
HAL Id: hal-03373014
https://hal.science/hal-03373014

Submitted on 11 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Bloch wave reduction scheme for ultrafast band
diagram and dynamic response computation in periodic

structures
Régis F Boukadia, Christophe Droz, Mohamed N Ichchou, Wim Desmet

To cite this version:
Régis F Boukadia, Christophe Droz, Mohamed N Ichchou, Wim Desmet. A Bloch wave reduction
scheme for ultrafast band diagram and dynamic response computation in periodic structures. Finite
Elements in Analysis and Design, 2018, 148, pp.1-12. �10.1016/j.finel.2018.05.007�. �hal-03373014�

https://hal.science/hal-03373014
https://hal.archives-ouvertes.fr


A Bloch wave reduction scheme for ultrafast band diagram and dynamic
response computation in periodic structures

Régis F. Boukadiaa,b,∗, Christophe Drozb,∗, Mohamed N. Ichchoua, Wim Desmetb
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Abstract

A variety of Reduced-Order Modelling (ROM) techniques have been developed for the Wave/Finite Element (WFE)

Framework. However most of these techniques are not compatible with dynamic response computation or frequency-

dependent problems. This paper introduces a new reduction strategy for the WFE method, enabling the computation

of both the forced response and the complex dispersion curves of periodic structures modelled using large-sized

finite element (FE) models. The method exploits the duality between Inverse and Direct Bloch formulations to build a

reduced solution subspace, accounting for both propagating and evanescent behaviours, while ensuring high reduction

factors. This reduction strategy therefore enables the resolution of a wider range of problems, including near/far field

response computation in finite waveguides subjected to dynamic loadings, or vibroacoustic transmission/reflection

problems. First, the method is used to compute dispersion curves and forced response in a duct. Then a large

bi-stiffened structure is studied to evaluate the method’s performances. The high frequency resolution provided by

the proposed ROM allows us to explore a variety of propagation and guided resonances localization effects, hardly

accessible otherwise. Furthermore, the considerable reduction factors enable fast wave dispersion analyses in large-

scaled periodic structures, complex phononic crystals designs or locally resonant metamaterials.

Keywords: Wave Finite Element, Bloch theorem, Model reduction, Forced response, Evanescent waves, Periodic

structures
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1. Introduction

An extensive research effort has been devoted to understand and analyse wave propagation in periodic structures,

meta-materials and a broad range of lightweight structures over the past decade. Their periodicity allows the compu-

tation of local wave dispersion characteristics such as stop-bands, local resonances, diffusion and spatial attenuation

properties. This knowledge can then be used for the design and optimization of a broad range of engineered media

with desirable dynamic behaviours (see [1, 2, 3, 4]). Various methods were developed to predict wave dispersion

characteristics in complex 1D or 2D periodic structures: homogenization techniques were proposed in [5] to com-

pute high-frequency dispersion characteristics in phononic waveguides. One can also cite the work Boutin et al. [6]

on equivalent models for porous waveguides with embedded Helmoltz resonators. Multi-scale techniques were also

developed [7, 8] to model heterogeneous or periodic structures using limited macroscopic information. Recently, the

wave finite element method (WFEM) based on Bloch theorem, has been the subject of high interest (see Sec. 2 for a

detailed discussion). It has been used to study wave propagation and conduct vibroacoustic analyses in a wide range of

continuous or periodic structures, as it exploits standard FE packages to model the waveguide’s unit-cell. One can cite

applications of the WFEM to structures such as sandwich panels involving different core topologies [9, 10], poroe-

lastic media [11] or piezoelectric elements [2]. It was recently applied to perform fast design of periodic topologies

with enhanced acoustic performances by computing local acoustic radiation [12] or transmission [13, 14] problems in

a variety periodic structures.
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In order to further enable the development of novel acoustic or elastic meta-structures with optimized structural

configurations, considerable challenges are still to be faced in terms of numerical methodologies. Indeed, com-

puting the broadband dispersion diagram of complex periodic waveguides requires to solve numerous large, often

ill-conditioned (see Waki et al. [15]) eigenvalue problems, whose size is related to the FE model used to describe the

waveguide’s unit-cell. Remarkable achievements have been achieved on reduced-order modelling (ROM) strategies

for wave-based methods and particularly for the wave finite element framework. Those are driven by the need to use

refined unit-cell’s finite element model when the wavelength are small compared with the unit-cell’s length. Reduc-

tion schemes are also crucial to enable fast design of complex structures (e.g. to create locally resonant behaviours,

see [16] for example) or to implement topology optimization algorithms (see Kook and Jensen [17]). Various ROM

strategies have been developed for the WFEM, enabling fast wave analyses at different levels:

• A reduction strategy for computing the forced response for 1D waveguides was developed by Mencik [18,

19], along with significant improvements on the computational efficiency and conditioning of the matrices.

