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Highly conductive thin casings pose a great challenge in the numerical simulation of well-logging instruments. Witty asymptotic models may replace the presence of casings by impedance transmission conditions in those numerical simulations. The accuracy of such numerical schemes can be tested against benchmark solutions computed semi-analytically in simple geometrical configurations. This paper provides a general approach to construct those benchmark solutions for three different models: one reference model that indeed considers the presence of the casing; one asymptotic model that avoids computations in the casing domain; and one asymptotic model that reduces the presence of the casing to an interface. Our technique uses a Fourier representation of the solutions, where special care has been taken in the analytical integration of singularities to avoid numerical instabilities. CONTENTS 1. Introduction 2. Model problems 3. Derivation of semi-analytical solutions 4. Fourier inversion 5. Numerical results 6. Conclusions Appendix A. Explicit expressions for the linear systems defining the coefficients of the Fourier modes Appendix B. Bessel functions

INTRODUCTION

Electrical impulses are useful resources for determining the different layers forming the Earth's subsurface. Logging instruments are commonly introduced inside wells, transmitting several impulses into the layered media, while receivers record the incoming information in real time. The obtained data is used to determine the subsurface materials by identifying their resistivity. A case of special interest corresponds to scenarii whose boreholes are surrounded by steel-made casings employed to protect the wells from possible collapses. In that case, the high conductivity of the casing, along with its thinness, greatly complicates numerical simulations. A natural way to circumvent this drawback is to consider asymptotic models avoiding the problems created by the casing [START_REF] Erdozain | Asymptotic models for the electric potential across a highly conductive casing[END_REF].

Numerical approaches to simulate the described phenomena commonly consist in performing finite element or finite differences discretizations [START_REF] Pardo | PML enhanced with a self-adaptive goal-oriented hp-finite element method: Simulation of through-casing borehole resistivity measurements[END_REF][START_REF] Pardo | Simulation of multifrequency borehole resistivity measurements through metal casing using a goal-oriented hp finite-element method[END_REF][START_REF] Pardo | Simulations of 3D DC borehole resistivity measurements with a goal-oriented hp finite-element method. Part II: through-casing resistivity instruments[END_REF][START_REF] Pardo | Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods[END_REF][START_REF] Zemanian | Modeling of borehole resistivity measurements using infinite electrical grids[END_REF][START_REF] Zemanian | Finite-difference analysis of borehole flows involving domain contractions around three-dimensional anomalies[END_REF][START_REF] Wang | Three-Dimensional Finite-Difference Resistivity Modeling Using an Upgridding Method[END_REF][START_REF] Gao | 3-D DC Resistivity Forward Modeling Using the Multiresolution Grid[END_REF]. The accuracy of these approaches requires to be always verified. A standard technique to test and verify these numerical solutions is to employ analytical methods which deliver analytical or semi-analytical solutions. Such methods provide consistent solutions in idealized scenarii at a very low computational cost.

In this paper, we consider the problem of the electric potential set in a borehole shaped domain surrounded by a metallic casing. This problem involves a realistic configuration, where the conductivity in the casing takes much higher values than those in the layered formation [START_REF] Pardo | Sensitivity study of borehole-to-surface and crosswell electromagnetic measurements acquired with energized steel casing to water displacement in hydrocarbon-bearing layers[END_REF][START_REF] Erdozain | Asymptotic models for the electric potential across a highly conductive casing[END_REF]. In this configuration, the casing can be seen as a thin layer of uniform thickness ε and its conductivity is proportional to the third negative power of ε. As stated above, it is interesting to avoid this casing due to the numerical difficulties it induces. In [START_REF] Erdozain | Asymptotic models for the electric potential across a highly conductive casing[END_REF], asymptotic techniques are employed to derive asymptotic models composed of impedance transmission conditions, which are specially designed to replace the casing. Stability and convergence results with respect to the parameter ε have been proved for these asymptotic models in [START_REF] Erdozain | Asymptotic models for the electric potential across a highly conductive casing[END_REF].

In the present work, we will first concentrate on deriving semi-analytical solutions for different models: one reference model that considers the presence of the casing; one rigorous asymptotic model derived in [START_REF] Erdozain | Asymptotic models for the electric potential across a highly conductive casing[END_REF] that avoids computations in the casing domain; and one formal asymptotic model from [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF] that reduces the presence of the casing to an interface. The standard method we follow consists in employing cylindrical coordinates and assuming material homogeneity in the vertical and angular variables. In addition, the source term is represented as a Dirac delta distribution. Under these conditions, we represent the solution to each model as an inverse Fourier integral in the vertical variable, together with Fourier series in the angular variable.

