversary is unbounded and receives as input the order of the
group, hence he can trivially factor this order and efficiently compute generators of strict subgroups
of G, showing that MACGGM is in fact not unconditionally secure in the GGM over composite order
groups.

4 Non-Interactive Keyed-Verification Anonymous Credentials

In this section, we formally introduce non-interactive keyed-verification anonymous credentials and
their security properties. Our definition mostly follows the blueprint of [13].

Definition 5 (Non-Interactive Keyed-Verification Anonymous Credentials). An non-
interactive keyed-verification anonymous credentials (NIKVAC) scheme Θ is a set of algorithms
(Θ.Setup,Θ.CredKeyGen,Θ.BlindIssue,Θ.BlindObtain,Θ.Show,Θ.ShowVerify) such that

– Θ.Setup(1λ), outputs the public parameters pp of the AC and a trapdoor td, the public parameters
fix the set of supported statements Φ, the universe of attributes U and are passed to the following
algorithms implicitly, the trapdoor can be used to revoke anonymity;

– Θ.CredKeyGen(pp), generates a secret key sk and public issuer parameters ipp for an issuing
organization;

– Θ.BlindIssue(sk, S)↔ Θ.BlindObtain(ipp, (m1, ...,ml)), interactively generates a credential cred
for the attributes (m1, ..,ml) ∈ U , where S ⊂ {m1, ..,ml} (here, S refers to the subset of
attributes that the user wants to keep private; it allows to flexibly choose which attributes
should be revealed, and which should not);

– Θ.Show(ipp, cred, (m1, ...,ml),Φ), outputs a proof of possession π of a credential cred for orga-
nization with issuer parameters ipp in respect to the attributes (m1, ..,ml) ∈ U with associated
statements Φ ∈ Φ;

– Θ.ShowVerify(sk, π,Φ), checks the proof π with sk with respect to the statements Φ ∈ Φ;

which satisfies the correctness, anonymity, unforgeability, blind issuance and key-parameter consis-
tency properties defined below.

We define two extra algorithms to simplify the security definitions:

– Issue(sk, (m1, ..,ml)): generates a credential for the attributes (m1, ..,ml) using sk;
– CredVerify(sk, (m1, ..,ml), cred): verifies the credential cred using sk.

Here we define correctness, which guarantees that Issue always outputs proper credentials and
that a proof of possession for a valid credential verifies correctly.

Definition 6 (Correctness). A NIKVAC scheme Θ is correct if it holds that

Pr


(pp, td) $← Θ.Setup(1λ), (m1, ..,ml) $← U ,
(sk, ipp) $← Θ.CredKeyGen(1λ),
cred $← Issue(sk, (m1, ..,ml)),
b

$← CredVerify(sk, (m1, ..,ml), cred)

: b = 1

 = 1
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and

Pr



(pp, td) $← Θ.Setup(1λ),
Φ ∈ Φ, (m1, ..,ml) $← U with Φ(m1, ..,ml) = 1,
(sk, ipp) $← Θ.CredKeyGen(1λ),
cred $← Issue(sk, (m1, ..,ml)),
π

$← Θ.Show(ipp, cred, (m1, ...,ml),Φ)
b

$← Θ.ShowVerify(sk, π,Φ),

: b = 1


= 1

Unforgeability ensures that users cannot successfully show credentials without having received
one from the authority.

Definition 7 (Unforgeability). A NIKVAC scheme Θ is unforgeable if for any PPT adversary
A it holds that

Pr


pp $← Setup(1λ), Q← ∅,
(sk, ipp) $← Θ.CredKeyGen(1λ),
(Φ, π) $← A Osk[Q](pp, ipp),
b

$← Θ.ShowVerify(sk, π,Φ),

: b = 1 ∧ ∀(m1, ..,ml) ∈ Q :
Φ(m1, ..,ml) = 0

 ≤ µ(λ)

for some function µ(λ) = negl(λ). A has access to an oracle Osk[Q] which answers to issuing and
verification queries:

– O.Issue(m1, ..,ml) sets Q← Q ∪ {m1, ..,ml} and outputs Issue(sk, ipp, (m1, ..,ml));
– O.Verify(Φ, π) outputs Θ.ShowVerify(sk, π,Φ).

Anonymity ensures that a user that shows a credential stays anonymous. Note that, as observed
in [13], this simulation-style notion of anonymity implies in particular the standard notion of multi-
show unlinkability, which states that anonymity is preserved throughout multiple presentations of
the credential (a property which is not satisfied by e.g. U-Prove [31]).

Definition 8 (Anonymity). A NIKVAC scheme Θ is anonymous if for any PPT adversary A ,
there exists a PPT simulator Sim such that it holds that∣∣∣∣∣∣∣∣Pr


(pp, td) $← Θ.Setup(1λ),
(sk, ipp) $← Θ.CredKeyGen(1λ),
(Φ, cred, (m1, ..,ml), st) $← A (pp, ipp, sk),
π

$← Θ.Show(ipp, cred, (m1, ...,ml),Φ)

: CredVerify(sk, (m1, ..,ml), cred)
= 1 ∧ Φ(m1, ..,ml) = 1 ∧A (st, π) = 1

−

Pr


(pp, td) $← Θ.Setup(1λ),
(sk, ipp) $← Θ.CredKeyGen(1λ),
(Φ, cred, (m1, ..,ml), st) $← A (pp, ipp, sk),
π

$← Sim(ipp, sk,Φ)

: CredVerify(sk, (m1, ..,ml), cred)
= 1 ∧ Φ(m1, ..,ml) = 1 ∧A (st, π) = 1


∣∣∣∣∣∣∣∣ ≤ µ(λ)

for some function µ(λ) = negl(λ).

Blind Issuance. The protocol BlindIssue↔ BlindObtain defines a secure two-party protocol for the
function f((S, pp, ipp), (sk, r), (m1, ..,ml)) for shared input (S, pp, ipp), issuer input (sk, r) and user
input (m1, ..,ml) which returns cred← Issue(sk, (m1, ..,ml); r) to the user, if the input is correct.
Since we will not cover this property explicitly in this paper, refer to [13] for more details.

Definition 9 (Key-Parameter Consistency). A NIKVAC scheme Θ fulfills the key-parameter
consistency property if for any PPT adversary A , it holds that

Pr
[

(pp, td) $← Θ.Setup(1λ), for i ∈ {0, 1},
(ipp, sk0, sk1) $← A (pp) : (ipp, ski) ∈ {x | x $← Θ.CredKeyGen(1λ)}

]
≤ µ(λ)

for some function µ(λ) = negl(λ).
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4.1 Additional Properties

Anonymity Revocation. The following property would allow a trusted third party to revoke
anonymity if desired.

Definition 10 (Extractability). A NIKVAC scheme Θ is extractable if there exists an efficient
extractor Ext such that

Pr


(pp, td) $← Θ.Setup(1λ),
Φ ∈ Φ, (m1, ..,ml) $← U ,
(sk, ipp) $← Θ.CredKeyGen(1λ),
cred $← Issue(sk, (m1, ..,ml)),
π

$← Θ.Show(ipp, cred, (m1, ...,ml),Φ)

: (m1, ..,ml)← Ext(td, π)

 = 1

5 Oblivious Designated-Verifier Non-Interactive Zero-Knowledge

In this section, we introduce oblivious (designated-verifier, non-interactive) zero-knowledge proof
system. Intuitively, an oblivious DVNIZK enhances the security and the functionality of a DVNIZK
with two properties:

– First, the oblivious DVNIZK on a word x can be used to show knowledge of a witness w such
that Rsk(x,w) = 1, where Rsk is a secret witness relation, which depends on a secret information
which is not known to the prover. The knowledge of sk is not required to generate a proof – but
it is, obviously, necessary to verify the proof.

