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Abstract

The present work deals with multi-layer rectangular core topology systems built up by stacking layers made

of different rectangular core geometries. Multi-layer systems have been intensively studied in terms of me-

chanical performances whereas their vibroacoustic behavior, acoustic efficiency and design is however still an

open issue. Several design parameters should be considered to fully understand the dynamic and acoustic

behaviour of such structures. Therefore, this paper focuses on controlling the transition frequency and the

Sound Transmission Loss (STL) by modifying geometrical parameters of the unit cell, while keeping the mass

constant. Infinite panels and real wavenumbers will be considered in the study. The Wave Finite Element

Method (WFEM) is used to obtain the targeted indicators. The proposed designs give the opportunity to

shift the transition frequency and to control the flexural waves propagating in the structure. Besides, the

STL is highly improved in the full frequency range of interest compared to a standard sandwich panel made

of a single core.
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1. Introduction

In these last decades, honeycomb sandwich panels have been increasingly used in many industrial ap-

plications within building, transportation and aerospace industry. Indeed, they possess a high stiffness to

weight ratio thanks to the combination of a thick and lightweight honeycomb core located in between two thin

face-sheets. Changing the geometric shape of the core and its material properties provides the opportunity

to improve the honeycomb´ s panel mechanical and acoustic efficiency. Despite being a high mechanical

performances panel, acoustic properties of such structures are often not considered in the first stage of the

design and lead to poor Sound Transmission Loss (STL) and vibroacoustic indicators in general. Therefore,

it is necessary to propose new designs of honeycomb cores in order to enhance the acoustic performance while

retaining its mass and static stiffness.

In this context, parametric analyses were performed by modifying the geometrical parameters of honey-

comb cores [1, 2] to investigate their influence on vibroacoustic indicators. It occurs that the geometrical

shape of the honeycomb core has a negligible effect while the thickness of the core is considered as a critical

parameter. Different designs of honeycomb cores have been proposed by Droz et al. [3]. The transition

frequency, the modal density as well as the group velocity are used to find out the optimal configuration.

Besides, a more complete parametric survey applied to a sandwich panel made of different orientations of

honeycomb cores have been performed [4, 5]. The geometry of the core was gradually changed from an auxetic

to a hexagonal shape to target the STL and the acoustic radiation of the panel, respectively. Most of studies

are performed with a constant mass and a constant stiffness. This later is more difficult to be constrained for

complex structures. Moreover, Mazloomi et al. [6] obtained a great reduction of the sound insulation con-

structing the sandwich panel by combining a mixture of different in-plane cores, made of different geometries

ranging gradually from hexagonal to auxetic. In addition to honeycomb cores, several studies are carried out

on web cores focusing their research on acoustic properties [7, 8] or the bending and the vibration behavior

[9, 10], more specifically for building applications. Such studies still remain limited in terms of exploration

of geometrical parameters and design proposals since only a single core is considered.

Enhancement of the dynamic behavior of sandwich panels can also be obtained by putting add-ons. Often,

resonators are included inside the core or externally located to reduce waves travelling in the structure by

creating band-gaps [11, 12, 13, 14, 15, 16]. Recently, Droz et al. have tested such a solution to an aircraft

curved panel to improve the STL [17]. However, only some specific frequencies are targeted. Besides, filled

foam cores are proposed to couple the rigidity of honeycomb cores with the acoustic absorption of foam

cores to enhance mechanical properties [18, 19, 20, 21, 22] and lesser extent for acoustical properties [23, 24].

Nevertheless, the limitation of such solutions is quickly reached due to the added mass on the structure as

well as their integration in operational industrial applications due to the lack of space.

Multi-layer core topology systems (MLCTS) are recently also being developed starting their ori-

gins from the principle of multi-layer porous medias and laminate panels. An analytical formulation of the

deflection, the equivalent stress, the critical load, the shear modulus and natural frequencies of a seven-layers
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rectangular plate with trapezoidal corrugated cores have been developed based on the Hamilton´ s principle

[25, 26, 27]. A finite element model and experimental measurements was performed on a three point-bending

of a beam in which corrugated cores were directly connected without using skins in between layers [28].

Moreover, the analytical formulation of the cylindrical bending of a two-layered corrugated and web core is

derived and was applied to hybrid combinations of cores to show their efficiency in energy absorption under

flexural loading [29] and under blast loading [30] showing a great dissipation of energy. The weight-saving ad-

vantage of multi-layer systems is stressed combining different properties induced by each layer. The influence

of the number of layers and the orientation of the core investigating the quasi-static compression behavior of

multi-layered corrugated sandwich panels was proposed numerically and validated experimentally by Hou et

al. [31]. Based on previous analysis, Shu et al. [32] investigated two sandwich panels made of two layers of

corrugated cores with two different orientations of cores under a compression load using a parametric analysis

to show the influence of the core geometry on the impact resistance. Most of studies related to multi-layer

core honeycomb panels are performed to investigate mechanical properties while sound insulating properties

did not receive a lot of attention yet. A double layer honeycomb core separated by a damped layer has been

proposed by Wen et al. [33] and a better sound insulation was obtained at low frequencies compared to a stan-

dard honeycomb sandwich panel. Besides, Sui et al. [34] designed a double layer honeycomb core separated

by a damping layer and have tested the sample in an impedance tube. A great improvement of the STL is

obtained opening new perspectives of such structures for better acoustical performances. Consequently, there

is a need for more detailed information concerning the vibroacoustic behavior of such structures. Therefore,

MLCTS involving honeycomb cores with a direct connection between cores without using a damping middle

layer is studied in this paper. This innovative design approach leads to better acoustic performances and a

better control of vibroacoustic properties. In this paper, two main indicators are under investigation : the

STL and the transition frequency.

Modelling acoustic properties and vibroacoustic indicators of sandwich panels is possible using homoge-

nization, however, it turned out to be limited when it is applied to MLCTS since it is necessary to characterize

the nature of interfaces between layers. Recently, different methods have been presented in the literature to

model the STL of complex unit cells using the WFEM. It drastically reduces the computational cost by mod-

elling only the unit cell and applying periodic conditions at their boundaries. The Transfer Matrix Method

(TMM) [35] can be combined with the WFEM as proposed by Parrinello et al. [36]. Besides, Christen et

al. [37] proposes the use of nodal surfaces calculation combined with the WFEM. Finally, Deckers et al. [38]

uses a hybrid wave based method to model the semi-infinite surrounding acoustic domain of the unit cell.