This yields a better exploitation of the computed wave solutions to retrieve the harmonic response of a finite

waveguide.

• Condensation techniques have been introduced in the WFE framework (see [20]) to reduce the computational

effort associated with the dynamic condensation of the inner degrees of freedom (DOF) of the unit-cells.

• Finally, Droz et al. [21, 22] developed an interface reduction technique to replace also the periodic edge DOF

by a reduced number of propagating Bloch waves. Combined with modal condensation techniques, this method

provides the dispersion curves in complex periodic structures with up to 99% reduction of the computational

effort.

However, it is emphasized that only propagating and slightly decaying wave solutions can be derived from the wave

expansion strategy mentioned above. Nonetheless, evanescent waves are crucial to describe the local dynamics at a

waveguide’s edges, or close to structural singularities (e.g. a coupling element, a point force excitation). Therefore it is

obvious that none of the above mentioned ROM strategies allows both an ultrafast computation of the dispersion curves

and a further exploitation for coupling or forced response computation. This work therefore aims at the development

of a reduced formulation of the dispersion problem allowing the computation of both propagating and evanescent

waves. This will enable a further use of the obtained solutions to predict the response to complex load cases or to

perform fast diffusion analyses through finely meshed sub-structures.

In this paper a model order reduction strategy is developed for the wave/finite element framework, based on

singular value decomposition of a discretized wave solution subset. The paper is organized into 6 sections including

this introduction. The background on WFEM is reviewed in Sec. 2 and some numerical issues related to Bloch wave

analysis are discussed. In Sec. 3 the proposed model order reduction scheme is described for the fast computation

of propagating and evanescent waves based on singular value decomposition. In Sec. 4, the reduction scheme is
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applied to a hollow beam, which is a typical case of continuous waveguide exhibiting multimodal behaviour when

subjected to a point force excitation in the medium frequency range. The reduced model is used to compute wave

dispersion characteristics and the approximation error. Then, the forced response is computed in the finite structure,

to highlight the method’s performances in the forced WFEM framework. In Sec. 5, the performances of the method

are challenged for a full-scaled stiffened plate with an large unit-cell’s FE model. The vibroacoustic behaviour of this

periodic structure is commonly studied though wave-based approaches and requires the combination of the WFEM

with a CMS technique. The proposed reduction scheme is therefore applied to explore veering, locking and stopband

effects produced by the stiffeners, with a frequency resolution that could not be achieved without ROM strategy.

Conclusion are eventually drawn in Sec. 6.

2. Review of the WFEM framework

The WFEM framework correspond to the application of Floquet-Bloch conditions on FE models of unit cells to

compute the properties of waves in a periodic media. First, a finite element model is obtained using an FE package,

the mesh of the unit cell should respect periodicity conditions ensuring that primal assembly of the right and left

interfaces of the unit cell is possible. Then, the degrees of freedom of the unit cell are separated in three groups: qL

the degrees of freedom of the left interface, qI , the internal degrees of freedom of the unit cell and qR the degrees of

freedom of the right interface. Finally, Bloch periodicity conditions are applied on the unit cell namely : qR = λqL and

fR = −λ fL. fL and fR representing the efforts on the right and left interface and λ being the Floquet-Bloch propagation

constant.

2.1. Inverse and direct approach pros and cons

Initially developed by Mead [23], the inverse approach consist in fixing the propagative constant λ of a periodic

structure and compute the unknown frequencies ωi, solutions of the following eigenvalue problem:

(K(λ) + jωiC(λ) − ω2
i M(λ))Φi = 0 (1)

where the matrices K, C and M are respectively the stiffness, damping and mass operators of the waveguide’s periodic

unit-cell obtained by forcing the value of the propagation constant (see equation (6) for explicit formulation). It is

therefore emphasized that viscous and hysteretic damping models are handled by this formulation, although more

complex damping models would require the resolution of non-linear eigenvalue problems:

(K(ωi, λ) − ω2
i M(λ))Φi = 0 (2)

The formulation in Eq.1 has the advantage that the matrices K(λ), C(λ) and M(λ) are symmetric positive whenever

the propagating constant λ is equal to 1 or -1 (the solutions ωi are therefore corresponding to the so-called cut-

on frequencies). Additionally, these matrices are self-adjoint for all the complex propagating constants located in
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the unit circle. This means the eigenvalue problem is well-conditioned, especially when no damping is present.