Several works can be found in the literature regarding the derivation of analytical or semianalytical solutions in cylindrical domains. For example, [START_REF] Muga | Semi-analytical response of acoustic logging measurements in frequency domain[END_REF] derives semi-analytical solutions for an elasto-acoustic problem set in a borehole involving solid and fluid subdomains. In the same way, [START_REF] Pérez-Arancibia | On the Green's function for the Helmholtz operator in an impedance circular cylindrical waveguide[END_REF] derives the Green's function for the Helmholtz equation set in an infinite cylinder with Robin boundary conditions. Similar results can be found in [START_REF] Stuwe | A green's function approach to wave propagation and potential flow around obstacles in infinite cylindrical channels[END_REF], where a Green's function is obtained for the Helmholtz equation in an infinite cylinder. In [START_REF] Duffy | Green's functions with applications[END_REF], the authors derive an analytical solution for the Poisson equation in a cylinder with homogeneous Dirichlet boundary conditions by employing the method of separation of variables.

This paper is concerned also with numerical objectives. The semi-analytic solutions that we derive in this work are validated numerically. Then, we compare the performance of these solutions for a wide range of parameters ε. Finally, we use these semi-analytic solutions to reconstruct an experiment of Kaufman [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF] which shows that the second derivative of the potential in the vertical direction is proportional to the square root of the exterior conductivity.

The document is structured as follows. In Section 2, we set up the geometry and equations involved in our different model problems. In Section 3, we explain the procedures to derive semi-analytical solutions for the different models described in previous Section 2. Next, Section 4 is devoted to explain how we perform the inverse Fourier transform, which includes the characterization of singular behaviors and the analytic treatment of them. Several computations of this section have been shifted to the Appendix A to keep the body of the document as simple as possible. Finally, Section 5 provide numerical experiments comparing the different models, followed by conclusions in Section 6. In the end, we find an Appendix B that contains the definitions of the Bessel functions we have employed for the design of semi-analytical solutions.

MODEL PROBLEMS

2.1. Geometrical considerations. Borehole resistivity measurements use a logging instrument equipped with transmitters and various receivers. A borehole will be modeled as a cylindrical domain covered with a thin metallic shell (the casing), which in practice serves as a wall to protect the borehole from collapse. Since the dimensions of the subsurface are much larger than the logging tool, our first simplification will be to work with unbounded cylindrical configurations. The interference produced by the logging instrument itself will not be taken into account. In order to obtain analytic representations of the physical quantities of interest, we further assume that all the media inside the borehole, at the casing, and outside the borehole, are homogeneous. Thus, we will basically work with three axisymmetric subdomains in cylindrical (r, θ, z) coordinates: one for the outer elastic material outside the shell, one for the inner fluid inside the borehole, and finally one for the metallic casing itself.

Let ε > 0 be the thickness of the casing and let r 0 > 0 be the distance from the z-axis to half the thickness of the casing. Consider the inner and outer radii of the casing, respectively characterized by

r int := r int (ε) := r 0 - ε 2 and r ext := r ext (ε) := r 0 + ε 2 .
Denote by Ω ε int , Ω ε ext , and Ω ε lay the inner, exterior, and casing subdomains, respectively (see Figure 1a). For a given R 0 ≫ r 0 these domains are characterized by

Ω ε int := (r, θ, z) ∈ R 3 : 0 ≤ r < r int , (1a) 
Ω ε ext := (r, θ, z) ∈ R 3 : r ext < r < R 0 , (1b) 
Ω ε lay := (r, θ, z) ∈ R 3 : r int < r < r ext . (1c) 
The interface between Ω ε int and Ω ε lay will be denoted by Γ ε int , while the interface between Ω ε lay and Ω ε ext will be denoted by Γ ε ext . Some asymptotic models (see, e.g. [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF]) do not consider the casing domain at all (the effects of the casing have been replaced by suitable impedance transmission conditions). In that situation, the model domain only considers the following two subdomains (see Figure 1b):

Ω int := (r, θ, z) ∈ R 3 : 0 ≤ r < r 0 , (2a) 
Ω ext := (r, θ, z) ∈ R 3 : r 0 < r < R 0 , (2b) 
where the interface between Ω int and Ω ext is denoted by Γ.

For simplicity, we will restrict our models to the case where R 0 = +∞. Otherwise, as it is customary in finite element or finite differences simulations, homogeneous boundary conditions will have to be imposed at r = R 0 in the forthcoming differential equations. 2.2. Reference model. We employ the model of the electric potential governed by the following partial differential equation:

z y x Ω ε lay Ω ε int Ω ε ext Γ ε ext Γ ε int Γ r0 R0 ε (A) With casing.
div(σ ∇u) = f in R 3 , (3) 
where u represents the electric potential, σ stands for the conductivity of different media, and f corresponds to a current source. For our purposes, the conductivity is a piecewise constant function, with a distinct value in each homogeneous subdomain. Specifically, the value of the conductivity inside the thin layer Ω ε lay is much larger than those in the other subdomains. It has the following form (cf. [START_REF] Erdozain | Asymptotic models for the electric potential across a highly conductive casing[END_REF])