Besides, the first transition frequency occurs when the global wave motion of the sandwich panel shift

from the bending behavior to the core shear observable using dispersion curves [39]. Several analytical for-

mulations were developed in the literature [40, 41]. Guillaumie [42] proposed an analytical solution for the

first transition frequency using the dynamic bending and shear modulus. The analytical formulation of the

flexural waves can be used to perform a numerical identification using the WFEM to obtain the dynamic
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bending and shear modulus. Similarly, this numerical identification strategy can be applied on the group

velocity of bending waves [43, 44]. Besides, an energetic method based on the calculation of the wavemode

energy and the energy storage inside the core and the skins turned out the conversion of bending waves into

shear waves located in the core. This latter method is based on the finite element model of the unit cell and

thus, depends only on the accuracy of the mesh. All described methods were applied on a sandwich panel

made of a honeycomb core in Baho et al. [43]. The second transition frequency occurs when flexural waves

are mainly located in the skins. Such phenomena needs an analytical model describing at least the 6th order

of the equation of motion. It has been shown, by Droz et al. [44] that the asymptotic behavior of the group

velocity is changed due to the involvement of the second transition frequency and shear waves are no longer

measurable. In the case of MLCTS, interfaces between layers lead to impedance discontinuities and often

softer cores, resulting in the modification of transition frequencies and more energy dissipation in the core.

Following the recent developments on MLCTS, this paper investigates a new kind of unit-cell design based

on the stacking of honeycomb cores’ layers without inner skins or damped layers located in between. New

geometrical parameters will be considered, aiming for an alteration of the vibroacoustic properties of the

sandwich panel, ultimately allowing the control of critical vibroacoustic indicators. The focus concerning the

targeted vibroacoustic indicators is made on the STL and the transition frequency due to their widespread

use in the aerospace industry. The STL is associated with the acoustic efficiency of the structure in trans-

mission problems, while the transition frequency is associated with the dynamic behavior of the structure

which underlies the overall vibroacoustic properties. They are obtained using the WFEM based on the Pe-

riodic Structure Theory (PST). Three applications are provided to show how the indicators will be altered

by the geometry of the unit cell. It will be shown that a high improvement of the STL is obtained with

MLCTS while a shifting process of a middle core in the in-plane directions x and y allows to control the

dynamic behavior of a specific direction of the sandwich panel. This paper is organized as follows. Section 2

is dedicated to the description of the STL and transition frequency. Section 3 describes the proposed design

of MLCTS, while Section 4 focuses on the PST and the model allowing to compute the targeted indicators.

Then, Section 5 illustrates three different realizations of MLCTS made of rectangular cores to investigate

how targeted indicators evolve depending on unit cell configurations and which physical phenomena occurs

within such structures. The first realization considers the change of the size of the middle core, the second

one shifts the middle core along the x-direction of the unit cell and finally the third one shifts the unit cell

along y-direction. The work is concluded in Section 6.

2. Vibroacoustic indicators

In the following section, both indicators, the STL and the transition frequency are described. The expres-

sion of the STL is given considering the transmission problem. Then, transition frequencies are illustrated

with the dispersion curves of the flexural waves of a random sandwich panel made of a rectangular core

to highlight the complex dynamic behavior occurring. The manufacturing process of MLCTS can be well-
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controlled using an industrial 3D printer compared to the process consisting on adding an adhesive layer

between cores. Moreover, the industrial 3D printer available in the laboratory is a Fortus 450. Therefore,

the thermoplastic polymer ABS (Acrylonitrile Butadiene Styrene) is used as the material to make the core,

leading to an elastic modulus E = 1, 8 × 109 Pa, a density ρ = 985 kg/m3 and the poisson ratio ν = 0, 33.

The global hysteretic damping η is evaluated to be 2 %. The material has been characterized using DMA.

The skins are made of Aluminium with E = 72× 109 Pa, ρ = 2800 kg/m3 and ν = 0, 33.

2.1. Transition frequency

The transition frequency is a vibroacoustic indicator widely used in aerospace industry. Two different

transition frequencies are currently defined in the literature [44]: the first corresponds to the frequency

where the dynamic behavior of the sandwich panel switches from bending to shear motion, while the second

transition frequency occurs when the bending behavior is located in the skins. Typically, both transition

frequencies define four main regions separating four main types of dynamic behaviors observed using flexural

waves [39]. They are illustrated in Fig. 1 and delimited according to the elastic strain energy storage either

in the core or the skins of the sandwich panel. The results are shown representing flexural waves in both

directions x and y due to the orthotropy of the structure. In addition, the intersection between the flexural

and the acoustic wavenumber (k0) corresponds to the critical frequency of the structure. However, due to the

orthotropy of the sandwich panel, two critical frequencies are obtained. Therefore, the sound transmission

loss is expected to be drastically reduced between fcx and fcy. Wavemode shapes were captured using

in-house softwares. Different zones can be defined as follows:

• ZONE I : in this frequency range, the flexural wave corresponds to a global bending behavior of the

sandwich panel.

• ZONE II : it is triggered by the first transition frequency and the shear motion of the core governs the

global shape of the sandwich panel. The strain energy is then concentrated in the core. This zone is

characterized by a linear part.

• ZONE III : the flexural behavior is governed by the bending of the sandwich panel and the strain energy

of the core starts to be converted into strain energy storage in the skins.

• ZONE IV : it is triggered by the second frequency transition and the bending behavior is still dominant

but concentrated in the skins.

The analysis of transition frequencies does not correspond only to the study at specific frequencies but

also to transition ranges in which the structure can be characterized by a specific dynamic behavior. It can

be defined in terms of wavemotion [39] but also in terms of strain energy [43].

The first transition frequency remains the most critical indicator since it occurs at a lower frequency.

Moreover, the second transition frequency is triggered earlier along y since the unit cell seems to be more
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Figure 1: Flexural waves of a standard sandwich panel made of a rectangular core (a) kx and (b) ky .

flexible in this direction. In orthotropic sandwich panels, transition frequencies are defined as the minimum

value between (ftx, fty). There is a need to understand how these zones are triggered and more generally

how to adjust the size of these different regions to modify the global behavior of the sandwich panel and

thus, of the vibroacoustic properties.

