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Sorbonne Université, CNRS, Laboratoire PHENIX (Physicochimie des

Electrolytes et Nanosystèmes Interfaciaux), 4 place Jussieu, 75005 Paris, France
(Dated: July 8, 2021)

The motion of active colloids is generally achieved through their anisotropy, as exemplified by
Janus colloids. Recently, there was a growing interest in the propulsion of isotropic colloids, which
requires some local symmetry breaking. Although several mechanisms for such propulsion were
proposed, little is known about the role played by the interactions within the environment of the
colloid, which can have a dramatic effect on its propulsion. Here, we propose a minimal model of
an isotropic colloid in a bath of solute particles that interact with each other. These interactions
lead to a spontaneous phase transition close to the colloid, to directed motion of the colloid over
very long timescales and to significantly enhanced diffusion, in spite of the crowding induced by
solute particles. We determine the range of parameters where this effect is observable in the model,
and we propose an effective Langevin equation that accounts for it and allows one to determine the
different contributions at stake in self-propulsion and enhanced diffusion.

I. INTRODUCTION

Synthetic self-propelled particles, like active colloids,
have been the subject of numerous theoretical and exper-
imental studies during the past decades [1–3]. Among the
possible routes to locomotion, the design of anisotropic
colloids, which interact with self-generated gradients of
solute concentration, temperature, or electric fields, has
been particularly fruitful. This is exemplified by Janus
colloids, whose hemispheres have different surface prop-
erties, for instance a catalytic and a non-catalytic one [4].

There was a more recent interest in the propulsion
of isotropic colloids. It was demonstrated that built-
in asymmetry of the colloid is actually not necessary to
achieve directed motion over long timescales, and that a
spontaneous polarization of its environment can be suf-
ficient. For instance, one can consider isotropic colloids,
which interact with solute particles that are continuously
and isotropically emitted from their surface, in such a
way that the number of solute particles is not conserved.
Spontaneous fluctuations in the solute density field can
yield transient anomalous diffusion of the colloid and en-
hanced diffusion [5–7]. Spontaneous symmetry breaking
can also arise from the nonlinear coupling between the
solute density and the flows at the surface of the colloid
[8–11] – an effect which was evidenced experimentally
with large water droplets in an oil-surfactant medium
[12–16]. Alternatively, models where the number of so-
lute particles is conserved were considered. If the surface
of the colloid plays the role of a catalyst, and if the colloid
interacts differently with the reactants and the products,
propulsion can also be achieved under suitable conditions
[17].

However, in the modeling of these isotropic self-
propelled colloids, the interactions between the solute
particles are generally not taken into account, although
they play a significant role on the propulsion mecha-
nism, and on the displacement of the colloid when self-
propulsion occurs. This aspect becomes particularly im-
portant when such processes take place in dense envi-

ronments, for instance in confined geometries or in the
intracellular medium. In the later case, interactions can
lead to liquid-liquid phase separations and thus to strong
discontinuities in solute density gradients [18]. However,
if the solute density increases significantly in the vicin-
ity of a colloidal particle, solute particles may as well
slow down its diffusion, as in a crowded medium. There-
fore, it is necessary to adopt a finer level of description
for the environment of active colloids, in order to un-
derstand the effect of solute-solute interactions on their
dynamics, especially when these interactions may drive a
phase transition. Local phase separation was previously
used to induce the motion of colloids: when illuminated
by light, gold-capped Janus colloids can trigger a local
asymmetric demixing of a binary water-lutidine mixture,
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FIG. 1. Snapshot of the system : N = 500 solute particles
and a colloid C (orange) in a periodic square box. Zoom on
the colloid where the reaction A + C → B + C takes place in
the reaction area of radius rcut. A particles are in violet, B in
green. A particles interact with purely repulsive interactions,
whereas the interactions between B particles are attractive
(Lennard-Jones). The interactions between the colloid and
the solute particles are repulsive. The red circle represents
the domain P within which the colloid may interact directly
with solute particles.
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responsible for self-diffusiophoretic motion [19, 20]. How-
ever, our goal here is to study the self-propulsion of an
isotropic colloid, in the particular situation where the
particles whose density fluctuations are responsible for
its displacement, that we will call thereafter ‘solute par-
ticles’, have a size comparable to that of the colloid and
therefore induce crowding that may hinder the displace-
ment of the colloid.