σ := σ(ε) :=    σ int in Ω ε int , σ lay = σ 0 ε -3 in Ω ε lay , σ ext
in Ω ε ext , where σ int , σ 0 , σ ext > 0 are provided constants, and ε > 0 is a small parameter. We consider a point source in (r t , 0, 0) ∈ Ω ε int given by

f (r, θ, z) = A r δ(r -r t )δ(θ)δ(z),
where δ stands for the one-dimensional Dirac distribution and A ∈ R denotes an amplitude factor. Using cylindrical coordinates, eq. ( 3) is rewritten as

∆u = A σ int r δ(r -r t )δ(θ)δ(z) in Ω ε int ∪ Ω ε lay ∪ Ω ε ext , (4) 
where in cylindrical coordinates the Laplace operator becomes

∆(•) := r -1 ∂ r (r ∂ r (•)) + r -2 ∂ 2 θ (•) + ∂ 2 z (•).
Eq. ( 3) impose continuity conditions on u and the normal component of σ∇u across the interfaces Γ ε int and Γ ε ext . Hence, our solution u must satisfy

       ∆u = A σ int r δ(r -r t )δ(θ)δ(z) in Ω ε int ∪ Ω ε lay ∪ Ω ε ext , [u] Γ ε int = [u] Γ ε ext = [σ ∂ r u] Γ ε int = [σ ∂ r u] Γ ε ext = 0, (5) 
where

[•] Γ ε int and [•] Γ ε ext
stands for the standard jump operator across the boundaries Γ ε int and Γ ε ext , respectively. Notice that due to the use of an unbounded domain, eq. ( 5) must be complemented with suitable decay conditions when r, |z| → +∞.

Asymptotic models.

The reference model of previous Subsection 2.2 can be approximated by different asymptotic models designed to replace the thin layer Ω ε lay by appropriate impedance conditions or impedance transmission conditions. First, we consider in Subsection 2.3.1 an asymptotic model which approximates the solution to the reference model ( 5) up to a determined order of ε. Then, we consider for comparison in Subsection 2.3.2 a formal asymptotic model developed by Kaufman [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF].

2.3.1.

Fourth-order Gap-ITCs model. In [START_REF] Erdozain | Asymptotic models for the electric potential across a highly conductive casing[END_REF] it is observed that the choice of Impedance Transmission Conditions (ITCs) can lead to different asymptotics models. One of the proposed methods consists of computing the solution in the reduced domain Ω ε := R 3 \ Ω ε lay , thus the name Gap-ITCs. These transmission conditions are composed of jump and mean values across the interfaces, defined in the following way

       [[ • ]] Γ ε := (•) ext | Γ ε ext -(•) int | Γ ε int , {{ • }} Γ ε := (•) ext | Γ ε ext + (•) int | Γ ε int 2 .
The fourth-order Gap-ITCs model is fully described by the following equations

                 ∆u [4] = A σ int r δ(r -r t )δ(θ)δ(z) in Ω ε int ∪ Ω ε ext ,
[[u [4] ]]

Γ ε = 0, -∆ Γ {{u [4] }} Γ ε = ε 2 σ 0 [[σ ∂ r u [4] ]] Γ ε + ε 3 σ 0 r 0 {{σ ∂ r u [4] }} Γ ε , (6) 
where

∆ Γ (•) := r -2 0 ∂ 2 θ (•) + ∂ 2 z (•).
Under some mild conditions on the right-hand side data, it is proven in [START_REF] Erdozain | Asymptotic models for the electric potential across a highly conductive casing[END_REF]Theorem 6] that the asymptotic model ( 6) is of order four on a bounded counterpart of Ω ε , where homogeneous Dirichlet boundary conditions have been introduced for large values of r and z. It means that there exists a constant C independent of ε, such that for sufficiently small values of ε, the following estimate holds

u -u [4] 1,Ω ε int + u -u [4] 1,Ω ε ext ≤ Cε 4 ,
where u is the solution to the reference problem [START_REF] Erdozain | Asymptotic models for the electric potential across a highly conductive casing[END_REF] and ∥ • ∥ 1,O stands for the standard Sobolev H 1 (O)-norm.

2.3.2.

Interface-ITCs Kaufman model. The other asymptotic model that we consider for comparisons, was developed in [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF] by Kaufman. The method consists of computing the solution in the domains Ω int ∪ Ω ext , ignoring the presence of the casing and replacing its influence by a suitable jump condition on the normal component of σ∇u, i.e.,

               ∆u = A σ int r δ(r -r t )δ(θ)δ(z), in Ω int ∪ Ω ext , [u] Γ = 0, [σ ∂ r u] Γ = - σ 0 ε 2 ∆ Γ u (r 0 , z) , (7) 
where [ • ] Γ stands for the usual jump operator at the boundary Γ. This class of models is called Interface-ITCs, since they work with an interface instead of a gap. Observe that the last condition in ( 7) can be thought as the last condition in ( 6), but removing the ε 3 -term and replacing Γ ε by Γ.