The eigenvalues ωi and eigenvectors Φi pairs obtained by this method exhibit higher accuracy and reliability, while

iterative solvers can be used to limit the computation to a solution subset of interest. This inverse method however,

has a number of drawbacks:

a- The size of the eigenvalue problem is (n + m) where n is the number of DOF on the section and m is the number

of DOF on the inner part of the structure.

b- Since frequency is the unknown of eigenvalue problem Eq.(1), the use of frequency-dependent material prop-

erties (such as damping) is not straightforward. As a consequence, the prediction of non-propagating waves in

dissipative materials is limited.

c- The method is not compatible with frequency-based approaches such as the forced/coupling formulations de-

rived from the WFEM outputs (see Mencik and al. [18])

As a consequence of these issues, the direct approach was later developed [24]. The direct approach assumes a

known frequency and uses dynamic condensation of the m inner DOF of the structure to reduce the size of the spectral

problem from (n + m) to n. An (n× n) eigenvalue problem is then solved with the propagating constants as unknowns.

This eigenvalue problem can take the following among many forms([25, 26]):

(
1
λ

D̃RL + (D̃RR + D̃LL) + λD̃LR)qL = 0 (3)

where the subscripts .L and .R denote the left- and right-sided DOF of the condensed dynamic stiffness matrix D̃ of

the periodic unit-cell.

This direct approach has the advantage of giving all the propagating constants at a given frequency and is com-

patible with frequency-dependent damping models. However, these advantages are counterbalanced by a number of

numerical issues [27]. Indeed, the spectral problem can only be solved once put on the following form:

(D̃RL + λ(D̃RR + D̃LL) + λ2D̃LR)qL = 0 (4)

This quadratic eigenvalue problem is equivalent to Eq.(3) if and only if the matrix DRL (or DLR) can be inverted,

which is not the case in practice. This leads to pairs of 0 and ∞ eigenvalues corresponding to eigenvectors located in

the kernels of DRL and DLR. These solutions must be filtered out since they have no physical meaning and strongly

degrade the condition of the eigenvalue problem. It should be noted that bad conditioning can arise even when all

the matrices are non-degenerate: this can be due to the presence of strongly evanescent waves and the limitations of

machine precision. A better formulation for the computation of eigenvalues was developed by Zhong et al. [28]. It has

the advantage of improving the condition number of the eigenvalue problem by gathering the pairs of the simplectic

eigenvalue problem into a eigenspace of dimension 2 and associating strongly evanescent waves with a strictly 0

eigenvalue instead of (0,∞) pairs.
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2.2. Modal-based, wave-based and hybrid reduction methods

In order to increase the computational effectiveness of the method, model order reduction strategies have been

developed in the WFEM framework: Zhou et al. [20] developed a model order reduction strategy based on the Craig-

Bamptom reduction of the inner DOF of the structure. The method has been shown to yield good results when a

number of m̃ << m modes of frequencies up to three time the maximum frequency of study are retained. When used

in conjunction to the inverse approach, the method results in a direct reduction of the size of the eigenvalue problem

from n + m to n + m̃. When used in conjunction to the direct approach, the size of the eigenvalue problem (n) is not

reduced but the inversion of the sub-matrix DII is highly facilitated.

For the direct approach, Droz et al. [21] developed a wave-based reduction strategy to compute propagating

solutions of waveguides involving complex cross-sectional FE model. The eigenvalue problem is then reduced from

n cross-sectional DOF to a reduced number ñ << n of propagating wave contributions, hence providing considerable

reduction of the computational costs associated with wave dispersion analyses. The reduced wave basis is formed

using propagating eigenvectors filtered from a limited number of full solutions sampled on cut-on frequencies. Gram-

Schmidt Ortho-normalization is then used to create a projection matrix containing selected wave-shapes. Although

this method can be used to perform a fast computation of propagating dispersion curves, it suffers from the following

limitations:

a- Depending on frequency sampling, Gram-Schmidt algorithm can produce redundant projection basis and yield

numerical noise, as well as an unnecessary large reduced basis. Its reduction hence requires an additional

truncation criteria which may result in a lack of robustness of the method, especially when a large number of

cut-on frequencies are located in the bandwidth of interest.

b- A variety of frequency-dependent phenomena can occur far from selected frequency samples, or without the

appearance of a cut-on frequency: one can cite wave conversions, localizations or other periodic effects. In such

cases, the reduced basis is not expected to allow accurate computation of the wave dispersion characteristics.

c- Finally, the method was created only aiming at predicting propagating dispersion curves. Since evanescent

waves are missing in the reduced model, the use of diffusion or forced computation framework is not available.

Such a reduction method, compatible with the forced response and wave diffusion framework is still missing in

the literature.