To this end, we propose and numerically study a model
for an isotropic colloid in a bath of solute particles that
interact with each other. We investigate how the inter-
actions within the environment of the colloid – and not
only those between the colloid and its environment – con-
trol the propulsion of the colloid. Our strategy consists
in designing the simplest out-of-equilibrium model where
interactions can lead to a local phase transition close to
the colloid. Far from the colloid, the solute particles
are of type A, and interact via purely repulsive inter-
actions. Within a given cutoff distance from the center
of the colloid, the reaction A → B takes place, and we
assume that interactions between the solute particles of
type B are attractive (see Fig. 1). If the attraction is
strong enough, there can be a local phase transition of
B. The two phases can coexist for a long time in the re-
action area, thus making the environment of the colloid
strongly inhomogeneous. Such minimal model could rep-
resent a variety of biological systems, including 2-state
proteins (A/B), whose conformation and/or phosphory-
lation state changes close to a larger microscopic struc-
ture, such as a ribosome or a vesicle.

We show that this local phase transition and the result-
ing inhomogeneities trigger self-propulsion of the colloid,
and we quantify the resulting enhanced diffusion. Fi-
nally, relying on an analysis of the Brownian dynamics
trajectories, we propose an effective Langevin equation to
describe the dynamics of the colloid and its propulsion
mechanism. This effective Langevin equation, which is
derived from the microscopic dynamics, is compared to
the equations of motion which are usually postulated in
active matter theory.

II. MODEL

We consider a two-dimensional suspension of N solute
particles of diameter σA and 1 colloid of diameter σC em-
bedded in an implicit solvent, in a square box of size L,
with periodic boundary conditions. σA is chosen as the
unit length, and the diameter of the colloid is σC = 5σA.
The number density of the solute is ρ = N/L2, and will
be fixed to 0.1 (with N = 500 particles) in all the sim-
ulations presented here. This corresponds to a solute
surface fraction φ ' 0.079. When a particle of type A
is at a distance smaller than a cutoff distance rcut from
the center of the colloid, it becomes B with rate kAB

(Fig. 1). Conversely, outside this reactive area, B trans-
forms back into A with rate kBA. This reverse reaction
maintains the system out-of-equilibrium, and mimics the

flux of B away from the colloid in a system where the A
species remain predominant. In all the simulations pre-
sented in the main text, we take kAB = kBA = 10τ−1,
where τ = σ2

A/DA is the typical time taken by a solute
molecule to diffuse over its own size, and is chosen to
be the unit time of the problem. In this way, the typi-
cal A ↔ B conversion times are small compared to the
other timescales of the problem. The C–A, C–B and
A–A interactions are purely repulsive and are described
with the Weeks-Chandler-Andersen (WCA) potential

UWCA(rij) = 4ε′
[(

dij
rij

)12

−
(
dij
rij

)6
]

+ε′ where rij is the

distance between particles i and j, dij = (σA +σC)/2 if i
or j is the colloid, and dij = σA otherwise [21]. The WCA

potential is equal to zero for r ≥ 21/6dij . The B parti-
cles have the same diameter as A, but interact with each
other via a Lennard-Jones (LJ) potential, i.e. with an

attractive part: ULJ(rij) = 4ε

[(
σA

rij

)12

−
(
σA

rij

)6
]
. We

set ε′ = 10kBT , and ε, which tunes the intensity of the
attraction between B particles, varies from kBT to 3kBT ,
which are typical values for non-specific protein-protein
interactions [22]. We do not aim at considering the ef-
fect of long-range interactions in this system, therefore
we impose the LJ potential to vanish for r ≥ 2.5dij .