DERIVATION OF SEMI-ANALYTICAL SOLUTIONS

3.1. General solutions by means of Fourier transform. Due to the domain invariance in the variables θ and z, the first step for deriving semi-analytical solutions consists in employing a Fourier transform along those variables, i.e.

u k (r, ξ) = 1 2π R π -π u(r, θ, z) cos (kθ) e iξz dθ dz, k ∈ N 0 and ξ ∈ R. (8) 
We emphasize that using the Fourier modes u k (r, ξ) we can recover the expression of u by means of the following Fourier inversion

u(r, θ, z) = ∞ k=0 ζ k 2π R u k (r, ξ)e -iξz dξ cos (kθ) , where ζ k = 1 if k = 0, 2 if k > 0. (9) 
On another hand, the main equation that governs the models of this work has the form

1 r ∂ r (r ∂ r u) + 1 r 2 ∂ 2 θ u + ∂ 2 z u = A σ int r δ(r -r t )δ(θ)δ(z) in Ω * , (10) 
where Ω * varies between the different models employed, namely Thus, applying the Fourier transform transform [START_REF] Magnus | Formulas and theorems for the functions of mathematical physics[END_REF] to equation [START_REF] Pardo | PML enhanced with a self-adaptive goal-oriented hp-finite element method: Simulation of through-casing borehole resistivity measurements[END_REF] we obtain

Ω * :=            Ω ε int ∪ Ω ε lay ∪ Ω ε ext for the reference model (5) (Subsection 2.2), Ω ε int ∪ Ω ε
∂ 2 r ûk + 1 r ∂ r ûk - k 2 r 2 + ξ 2 ûk = A 2πσ int r δ(r -r t ) in I * , (11) 
where I * varies between the different models employed, i.e. [START_REF] Pardo | Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods[END_REF] in the whole interval (0, +∞). Indeed,

I * :=            (0, r int ) ∪ (r int , r ext ) ∪ (
α k (r, ξ) :=          -A 2πσ int I k (|ξ|r) K k (|ξ|r t ), if r < r t , -A 2πσ int I k (|ξ|r t ) K k (|ξ|r), if r t < r. (12) 
3.2. Reference model. The latter implies that, for the reference model (i.e., when I * = (0, r int ) ∪ (r int , r ext ) ∪ (r ext , +∞)), we can write the solution of the eq. ( 11) in the following form

ûk (r, ξ) =            c k 1 (ξ) I k (|ξ|r) + α k (r, ξ) in (0, r int ), c k 2 (ξ) I k (|ξ|r) + c k 3 (ξ) K k (|ξ|r) in (r int , r ext ), c k 4 (ξ) K k (|ξ|r) in (r ext , +∞), (13) 
where c k 1 , c k 2 , c k 3 , c k 4 are coefficient functions to be determined. These four unknown functions can be computed using four equations given by the Fourier transform of the jump conditions in equation ( 5), i.e.,

[û k ] Γ ε int = [û k ] Γ ε ext = [σ ∂ r ûk ] Γ ε int = [σ ∂ r ûk ] Γ ε ext = 0. (14) 
Hence, the column vector

c k ref := c k ref (ξ) := (c k j (ξ)) j=1,2,3,4
is the solution of a four-by-four linear system

A k ref c k ref = b k ref , (15) 
where the explicit expressions for the matrix A k ref and the right-hand side vector b k ref can be found in Appendix A.

Asymptotic models.

We examine now the equation associated with semi-analytical models ( 6) and [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF]. Proceeding analogously as in Section 3.2, we now found that Fourier modes have the general expression

ûk (r, |ξ|) =    c k 1 (ξ) I k (|ξ|r) + α k (|ξ|, r) in (0, r 1 ), c k 2 (ξ) K k (|ξ|r) in (r 2 , +∞), (16) 
where c k 1 and c k 2 are coefficient functions to be determined. In the case of Gap-ITC model ( 6) we put r 1 = r int and r 2 = r ext ; while in the case of Interface-ITCs Kaufman model ( 7) we put r 1 = r 2 = r 0 .

3.3.1.

Fourth-order Gap-ITCs model. Applying a Fourier transform to the Gap-ITCs conditions in eq. ( 6), we obtain

       [[û k ]] Γ ε = 0, ξ 2 + k 2 r 2 0 {{û k }} Γ ε = ε 2 σ 0 [[σ∂ r ûk ]] Γ ε + ε 3 σ 0 r 0 {{σ∂ r ûk }} Γ ε , (17) 
where we keep the previous notation for the jump and mean values, but with the following meaning:

     [[û k ]] Γ ε := ûk (r ext , •) -ûk (r int , •), {{û k }} Γ ε := u k (r int , •) + ûk (r ext , •) 2 .
Transmission conditions [START_REF] Wang | Three-Dimensional Finite-Difference Resistivity Modeling Using an Upgridding Method[END_REF] completely define the coefficient functions c k 1 (ξ) and c k 2 (ξ) of Fourier modes [START_REF] Stuwe | A green's function approach to wave propagation and potential flow around obstacles in infinite cylindrical channels[END_REF]. More explicitly, the column vector c k gap := c k gap (ξ) := (c k j (ξ)) j=1,2 is the solution of a two-by-two linear system

A k gap c k gap = b k gap , (18) 
where the explicit definition of the two-by-two matrix A k gap and the right-hand side vector b k gap can be found in Appendix A.