2.2. The sound transmission problem

Plenty of indicators are used to quantify the acoustic efficiency of sandwich panels. In this paper, the

transmission problem is considered and the STL is used as a target indicator. Moreover, it can be measured

using an impedance tube for normal incident acoustic waves or using anechoic rooms or specific cabins for a

diffuse field. The transmission problem is depicted in Fig. 2.

The sandwich panel separates two semi-infinite fluid domains considered as air with a density ρ =

1,21 kg/m3 and the speed of sound c0 = 341 m/s. The incident acoustic wave impinges on the struc-
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Figure 2: Incident, reflected, transmitted and absorbed plane waves at the interface of a sandwich panel.

ture with an angle of incidence θi and is oriented by the azimuthal angle ϕ with respect to x and y direction.

This produces three acoustic waves: Wr, Wa and Wt representing the reflected, absorbed and transmitted

wave power. The incident and reflected angle, θi and θr, are assumed to be equal. It is valid when the top

surface is considered as a perfect plane. If the structure is homogeneous, then θi = θr = θt whatever it is

included inside. The acoustic wave travelling through the structure creates a transmitted wave on the other

side with an angle θt and an absorbed wave which will travel inside the structure. The STL of the structure

is defined as the ratio of the transmitted wave power (Wt) and the incident wave power (Wi) for each specific

angle as follows:

STL(θi, ϕ, ω) = −10 log10(τ), (1)

with the acoustic transparency τ(θ, ϕ, ω) = Wt / Wi. It is possible to define the STL for the diffuse field by

integrating over all incident angles θi ∈ [0◦, θmax ] with θmax = 78◦ and ϕ ∈ [0◦, 360◦]. The limitation of

the angle θi is due to measurement constraints and the difficulty to catch grazing angles corresponding to

angles close to θi = 90◦ [45]. Consequently, the diffuse field transmission loss becomes:

τd (ω) =

∫ 2π

0

∫ θmax

0
τ(ω, θ, ϕ) sin(θ) cos(θ) dθ dϕ∫ 2π

0

∫ θmax

0
sin(θ) cos(θ) dθ dϕ

, (2)

and finally, STLd(θi, ϕ, ω) = −10 log10(τd). The more the STL is high, the better the structure is acoustically

efficient. The double integration leads to a very high computational cost. In the literature, the calculation of

the diffuse acoustic field is rare and the integration is not always fully performed. It is mainly used to verify

the measurement of the STL or to compare different models [46]. Moreover, the integration step for θ and

ϕ needs to be very low to have converging results. Most of time, the result of the STL for a sandwich panel

assuming infinite size structures is given by Fig. 3.
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Figure 3: Diffuse field STL of the standard sandwich panel made of a rectangular core.

The critical frequency of the structure is depicted by fc and occurs between fcx and fcy. As it can be

noticed, the STL drops in this frequency range.

Generally, orthotropic skins are used while they are considered isotropic in this paper. Therefore, the mains

directions of the sandwich panel are x and y due to the core design. Consequently, the focus has been made on

directional STL as defined in Eq. (1). It is obtained by calculating the STL with an acoustic wave impinging

the structure in both main directions x and y of the sandwich panel corresponding to an azimuthal angle

ϕ = 0◦ and ϕ = 90◦, respectively. Moreover, the angle of incidence θi = 78◦ corresponds to the lowest

measurable angle and also to the lowest coincidence frequency for the sandwich panel. Consequently, the

directional STL is used as the acoustic indicator calculated for (ϕ = 0◦, θi = 78◦) and (ϕ = 90◦, θi = 78◦).

Many configurations have been tested which would have led to a very high computational cost in case of

diffuse field calculation. Since the main directions of the sandwich panel are excited with the directional STL,

it is expected to keep the same range of performances and to have a relevant qualitative acoustic indicator.

However, the expression given in Eq. (2) will be integrated over the angle ϕ to better quantify the acoustic

efficiency of proposed designs. The main objective is to shift fcx and fcy to higher frequencies leading to the

shift of the critical frequency fc as well, and thus, better acoustic performances in a broadband frequency.

The main conclusions and interpretations given in this paper can be thus applied to diffuse acoustic field

calculation.
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3. Multi-layer core topology systems (MLCTS)

In the section presented here, MLCTS are described and the main design parameters are listed. A

parametric model is proposed to make different type of periodic cores geometry. Several examples obtained

from the parametric model are illustrated and the surface density of each layer is well-controlled.

3.1. Description of MLCTS

MLCTS, illustrated in Fig. 4, provide periodic structures designs by stacking layers made of different

geometries of honeycomb cores (auxetic, hexagonal, rectangular, . . . ). Therefore, there is the possibility

to play with each layer independently to obtain better mechanical and acoustical properties compared to

standard sandwich panel made of a single core.

Figure 4: MLCTS samples manufactured by an industrial 3D printer.

Such structures involve new design parameters which should be studied to fully understand the dynamic

and acoustic behavior. These parameters are listed as follows:

1. the shift between layers along x and y direction; it leads to a less rigid connection between two con-

secutive layers. This might create new phenomena and impedance discontinuities which could alter

the vibroacoustic properties. Obviously, some mechanical properties as the compression modulus along

z-direction are expected to be decreased depending on the layout of interfaces and due to less rigid

contacts between layers.

2. the rotation between layers; it leads to some difficulties on the modelling part since periodicity properties

might be lost. Indeed, it is then not possible to extract a unit cell from the structure and consequently,

the WFEM is made difficult to apply. However, with a square unit cell it is possible to consider some

specific rotation of layers allowing to extract the unit cell trough the thickness of the core: 90◦, 180◦
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and 270◦. Otherwise, the whole sandwich panel needs to be modeled, drastically increasing the number

of degrees of freedom (dofs) and thus, the computational cost.

3. the interaction between geometrical parameters (depth, thickness, angles, . . . ) of each layer related to

the possibility to change the shape of the unit cell of each layer and the layout of the interfaces, and

stacking different type of cores (auxetic, honeycomb, rectangular, . . . ); it is possible to have a different

shape for each layer, allowing to combine their characteristic such as the auxeticity of an auxetic core

with the mechanical efficiency of a hexagonal core for instance. Each layer can be located in different

positions between the skins to differently influences the mechanical and acoustical properties of the

sandwich panel.

4. the size of the unit cell can be different for each layer.

5. the periodicity of each layer; if the unit cell size of each layer are multiple to each other, this gives the

opportunity to have different periodicity properties between layers.