We simulate the system using Brownian dynamics [23].
The positions of each of the N+1 particles in the system
satisfy the overdamped Langevin equations:

dri
dt

= − Di

kBT

∑
j 6=i

∇Uij(|ri − rj |) +
√

2Diηi(t), (1)

where Di ∝ 1/σi is the bare diffusion coefficient of par-
ticle i, and ηi(t) is a white noise such that 〈ηi,α(t)〉 = 0
and 〈ηi,α(t)ηj,β(t′)〉 = 2Diδijδαβδ(t− t′) for any compo-
nents α, β = x or y. We integrate them with a forward
Euler scheme (Appendix A). All the equations are made
dimensionless accordingly. The integration timestep δt
varies between 10−4τ and 10−5τ , and we integrate the
equations over at least 1.5 · 106 timesteps. The values of
all the simulation parameters are given in Appendix A.

III. ENHANCED DIFFUSION

We observe that, when the reaction A→ B takes place
in the vicinity of the colloid, its diffusion can be signif-
icantly enhanced compared to its equilibrium value, in
spite of the crowding imposed by the solute particles.
In order to quantify the diffusion enhancement, we cal-
culate the mean squared displacement (MSD) of the col-
loid ∆r2

C(t) =
〈
[rC(t)− rC(0)]2

〉
, where the average runs

over initial conditions and noise realizations. Its depen-
dence on time for different sizes of the reaction area is
represented in Fig. 2. We observe that, at long times,
the slope of the MSD increases with the size of the re-
action area rcut, and with the intensity of the Lennard-
Jones potential ε. We define the diffusion coefficient as
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FIG. 2. Mean squared displacement of the colloid for fixed
rcut = 7.5 and different values of ε (left); and fixed ε = 3 and
different values of rcut (right). Solid lines are guides for the
eye.

D ≡ limt→∞∆r2
C(t)/4t, and we show in Appendix B the

dependence of D over rcut and ε. In particular, we mea-
sure Dε=3/Deq ' 5.5 (for rcut = 7.5, Fig. 2 left), where
Deq is the reference diffusion coefficient without reac-
tion, and Drcut=10.5/Deq ' 9.8 (for ε = 3, Fig. 2 right).
Therefore, the diffusion coefficient of the colloid can be
increased up to ten-fold when the colloid catalyzes the
A→B reaction. This diffusion enhancement, although it
is smaller than those typically observed for anisotropic
colloids, is particularly significant given that the colloid
is isotropic, that activity is not fuelled by a significant
external energy input, and that this enhancement occurs
in spite of the crowding induced by solute particles, that
would on the contrary tend to hinder the displacement
of the colloid in a purely passive system.

We also compare the situation where all the solute par-
ticles are of type B and interact via the LJ potential (i.e.
the limit of rcut → ∞). We observe that Drcut=∞ be-
comes comparable to Deq (Drcut=∞/Deq ' 1.4 for ε = 3)
[24]. This suggests that, interestingly, for a fixed value of
the parameter ε, there exists a value of rcut that optimizes
the diffusion coefficient of the colloid. Finally, when ε is
too large, we expect the B solute particles to form a dense
crystal around the colloid and to significantly hinder the
displacement of the colloid (Appendix C).

Qualitatively, the diffusion enhancement can be at-
tributed to the following mechanism. When ε and/or
rcut are large enough, the B particles present in the reac-
tive area around the colloid attract each other and form a
cluster (Fig. 1), but this cluster does not fully fill the re-
active area. The colloid is pushed away from the cluster
due to its repulsive interactions with the solute parti-
cles. If the cluster keeps the same orientation relatively
to the colloid for a sufficiently long time, this results in a
propulsion of the colloid, that eventually crosses over to
enhanced diffusion for observation times larger than the
persistence time of the cluster orientation.

The signature of this propulsion mechanism can be
seen when plotting the MSD of the colloid in a log-log
scale [Fig. 3(b)]. Three successive regimes can be identi-
fied. At short times, the colloid has a diffusive behaviour.

At times & 10τ , the motion is almost ballistic, which is a
signature of the self-propulsion of the colloid. Finally, at
times & 100τ , the MSD crosses over to an ultimate dif-
fusive regime, with a significant diffusion enhancement.