3.3.2.

Interface-ITCs Kaufman model. In [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF], a low-order model is proposed, with milder transmission conditions. We remark this model is defined over the domain depicted in Figure 1b. Applying the Fourier transform (8) to equation [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF], the transmission conditions for the Kaufman model in Fourier domain, are described by

       [û k ] Γ = 0, [σ ∂ r ûk ] Γ = σ 0 ε 2 ξ 2 + k 2 r 2 0 ûk (r 0 , ξ) . (19) 
Transmission conditions [START_REF] Zemanian | Finite-difference analysis of borehole flows involving domain contractions around three-dimensional anomalies[END_REF] completely define the coefficient functions c k 1 (ξ) and c k 2 (ξ) of the general solution [START_REF] Stuwe | A green's function approach to wave propagation and potential flow around obstacles in infinite cylindrical channels[END_REF]. More explicitly, c k kau := c k kau (ξ) := (c k j (ξ)) j=1,2 is the solution of a two-by-two linear system

A k kau c k kau = b k kau , (20) 
where the explicit definition of the two-by-two matrix A k kau and the right-hand side vector b k kau can be found in Appendix A.

FOURIER INVERSION

In Section 3, we have obtained a description of the solution of problem [START_REF] Pardo | PML enhanced with a self-adaptive goal-oriented hp-finite element method: Simulation of through-casing borehole resistivity measurements[END_REF] by means of the Fourier modes [START_REF] Magnus | Formulas and theorems for the functions of mathematical physics[END_REF]. Now, we are interested in the application of the inverse Fourier transform [START_REF] Muga | Semi-analytical response of acoustic logging measurements in frequency domain[END_REF] to recover the solution of (10) through those Fourier modes. The main drawback is that the Fourier mode û0 behaves singularly at ξ = 0, which complicates standard numerical integration. To deal with this, we apply a classical idea from previous papers (see, for similar techniques, [START_REF] Muga | Semi-analytical response of acoustic logging measurements in frequency domain[END_REF][START_REF] Durán | Computing numerically the green's function of the half-plane helmholtz operator with impedance boundary conditions[END_REF][START_REF] Durán | Computing green's function of elasticity in a half-plane with impedance boundary condition[END_REF]), which consists in characterizing the singular part of û0 (denoted hereafter by ûsing 0 ), and remove it from û0 in order to define a regular part ûreg 0 := û0 -ûsing 0 . This regular part admits standard numerical Fourier inversion techniques; while the singular part is treated using analytical Fourier inversion formulae. The global Fourier inversion is reconstructed using linearity of the integral transform in [START_REF] Muga | Semi-analytical response of acoustic logging measurements in frequency domain[END_REF].

The characterization of the singular part will be made using the following limiting forms of the modified Bessel functions for small arguments (see [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF]):

I k (z) ∼ z k 2 k k! and K k (z) ∼      -log(z), if k = 0 2 k-1 (k -1)! z k , if k > 0, (21) 
together with the derivatives formulae

I ′ 0 (z) = I 1 (z) and K ′ 0 (z) = -K 1 (z).
To start our analysis, let us consider the fundamental solution of (4) in the whole space R 3 :

E := E(r, θ, z) := A 4π σ int 1 z 2 + r 2 + r 2 t -2rr t cos θ .
The Fourier modes [START_REF] Magnus | Formulas and theorems for the functions of mathematical physics[END_REF] of this fundamental solution are exactly the functions α k (r, ξ) defined in [START_REF] Pardo | Simulation of multifrequency borehole resistivity measurements through metal casing using a goal-oriented hp finite-element method[END_REF]. In particular, observe that α 0 (r, ξ) has a log-type singularity at ξ = 0 (see ( 21)). These components α k (r, ξ) will be substracted from the asymptotic analysis of the Fourier modes ûk since we already know its exact Fourier inversion.

On another hand, our goal will be to evaluate the solution of the different models in the inner fluid domain, i.e., when r < r int . Thus, we will focus our attention on the behavior of c 0 1 (ξ)I 0 (|ξ|r) when ξ → 0, for the different models under consideration. Since I 0 (|ξ|r) ∼ 1 for small arguments (see eq. ( 21)), every singular behavior will rely on the limiting form for small arguments of the coefficient function c 0 1 (ξ) obtained from the first component of the vectors c 0 ref , c 0 gap , c 0 kau , which correspond to the solution of linear systems ( 15), ( 18) and (20), for k = 0, respectively. First, we compute the determinants det A 0 ref , det A 0 gap and det A 0 kau . Using the limiting forms in eq. ( 21) for small arguments, we obtain (reminding that σ lay = σ 0 ε -3 )

det A 0 ref ∼ - σ lay r int σ ext r ext , det A 0 gap ∼ - ε 3 2r 0 + ε 2 1 σ 0 σ ext r ext , and det A 0 kau ∼ 1 r 0 .
The latter ensures that systems (15), ( 18) and (20) are solvable for small values of the ξ-variable.