In any case, the first two parameters could lead to many configurations keeping the mass constant. To be

able to extract the unit cell and apply the WFEM, it is necessary to have sizes of unit cells multiple to each

other which characterize the degree of periodicity of each layer. The issue related to the unit cell extraction

using MLCTS combining all mentioned parameters is illustrated in Fig. 5, revealing great challenges in terms

of modelling. Since the WFEM will be applied to calculate the STL and the transition frequency, it is

necessary to constrain some of these parameters. Therefore, the size of the unit cell is the same for each layer

and only rotations of 90◦, 180◦ and 270◦ can be considered when square unit cells are designed.

Figure 5: Sandwich panel made with three different cores involving rotation and shifted cores, red: auxetic core; blue: rectangular

core; black: hexagonal core.

3.2. Parametric model

MLCTS proposed in this paper will be made using the parametric model illustrated in Fig. 6. The wall

thickness of the core (tc) and the thickness of the skins (ts) as well as the thickness of each layer (Hl) are also
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part of parameters which can be modified. In addition, the size of the unit cell of each layer is identical while

there is no different periodicity between layers. Moreover, rotations about the z-axis are possible only for the

three following values : 90◦, 180◦ and 270◦ when square unit cells are designed. Therefore, the WFEM can

be applied.

Figure 6: Parametric model used to make MLCTS.

From this parametric model, it is possible to calculate accurately the mass of the unit cell and then

constrain the surface density either of each layer or of the complete unit cell. Indeed, the STL is controlled

by physical parameters which are the surface density, the dynamic bending stiffness and the damping of

the structure. The surface density calculation of each layer, validated with CATIA, is obtained using the

following expression:

ρs =
ρ ·Hln · tc · ( Lx · p1 + Ly − tc · p2)

Lx · Ly
, (3)

where

p1 =
1

cos(α)
+

1

cos(β)
+

tan(α)

2
− tan(β)

2

p2 =
1

cos(α)
+

1

cos(β)
− tan(α)

2
− tan(β)

2

(4)

with Hln corresponding to the thickness of the nth layer and where ρ is the density of the material of the

core. It is then possible to compare configurations with the same surface density. It has been mentioned by
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Zergoune et al. [1] that the thickness of a honeycomb core strongly influences the vibroacoustic indicators

and alter noticeably the dynamic bending stiffness. Therefore, it is relevant to maintain the same thickness

of each layer of the proposed MLCTS. In addition, the thickness of the skins and the wall thickness of the

core are also identical for each layer. Consequently, only the 5 geometrical parameters mentioned in Fig. 6,

a1, a2, a3, α and β are changed to investigate their influence on the targeted indicators. All parameters are

constrained by a specific range to obtain all possibilities in terms of topology for each layer. A MATLAB

script was developed to obtain all possible topologies from the parametric model while guarantying the same

surface density. Fig. 7 shows examples of MLCTS obtained with the parametric model. Only the bottom

skin is represented for a sake of clarity. Finally, it is important to have a fine mesh to accurately capture the

dynamic behavior of interfaces. Therefore, in the case of MLCTS, the mesh involves much more dofs than

single cores.

Figure 7: Multiple possibility of making MLCTS using the parametric model (a) Hexagonal-Rectangular-Auxetic core (b)

Hexagonal-Rectangular (rotated 90◦) -Auxetic core. (c) 3 rectangular core layers with a shifted middle core along x and y

direction (d) MLCTS made of 15 random cores layers.

4. Vibroacoustic modelling of MLCTS inside a WFEM framework

Considering the finite element model of the unit cell of a MLCTS from the parametric model and using

the WFEM, it is possible to calculate the targeted indicators of MLCTS. The WFEM can be combined with

the use of nodal surfaces on the top and bottom skin of the unit cell [37]. Model order reduction can be

applied to drastically reduce the computational cost. Therefore, dispersion curves as well as the STL can be

obtained considering infinite size structures. Moreover, the wavemode energy method is used to retrieve the

transition frequencies of MLCTS and to identify the transition frequency regions of the structure.
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4.1. The Periodic Structure Theory (PST)

The WFEM combines the classical Finite Element Method (FEM) to obtain the dynamic stiffness of the

unit cell and the PST. The unit cell is schematically depicted in Fig. 8 and can be separated in 9 different

regions of dofs associated with the nodes at these locations as follows: edge corners (u1, u2, u3, u4), left,

right, after and forward surface (uL, uR, uA, uF ) and the internal region (uI). The vector of dofs related to

the displacement U is then partitioned as follows:

Figure 8: Unit cell of a periodic structure with subdivision of the dofs.

U = [u1 u2 u3 u4 uL uR uA uF uI ]. (5)

The dynamic stiffness matrix (D) of the unit cell is defined by the stiffness (K) and mass (M) matrix

extracted from the commercial finite element software Ansys apdl with the relationship:

D = (K + iηK)− ω2M. (6)

The structural damping is taken into account within the damping loss factor η. For a complex unit cell,

the number of dofs may remain high. Many model order reduction methods have been developed for such

problems and the most commonly used one is the Component Modal Synthesis (CMS) [47]. It is an extension

of the Craig Bampton approach [48]. The principle is to describe the global response of the structure by

different modes of local substructures. In the WFEM context, the CMS is applied to internal dofs uI as

defined in Fig. 8. In addition, the model order reduction method developed by Droz et al. [49] uses a wave

basis approach based on a reduced set of wave-shapes. It is combined with the CMS leading to a reduced

dynamic stiffness matrix D̃ after the dynamic condensation and reduces drastically the computational cost.

The strategy to apply these methods was fully discussed in the paper of Zergoune et al. [1]. The next step

is to apply the Bloch’s theorem at boundaries which gives the following relations:

u2 = u1λx u3 = u1λy u4 = u1λxλy uR = uLλx uF = uAλy, (7)
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with,

λx = exp (−iµx) λy = exp (−iµy) µx = kxLx µy = kyLy, (8)

in which kx and ky are the wavenumbers along the x and y direction. The direction x and y correspond to

in-plane directions as illustrated in Fig. 8. In terms of modelling, these relations Eq. (7) imply that the same

number of nodes should be used at associated boundaries while there is no constraint on the internal mesh

of the unit cell. The PST [50] is then used to compute the propagation constants λx, λy and eigenvectors Ψ

from the spectral equation:

ΛT(λx, λy) · D̃ · Λ(λx, λy) Ψ = (0), (9)

where ΛT is defined by:

ΛT =


I λxI λyI λxλyI 0 0 0 0

0 0 0 0 I λxI 0 0

0 0 0 0 0 0 I λyI.