– Second, we consider words x which can be divided in subwords (x0, x1), such that x0 is a
public subword, while x1 is a private subword. The privacy of x1 is ensured by requiring, for
the zero-knowledge property, the existence of a simulator which can simulate a proof without
knowing the witness w and/or x1. Note that this formalism is mainly chosen for notational
convenience: the word x1 could always be thought of as being part of the witness. However,
defining it as a part of the word allows us to set the secret relation Rsk to be exactly the MAC
verification, where the word is the signature and the witness is the message, in our concrete
instantiation.

5.1 Definition

Definition 11 (Oblivious DVNIZK). An oblivious designated-verifier non-interactive zero-knowledge
proof of knowledge Π for a family of secret witness relations {Rcrs(·, ·, ·)}crs (which take as input
triples (sk, x, w) where sk is a secret relation key, x is a word, and w is a witness for the relation
Rcrs(sk, ·, ·)) is a five-tuple (Π.Setup,Π.RelSetup,Π.KeyGen,Π.Prove,Π.Verify) of efficient algorithms
such that

– Π.Setup(1λ), on input the security parameter in unary, outputs a pair (crs, td) where crs is a
common reference string and td is a trapdoor ;

– Π.RelSetup(crs), on input crs, outputs a pair (sk, ipp), where sk is a secret relation key, and ipp
are public issuer parameters;

– Π.KeyGen(crs), on input crs, outputs a pair (pk, vk) where pk is a public proving key, and vk is
a secret verification key;

– Π.Prove(crs, pk, ipp, (x0, x1), w), on input crs, the public key pk, the issuer parameters ipp, a
word (x0, x1), where x0 is a public subword and x1 is a secret subword, and a witness w such
that Rcrs(sk, (x0, x1), w) = 1, outputs a proof π;

– Π.Verify(crs, pk, ipp, x0, vk, sk, π), on input crs, the public key pk, the issuer parameters ipp, the
public subword x0, the verification key vk, the secret relation key sk, and a proof π, outputs a
bit b ∈ {0, 1};

which satisfies the completeness, oblivious zero-knowledge, and oblivious knowledge-extractability
properties defined below.



Non-Interactive Keyed-Verification Anonymous Credentials 15

Definition 12 (Completeness). An oblivious DVNIZK proof system Π = (Π.Setup,Π.RelSetup,
Π.KeyGen,Π.Prove,Π.Verify) for a family of secret witness relations {Rcrs}crs satisfies completeness if
for every (crs, td) in the image of Π.Setup(1λ), every (sk, ipp) in the image of Π.RelSetup(crs), every
(pk, vk, sk) in the image of Π.KeyGen(crs), every ((x0, x1), w) such that Rcrs(sk, (x0, x1), w) = 1, and
every π in the image of Π.Prove(pk, ipp, (x0, x1), w), it holds that Π.Verify(pk, ipp, x0, vk, sk, π) = 1.

Definition 13 (Oblivious Zero-Knowledge). An oblivious DVNIZK proof system Π = (Π.Setup,
Π.RelSetup,Π.KeyGen,Π.Prove,Π.Verify) for a family of witness relations {Rcrs}crs satisfies oblivious
zero-knowledge if for any stateful PPT Adv, there exists a probabilistic polynomial-time simulator
Sim such that∣∣∣∣∣∣∣∣Pr


(crs, td) $← Π.Setup(1λ),
(pk, vk) $← Π.KeyGen(crs), : (Rcrs(sk, (x0, x1), w) = 1)
((x0, x1), w, ipp, sk)← A (crs, pk, vk), ∧(A (π) = 1)
π ← Π.Prove(crs, pk, ipp, (x0, x1), w),

−

Pr


(crs, td) $← Π.Setup(1λ),
(pk, vk, sk) $← Π.KeyGen(crs), : (Rcrs(sk, (x0, x1), w) = 1)
((x0, x1), w, sk, ipp)← A (crs, pk, vk), ∧(A (π) = 1)
π ← Sim(crs, pk, ipp, x0, vk, sk),


∣∣∣∣∣∣∣∣ ≤ µ(λ)

where µ(λ) = negl(λ).

Definition 14 ((O0,O1)-Knowledge-Extractability). An oblivious DVNIZK proof system
Π = (Π.Setup,Π.RelSetup,Π.KeyGen,Π.Prove,Π.Verify) for a family of secret witness relations
{Rcrs}crs satisfies (O0,O1)-knowledge-extractability if the following two conditions hold:

– for every PPT adversary A , there is an efficient extractor Ext such that

Pr


(crs, td) $← Setup(1λ),
(sk, ipp) $← RelSetup(crs),
(pk, vk) $← Π.KeyGen(crs),
(π, x0)← A V,O0[sk](crs, pk, ipp),
(x1, w)← Ext(crs, pk, ipp, x0, td, π),

:
Rcrs(sk, (x0, x1), w) = 0 ∧
Π.Verify(crs, pk, ipp, x0, vk,
sk, π) = 1

 ≈ 0,

where V denotes Π.Verify(crs, pk, ipp, ·, vk, sk, ·);
– there exists an efficient simulator that simulates the answers of Π.Verify(crs, pk, ipp, ·, vk, sk, ·),

which is not given sk but is instead given oracle access to O1[sk].

5.2 Instantiation

We now provide an instantiation of an oblivious DVNIZK suitable for our construction. At a high
level, the secret witness relation we consider will be the one that checks, for triples (sk, x, w), that
the message w is the one signed in the credential x (with respect to the secret key sk of the abstract
MAC scheme defined in Section 3.1). Our construction heavily builds upon the DVNIZK proof
system of [11]. Let S = (S.KeyGen, S.Enc, S.Dec) denote a DVNIZK-friendly encryption scheme with
plaintext space Zn and M = (M.Setup,M.KeyGen,M.Sign,M.Verify) be a MAC scheme, which
we assume to have the abstract structure given in Section 3.1, over a group G of order n with
generator G. We will consider the following witness relation: Rcrs(sk, x, w), given as input a vector
x = (U, (Vi)i≤α) ∈ Gα+1 of group elements, a witness w = (m1, · · · ,mβ), and given sk, checks that
M.Versk(m1, · · · ,mβ , x) = 1, where sk = (ki)i≤α is the MAC key. Since the purpose of the public
word x0 is mainly to allow more expressivity when considering a more complex relation, and we
focus here on the most basic relation (the scheme can be enhanced to work with more complex
relations), we simply consider that x = x1 is entirely a secret word. The scheme works as follows:

– Π.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ) and pp $←M.Setup(1λ). Output crs← (ek, pp).
Note that ek defines a plaintext space Zn and a random source ZR. As the IND-CPA and strong
additive properties of S require R to be unknown, we assume that a bound B on R is publicly
available. We denote `← 2λnB.
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– Π.RelSetup(crs) : same as M.KeyGen, namely: pick α vectors (ki)i≤α ∈ (Zβn )α (which can
be either random or fixed) of length β, and α random group elements (Gi)i≤α $← Gα.
Set Hi,j ← k−1

i,j • G for i ∈ [1..α], j ∈ [1..β], G′i ← ki,0 • Gi for i ∈ [1..α], and ipp ←
((Hi,j)1≤j≤β)i≤α, (Gi, G′i)i≤α). Output sk = (ki)i≤α and ipp.