Hence, singularities will depend on the right-hand side of those systems.

Next, we use Cramer's rule to obtain an explicit description of the coefficient functions c 0 1 (ξ). Let us define A 

ref det A 0 ref ∼ A 2πσ int 1 - σ int σ lay K 0 (|ξ|r int ) + σ int σ lay - σ int σ ext K 0 (|ξ|r ext ) . (22) 
Proceeding analogously for A 0 gap and A 0 kau , we get

c 0 1,gap = det A 0, (1) 
gap det A 0 gap ∼ A 2πσ int K 0 (|ξ|r int ) + ϵ 1 ϵ 2 σ int σ ext r ext r int K 0 (|ξ|r ext ) , (23) 
c 0 1,kau = det A 0, (1) 
kau det A 0 kau ∼ A 2πσ int 1 - σ int σ ext K 0 (|ξ|r 0 ), (24) 
where

ϵ 1 := ε 2r 0 -1, and ϵ 2 := ε 2r 0 + 1.
With a full description of the singularities of the coefficient functions c 1 0 (ξ), we can write the regular parts of the Fourier modes û0 , which are going to be inverted using numerical quadratures. These regular parts will be defined by

ûreg 0,ref (r, |ξ|) := c 0 1,ref (ξ)I 0 (|ξ|r) (25) 
- A 2πσ int 1 - σ int σ lay K 0 (|ξ|r int ) + σ int σ lay - σ int σ ext K 0 (|ξ|r ext ) , ûreg 0,gap (r, |ξ|) := c 0 1,gap (ξ)I 0 (|ξ|r) - A 2πσ int K 0 (|ξ|r int ) + ϵ 1 ϵ 2 σ int σ ext r ext r int K 0 (|ξ|r ext ) , (26) 
ûreg 0,kau (r, |ξ|) := c 0 1,kau (ξ)I 0 (|ξ|r) - A 2πσ int 1 - σ int σ ext K 0 (|ξ|r 0 ). (27) 
Figure 2 depicts the difference between the regular solutions ûreg 0 (r, ξ) and the singular counterparts c 0 1 (ξ)I 0 (ξr), for small values of ξ at r = 0. Computations have been performed in the framework of Section 5 with the following constants A = 1, σ int = 1, σ ext = 10 -5 , σ lay = 10 6 , ε = 10 -3 , and σ 0 = 10 -3 . Finally, the singularities driven by the modified Bessel function K 0 will be treated analytically using the inversion formula (see [START_REF] Muga | Semi-analytical response of acoustic logging measurements in frequency domain[END_REF][START_REF] Pérez-Arancibia | On the Green's function for the Helmholtz operator in an impedance circular cylindrical waveguide[END_REF][START_REF] Magnus | Formulas and theorems for the functions of mathematical physics[END_REF]):

1 π R K 0 (|ξ|r)e -iξz dξ = 1 √ r 2 + z 2 .

NUMERICAL RESULTS

This Section aims to validate and compare the models presented in Section 2 and the techniques employed in Sections 3 and 4. Hereon, we employ the trapezoidal rule for numerical integration, specifically for the numerical inverse Fourier transform. We highlight that we have considered a large partition in the Fourier domain, together with refinements of this partition near zero. The refinements are required to follow smooth variations of the regular part of û0 in a neighbourhood of the origin.

We start computing the solution of the reference problem (5) for a point source centered at (r t , 0, 0) = (0, 0, 0) and we make quantitative comparisons between this solution and the solution of the Gap-ITC model [START_REF] Gao | 3-D DC Resistivity Forward Modeling Using the Multiresolution Grid[END_REF] proposed in [START_REF] Erdozain | Asymptotic models for the electric potential across a highly conductive casing[END_REF], and the solution of the interface-ITC model ( 7) from [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF]. For this purpose, we have considered the mid-radius of the casing placed at r 0 = 0.165, and different values for the thickness parameter. Namely, ε = 0.250, 0.200, 0.150, 0.100, 0.50, and 0.001. We have used a normalized amplitude A = 1 and the following conductivities:

σ =    σ int = 1 in Ω ε int , σ lay = 10 6 in Ω ε lay , σ ext = 10 -5 in Ω ε ext .
Moreover, we have considered σ 0 = σ lay ε 3 for the different values of ε. Results are depicted in Figure 3. Notice the accuracy of the fourth-order Gap-ITC solution, even for large values of the thickness parameter ε. In contrast, the larger is ε the less accurate is the solution of the interface-ITC model [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF]. Next, aiming to show the versatility of the Gap-ITC model, we reconstruct one of the experiments in [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF]. The objective of this experiment is to recover a relationship between the second derivative of the potential in the vertical direction and the exterior conductivity. Specifically, it is observed that the second derivative of the potential in z is proportional to the square root of the exterior conductivity, i.e. ,