 (10)

The solution of this quadratic eigenvalue problem at a given frequency ω is called a direct solution and

allows an estimation of the complex frequency-dependent propagation constants and eigenvectors. Dispersion

curves are then obtained and give the opportunity to calculate the transition frequency of the sandwich panel

(Section 4.3).

In the sound transmission problem, the CMS is not applied to the same internal dofs as the WFEM. The

internal dofs (uI) should be separated in two parts : uIB corresponding to the internal dofs belonging to the

top and bottom skins and (uinner) corresponding to the inner nodes Fig. 9. The dofs not excited by external

forces (uinner) will be replaced by modal internal dofs Cm. Indeed, other dofs need to be used to apply the

Bloch-Floquet theory and should not be reduced at this step.

Figure 9: Internal dofs in the cross-section (B-B) illustrated in Fig. 8.

The vector (uI) is then partitioned:
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uI = [uIB uinner], (11)

and after applying the CMS, uI reads:

uI = [uIB Cm]. (12)

The dynamic condensation is then applied and leads to a reduced dynamic stiffness D
′

with less dofs U
′

Eq. (13):

U
′

= [u1 u2 u3 u4 uL uR uA uF uIB ]. (13)

The matrix Λ becomes modified since internal dofs belonging to the top and bottom skin remain to apply

the periodic conditions leading to ΛT with:

ΛT =

Λ 0

0 I

 . (14)

This reduction can be applied to the next method explained hereafter.

4.2. Extraction of the STL of MLCTS

In the sound transmission problem, the acoustic wavenumber (k0) is defined by the frequency of plane

waves exciting the structure and the sound velocity of the fluid (c0) with k0 = ω0/c0. Only plane waves with

real wavenumbers are considered. Therefore, waves travelling through the structure are fully characterized

by the oblique incident plane waves with kx = k0 sin(θ) cos(ϕ), ky = k0 sin(θ) sin(ϕ) and kz = k0 cos(θ). Since

external forces (induced by planes waves) are applied on the unit cell, same periodic relations Eq. (7) can be

derived for generalized forces at boundaries.

MLCTS could be modeled using analytical homogenization methods, nevertheless, they are complicated to

apply due to the nature of interfaces between layers, leading to heterogeneous properties along the z-axis.

Many configurations of interfaces are possible and they all have different effects on the dynamic behavior of

the structure. Consequently, it is more relevant to focus on a method using numerical ways of thinking being

able to consider the physics of the entire unit cell with the dynamic stiffness matrix as developed by Christen

et al. [37].

The method developed by Christen et al. [37], considers simple panels or laminates using solid elements.

Consequently, it is necessary to adapt the formulation for more complex structures using shell elements. The

matrix A as described in Christen et al. [37] is given as follows:

A = Λ−1
T D

′
ΛT (15)

with:
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AŨ = F. (16)

where F is the reduced vector of external forces applied to the reduced vector of dofs Ũ:

Ũ = [u1 uL uA uIB ]. (17)

The external forces are only applied on the top and bottom skin due to acoustic waves. A second dynamic

condensation must be performed to condense the dofs which do not belong to the top and bottom skin in

Eq. (16). Then, the vector of external forces can be expressed as follows after reordering Eq. (16) and the

second dynamic condensation [37]:

F̃I

F̃T

 =

SI 0

0 ST

pI + pR

pT

 . (18)

where F̃I and F̃T are the external forces applied on the skin of the incident and transmitted field, respectively.

The matrix S gathers the nodal surfaces of the skins of the incident and transmitted side respectively,

and needs to be partitioned in two diagonal matrices called SI and ST . Finally, the incident pressure

pI becomes a vector evaluated on nodes belonging to the skin on the incident part with the expression

pI = exp(i(ωt − kxx − kyy)). The final equation remains the same with few modifications related to the

matrix S:

bII + SI

YO
−bIT

bTI −bTT − ST

YO

pR
pT

 =

bII − SI

YO

bTI

 pI . (19)

where Y0 = cos(θ)/(iωρ0c0) and where b is the reduced matrix partitioned as follows, after applying the

second dynamic condensation to the matrix A [37] and the reordering process of the matrix:

b =

bII bIT

bTI bTT

 (20)

By solving Eq. (19), the calculation of the acoustic transparency τ yields to Eq. (21) which is the ratio

between the acoustic power of the incident and transmitted side. Eq. (2) is then used to obtain the diffuse

field transmission loss.

τ(θ, φ, ω) =
ST · |pT |2

SI · |pI |2
(21)

This model has been validated with two sandwich panels made of a single core [51]. They have been made

using an industrial 3D printer. The measurement were performed using a Beta Cabine and results are given

in third octave band Fig. 10. A global good agreement is obtained between the model and measurements.

The global trend is kept, and the comparison between standard and optimized panels are similar. The

discrepancies are mainly due to manufacturing defects.

16



Figure 10: Validation of the model using sandwich panels made by 3D printing (a) Double Wall panels (b) Rectangular core

sandwich panels (c) measurement for double wall panels (d) measurement for rectangular core sandwich panels.

Finally, contrary to Parrinelo et al. [36], this method needs the dynamic stiffness of the complete unit cell

including skins. Thereby, the number of dofs is higher and strongly affect the computational cost. However,it

has the advantage to take all the dynamic of the unit cell into account if local dynamic behaviors occur in

the core due to the interfaces.

4.3. Extraction of transition frequencies

The analytical expression of the flexural wavenumber of a sandwich panel based on the 4th order of

the equation of motion was used by Guillaumie [42] to give the expression of the first transition frequency.

This later is obtained as a function of the dynamic shear modulus S, the dynamic bending stiffness D and

the surface density ρs of the structure. The dynamic shear modulus can be firstly approximated using a

static numerical measurement in both direction x and y of the sandwich panel to obtain the global shear
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modulus while the bending stiffness modulus is calculated analytically. Indeed, in case of isotropic skins, the

bending stiffness of the sandwich panel is mainly due to the skins since the honeycomb properties is usually

negligible compared to those of the skins. A numerical identification called the bisection method based on

the asymptotic expression of the flexural wavenumber can be performed. At low frequencies, the dynamic

behavior is dominated by the dynamic bending modulus with:

k(f −→ 0) =
(ρs
D

)1/4√
ω (22)

whereas it is mainly influenced by the dynamic shear modulus at medium frequencies with:

k(f) = ω
(ρs
D

)1/2
. (23)

and the intersection between these two waves lead to the first transition frequency. However, this method

is only valid for the first and second zone [42] as depicted in Fig. 1. To achieve the flexural wave in all the

frequency range, it is necessary to develop the 6th order to capture bending waves located in the skins and

occurring at higher frequencies as explained by Droz et al. [44]. Other methods based on the analytical

formulation of the flexural wave are given by Baho et al. [43].