– Π.KeyGen(crs) : pick e← Z`, set pk← S.Encek(0; e) and vk← e. Output (pk, vk).
– Π.Prove(crs, pk, ipp, x, w) : given x = (U, (Vi)i≤α) and a witness w = m, pick (m′, t, t′) $←

Zβn ×(Zαn )2, (rm, rt) $← Zβ2λB×Z
α
2λB , z

$← Zn. Let (t′j)j≤β = (t′1,j , · · · , t′α,j)j≤β denote uniformly
random additive shares of t′ over Zαn . Compute

(U ′, (V ′i )i≤α)← (z • U, ((z • Vi) (ti •G))i≤α)
Wi,j ← m′j • U ′ (t′i,j •Hi,j) for i ∈ [1..α], j ∈ [1..β]
(Xm,Xt)← (S.Encek(m; rm), S.Encek(t; rt)),
X′

m ← S.Encek(m′; 0)	 (rm � pk) = S.Encek(m′;−e · rm),
X′

t ← S.Encek(t′; 0)	 (rt � pk) = S.Encek(t′;−e · rt),

and output π ← (U ′, (V ′i )i≤α, (Wi,j)i≤α,j≤β ,Xm,Xt,X
′
m,X′

t).
– Π.Verify(crs, pk, ipp, vk, sk, π) : parse π as

(U ′, (V ′i )i≤α, (Wi,j)i≤α,j≤β ,Xm,Xt,X
′
m,X′

t).

Check that e�Xm ⊕X′
m and e�Xt ⊕X′

t are decodable, and decode them to vectors dm,dt.
Reconstruct

(W ′i )i≤α ←

 β∑
j=1

ki,j •Wi,j


i≤α

and check that

(e • (V ′i (ki,0 • U ′)) W ′i )i≤α = (dm • (ki,j • U ′)1≤j≤β)i≤α dt •G.

Output 1 if and only if all checks succeeded.

Theorem 2. The scheme Π is an oblivious designated-verifier zero-knowledge proof of knowledge
for the family of secret witness relations {Rcrs}crs, whose oblivious zero-knowledge property reduces
to the semantic security of the DVNIZK-friendly encryption scheme S, and which satisfies statistical
(O0,O1)-knowledge extractability for the oracle O0[sk] ≡M.Signsk, and an oracle O1[sk] which is
either

– M.Verifysk(·, ·) if β = 1, or
– M.Verifysk(·, ·) together with M.Checksk(·, ·) otherwise.

5.3 Extensions and Optimizations

In itself, the above oblivious DVNIZK does not seem to provide a strong unforgeability guarantee.
Indeed, recall that the unforgeability of keyed-verification anonymous credential states (informally)
that it should be infeasible to come up with a pair (m, σ) such that M.Versk(m, σ) = 1 and
Φ(m) = 1, if all previous queries to the signing authority where on vectorsm′ such that Φ(m′) = 0.
The exact choice of Φ depends on the particular application; typically, Φ(m) could correspond
to the statement that m is the value committed in some pseudonym known to the verifier; that
way, the condition “all previous queries to the signing authority where on vectors m′ such that
Φ(m′) = 0” boils down to the standard guarantee of anonymous credentials: it should be infeasible
to come up with an accepting credential on a vector that was never signed before by the authority.
But Φ can also check a more complex statement on the vector of attributes (e.g. it could check that
the attribute “age” is above 18).

In the construction given above, we directly focus on enforcing M.Versk(m, σ) = 1; there is no
additional Φ to, for example, bind m to a commitment. However, we observe that this typical
choice of Φ is for free in our construction above. Indeed, a proof π does contain, by construction,
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a perfectly binding commitment (in fact, an encryption with S) of the vector m, which is Xm.
Furthermore, it will immediately follow from the security analysis that the proof does not only
guarantee the knowledge of a witness w = m (recovered by the extractor): it further guarantees
that this witness is exactly the one encrypted in Xm. Therefore, to bind the user to a pseudonym
known to the verifier, it is unecessary to add a commitment to m. Instead, the user can simply
compute (Xm,Xt,X

′
m,X′

t) in advance (observe that this does not require the knowledge of a
credential) and send it to the verifier, who will simply define it to be the pseudonym of the user.
Then, each time he wants to show possession of a credential (U, (Vi)i≤α), the user only needs to
compute the missing part of the proof, (U ′, (V ′i )i≤α, (Wi,j)i≤α,j≤β). This significantly reduces the
size of a proof of possession, and in scenario where Φ is only intended to check that the vector
matches with a pseudonym, the basic construction suffices as is. Of course, it can be extended to
more complex statements Φ, as long as they fit in the framework of statements handled by [11].

5.4 Security Analysis

Completeness follows from a straightforward (although tedious) inspection. We now establish
oblivious zero-knowledge and (O0,O1)-knowledge extractability.

Oblivious Zero-Knowledge. We exhibit a simulator Sim which simulates a proof π given
(crs, pk, ipp, x0, vk = e, sk = (ki)i≤α). Note that Sim is not given the witness w nor x1. The simulator
Sim proceeds as follows:

Pick (m̃,m′,dm, t, t′,dt) $← (Zβn )3×(Zαn )3, (rm, rt) $← Zβ2λB×Z
α
2λB . Let (t′j)j≤β = (t′1,j , · · · , t′α,j)j≤β

denote uniformly random additive shares of t′ over Zαn . Compute

(U ′, (V ′i )i≤α) $← Gα+1

(W ′i )i≤α ← (dm • (ki,j • U ′)1≤j≤β)i≤α dt •G e • (V ′i (ki,0 • U ′))i≤α
(Xm,Xt)← (S.Encek(m̃; rm), S.Encek(t; rt)),
(X′

m,X′
t)← (S.Encek(dm − e · m̃;−e · rm), S.Encek(dt − e · t;−e · rt)).

Then, for i ∈ [1..α], j ∈ [1..β], pick random Wi,j conditioned on

W ′i =
β∑
j=1

ki,j •Wi,j ,

and output π ← (U ′, (V ′i )i≤α, (Wi,j)i≤α,j≤β ,Xm,Xt,X
′
m,X′

t).
We now show how to use an adversary Adv which outputs ((x0, x1), w, ipp, sk) and distin-

guishes π ← Π.Prove(crs, pk, ipp, (x0, x1), w) from π ← Sim(crs, pk, ipp, , x0, vk, sk) conditioned on
Rcrs(sk, (x0, x1), w) = 1 to break the semantic security of S. The reduction obtains m from Adv,
samples a random m̃, and sends (m, m̃) to a challenger for the IND-CPA game of S. It receives
a ciphertext Xm. It samples (m′,dm, t, t′,dt) $← (Zβn )2 × (Zαn )3, rt

$← Zα2λB as before, and sets
X′

m ← S.Encek(dm; 0)	Xm � e. Finally, it computes (U ′, (V ′i )i≤α), (Wi,j)i≤α,j≤β , and (Xt,X
′
t)

as before. Observe that (U ′, (V ′i )i≤α) are distributed identically in the real game and the simulated
game; direct calculations show that when Xm encrypts m, the proof π is distributed exactly as in
the real game, while when Xm encrypts m̃, the proof π is distributed exactly as in the simulated
game.