In order to address these issues, a new reduction method is proposed hereby, combining the advantages of inverse

method (i.e. iterative solver and well-conditioned matrices) with a direct WFEM formulation able to tackle frequency-

dependent FE models. In addition to being more accurate and robust, this reduction strategy provides both propagating

and evanescent solutions and is compatible with wave-based framework for forced response computation.
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3. Proposed reduction scheme

The proposed reduction method combines the Craig-Bampton reduction method with a wave based reduction (see

also [22]). First, the Craig-Bampton reduction is applied resulting in a reduction of the number of inner DOF from m

to m̃. The component modes of the periodic unit-cell are kept up to 4× fmax, to ensure accurate description of the inner

motions for evanescent waves. Reduced matrices are denoted K, C and M while dynamic condensation of the inner

DOF qI is applied in the direct method, so that the dynamic stiffness matrix at the frequency ω is denoted D̃. The idea

is to build a projection basis for the interface DOF qL and qR, able to capture the propagative waves as well as the least

evanescent waves that have significant contributions to the dynamical response of the structure close to its boundaries.

To build this reduced basis from an accurate and computationally efficient way, it is preferable to use wave shapes

corresponding propagative solutions obtained mainly through the use of the inverse method. The main advantage of

using the inverse method is that eigenvalues and eigenvectors are well conditioned for a given wavenumber k and

correspond to eigen-frequencies allowing frequency-based truncations of the model similar to classical mode-based

ROM strategies. Preliminary information about the k − space topology is necessary to define a judicious and robust

sampling strategy. It is therefore needed to evaluate: (1) the number of propagating waves appearing in the bandwidth

of interest and their cut-on frequencies ; (2) if waves reach aliasing, what is their cut-off frequencies (e.g. in case

of bandgap or Bragg aliasing) ; and (3) what is the wavenumber’s value and the maximal frequency of interest. An

illustration is shown in Fig.1 to describe the combination of inverse and direct methods for retrieving these solutions.
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Figure 1: Illustration of the k − space sampling strategy.

The sampling strategy is to determine values of k for which the inverse approach will be used. The sampling set
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is initialized with k0 = 0. In the first step of the method the direct approach is used at a single frequency: fmax to

retrieve the propagating values of k. These values are depicted by the square markers on the vertical dashed line at

fmax. The three values k1, k2 and k3 are added to the sampling pool. Then the inverse approach is used with k = π
L to

determine if aliasing is reached before fmax. Since this is the case (square marker on the horizontal line), the value

at k4 = π
L is also added to the initial sampling pool. The parameter nk is then introduced to refined the wavenumber

sampling. It ensures that each wave is sampled at least nk times and no effect of wave conversion or veering is missed.

Therefore, using nk = 2 yields the following additional k-values: k1
2 ,

k2
2 ,

k3
2 ,

k4
2 (c.f. horizontal dashed lines in Fig.

1). The inverse approach is then used at each k-sample and the eigenfrequencies are kept below n f × fmax. This

frequency parameter allows a projection basis enrichment able to account for some non-propagative waves, hence to

increase the performance of the method in the forced response framework. These solutions are shown in Fig.1 for the

main k-samples (star markers), refined samples (pentagon markers, depending on nk) and first step solution (square

markers).

3.1. Computation of the cut-on frequencies for |λ = 1|

First, the inverse approach is used with λ equal to 1 and -1 to retrieve the cut-on frequencies by solving the

following eigenvalue problem:

(K(λ) + jωiC(λ) − ω2
i M(λ))Φi = 0 (5)

where the matrix operator λ −→ X(λ) is defined by:

X(λ) =

 In 0 1
λ

In

0 Im 0

 ×


XLL XLI XLR

XIL XII XIR

XRL XRI XRR

 ×


In 0

0 Im

λIn 0

 (6)

The obtained cut-on and cut-off frequencies and associated wave-shapes provide valuable information about band-

gaps, Bragg aliasing and possible appearance of new propagating waves.

3.2. Computation of the direct solution at ωmax

A direct approach is then used to determine the constants of propagation and wave-shapes of waves that did not

reach aliasing on the frequency range. A single resolution of Eq.(3) is therefore needed at the frequency ωmax.

(
1
λ

D̃RL + (D̃RR + D̃LL) + λD̃LR)qL = 0 (7)

3.3. Computation of the inverse solutions and k-space sampling

It was recently shown [9] shown that wave frequency-conversions can happen and may result in drastic variations

of the wave-shapes (i.e. eigenvectors) on a same given branch of the dispersion diagram. In order to capture those

changes, the k-space is sampled based on the wavenumber solutions computed above, according to the following

procedure. Denoting k(max)
p the real part of the wavenumber of the p-th propagating wave at ωmax, a number nk of
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samples is defined for this wave so that the sampling value
{
k(max)

p

}
becomes

αk(max)
p

nk


α={−nk ,...,nk}

. As a consequence,

the wavenumber values used to sample the k-space are defined as:

Sampk =
⋃

p

αk(max)
p

nk
; α = {−nk, ..., nk}


p

(8)

An iterative Arnoldi Algorithm is used to solve the inverse problem at each wavenumber sample in Sampk and

retrieve propagating and evanescent wave-shapes up to the maximal frequency n f × fmax. The parameter n f allows to

incorporate the least evanescent wave modes by sampling them once they become propagative. Given that the inverse

approach is a form of modal analysis, this can be directly compared to mode based model order reduction methods

where it recommended to take modes up to n times the maximal frequency of interest as these modes still contribute

to the response of the structure. The main difference, here, is the multiscale nature of the problem. If one is only

interested in the response in the far field then n f can be chosen equal to 1 without any loss of accuracy.