Besides, the wavemode energy method is based on the calculation of the wavemode strain energy of the core

Ec and the skins Es along both directions x and y. This method is described by Baho et al. [43]. Ec and Es

are calculated as follows:

Ec =
ΦTKcΦ

ET
and Es =

ΦTKsΦ

ET
, (24)

where Kc and Ks are the full stiffness matrices of the core and the skins while the vector Φ corresponds

to the vector of dofs of the displacement related to the wavemode of the core and the skins respectively.

They are obtained using the 2D WFEM. Both expressions of wavemodes energy are normalized with respect

to ET , which is the total strain energy of the unit cell using the full stiffness matrix and the full vector of

dofs of the displacement. The first transition frequency is then identified when Ec becomes higher to Es.

This method has the advantage to consider the full dynamic behavior of the unit cell since it uses its finite

element model. Finally, by applying this method to the same case as presented in Section 2, the frequency

range describing the transition frequency regions are verified (Fig. 11). Therefore, it is easier to evaluate the

1st and 2nd transition frequency.

Such a method involves a higher computational cost compared to analytical formulations but can be

applied to all complex structures involving sandwich panels. Consequently, the prediction of transition

frequencies is possible as long as the accuracy of the mesh is verified. Therefore, altering configurations of

each layer of a MLCTS will allow to modify the transition frequency with respect to the target industrial

application. The next section is devoted to the investigation of the influence of the layout of MLCTS on the

STL and the transition frequencies.
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Figure 11: Strain energy of the standard sandwich panel made of a rectangular core (a) along x-direction and (b) along y-direction

(Fig. 1).

5. Vibroacoustic design of MLCTS

This section is devoted to the vibroacoustic design of a multi-layer rectangular core system. A number of

applications have been implemented to determine the transition frequencies regions according to the strain

energy and to compute the STL using the described model Section 4.2. This later has been determined for

the pairs angles (ϕ = 0◦, θi = 78◦) and (ϕ = 90◦, θi = 78◦) to have the structure excited by an acoustic

wave in both main directions x and y respectively. Then, the integration is made over the azimuth angle ϕ to

better quantify the acoustic efficiency and to give a better estimation of the STL of MLCTS. All applications

are performed with skins made of Aluminium and the core made of ABS with the same characteristics used

in Section 2. Geometrical parameters of the unit cell are : Lx = 12 mm, Ly = 12 mm, ts = 1 mm, tc = 1

mm and H = 9 mm. In terms of STL, the sandwich panel separates two semi-infinite fluid domain of air
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with ρ = 1,21 kg/m3 and c0 = 341 m/s. The standard unit cell is obtained with a1 = Ly/4, a2 = Ly/4

and a3 = Lx/4. All next compared configurations have the same surface density. Finally, the unit cell has

been modelled using shell elements in ANSYS software and the mesh convergence has been verified for the

frequency range [100 Hz, 10000 Hz]. The number of dofs for all configurations are almost similar and around

4200 dofs.

5.1. Shifted core size effect

This first application gives the opportunity to know which size the middle core should have to obtain the

best vibroacoustic properties. The rectangular core is discretized such as 9 layers of 1 mm can be shifted

independently. The first design is intended to investigate the influence of increasing the size of the shifted

middle core of a sandwich panel made of a multi-layer rectangular core. The geometry of the shifted core

corresponds to a1 = 3Ly/8, a2 = 3Ly/8 and a3 = 3Lx/8. The size of the middle core takes the following

values : 1mm (Config 2), 3 mm (Config 3), 5 mm (Config 4) and 7 mm (Config 5). Therefore, 4 configurations

are implemented and are compared to the standard unit cell.

The STL is calculated for both directions x and y and considerably improved as shown in Fig. 12.

Indeed, the interfaces between layers creates more flexible structures leading to a reduction of the dynamic

bending and shear modulus (Eq. 22 and Eq. 23) and thus, higher flexural wavenumbers Fig. 13. Therefore,

the coincidence frequency for both calculated angles are shifted to higher frequencies. Since the shifting is

performed in both direction x and y, the loss of mechanical rigidity occurs in both directions and is relatively

comparable.

Figure 12: Influence of the shifted layer size on the STL (a) x direction (b) y direction.

All shifted configurations have the same global efficiency as compared to the standard structure since the

middle core is shifted in the same way and only the size is modified. However, the 3rd configuration seems
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to exhibit a better STL in both directions. The results are strongly dependent on the considered direction

due to the orthotropy and because the structure is stiffer along the x-direction.

Figure 13: Flexural wavenumbers (a) kx (b) ky .

Finally, by integrating over the azimuthal angle ϕ, it is possible to better quantify the acoustic efficiency

and get closer to a diffuse acoustic field. Therefore, the shifting in both directions as well as the MLCTS

design gives a high improvement in a broadband frequency Fig. 14. The mass law can still be applied up to

2000 Hz compared to the standard design and thus, a better STL at low frequencies. It is then expected to

obtain a comparable result for diffuse field measurement.

Besides, as shown in Fig. 15, even a small shift between layers produces a drop of transition frequencies.

This result is particularly stressed along the y-direction (Fig. 15b). The second transition frequency fty2

occurs before 10000 Hz, except in the standard sandwich panel. In the x-direction, the first transition

frequency ftx1 is altered depending on the configuration whereas the differences for the second transition

frequency are not always observable. The first transition frequency reaches the lowest values when the size of

the shifted core is 3 mm (Config 3) and thus corresponds to 1/3 of the total thickness of the core. However,

configuration 3 leads to a higher second transition frequency than configurations 4 and 5 along x-direction

(Fig. 15a) but turned out to be the lowest in the y-direction. To summarize, in MLCTS, transition frequencies

are generally lower than standard structures since both, the dynamic bending and shear modulus are lower.

This is due to the low rigidity introduced by interfaces between layers. Moreover, it can be concluded that

the 3rd configuration has the higher STL and thus the best acoustic efficiency in all the frequency range.