(O0,O1)-Knowedge-Extractability. We now turn our attention to the (O0,O1)-knowledge
extractability property. The extractor Ext proceeds as follows: given a proof π = (U ′, (V ′i )i≤α,
(Wi,j)i≤α,j≤β ,Xm,Xt,X

′
m,X′

t), it computes m← S.Dectd(Xm), t← S.Dectd(Xt), and outputs
x← (U ′, (V ′i ti •G)i≤α), and w ←m. We now analyze the probability that Rcrs(sk, (x0, x1), w) =
0 ∧Π.Verify(crs, pk, ipp, x0, vk, sk, π) = 1. To do so, we proceed in two steps:

Game 1. In this game, we modify the behavior of the oracle Π.Verify(crs, pk, ipp, vk, ·, sk, ·) that
Adv is given access to. Namely, the oracle is not given vk anymore. Rather, we generate vk as before,
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and set eR ← vk mod R. Each time Adv sends a query π to the oracle, we proceed as follows: we
parse π as

π = (U ′, (V ′i )i≤α, (Wi,j)i≤α,j≤β ,Xm,Xt,X
′
m,X′

t),

and use td to decrypt (Xm,Xt,X
′
m,X′

t), obtaining vectors (m, t,m′, t′). Then, we perform the
following checks:

1. we check that −eR � (Xm 	m) = X′
m 	m

′;
2. we check that −eR � (Xt 	 t) = X′

t 	 t
′;

3. we check V ′i ti •G = Hki(m) • U ′ for every i ≤ α (that is, we run M.Versk(m, σ) on the MAC
σ = (U ′, (V ′i ti •G)i≤α));

4. we reconstruct (W ′i )i≤α ←
(∑β

j=1 ki,j •Wi,j

)
i≤α

and check W ′i t′i •G =
∑β
j=1(ki,j ·m′j) • U ′

for every i ≤ α.

Note that this follows exactly the proof strategy of [11, Section 3.3]. It follows by the exact same
argument that it is statistically infeasible to distinguish the simulated oracle in Game 1 from the
real oracle, and the distinguishing advantage is at most Q(α+ 1)p, where p is the smallest prime
factor of n and Q is the number of queries of Adv to the oracle. Intuitively, the argument stems
from the fact that if Adv ever submits a proof that would be accepted by the oracle, but not by the
simulated oracle (or the converse), then this proof information-theoretically determines vk. However,
even given eR = vk mod R, it follows from the chinese remainder theorem that the value vk mod n
remains statistically hidden, since vk was initially picked at random in Z` and ` satisfies ` > 2λnR.
Observe that game already suffices to establish that the probability of Rcrs(sk, (x0, x1), w) = 0 ∧
Π.Verify(pk, vk, sk, π) = 1 must be negligible, since in this game the simulation of Π.Verify does in
particular check that Rcrs(sk, (x0, x1), w) = 1. However, the simulation of Π.Verify still uses sk; to es-
tablish the second property of the (O0,O1)-knowledge-extractability, we proceed with a second game.

Game 2. In this game, we further modify the simulated oracle, so that it does not use sk
anymore. Instead, the simulation will itself rely on the MAC verification oracle. More precisely, the
key sk is only used in the checks 3 and 4 of Game 1. The third check is straightforward given oracle
access to M.Verifysk(·, ·): just call M.Verifysk(m, σ) with σ = (U ′, (V ′i ti •G)i≤α) (this is perfectly
identical to the third check in the previous game).

The fourth check, however, is more problematic, since it’s not clear how to reconstruct the
(W ′i )i≤α without knowing sk. Rewriting a bit the fourth check, we need to check is

β∑
j=1

ki,j •Wi,j t′i •G =
β∑
j=1

ki,j • (m′j • U ′)

for every i ≤ α. Letting (t′i,1, · · · , t′i,β) denote an arbitrary additive sharing of t′i for every i ≤ α,
this equation can be rewritten as

β∑
j=1

ki,j • (Wi,j t′i,j •Hi,j) =
β∑
j=1

ki,j • (m′j • U ′)

Now, we distinguish two cases:

– Case 1. If it holds that β = 1, corresponding to the case where the vector of attributes has
length 1 (or, equivalently, we consider a simplified scenario without attributes, and credentials
computed directly on the identity of the user), then the equation becomes

ki,1 • (m′1 • U ′ Wi,1) = t′i •G.

Observe that this check can be performed efficiently: since we are given Hi,1 = k−1
i,1 •G, this is

perfectly equivalent to checking

m′1 • U ′ Wi,1 = t′i •Hi,1

for every i ≤ α, which does not require the knowledge of sk.
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– Case 2. In the general case, where β can be larger than 1, there is no immediate shortcut. In
this case, we have to rely on a MAC with a stronger unforgeability property, the XUF-CMVA
security property defined in Section 3, and we simulate the verification using the following two
oracles:
• M.Verify(m,σ) outputs M.Verifysk(m,σ);
• M.Check((Ai,j)i≤α,j≤β , (Bi,j)i≤α,j≤β) checks

∑β
j=1 ki,j •Ai,j =

∑β
j=1 ki,j •Bi,j for all i ≤ α,

and outputs 1 iff all checks succeed,
where the first oracle allows to check the third equation, and the second oracle allows to check
the last equation.

In both cases, it is immediate to see that the answers of the simulated oracle are distributed
exactly as in Game 1. Furthermore, the simulation only requires access to an oracle O1[sk], which
is M.Verify in case 1, and the pair of oracles M.Verify,M.Check in case 2.

6 A Construction of NIKVAC from Algebraic MAC and Oblivious
DVNIZK

In this section, we will use the system introduced in section 5 to construct a NIKVAC scheme Θ.

6.1 Construction

Let M be a MAC and Φ a set of statements for attributes m1, ..,ml. Let ΠΦ be an oblivious
DVNIZK system which runs on a common Setup algorithm with M for the relation Rcrs, for
crs $←M.Setup(1λ), defined as

Rcrs((x0, x1), (m1, ..,ml), k) = 1 iff M.Verifyk((m1, ..,ml), x1) = 1 ∧ Φ(m1, ..,ml),

where x0 is a public word needed to prove the statements Φ and ΠΦ.RelSetup = M.KeyGen. We
assume ΠΦ satisfies (O0,O1)-knowledge-extractability, where O0[k](·) = M.Signk(·) and O1[k] is
either the MAC verification oracle, if M is UF-CMVA secure (and the attribute vectors are of length
1), or the MAC verification and additional check oracle, ifM is XUF-CMVA secure. Since x0 depends
on the choice of Φ, we omit it entirely in the following and simply set x = x1. Note that ΠΦ.Setup,
ΠΦ.CredKeyGen do not rely on the choice of Φ, so we simply write Π.Setup,Π.CredKeyGen. We now
construct a NIKVAC scheme using {ΠΦ}Φ.

– Θ.Setup(1λ), outputs (pp, td) $← Π.Setup(1λ), we assume that pp fixes the supported statements
Φ, the universe of attributes U is the message space of M ;

– Θ.CredKeyGen(pp), runs (pk, vk) $← Π.KeyGen(pp), (k, ippM ) $← Π.RelSetup(pp), outputs secret
key sk← (vk, k) and issuer parameters ipp← (pk, ippM ), we assume that CredKeyGen satisfies
key-parameter consistency;

– Θ.BlindIssue(sk, S)↔ Θ.BlindObtain(ipp, (m1, ...,ml)), performs a secure two-party computation
that issues a tag of M to the user on valid input, we assume that this protocol satisfies blind
issuance property2;

– Θ.Show(ipp, cred, (m1, ...,ml),Φ), parses ipp as (pk, ippM ) outputs π $←
ΠΦ.Prove(pk, ippM , cred, (m1, ...,ml));

– Θ.ShowVerify(sk, π,Φ), parses sk as (vk, k) and ipp as (pk, ippM ), checks ΠΦ.Verify(pk, ippM , vk, k, π).

6.2 Security Analysis

For Θ, the functions Issue and CredVerify are defined as follows:

– Issue(sk, (m1, ..,ml)): for sk = (vk, k) outputs M.Signk(m1, ..,ml);
– CredVerify(sk, (m1, ..,ml), cred): for sk = (vk, k) outputs M.Verifyk((m1, ..,ml), cred).

Theorem 3 (Correctness). The NIKVAC scheme Θ satisfies correctness if M is correct and ΠΦ
is complete.