3.4. Singular Value Decomposition and wave basis truncation

The large collection of wave-shapes obtained from the previous steps cannot be immediately used to build a re-

duced projection basis. The first reason is linked to the nature of the eigenvectors used to build the reduced basis.

Indeed, both inverse and direct approaches result in complex propagation constants and eigenvectors, which would

produce an Hermitian projection basis. Although a complex projection basis is usually acceptable compared with an

unstructured complex matrix, it would still degrade the computing performances of the reduced model. Therefore a

separation of the real and imaginary parts of retained vectors is achieved: {Ψi} −→
{
<(Ψi) ; =(Ψi)

}
, hence dou-

bling the size of the projection vectors collection. The second reason is related to the important redundancies within

the vectors collection, meaning that the obtained projection matrix would not be of maximal rank. Such projection

would result in numerical instabilities in the reduced model. To address this issue, a singular value decomposition

(SVD) of the normalized vector collection ΨColl is performed, leading to the derivation of the three matrices:

ΨColl = UΣVT (9)

where U is a (m × m) normal matrix, V is a (n × n) normal matrix and Σ is a (m × n) matrix with non-negative real

numbers on the diagonal and zeros outside of the diagonal.

The final wave basis projection matrix PLR is built by gathering the columns of the matrix U corresponding to

non-null diagonal entries of Σ. Note that when large values are chosen for n f and nk, it is possible to only keep

the columns associated with the largest singular values. One of the main question being where should the SVD be

truncated, two methods are employed. Computing the effective rank [29] of the vector collection provides an estimate

of the minimal number of vectors required to ensure representativeness of the projection matrix. The singular values

σi distribution of the vector collection can be normalized by:

pi =
σi

n∑
k=1

σk

, (10)
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which allows computation of its entropy H:

H(p1, ...pn) =

n∑
i=1

−pilog(pi) (11)

Therefore, the effective rank of the collection of vectors can be defined as:

erank = exp(H(p1, ...pn)) (12)

The value erank is the minimal number of singular values to be retained to obtain an acceptable projection basis.

Note that although this criteria can be used as a default value to obtain a minimal size for the projection basis, it does

dot always guarantee a high quality of the reduced model. In order to evaluate the number i of first singular vectors

of ΨColl to be retained, that ensures the quality of the approximation is above an order ε, the following criteria is

proposed to control the quality of the reduced basis:

ε <

n∑
k=i+1

σk

n∑
k=1

σk

(13)

In practice, a value of ε between 10−3 and 10−5 is recommended. Once the reduced wave basis PLR has been

obtained, the final projection basis P is formed defining the relationship between the degrees of freedom of the full

and reduced models : 
qL

qI

qR

 =


PLR 0 0

0 I 0

0 0 PLR




q̃L

qI

q̃R

 (14)

The reduced mass stiffness, and damping operators are obtained using a Rayleigh-Ritz projection on the initial

matrices :

Xred = PT XP (15)

Where X stands for the mass stiffness, damping or dynamic stiffness matrix of the model. To obtain the dispersion

characteristics of the periodic medium, the eigenvalue problems to be solved are still those of equation (3) and (1)

using the reduced matrices and coordinates instead of the original ones. Therefore the model order reduction scheme

proposed is directly compatible with any implementation of the WFEM.

4. Validation 1: application to a hollow beam

In this section an application example is shown to evaluate the performances of the proposed method. The reduced

formulation is therefore applied to compute dispersion curves and forced response of a hollow beam. A comparison

is proposed with the standard WFEM formulation, to provide discussion about computational costs and accuracy of

the reduced model.
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4.1. Presentation of the model

The proposed reduction scheme is tested on a rectangular hollow beam of total length: l=12 m, height h=10 cm,

width w=40 cm, wall thickness e=2 mm. The beam is made of an homogeneous material of Young Modulus E=200 GPa,

Poisson ratio ν=0.3 and density ρ=7800 kg.m−1. The periodic unit-cell is described in Figure 4.1. A number of 48

elements are used in the Z-direction (height) and 12 are used in the Y-direction (width), for a total of 1440 DOF in the

unit-cell.

Mesh of the unit cell

Figure 2: FEM of the hollow beam. The unit-cell is modelled on ANSYS using linear SHELL181 elements with mid-plane offset of length le=4 mm

along the beam’s length (X-direction).