The enhancement of the STL as well as the diminution of transition frequencies in MLCTS configurations

is mainly related to the reduction of dynamic properties. However, the shifting process can be used to control

the dynamic behavior in both directions x and y and thus, to better manipulate the dynamic properties of

the sandwich panel. In the next Sections, the size of the shifted middle core is 3 mm.

21



Figure 14: Influence of the shifted layer size on the STL integrated over the azimuthal angle ϕ with θ = 78◦.

5.2. Shifted middle core along x-direction

The second application corresponds to a shifted middle core in which the thickness of the layer is 3 mm.

The shift is achieved along the x-direction and results in 6 different core configurations with: a3 = Lx/8

(Config 1), a3 = Lx/4 (Standard), a3 = 3Lx/8 (Config 3), a3 = 5Lx/8 (Config 4), a3 = 6Lx/8 (Config 5) and

a3 = 7Lx/8 (Config 6). These configurations are shown with the shifted parts in a red colour at the bottom

of Fig. 19.

Concerning the STL, shifting the middle layer along x-direction does not change the STL (Fig. 16a) when

the acoustic wave is propagating along x while a strong improvement is noticed when the propagation is

along y (Fig. 16b). Indeed, the flexural wave of the structure remains the same in the x-direction (Fig. 17a).

Therefore, the dynamic behavior in x-direction is not altered and the dynamic properties such as the bending

and shear modulus are similar to the standard panel. It can be seen at higher frequencies a slight enhancement

of the dynamic rigidity corresponding to lower flexural wavenumbers (Fig. 17a). Oppositely, the structure is

more flexible in the direction y, which results on a shift of the coincidence to a higher frequency. Thus, the

STL of MLCTS can be hugely improved when the acoustic wave is travelling along the direction y.

Finally, after the integration over ϕ, the STL is slightly improved in the case of shifted structures (Fig. 18).

The dynamic behavior is mainly related to wave properties in the direction x since the STL results are

similar. It is thus expected to have non negligible improvement for diffuse acoustic field. However, the

critical frequency will probably not be strongly shifted compared to the standard structure.

Meanwhile, the flexural behavior along the x-direction Fig. 19a is globally not altered but Zone II in
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Figure 15: Influence of the shifted layer size on transition frequencies (a) x direction (b) y direction.

configuration 6 is enlarged and the shear motion of the core is expected to have a stronger influence on the

global behavior of the structure. Moreover, this demonstrates that it is possible to shift the first transition

frequency to higher values. Besides, along y-direction (Fig. 19b), the influence of the shifted core becomes

more important. In this case, all MLCTS exhibit lower transition frequencies. These values are approximately

the same for all configurations, except for the 5th configuration, in which the first and second transition

frequency occur in the upper frequency bandwidth. In this latter configuration, the shifted core walls are

aligned with the top and bottom layer and increase the global rigidity of the structure.

Although the STL has been slightly improved, both transition frequencies along the direction y occurs

23



Figure 16: Influence of the shifted middle layer along the direction x on the STL (a) x direction (b) y direction.

Figure 17: Flexural waves (a) kx (b) ky .

below 10000 Hz. The dynamic properties are strongly altered and shifting the core along the direction x does

not seem to be a relevant solution. Therefore, the next step is to shift the core along the direction y.

5.3. Shifted middle layer along y-direction

The last application is a shifted middle core with a layer thickness of 3 mm and a3 = Lx/4. Now, the

layer is shifted only in the y-direction, resulting in 9 configurations corresponding to the pairs listed in Tab 1.

Contrary to the shifted middle core along x-direction, it is now the x-direction which is strongly influenced

by the shifting process (Fig. 20) and (Fig. 23a). The symmetry of the shifting process is clearly demonstrated.

The STL of all configurations are shown in Fig. 20. Results are intentionally split for the sake of clarity. All
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Figure 18: Influence of the shifted middle layer along the direction x on the STL integrated over the azimuthal angle ϕ with

θ = 78◦.

Table 1: Values of the pairs (a1, a2) for the shift-

ing process in y-direction.

a1 a2

Config 1 Ly/8 Ly/8

Config 2 Ly/8 Ly/4

Config 3 Ly/8 3Ly/8

Config 4 Ly/4 Ly/8

Standard Ly/4 Ly/4

Config 6 Ly/4 3Ly/8

Config 7 3Ly/8 Ly/8

Config 8 3Ly/8 Ly/4

Config 9 3Ly/8 3Ly/8

configurations of MLCTS have the advantage of improving the STL in both directions but more significantly

along the x-direction (Fig. 20a,b,c) while the enhancement is negligible along the y-direction (Fig. 20d,e,f).

The dynamic properties of shifted structures are still reduced and the flexural wavenumber becomes higher.

Therefore, the coincidence frequency is shifted to a higher frequency. Along the direction y (Fig. 21b), the

flexural wave remains similar compared to the standard panel and the bending and shear modulus in that
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Figure 19: Influence of the shifted middle layer along the direction x on transition frequencies (a) x direction (b) y direction.

direction are not altered.

Finally, the integration of the STL over the angle varphi shows a strong improvement of the STL com-

parable to the results obtained Section 5.1. The coincidence frequency occurs at a higher frequency and it is

thus expected to have similar results in the case of diffuse acoustic field (Fig. 22).

Besides, it is possible to keep a large second zone (Zone II) where the bending of the structure will be

consequent when a1 = Ly/4 independently to the value of a2, and to avoid a fourth zone (Zone IV) with

the bending of the skins triggered before the frequency range of interest. The same observation can be made
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Figure 20: Influence of the shifted middle layer along the direction y on the STL (a) 1st, 2nd and 3rd configuration (b) 4th and

6th configuration (c) 7th, 8th and 9th configuration; and along the direction y (d) 1st, 2nd and 3rd configuration (e) 4th and

6th configuration (f) 7th, 8th and 9th configuration compared to the standard unit cell 5th configuration.

along y-direction Fig. 23b but with lower differences. The global behavior of the structure in this direction

remains comparable to the standard sandwich panel. In the case of Configurations 2, 4, 6 and 8, transition
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Figure 21: Flexural wavenumber (a) kx (b) ky

frequencies in both directions are not strongly modified compared to the standard structure. In addition,

they exhibit a high improvement of the STL in a broadband frequency. The STL can still be improved by a

parametric analysis of the combination of the shifting in x and y direction as done in the study of the layer

size Section 5.1. Nevertheless, the drop of dynamic properties will occur in both directions of the structure
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Figure 22: Influence of the shifted middle layer along the direction y on the STL integrated over the azimuthal angle ϕ with θ

= 78◦.

which is not desirable on some applications unless the only target is the acoustic efficiency.