2 The protocol depends highly on the chosen MAC scheme. Thus, we omit details in abstract instantiation.
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Proof. Let (pp, td)← Θ.Setup(1λ), (m1, ..,ml) $← U , (sk, ipp) $← Θ.CredKeyGen(pp) and credIssue(sk,
(m1, ..,ml)). It follows that CredVerify(sk, (m1, ..,ml), cred) = 1 from the correctness of the MAC
scheme M .

Now, let (pp, td) ← Θ.Setup(1λ), Φ $← Φ, (m1, ..,ml) $← U with Φ(m1, ..,ml) = 1, (sk =
(vk, k), ipp) $← Θ.CredKeyGen(pp) and cred $← Issue(sk, (m1, ..,ml)). Let π $← Θ.Show(ipp, cred, (m1,
..,ml),Φ). Note that Rk(cred, (m1, ..,ml)) = 1 and thus Θ.ShowVerify(sk, π,Φ) = 1 by the complete-
ness of ΠΦ.

Theorem 4 (Unforgeability). The NIKVAC scheme Θ is unforgeable if M is unforgeable and
ΠΦ is (O0,O1)-knowledge-extractable for all Φ ∈ Φ.

Proof. Let A be a PPT adversary on the unforgeability of Θ. We build an adversary B which
either breaks the unforgeability of M (so either the UF-CMVA or XUF-CMVA security) or the
(O0,O1)-knowledge-extractability of ΠΦ for some Φ ∈ Φ.

B receives (crs, pk, ippM )3 and access to a proof verification oracle VΦ and an MAC issuing
oracle O0 (defined in section 6.1) from the (O0,O1)-knowledge-extractability4 game with ΠΦ for
Φ ∈ Φ. B sends pp ← crs, ipp ← (pk, ippM ) to A and gives access to the following issuing and
verification oracle O:

– O.Issue(m1, ..,ml) sets Q← Q ∪ {m1, ..,ml} and outputs O0(m1, ..,ml);
– O.Verify(Φ, π) outputs VΦ(π).

By the second property of definition 14, VΦ(·) can be simulated only using O1 without access to
the secret key. Now, all answers to queries which require the secret MAC key can be computed
using solely access to the MAC oracles. Note that B simulates the unforgeability game of Θ with
overwhelming probability. At some point, if A is successful, he will output π,Φ such that the
pair (π,Φ) verifies correclty and for all queried (m1, ..,ml) ∈ Q : Φ(m1, ..,ml) = 0. Subsequently,
B forwards π to the (O0,O1)-knowledge-extractability game for ΠΦ, which in turn forwards the
extracted values (x1, w) to the MAC unforgeability game.

We now analyze the success probability of B assuming A is successful. If B won the (O0,O1)-
knowledge-extractability game, we are finished. In the other case, the MAC unforgeability game
receives (x1 = σ,w = (m1, ..,ml)). Because A is successful, π verifies correctly with regards to Θ
and thus also verifies correctly with regards to ΠΦ. Because B failed the first game, it necessarily
holds that R(σ, (m1, ..,ml)) = 1. Since ∀(m′1, ..,m′l) ∈ Q : Φ(m′1, ..,m′l) = 0 and Φ(m1, ..,ml) = 1,
it holds that (m1, ..,ml) /∈ Q and σ verifies correctly. Thus, B breaks the unforgeability of M . ut

Theorem 5 (Anonymity). The NIKVAC scheme Θ is anonymous if ΠΦ satisfies oblivious zero-
knowledge.

Proof. Let A be an adversary on the anonymity of Θ. We construct an adversary B that breaks
the oblivious zero-knowledge property of ΠΦ for some Φ ∈ Φ with overwhelming probability if A is
successful.

B receives crs, pk, vk from the zero-knowledge game with ΠΦ for some arbitrary Φ ∈ Φ.
Note that these values are independent of the particular choice of Φ. B then runs (k, ippM ) $←
M.KeyGen(crs) and sends pp ← crs, ipp ← (pk, ippM ), sk ← (vk, k) to A . In turn, B receives
(Φ, cred, (m1, ..,ml)) from A . Next, B outputs (cred, (m1, ..,ml), k, ippM ) to the oblivious zero-
knowledge game for the now fixed Φ and receives π in return which he forwards to A . Note that B
simulates the anonymity game with overwhelming probability. Also, Rcrs(sk, cred, (m1, ..,ml)) =
1 ⇐⇒ CredVerify(sk, (m1, ..,ml), cred) = 1 ∧ Φ(m1, ..,ml). The simulation of π in the zero-
knowledge game only uses ipp, sk,Φ and will thus be a simulation for the anonymity game. Otherwise,
π is built honestly in both games and thus, if A is successful, B is successful with overwhelming
probability. ut
3 The parameters (crs, pk, ippM ) are fixed for all Φ ∈ Φ, since they do not depend on the particular choice
of Φ.

4 In this proof, this refers to the first property of definition 14.
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Missing Properties. The missing properties are blind issuance and key-parameter consistency.
In practice, key-parameter consistency can easily be fulfilled by adding additional commitments
to the components of the secret key and the two-party computation for blind issuance depends
highly on the structure of the MAC scheme and can be implemented with any standard two party
computation protocol; we briefly outline a possible candidate for an optimized version of our scheme
in Appendix C.
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A Classical Preliminaries

A.1 Preliminaries on Encryption Schemes

Definition 15. (Public-Key Encryption Scheme) A public-key encryption scheme S is a triple of
PPT algorithms (S.KeyGen, S.Enc, S.Dec), such that

– S.KeyGen(1λ), generates a pair (ek, dk), ek is the public encryption key and ek is the secret
decryption key. We assume that ek specifies the ciphertext space C, the message space M, and
the random source R;

– S.Encek(m; r), given the message m ∈M and some random coins r ∈ R, outputs a ciphertext c;
– S.Decdk(c), output a message m ∈M;

which satisfies the correctness and IND-CPA security properties defined below.

We extend in a natural way the algorithm Enc over vectors: for vectors m = (mi)i ∈ Z∗M and
r = (ri)i ∈ Z∗R of the same size, S.Encek(m; r) denotes the vector (S.Encek(mi, ri))i. We extend the
algorithm Dec to vectors of ciphertexts in a similar way.

Definition 16 (Correctness of an Encryption Scheme). A public-key encryption scheme S
is correct if for any pair (ek, dk) $← S.KeyGen(1λ), any message m ∈ M, and any random coin
r ∈ R, decryption is the reverse operation of encryption: S.Decdk(S.Encek(m; r)) = m.

http://eprint.iacr.org/2017/703
www.microsoft.com/uprove
www.microsoft.com/uprove
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Definition 17 (IND-CPA Security Property of a Public-Key Encryption Scheme). A
public-key encryption scheme S is IND-CPA secure if for any PPT adversary A , it holds that

Pr

 (ek, dk) $← S.KeyGen(1λ),
(m0,m1, st) $← A (ek), b $← {0, 1} : A (st, c) = b

r
$← R, c← S.Encek(mb; r)

 ≤ 1
2 + µ(λ)

for some function µ(λ) = negl(λ).

A.2 Preliminaries on Non-Interactive Zero-Knowledge Proofs

We recall the definition of designated verifier non-interactive zero-knowledge proof of knowledge
system (DVNIZK) from [11]. In the definitions below, we focus on proof systems for NP-languages that
admit an efficient (polynomial-time) prover. For an NP-language L , we denote RL its associated
relation, i.e., a polynomial-time algorithm which satisfies L = {x | ∃w, |w|= poly(|x|)∧RL (x,w) =
1}. We only recall DVNIZKs in the common reference string model. For conciseness, the common
reference string is always implictily given as input to all algorithms.