∂ 2 z u ≈ C √ σ ext , (28) 
where C := C(σ int ) is independent of σ ext (see [7, eq. ( 20) and (37)]). This proportionality is true in a certain interval of the z-axis determined by the casing thickness and the ratio µ := σ int /σ ext . We perform computations using the Gap-ITC model ( 6) and the interface-ITC model [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF]. We have used a point source centered at (r t , 0, 0) = (0, 0, 0) and the mid-radius of the casing at r 0 = 0.165. Moreover, we have considered a fixed thickness of ε = 0.01, a normalized amplitude A = 1, and the following conductivities:

σ =    σ int = 1 in Ω ε int , σ lay = 10 6 in Ω ε lay , σ ext = 1.0e -8, 2.0e -8, 1.0e -7, 2.0e -7, 2.0e -6 in Ω ε ext .
We set σ 0 = σ lay ε 3 as before. These are the conductivities used in [START_REF] Kaufman | The electrical field in a borehole with a casing[END_REF]. We discretize the z-axis using a uniform mesh of step-size ∆z = 0.0999 along the interval (1, 3000). Observe that in figs. 4a and 4b the solution of both model resemble each other. Moreover, in figs. 5a and 5b we obtain the expected behavior described by eq. ( 28), which is also corroborated in Tables 1 and2. 28) for z ≈ 3.8974.

CONCLUSIONS

We have described in detail a general framework to compute semi-analytical solutions for the electric potential problem in a borehole with highly conductive casings. This is of particular interest for testing complex numerical schemes in simple geometrical configurations. Our procedure has been applied to three different models aiming to simulate the same phenomena: one reference model that includes the casing; one asymptotic model that avoids the casing domain; and one asymptotic model that reduces the casing to an interface. Not a minor detail is the careful extraction of singularities in Fourier domain, and the analytical treatment of their inverse Fourier transforms that we have provided. Numerical results show the robustness of the fourth-order Gap-ITC model against the interface-ITC Kaufman model for simulating the electric potential for a wide range of the thickness parameter ε. Moreover, both asymptotic models perform qualitatively equal (recovering the expected results) when used to compute the second derivative of the potential in the vertical direction for different exterior conductivities and for small values of ε.

APPENDIX A. EXPLICIT EXPRESSIONS FOR THE LINEAR SYSTEMS DEFINING THE COEFFICIENTS OF THE FOURIER MODES

As a consequence of the transmission conditions ( 14) over the solution [START_REF] Pardo | Simulations of 3D DC borehole resistivity measurements with a goal-oriented hp finite-element method. Part II: through-casing resistivity instruments[END_REF], we observe that According to the Frobenius method, it is possible to obtain the following series expression for function J k 

A k ref := A k ref (ξ) := (a k ij (ξ)) i,j=1,2,3,4 are defined by a k 11 (ξ) := I k (|ξ|r int ), a k 12 (ξ) := -I k (|ξ|r int ), a k 13 (ξ) := -K k (|ξ|r int ), a k 21 (ξ) := σ int I ′ k (|ξ|r int )|ξ|, a k 22 (ξ) := -σ lay I ′ k (|ξ|r int )|ξ|, a k 23 (ξ) := -σ lay K ′ k (|ξ|r int )|ξ|, a k 32 (ξ) := I k (|ξ|r ext ), a k 33 (ξ) := K k (|ξ|r ext ), a k 34 (ξ) := -K k (|ξ|r ext ), a k 42 (ξ) := σ lay I ′ k (|ξ|r ext )|ξ|, a k 43 (ξ) := σ lay K ′ k (|ξ|r ext )|ξ|, a k 44 (ξ) := -σ ext K ′ k (|ξ|r ext )|ξ|,
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  ext for the Fourth-order Gap-ITCs model (6) (Subsection 2.3.1), Ω int ∪ Ω ext for the Interface-ITCs Kaufman model (7) (Subsection 2.3.2).
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 1 ref to be the matrix A 0 ref whose first column has been replaced by the right-hand side vector b 0 ref . Combining Cramer's rule with the limiting forms (21) for small arguments, we get
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 2 FIGURE 2. Extraction of the singular behavior in Fourier domain, with ε = 0.001. The top line is the regularized solution. The line below is the singular solution.
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 3 FIGURE 3. Comparison of the different solutions in spatial domain, for different values of ε. Solid line is the reference solution. Circles for the Gap-ITC model. Squares for the Interface-ITC Kaufman model.

(

  A) Gap-ITC model (B) Interface-ITC model

FIGURE 4 .

 4 FIGURE 4. ∂ 2 z u for the different exterior conductivities σ ext . The uppermost line corresponds to σ ext = 1.0e -8; while the lowermost line corresponds to σ ext = 2.0e -6.

FIGURE 5 .