4.2. Performance of the method for dispersion analysis

The dispersion curves of propagating waves, computed using reduced and standard WFEM, are shown in Figure

3 in the frequency range [0 - 500 Hz], while an hysteretic damping of η=0.001 is introduced in the structure. The

damping η is defined as the ratio of the imaginary part over the real part of the Young Modulus. Nine propagating

waves can be observed, which are subjected to various veering and frequency-conversion effects, especially around

100 Hz, where a significant increase of the wavenumbers can be observed for the two flexural modes.

With a value of n f =1 and nk=3, a perfect agreement can be observed between full and reduced solutions, while

the total computation time for 200 frequency samples is divided by 132. As shown in table 1 the reduced model

enables a considerable reduction of the computation time per frequency (1/1444), while the reduction process itself

takes only 38 sec, which is comparable to the resolution of a single frequency (28 sec per frequency). This means that

the frequency sampling can be considerably refined with negligible additional CPU effort.

In order to examine accuracy of the reduced model, the error is shown in Figure 4. The error produced on the

approximated wavenumber kred is evaluated using the values obtained for the original model k f ull by:

ε = |
k f ull − kred

k f ull
| (16)
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Figure 3: Dispersion curves of the hollow beam computed with the standard WFEM (.) and the reduced formulation (*). The two solutions are

perfectly superposed.

Step Reduced Model Full Model Reduction ratio

Model size 108 1440 13

Building reduced model 38.69s NA NA

WFE (per frequency) 1.939 10−2s 28.02 s 1444

Total (200 frequencies) 42.58s 1h 34min 132

Table 1: Computational efforts required for the dispersion analyses in the hollow beam. Comparison between the reduced and full models. All

calculations are conducted using an Intel(R) Core(TM) i7-6600U CPU 2.60GHz processor.

The relative error on the real and imaginary part are evaluated separetly. Indeed, the the imaginary parts of

wavenumbers of propagating waves are sevral orders of magnitude below that of the real parts but still contain im-

portant imformation about the wave propagation dynamics of the structure. Noteworthy, the error introduced by the

reduction process is always inferior to 10−5 for the real part and the spikes appearing close to the cut-on frequencies

are due to near zeros wavenumbers. The imaginary part is not as accurate at low frequency but stays below 10−5 after

40Hz, again, this is because the imaginary wavenumber is near 0 for propagative waves at 0 Hz. Therefore, it can be

emphasized that the level of accuracy obtained with the reduced model is comparable to the level of precision of the

eigenvalue solver, which mean that the error introduced by the reduction process is virtually null.
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Figure 4: Error produced by the model order reduction scheme on the 9 propagating waves.

4.3. Performance of the method on a forced response framework

The ROM strategy is now applied to compute the dynamic response of the 12 m long finite structure. The forced

response is obtained from the wave basis computed above, using the WFE forced response framework (see Mencik

[18]). The beam is clamped on its left end (see Figure 5.a), while a punctual vertical load is applied on the right end,

located on the center of the upper face, as shown in Figure 5.b.

Figure 5: Bounday conditions and load applied to the hollow beam. The Left side of the beam is clamped while its right end is free. A unitary

punctual force is applied at the middle of the cross section of the structure.

The forced response is computed in the same bandwidth [0 - 500 Hz], while the FE model described above is

used to describe the waveguide’s unit-cell. It is noted that the use of a Bloch formulation already provides significant

advantages, since a similar simulation using standard FE analysis would result in a 2.16 millions DOF model. In order
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to examine the convergence of the reduced model, 3 values of n f are tested from n f =1 to a n f =3, while nk =3 and ε is

fixed to a conservative 10−5 (see Section 3.3). Results obtained from these three reduced models are compared with

the full WFEM solution in Figure 6 (on point force excitation) and in Figure 7 (on the same cross-sectional location,

at a 3 m distance from the excitation).
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Figure 6: Forced response at the point force excitation. Proposed ROM (n f =1,2,3) vs. full WFE model.

Noteworthy, the reduced model provides highly accurate frequency responses in both cases, as no error can be

observed and convergence is already obtained for n f =1. It means that the reduced model remains valid close to the

singularity (on force point and boundary condition), and on the far field (second point). It is emphasized that such

results would not be obtained if an insufficient number of waveshapes are retained. In a case were the far field is

accurate but errors appear close to singularities, it is recommended to increase the value of n f to 2 or 3.

Options Reduced Model Full Model Reduction Factor

number of DOF 158 1440 9

Reduction process(time) 39.98s NA NA

WFE (time per frequency) 5.00 10−2s 28.02s s 560

WFE (Total) 1m 40s (2.104 frequencies) 3h 43m (500 frequencies) NA

Forced Response 16m 40s (2.104 frequencies) 10m 45s (500 frequencies) NA

Total time 19m (2.104 frequencies) 3h 54m (500 frequencies) NA

Table 2: Computational efforts required for the forced response computation in the hollow beam. Comparison between the reduced (n f =3, nk=3,

ε=10−5) and full models. All calculations are conducted using an Intel(R) Core(TM) i7-6600U CPU 2.60GHz processor.
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Figure 7: Forced response at 3 meters away from the point force excitation. Proposed ROM (n f =1,2,3) vs. full WFE model.