Definition 18 (DVNIZK). A designated verifier non-interactive zero-knowledge proof of knowledge
system Π for a family of languages L = {Lcrs}crs is a quadruple of probabilistic polynomial-time
algorithms (Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) such that
– Π.Setup(1λ), outputs a common reference string crs (which specifies the language Lcrs),
– Π.KeyGen(1λ), outputs a public key pk and a verification key vk,
– Π.Prove(pk, x, w), on input the public key pk, a word x ∈ Lcrs, and a witness w, outputs a

proof π,
– Π.Verify(pk, vk, x, π), on input the public key pk, the verification key vk, a word x, and a proof
π, outputs b ∈ {0, 1},

which satisfies the completeness, zero-knowledge, and knowledge-extractability properties defined
below.

We assume for simplicity that once it is generated, the common reference string crs is implic-
itly passed as an argument to the algorithms (Π.KeyGen,Π.Prove,Π.Verify). Instead of standard
soundness properties, we require the stronger notion of knowledge-extractability in this work.

Definition 19 (Completeness). A DVNIZK proof system Π = (Π.Setup,Π.KeyGen,Π.Prove,
Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs satisfies the (perfect,statistical)
completeness property if for crs $← Π.Setup(1λ), for every x ∈ Lcrs and every witness w such that
Rcrs(x,w) = 1,

Pr
[
(pk, vk) $← Π.KeyGen(1λ),
π ← Π.Prove(pk, x, w)

: Π.Verify(pk, vk, x, π) = 1
]

= 1− µ(λ)

where µ(λ) = 0 for perfect completeness, and µ(λ) = negl(λ) for statistical completeness.

Definition 20 (Composable Zero-Knowledge). A DVNIZK proof system Π = (Π.Setup,Π.KeyGen,
Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs satisfies the (per-
fect, statistical) composable zero-knowledge property if for any crs $← Π.Setup(1λ), there exists a
probabilistic polynomial-time simulator Sim such that for any stateful adversary A ,∣∣∣∣∣∣Pr

 (pk, vk) $← Π.KeyGen(1λ),
(x,w)← A (pk, vk), : (Rcrs(x,w) = 1) ∧ (A (π) = 1)
π ← Π.Prove(pk, x, w)

−
Pr

 (pk, vk) $← Π.KeyGen(1λ),
(x,w)← A (pk, vk), : (Rcrs(x,w) = 1) ∧ (A (π) = 1)
π ← Sim(pk, vk, x)

∣∣∣∣∣∣ ≤ µ(λ)

where µ(λ) = 0 for perfect composable zero-knowledge, and µ(λ) = negl(λ) for statistical composable
zero-knowledge. If the composable zero-knowledge property holds against efficient (PPT) verifiers,
the proof system satisfies computational composable zero-knowledge.
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Definition 21 (Q-bounded Knowledge-Extractability). A DVNIZK proof system Π = (Π.Setup,
Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs satisfies
the Q-bounded knowledge-extractability property if for (crs, τ) $← Π.Setup(1λ), and every adversary
A making at most Q queries to Ovk[pk], there is an efficient extractor Ext such that

Pr

(pk, vk) $← Π.KeyGen(1λ),
(π, x)← A Ovk[pk](pk),
w ← Ext(π, x, τ),

: Rcrs(x,w) = 0 ∧Π.Verify(pk, vk, x, π) = 1

 ≈ 0.

B Security of MACGGM in Composite Order Groups

The DVNIZK scheme from [11] operates in composite order groups if instantiated with the Paillier
encryption scheme. Since MACGGM is only proven to be secure in prime order groups, we prove the
following theorem.

Definition 22. (MACGGM in Composite Order Groups.) The modified version of MACGGM with
message length l functions as follows:

– Setup(1λ): Run G $← GGen(1λ, n) for (n, (p, q)) $← Gen(1λ). The message space M is Zn and the
tag space S is G2. Return pp← (G, n, G,H) for generators G,H $← G of G.

– KeyGen(pp): Pick k0, .., kl $← Zn, set G0 ← k0 •G,Hi ← ki •H for i ∈ {1, .., l} and output key
sk← (k0, .., kl) and issuer parameters ipp $← (G0, H1, ..,Hl).

– Signsk(m1, ..,ml): Pick U $← G \ {0G} and output σ ← (U, (k0 +
∑l
i=1 kimi) • U).

– Verifysk(m1, ..,ml, σ): Parse σ as (U,U ′) ∈ G2. Check that U 6= 0G and U ′ = (k0+
∑l
i=1 kimi)•U .

Theorem 6 (XUF-CMVA Security of MACGGM in Composite Order Groups). Let M be
MACGGM over a group G of composite order. Then M is XUF-CMVA-secure in the generic group
model under the computational subgroup assumption.

Proof. We follow the proof strategy of [13] and only proof the theorem for l = 1 as well. Let A
be a PPT adversary on the UF-CMVA security of MACGGM in the generic group model and C
a challenger for the CSG assumption. We show that if A outputs a forgery with non-negligible
probability, we can win the game against C with non-negligible probability.

The challenger C computes pp = (G, n) $← Setup(1λ) for (n, (p, q)) $← Gen(1λ) and outputs (G, n)
to us. Now, if we were to build the public MACGGM parameters, we would perform the following
steps: Let P $← G \ {0G} which is a generator for G with overwhelming probability, we choose
k0, k1

$← Zn and set G ← g • P,G ← h • P for g, h $← Zn, G0 ← k0 • G,H1 ← k1 • H. Again,
the probability of G,H being generators is overwhelming. In our simulation, we actually fix the
exponents k0, k1, g, h after the interaction with the adversary A .

We count the queries to the group operation oracle with variable qG, the queries to the tag oracle
with qT , the queries to the verification oracle with qV and the oracle to the special check oracle
with qC . Note that a tag oracle query counts as two group operation queries. Since the adversary

is polynomially bounded, it holds that c(qG + qV + qT + qC)2

max(p, q) is negligible for any constant c.

Subsequently, we already count the two group oracle queries of the tag oracle in qG.
Let S ⊂ {0, 1}∗ with |S|≥ n. We identify group elements U ∈ G as (logP (U) mod n) and represent

them with random elements ζ $← S. The adversary only has access to this representation. Throughout
the simulation, we maintain a list of polynomials F ∈ Zn[k0, k1, h, g, e1, .., eqT ] representing the
group elements, encoded as ζ. The indeterminates ei represent the random choices from the tag
oracle. Also, we remember messages for which a tag was issued in the list Qtag and messages that
were queried in the verification oracle in Qver. Also, we safe the queried group elements of the check
oracle in Qcheck.

In the beginning, we give P,G,H,G0, H1 to A , encoded as distinct strings
ζp, ζg, ζh, ζk0 , ζk1

$← S, internally represented in L as 1, g, h, gk0, hk1 ∈ Zn[k0, k1, h, g, e1, .., eqT ]5.
We simulate the oracles O for A as follows:

5 Note that we do not need to fix the represented elements yet.



Non-Interactive Keyed-Verification Anonymous Credentials 25

– O.Operation(ζi, ζj ,±): for i, j < qG, sets FqG = Fi ± Fj ∈ Zn[k0, k1, h, g, e1, .., eqT ], if FqG = Fl
for l < qG, then sets ζqG ← ζl, otherwise picks ζqG

$← S with ζqG 6= ζprev for 0 ≤ prev < qG,
adds tuple (FqG , ζqG) to L, outputs ζqG and increments qG;

– O.Sign(m): sets FqG ← eqT , picks ζqG
$← S with ζqG 6= ζprev for 0 ≤ prev < qG. Then

computes FqG+1 ← eqT (mk1 + k0) ∈ Zn[k0, k1, h, g, e1, .., eqT ]. If FqG+1 = Fl for l ≤ qG, then
sets ζqG+1 ← ζl, otherwise picks ζqG+1

$← S with ζqG+1 6= ζprev for 0 ≤ prev ≤ qG, adds tuples
(FqG , ζqG), (FqG+1, ζqG+1) to L and m to Qtag, outputs ζqG , ζqG+1 and finally, increments qT
and qG twice;

– O.Verify(m, ζ, ζ ′): checks (F, ζ) ∈ L∧ (F ′, ζ ′) ∈ L and F (mk1 + k0) = F ′, finally increments qV
and adds m to Qver.