Most of time, transition frequencies and more specifically the first transition frequency are expected to

be shifted at higher frequencies, especially in aerospace industry. However, the increase of the transition

frequency doesn’t lead to a higher STL in all applications. Therefore, it is interesting to study specific

designs allowing to play with the dynamic behavior of the structure to find out the correct balance between

vibroacoustic properties. Consequently, it has been shown that the shifted middle core should have a size

corresponding to 1/3 of total height of the core to obtain the highest STL efficiency. Moreover, the core should

be shifted in the direction y similarly to the configuration 2, 4, 6 and 8. Indeed, they give the possibility to

not highly alter the dynamic properties of the structure in both directions x and y compared to the standard

panel and the STL is considerably improved in all the frequency range of interest.

6. Conclusions

In this paper, an introduction to MLCTS vibroacoustic designs is performed with the analysis of transition

frequencies and the STL. Different models have been applied to a sandwich panel made of a rectangular core

unit cell and then modified to make a multi-layer rectangular core system, maintaining the mass constant

and using a shifting process on one layer. Often, transition frequencies are studied as a consequence of the

dynamic behavior of the structure while, in this paper, it was proposed to control them with MLCTS designs.

The first application corresponds to the modification of the size of a middle core and allows to exhibit
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Figure 23: Influence of the shifted middle layer along the direction y on transition frequencies (a) x direction (b) y direction.

that the improvement of the STL is maximum when the thickness of the middle layer core is 1/3 of the total

thickness of the core. Besides, transition ranges are altered in both directions leading to a different dynamic

behavior in the frequency range of interest. The same size for the middle core is used in the second and

third application and have shown the possibility to control transition ranges in specific directions without

altering dynamic properties of the other directions. Generally, both transition frequencies are shifted to lower

frequencies with MLCTS. It is possible to modify and adjust the frequency range of each zone. This could be

a great interest for some industrial applications to control the dynamic behavior of the structure. It is also

an easy way to quickly change the first and second frequency transition and thus, trigger a specific flexural
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behavior of the sandwich panel. This indicator is particularly used in aerospace industry where the shear

core effect of sandwich panels is under investigation. In some cases, the existence of the first and second

zone and thus, the shear effect and the global bending of the structure, is drastically reduced. The study

was performed for both direction x and y, related to the main directions of the structure, and the influence

of the shifting process turned out to be different for both directions. Moreover, it is shown that MLCTS

strongly enhance the STL in a broadband frequency while the mass is kept constant although transition

frequencies becomes lower. Nevertheless, a good balance between the STL and the trigger of the first and

second transition frequency can be found to propose an optimal design of unit cells according to the industrial

application. Finally, it was shown that MLCTS easily overcome the design limitation related to the mass

constraint in the research of the improvement of the acoustic efficiency, and open large perspectives of design

space. Nevertheless, the static stiffness of MLCTS still needs to be improved because of the weaknesses

introduced by the interfaces.

The mechanism allowing to trigger the transition frequencies still need to be investigated. Ultimately,

a complete parametric survey as well as an optimization process can be performed to investigate how vi-

broacoustic indicators will evolve with more geometrical parameters defined in the parametric model. Such

study could be performed for a diffuse acoustic field if the number of dofs is lower or by integrating only the

azimuthal angle ϕ as performed in this paper. The interface between layers involves meshing accurately the

MLCTS to capture correctly the local dynamic behavior induced by the connecting points. The robustness of

this study relies on this accuracy. Therefore, the results of the shifting process remain stable. However, this

leads to an increase of the dofs compared to standard sandwich panel. It could be reduced using simpler core

designs. Finally, measurements of the STL in diffuse acoustic field can be performed to verify the acoustic

efficiency of the proposed designs of MLCTS.
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[21] A. Marasco, D. Cartié, I. Partridge, A. Rezai, Mechanical properties balance in novel z-pinned sandwich

panels: Out-of-plane properties, Composites Part A: Applied Science and Manufacturing 37 (2) (2006)

295–302. doi:10.1016/j.compositesa.2005.03.029.

[22] G. Zhang, B. Wang, L. Ma, L. Wu, S. Pan, J. Yang, Energy absorption and low velocity impact response

of polyurethane foam filled pyramidal lattice core sandwich panels, Composite Structures 108 (2014)

304–310. doi:10.1016/j.compstruct.2013.09.040.

[23] T. Fu, Z. Chen, H. Yu, Z. Wang, X. Liu, An analytical study of sound transmission through corrugated

core fgm sandwich plates filled with porous material, Composites Part B: Engineering 151 (2018) 161–

172. doi:10.1016/j.compositesb.2018.06.010.

33

https://doi.org/10.1016/j.eml.2016.08.005
https://doi.org/10.1016/j.eml.2016.08.005
https://doi.org/10.1016/j.jsv.2012.09.047
https://doi.org/10.1016/j.jsv.2017.07.045
https://doi.org/10.1121/1.5088036
https://doi.org/10.1016/j.commatsci.2008.08.018
https://doi.org/10.1016/j.commatsci.2008.08.018
https://doi.org/10.1016/j.compscitech.2013.07.011
https://doi.org/10.1016/j.matdes.2014.04.014
https://doi.org/10.1016/j.matdes.2014.04.014
https://doi.org/10.1016/j.compositesa.2005.03.029
https://doi.org/10.1016/j.compstruct.2013.09.040
https://doi.org/10.1016/j.compositesb.2018.06.010


[24] M. Arunkumar, J. Pitchaimani, K. Gangadharan, M. Leninbabu, Vibro-acoustic response and sound

transmission loss characteristics of truss core sandwich panel filled with foam, Aerospace Science and

Technology 78 (2018) 1–11. doi:10.1016/j.ast.2018.03.029.

[25] E. Magnucka-Blandzi, Z. Walczak, L. Wittenbeck, M. Rodak, Strength of a metal seven-layer rectangular

plate with trapezoidal corrugated cores, Journal of Theoretical and Applied Mechanics 55 (2) (2017)

433–446.

[26] E. Magnucka-Blandzi, Z. Walczak, L. Wittenbeck, P. Jasion, M. Rodak, W. Szyc, J. Lewiński, Stability
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