 5 FIGURE 5. Verification of eq. (28) for z ≈ 3.8974.
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 142 , a k 24 , a k 31 , a k 41 ≡ 0. In a similar manner, b k ref := b k ref (ξ) := (b k i (ξ)) i=1,2,3,4 , are defined by b k 1 (ξ) := A 2π σ int I k (|ξ|r t )K k (|ξ|r int ), b k 2 (ξ) := A 2π I k (|ξ|r t )K ′ k (|ξ|r int )|ξ|, and b 3 , b 4 ≡ 0.As a consequence of the transmission conditions[START_REF] Wang | Three-Dimensional Finite-Difference Resistivity Modeling Using an Upgridding Method[END_REF] over the solution[START_REF] Stuwe | A green's function approach to wave propagation and potential flow around obstacles in infinite cylindrical channels[END_REF], we observe thatA k gap := A k gap (ξ) := (a k ij (ξ)) i,j=1,2 are defined by a k 11 (ξ) := I k (|ξ|r int ), a k 12 (ξ) := -K k (|ξ|r ext ), k (|ξ|r ext ), In a similar fashion, b k gap := b k gap (ξ) := (b k i (ξ)) i=1,2 , are defined by b k 1 (ξ) := A 2π σ int I k (|ξ|r t )K k (|ξ|r int ), k (|ξ|r int ) .Finally, as a consequence of the transmission conditions[START_REF] Zemanian | Finite-difference analysis of borehole flows involving domain contractions around three-dimensional anomalies[END_REF] over the solution[START_REF] Stuwe | A green's function approach to wave propagation and potential flow around obstacles in infinite cylindrical channels[END_REF], we observe that A k kau := A k kau (ξ) := (a k ij (ξ)) i,j=1,2 are defined bya k 11 (ξ) := I k (|ξ|r 0 ), a k 12 (ξ) := -σ int σ ext K k (|ξ|r 0 ), a k 21 (ξ) := I ′ k (|ξ|r 0 )|ξ|, a k 22 (ξ) := -K ′ k (|ξ|r 0 )|ξ| + 1 k (|ξ|r 0 ),and b k kau := b k kau (ξ) := (b k i (ξ)) i=1,2 are given by b k 1 (ξ) := A 2π σ int I k (|ξ|r t )K k (|ξ|r 0 ), b k 2 (ξ) := A 2π σ int I k (|ξ|r t )K ′ k (|ξ|r 0 )|ξ|.APPENDIX B. BESSEL FUNCTIONSWe remind the definitions of the Bessel functions of first kind and second kind, and the modified Bessel functions. Definition 1. Following [1, Section 9.1], for k ∈ Z, the Bessel functions of first kind J k and second kind Y k are defined as two independent solutions to the Bessel equation x 2 d 2 y dx 2 + x dy dx + (x 2 -k 2 )y = 0.

,Definition 2 . 2 I

 22 where Γ represents the Gamma function. Function J k can then be used to define Y k :Y k (x) = lim l→k J l (x) cos(lπ) -J -l (x)sin(lπ). Following [1, Section 9.6], for k ∈ Z, the modified Bessel functions of first kind I k and second kind K k are defined as two independent solutions to the modified Bessel equationx 2 d 2 y dx 2 + x dy dx -(x 2 + k 2 )y = 0.Finally, we can obtain the expressions of the modified Bessel functions I k and K k from the definitions of the Bessel functions given in Definition 1I k (x) = lim l→k i -l J l (ix), K k (x) = liml→k π -l (x) -I l (x) sin(lπ) .

  r ext , +∞) for model (5) (Subsection 2.2), ODEs in the r variable whose right-hand side is a one dimensional Dirac distribution. By an appropriate change of variables, we reduce these ODEs to the modified Bessel differential equation (see[START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF] Section 9.6]). The two linearly independent solutions in the kernel of this equation are the modified Bessel functions of the first kind I k (|ξ|r) and second kind K k (|ξ|r), see Appendix B. These functions enjoy a remarkable number of properties. We remark that I k is bounded near zero and grows exponentially away from zero, unlike K k which is divergent in zero and decays exponentially away from zero. Using these functions, we can build a general solution α k (ξ, r) of the ODE

	(0, r int ) ∪ (r ext , +∞),	for model (6) (Subsection 2.3.1),
	(0, r 0 ) ∪ (r 0 , +∞),	for model (7) (Subsection 2.3.2).
	Equation (11) defines (k, ξ)-parametrized	

TABLE 1 .

 1 Numerical constants for ∂ 2 z u ≈ C σ α ext , for the Gap-ITC model, obtained with polyfit.

	z	α	C
	2.0990	0.486184337738951 15.084126468656251
	20.0828	0.521227591227497 14.613303921969147
	200.0207 0.521263946983287 14.615346255895707
	1000.0000 0.533840363483719 14.453820826649306

TABLE 2 .

 2 Numerical constants for ∂ 2 z u ≈ C σ α ext , for the interface-ITC model, obtained with polyfit.

	z	α	C
	2.0990	0.447393502868237 15.599943361971109
	20.0828	0.521178475788366 14.615229868952285
	200.0207 0.521217096294370 14.617233619952259
	1000.0000 0.533814124708426 14.455410475365174
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