– O.Check(ζ, ζ ′): checks (F, ζ) ∈ L ∧ (F ′, ζ ′) ∈ L and F (k1) = F ′(k1), finllay incremets qC and
adds (F, F ′) to Qcheck.

At some point, A outputs (m, ζ, ζ ′) after qG group operation queries, qT tag queries, qV
verification queries and qC check oracle queries with (F, ζ), (F ′, ζ ′) ∈ L6. Note that due to the
limited amount of query choices of the adversary A , the polynomial F will have the structure

F = ag + bh+ sgk0 + thk1 +
qT∑
i=1

xiei +
qT∑
i=1

yiei(mik1 + k0) + c

for a, b, c, s, t ∈ Zq and where mi ∈ Qtag is the ith queried message via O.Sign. Lastly, we pick a
random v7 := (k0, k1, g, h, e1, .., eqT ) $← Z3+qT

n , choose i ∈ {1..qT } : xi 6= 0 and output xi • P to the
challenger C . If no such i exists, output P 8.

We now analyze the success probability of the constructed adversary. Without loss of generality,
we assume p > q. First, we show that our simulation is perfect with overwhelming probability. All
polynomials in L have at most degree two based on the operations available. Let (Fi, ζi), (Fj , ζj) ∈ L.
If Fi 6= Fj , but both polynomials are evaluated to the same value in Zn, the simulation would be
invalid because we represented the same value with different representations in S. This is formalized
by the following event:

∃i, j ≤ qT : Fi(v) = Fj(v) mod n ∧ Fi 6= Fj . (1)

This is bounded by 2/p using lemma 1 for each fixed i, j9. Also, it could be the case that our
verification oracle failed. This event is described as:

(Fi(mk1 + k0))(v) = Fj(v) mod n (2)

for m ∈ Qver. This is bounded by 3/p using lemma 1 for fixed i, j,m. Note that Fi can be of degree
two and thus Fi(mk1 + k0)−Fj of degree three. Lastly, the check oracle simulation could fail which
is described as:

(F (k1))(v) = (F ′(k1))(v) mod n (3)

for (F, F ′) ∈ Qcheck. Again, the probability of this event is bounded by 3/p using lemma 1 for fixed
F, F ′.

Thus, the probability of event 1 occurring for all pairs (i, j) ∈ Z2
qG , event 2 for all m ∈ Qver10

or event 3 for all (F, F ′) ∈ Qcheck is at most(
qG
2

)
· 2
p

+ (qV + qC) · 3
p
≤ 2q2

G

p
+ 3(qV + qC)

p
≤ 6(qG + qV + qC)2

p

6 If A outputs non-queried group elements, the success probability negligible.
7 This finally fixes our group elements represented as polynomials to real group elements.
8 Since P is a generator of G with overwhelming probability, P will most likely not be a non-trivial
subgroup generator, but we show that if A is successful, such i must exist in the following.

9 We set vp = v mod p and check if (Fi − Fj)(vp) = 0. Since v and thus vp is chosen uniformly random
and Fi − Fj 6= 0, the probability of this happening is bounded by deg(Fi − Fj)/p.

10 For each m ∈ Qver the queried polynomials are fixed.
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In conclusion, the probability of our simulation failing is negligible for the polynomially bounded
adversary A .

If A succeeds, it holds that11

F (mk1 + k0) = F ′ (4)

Due to the restriction of available operations for A , we have

F = ag + bh+ sgk0 + thk1 +
qT∑
i=1

xiei +
qT∑
i=1

yiei(mik1 + k0) + c

F ′ = a′g + b′h+ s′gk0 + t′hk1 +
qT∑
i=1

x′iei +
qT∑
i=1

y′iei(mik1 + k0) + c′

for a, a′, b, b′, c, c′, s, s′, t, t′ ∈ Zq and where mi ∈ Qtag is the ith queried message via O.Sign.
First, we look at F = w for some w ∈ Zn. Then F ′ = w(mk1 + k0). Because F ′ has no subterm

k0, the equality in 4 is only possible for w = 0. This does not constitute a valid forgery, though.
Now, we look at F with deg(F ) > 0. Since the degree of F (mk1 + k0) will be at least two and

the degree of F ′ is at most two, we have deg(F ) = 1, deg(F ′) = 2. Thus F = ag+ bh+
∑qT
i=1 xiei+ c.

Since F ′ has no subterm of the form gk1, k0, k1 or hk0, F has to be of the form
∑qT
i=1 xiei. Thus,

equation 4 implies that F ′ =
∑qT
i=1 y

′
iei(mik1 + k0). In conclusion, we have

F ′ − F (mk1 + k0) = 0

=⇒
qT∑
i=1

y′iei(mik1 + k0)−
qT∑
i=1

xiei(mk1 + k0) = 0

=⇒
qT∑
i=1

ei(y′i(mik1 + k0)− xi(mk1 + k0)) = 0

=⇒ ∀i ∈ {1..qT } : y′i ·mik1 + y′ik0 − xi ·mk1 − xik0 = 0
=⇒ ∀i ∈ {1..qT } : y′i ·mik1 = xi ·mk1 ∧ y′ik0 = xik0

xi=y′
i=⇒ ∀i ∈ {1..qT } : xi ·mik1 = xi ·mk1

=⇒ ∀i ∈ {1..qT } : xi ·mi = xi ·m mod n

=⇒
{
m = mj ∈ Q, ∃j ∈ {1..qT } : xj ∈ Z∗n
∀i ∈ {1..qT } : xi = 0 mod pi, for pi ∈ {p, q} otherwise

In the first case, it holds that m = mj for j ∈ {1..qT }. This is not a valid forgery. In the second
case, if ∀i ∈ {1..qt} : xi = 0 mod n implies that F = 0 mod n. This would not constitute a valid
forgery. Thus, ∃j ∈ {1..qt} : xj 6= 0 mod n, but xj = 0 mod pj . Finally, this implies that if A is
successful, there exists some j ∈ {1..qt} such that xj • P is a non-trivial subgroup generator.

C Further Improvements from the Short-Exponent Discrete Logarithm
Assumption

In this section, we discuss an approach to further improve the efficiency of our NIKVAC scheme,
under the additional assumption that it is infeasible to solve discrete logarithms over G, even
when the exponent is not uniformly random, but random conditioned on being shorter than some
threshold. Considering discrete logarithm with short exponent has been done many times in the
past (e.g. [15,23,27,32,36]), since it is a natural approach to improve the computational efficiency of
a scheme when working over a group with a large order. The best known attack on the discrete
logarithm with short exponent (DLSE) assumption solves it in time O(

√
T ), where T is the length

of the interval from which the exponent is drawn [21].
11 The probability of F (mk1 + k0) 6= F ′, but (F (mk1 + k0))(v) = F ′(v) is negligible with the same argument

as before.
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C.1 Definition

T -Bounded Short Exponent Discrete Logarithm (DLSE) Assumption. Let G be a group
with order n, G ∈ G a generator and T ∈ Zn, T < n. For all PPT adversaries A it holds that

Pr
[
z

$← {0..T − 1},
z′ ← A (z •G)

: z = z′
]
≤ µ(λ)

where µ(λ) = negl(λ).