The dynamic response of the hollow beam exhibits a clear transition from low- to mid-frequency behaviours,

where the modal density increases drastically above 100 Hz. It is worth mentioning that this transition is produced by

the cut-on and veering effects observed at the same frequency on the dispersion curves (Figure 3). In order to describe

the dynamic behaviour of this waveguide, a high frequency resolution is required above 100 Hz, that would not be

achievable using conventional FE methods nor standard forced WFEM formulation. A resolution of 20.000 frequency

samples was possible using the reduced model (for a total of 19 min), while a similar WFEM computation would have

required approximatively 160 hours. A detail of the computations realized is shown in Table 2. It compares the CPU

time required to compute the FRF using the most conservative (largest model) case n f =3 with the full model. When

computing forced responses, the authors recommend to use a truncation criteria of n f =3 to ensure convergence of the

response at the point of excitation, while a value of n f =1 or 2 is sufficient for accurate far field computations.

5. Validation 2: application to a stiffened plate

In this second validation example the method is applied to an orthogonally stiffened panel, which therefore com-

bines periodicity in the propagation direction with a higher cross-sectional complexity. The application of the Bloch

theorem via a direct approach is particularly challenging in such structures, as the number of DOF becomes larger and

Component Mode Synthesis (CMS) is needed to perform dynamic condensation of the periodic unit-cell. This appli-

cation example is proposed to highlight the performances of the proposed reduction scheme in a context where Bragg

scattering and locally resonant behaviours are encountered within the acoustic range. Some sub-wavelength propa-

gation features occurring in the mid-frequencies are further discussed, as it is emphasized that such high-resolution
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dispersion analyses are hardly achievable from existing WFEM formulations.

5.1. Description of the stiffened structure

The considered waveguide is an aluminium plate of thickness e=2 mm and width 40 cm stiffened using rectangular

beams of height h=10 mm and width ls=5 mm. The spacing between the stiffeners is 10 cm along the width and 5 cm

along the propagation direction and hysteretic damping of η=10−4 is introduced. The FE model of a periodic unit-cell

of the structure is shown in Figure 8. In order to allow fast dynamic condensation of the dynamic stiffness matrices,

31 fixed-interface modes are retained (until 10× the maximum frequency) in the CMS, to replace the inner DOF of

the periodic unit-cell. Then, the proposed wave-based reduction scheme is applied to further reduce the model on its

interfaces.

Figure 8: Unit-cell FE model of the orthogonally stiffened panel. Linear SOLID185 ANSYS elements are employed to mesh the whole structure,

three elements are used in the plate’s thickness and 10 elements are used to describe the stiffeners’ cross-sections. A total of 26.331 DOF are used,

while 2.880 DOF are located on the left and right interfaces of the periodic-cell.

5.2. Results and discussion of propagative behaviours in stiffened plates

The dispersion curves were obtained using the standard WFEM formulation (201 frequency samples, 10 h com-

putation) and using the proposed method (5001 frequency samples, 9 min total computation). A summary of the CPU

effort for each step is detailed in Table 3 for both reduced and full WFEM dispersion analyses.

Step Proposed method (time) WFEM + CMS (time) Reduction Factor

Model size 194 2902 15

Craig-Bampton Reduction 2m 29s 2m 29s NA

Wave-based reduction 3m 40s NA NA

WFE (per freq.) 4.21×10−2s 3m 02s 4323

WFE (Total) 3m 30s (5001 freq.) 10h 09m (201 freq.) NA

Total time 9m 40s (5001 freq.) 10h 11m (201 freq.) NA

Table 3: Computation times for dispersion analysis in the stiffened structure. Comparison between the reduced (n f =3, nk=3, ε=10−5) and full

models. All calculations are conducted using an Intel(R) Core(TM) i7-6600U CPU 2.60GHz processor.

Noteworthy, the model size is reduced by a factor 15 and yields almost negligible computational effort per fre-

quency, while results are in perfect agreement with the full model (see Figure 9). Noteworthy, all dispersion effects

16



such as resonances, cut-on, veering and locking effects produced by backscattering waves are correctly described

by the reduced model. The propagating dispersion curves of the waveguide are filtered using the criteria |λ| > 0.9

and a wavematching algorithm is used to identify wavetypes in the frequency range [0 - 5000 Hz]. Note that wave-

matching algorithms are highly sensitive to the frequency resolution. Therefore, the benefit of a refined frequency

sampling becomes clearly visible between [4500 - 5000 Hz], where numerous veering-locking effects are observed in

the dispersion curves.
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Figure 9: Dispersion curves of the stiffened plate, obtained using the standard WFEM (. . .) and the proposed reduction scheme (—) (both include

CMS condensation).