Indistinguishability of Short Exponents. As shown in [27], the following statement is equiva-
lent to the DLSE assumption in prime order groups. This is also true in composite order groups,
which was shown in [11].
Let G be a group with order n, G ∈ G a generator and T ∈ Zn, T < n. For all PPT adversaries A
it holds that∣∣∣Pr

[
z

$← {0..T − 1} : A (z •G) = 1
]
− Pr

[
z

$← Zn : A (z •G) = 1
]∣∣∣ ≤ µ(λ)

C.2 Our Approach

Unlike previous works, we seek to use the DLSE assumption to improve not only the computational
efficiency of our scheme, but also reduce its communication. The main observation is that in a
group G of composite order, where exponents are typically of size at least 2048 bits, there is a clear
“waste of space” for attributes: typical attributes will in general be much shorter (say, 128 or 256
bits).

Recalling the Previous Approach. For simplicity, we focus in our explanation on the case of
the scheme MACGGM, with a single attributes – all the results will trivially extend to larger vectors
of attributes, and to the more general abstract MAC. A proof with our scheme of possession of a
valid credential (U, V = (k0 + k1 ·m) • U) on a message m is computed as follows:

– (U ′, V ′)← (z • U, z • V t •G),
– W ← m′ • U + t′ •H,
– (Xm, Xt)← (S.Encek(m; rm), S.Encek(t; rt))
– X ′m ← S.Encek(m′; 0)	 (rm � pk) = S.Encek(m′;−e · rm), and
– X ′t ← S.Encek(t′; 0)	 (rt � pk) = S.Encek(t′;−e · rt),

for random (z, t,m′, t′, rm, rt) in the appropriate space, and where H = k−1
1 •G. The purpose of

the component t •G in the computation of V ′ = z • V t •G is to perfectly mask V , preventing the
verifier to break the anonymity by verifying the credential (U ′, V ′) with respect to several candidate
messages m. However, this mask t is also the reason why the proof of possession must include two
additional ciphertexts (Xt, X

′
t), since the user must now also prove knowledge of this masking value

without revealing it.

Alternative Strategy. Under the DLSE assumption, there is a more efficient approach: the idea
will be to directly “randomize the message m” to maintain anonymity, by padding it with a random
value. Let ` be the bit-length of the attribute m, which we assume to be much shorter than log n,
where n is the order of G: we require ` ≤ log n− 2λ, where λ is the security parameter. We modify
the blind issuance protocol such that it does not issue a credential (U, V ) on m anymore: instead, it
should output a credential (U, V ) on the value x = m+ 2`r mod n, where r is a uniformly random
padding picked by the user (and hidden from the signing authority) of bit-length at least 2λ, and at
most log n− ` (to ensure that no wraparound modulo n occurs, which guarantees that x uniquely
defines m). Consider now the following simplifies proof of credential possession:

– (U ′, V ′)← (z • U, z • V ),
– W ← m′ • U ,
– Xm ← S.Encek(m; rm), and
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– X ′m ← S.Encek(m′; 0)	 (rm � pk) = S.Encek(m′;−e · rm).

We explain why the above simplified proof guarantees anonymity. In the anonymity game, we must
exhibit a simulator which can generate a valid-looking proof of possession, without knowing the
signed message m. The simulator will rely on the security of the blind issuance two-party protocol to
simulate his interaction with the signing authority without knowing m. Then, to simulate the proof
of credential possession, he simply pick (U ′, V ′) at random, compute W honestly, and simulate the
(Xm, X

′
m) using the simulation strategy of [11]. Now, we argue that this is indistinguishable from

an honest proof, using a sequence of games:

Game 1. In the first game, the simulator still obtains (U, V ) by playing the blind issuance
protocol honestly with m, and computes (U ′, V ′) honestly from (U, V ). He uses the simulation
strategy of [11] to simulate the (Xm, X

′
m) using the verification key vk. By the same argument as

in [11], this game is statistically indistinguishable from the real game.

Game 2. In this game, the simulator will now simulate the blind issuance protocol, without
knowing m (hence he does not obtain (U, V )), and generates (U ′, V ′) uniformly at random. Under
the security of the two-party computation protocol for blind issuance, his interaction with the
signing authority is indistinguishable from an interaction with an honest user. It remains to show
that the simulated (U ′, V ′) is indistinguishable from the real one. Note that in the previous game,
we had

V ′ = (k0 + x · k1) • U ′

where U ′ = z • U is random, and x = m+ 2`r for an `-bit message m and a padding r of size at
most log n− ` bits. We can rewrite this as

V ′ = (k0 • U ′ (m · k1) • U ′) r • ((2` · k1) • U ′).

under the short exponent discrete logarithm assumption, the above is indistinguishable to

V ′ = (k0 • U ′ (m · k1) • U ′) r′ • ((2` · k1) • U ′),

where r′ is now picked uniformly at random in Zn. But then, since r′ is uniformly random, the
above V ′ is distributed perfectly uniformly, which concludes the proof.

C.3 Blind Issuance

Generalizing to vectors of β attributes and an abstract MAC with α components, the above strategy
reduces the size of a proof of credential possession from α(1 + β) + 1 group elements and 2(β + α)
ciphertexts to α(1 + β) + 1 group elements and 2β ciphertexts. We now exhibit a very simple and
efficient blind issuance protocol for the above padding-based strategy. The basic idea is that, because
of the padding, the user can simply send G′ = x ·G to the authority, with x = m+ 2`r: under the
DLSE assumption, this computationally hides the message m. Furthermore, it is straightforward to
sign a message “in the exponent” with the abstract MAC: focusing for simplicity on MACGGM, the
authority would just need to compute (U, V )← (y •G, y • (k0 •G k1 •G′)), for a random exponent
y. It is immediate to check that (U, V ) is a valid MAC signature on x; this issuance protocol is
therefore extremely efficient, requiring only three group elements in total.

This, however, raises an apparent issue: in many applications, the user will need to prove to the
authority that the signed message is indeed m (if, for example, the authority only issues credentials
for users with an identity known to him), but still cannot reveal x = m+ 2`r to the authority (this
would break anonymity when the user authenticate to some verifier). However, this message is only
uniquely defined if the value r in x = m = 2`r is guaranteed to be smaller than n/2`; proving that
this is the case seems to require a range proof on r, which is typically very expensive. We observe
that there is a very simple way around this issue: it only suffices here to guarantee that r is smaller
than n/2`, but it is also fine to ask an honest user to choose a padding r which is smaller than that,
as long as it is at least 2λ bits long. Therefore, we get the following simple solution:

– The user picks r $← [1..n/2`+2λ] and sets x← m+ 2`r. He sends G′ ← x •G to the authority.
From G′, the authority computes Gr ← (2`)−1 • (G′ m •G) = r •G.
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– The authority and the user executes a standard three-move proof of knowledge of r with
statistical security by picking the mask and the challenge in an appropriate set, where the user
plays the role of the prover, and the authority of the verifier:
• The user picks ρ $← [1..n/2`] and sends G′′ ← ρ •G to the authority.
• The authority sends a random λ-bit challenge c.
• The users computes and sends d← r · c+ ρ (over the integers).

The authority accepts the interaction if and only if d • G = c • Gr G′′, and furthermore
d ≤ n/2`.

The above protocol guarantees that the user knows the r in x = m+ 2`r, and furthermore that this
padding is short (below n/2`); to maintain correctness, however, the user must initially choose the
padding smaller than n/2`+2λ. This is fine as long as n/2`+2λ > 22λ. In a typical scenario, we can
have ` = λ = 128 and n = 2048, in which case the above condition is easily satisfied.
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