Bragg scattering is also correctly predicted using the reduced model, and can be observed on first-order waves

starting from 2900 Hz (for k=62.83 rad.m−1), note that the first local resonances occur in the same bandwidth in this

example. In total, 11 propagating waves can be distinguished on the dispersion curves. The shapes of the first-order

waves (longitudinal, shear, torsional and flexural) are shown in Figures 10 and 11 for a propagation along 0.5 m. Note

that the plate behaves as an homogeneous structure in the considered bandwidth, as the wavelength is smaller than the

stiffener’s spacing in both propagating and transverse directions.

Cut-on frequencies of the out-of-plane waves are visible at 342 Hz, 925 Hz, 1800 Hz, 2633 Hz, 3757 Hz and

4817 Hz, and an additional cut-on is observed for in-plane motion at 2850 Hz. The deformed shapes of flexural

waves’ unit cells, computed close to their cut-on frequency are shown in Figures 12, 13 and 14. In the case of 1D

propagation in waveguides with finite cross-section, these waves are also called guided resonances and propagate

along the direction (Y) while exhibiting a finite wavelength in the transverse direction (X). It should be mentioned
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Figure 10: Flexural wave shape (left). Torsional wave shape (right). A normalized colormap is used to describe overall displacement amplitude.

Figure 11: Longitudinal wave shape (left). Shear wave shape (right). A normalized colormap is used to describe overall displacement amplitude.

that these waves are usually dispersive close to their cut-on frequency, as their group velocity is close to 0.

Figure 12: Deformed shapes of the periodic unit-cell close to the cut-on frequencies (2nd (a) and 3rd-order (b)
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Figure 13: Deformed shapes of the periodic unit-cell close to the cut-on frequencies (4th (a) and 5th-order (b))

Figure 14: Deformed shapes of the periodic unit-cell close to the cut-on frequencies (5th (a) and 6th-order (b))

5.3. Waveguiding along stiffeners

The waves shown above are all guided by the free edges of the structure. Therefore, any modification of the

boundary conditions would result in different dispersion properties, while a local excitation (as used in 4) is expected

to generate multiple guided resonances. However, the 4th-order wave (cut-on at 1800 Hz) as the particularity of

exhibiting a transverse wavelength comparable to the stiffeners’ transverse spacing. This creates the possibility of

a singular propagation feature, where a bandgap is present in the X direction, while propagation can occur in the

main (Y) direction. Such behaviours can be observed at 3470 Hz and 4010 Hz. The propagation along 10 unit-cells

(0.5 m) is shown in Figures 15 and 16. At these frequencies, uni-directional propagation can be obtained due to the

longitudinal stiffeners.
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Figure 15: Propagation of a guided wave at 3470 Hz along a 0.5 m-long waveguide.

Figure 16: Propagation of a guided wave at 4010 Hz along a 0.5 m-long waveguide.

6. Conclusion

This paper presents a model order reduction strategy for the Wave Finite Element (WFE) Framework. The reduc-

tion scheme is based on the computation of a small number of inverse Bloch problems, while a single direct Bloch

computation is required to evaluate the k-space sampling values. It is emphasized that an iterative eigenvalue solver

should be used to benefit from reduced computational efforts both in the inverse Bloch problems and in the Component
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Mode Synthesis when periodic structures are considered. Since these eigenvalue problems are well-conditioned, the

creation of a reduced model can be performed on large models. The collection of eigenvectors obtained at k-samples

is then processed through a Singular Value Decomposition and truncated to build the reduced wave basis, which can

then be used in a direct (frequency-dependent) approach.

The reduction factor obtained is considerable (above 1000), taking into account the CMS and the reduction pro-

cess. In comparison, it is emphasized that the other direct Bloch-based reduction techniques available in the literature

[18, 19] usually provide one order of magnitude reduction of the computational effort. It should also be mentioned

that the error is negligible in the proposed method (below 10−5, almost the eigenvalue solver precision). This enables

dynamic response analysis of finite structures with high accuracy, even when a large number of unit-cells is considered

(3000 periods are used in the example of Sec. 4).

Additionally, since the contributions of the evanescent waves are still present in the reduced model it is possible to

describe the displacement field close to singular loads and complex boundary conditions, or to study waves’ interac-

tions near a coupling element between two waveguides. Eventually, as the method provides a fast direct computation

of the band diagrams, it is hoped that this will help encompass the current numerical limitations of FE-based cellular

structure optimization exploiting Bragg or local resonance stop-band effects. The application to metamaterial design

optimization will be the subject of forthcoming research.
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