IV. EFFECTIVE EQUATION OF MOTION

In order to get a better insight into the self-propulsion
of the colloid, we aim at coarse-graining the microscopic
dynamics and writing an effective Langevin equation for
the position of the colloid. We define p =

∑
i∈P [ri(t) −

rC(t)], where P is the circular zone around the colloid
where it may interact directly with solute particles (see
Fig. 1). p represents the polarization of solute particles
around the colloid. We write the velocity of the colloid
under the form

d

dt
rC = −Kp+ ξ. (2)

The first term −Kp represents the direct interactions of
the colloid with nearby solute particles, and plays the
role of an effective ‘active force’, originating from the
local polarization of the environment of the colloid. The
second term ξ is an effective noise term, which is built
with the constraint that its fluctuations are faster than
those of the active force. The time scale characterizing
the active force is defined below.

Integrating Eq. (2), squaring it, and averaging over
realizations yields the MSD of the colloid, which reads〈

[rC(t)− rC(0)]2
〉

=K2∆pp(t) + ∆ξξ(t)

−K[∆pξ(t) + ∆ξp(t)], (3)

where we define ∆ab(t) ≡
∫ t

0
dt′
∫ t

0
dt′′ 〈a(t′) · b(t′′)〉.

The MSD of the colloid is therefore written in terms of
the integrals of different correlation functions.

In order to identify the different contributions to this
MSD, we first study the autocorrelation of the polar-
ization 〈p(0) · p(t)〉, which is represented on Fig. 3(a)
for different sets of parameters ε and rcut. When the
reaction A → B takes place, this autocorrelation func-
tion typically displays two regimes: a power-law decay
at short times, and exponential decay at long times [Fig.
3(a)]. Interestingly, the exponential tail is not observed
in the absence of reaction, i.e. when the colloid is sur-
rounded by a homogeneous suspension of A particles, so
that this exponential decay can then be seen as a signa-
ture of activity. We define a time τp, which characterizes
the persistence of the orientation of p, and which is such
that 〈p(0) · p(t)〉 ∝ e−t/τp at times sufficiently large (see
Appendix D for the values of τp associated to the set of
parameters in Fig. 3). The persistence time τp is an in-
creasing function of rcut for a fixed value of ε. Finally,

computing ∆pp(t) ≡
∫ t

0
dt′
∫ t

0
dt′′ 〈p(t′) · p(t′′)〉 from the

numerical data shows that the contribution from the au-
tocorrelation of the solute polarization is responsible for
the transient ballistic behavior of the colloid [Fig. 3(b)].
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FIG. 3. (a) Autocorrelation of the polarization vector p, and (c) cross-correlations between p and ξ as function of time for
different values of the parameters ε and rcut. The legend is the same for both plots and given on panel (c). In the absence
of reaction, the autocorrelation of p decreases very fast and oscillates around zero. Inset of (a): Zoom on the short-time
dynamics, represented in a log-log scale. (b) Mean squared displacement of the colloid as a function of time, and contributions
defined in Eq. (3), for ε = 3 and rcut = 10.5. The parameters for the analysis of the Brownian dynamics trajectories (b) are
K = 0.0425τ−1 and τ0 = 0.3τp = 49.5τ .

We then study the contribution to the MSD coming
from the correlations of ξ, which is calculated from the
trajectories as ξ = Kp+ drC

dt . We evaluate the derivative

of the position as drC
dt ' ∆rC

∆t , with a sufficiently small
timestep ∆t. The coefficient K is estimated by averaging
Eq. (2) over a timescale τ0 which is sufficiently large to
yield 〈ξ〉τ0 ' 0 (where 〈·〉τ0 is a running average of du-
ration τ0), but that remains small or comparable to the
persistence time of the polarization τp. In this way, p
and v remain approximately aligned over the timescale
τ0. From the simulations, K is measured as K = 〈K(t)〉t
with K(t) = −〈p(t)〉τ0 · 〈v(t)〉τ0 /| 〈p(t)〉τ0 |2, where v =
∆rC
∆t is the instantaneous velocity of the colloid. We fix
τ0 ' 0.4τp. With this choice, we observe that: (i) the con-
tribution of the cross-correlations of p and ξ [Fig. 3(c)]
to the MSD of the colloid (last term in the rhs of Eq.
(2)) is negligible (Appendix E); (ii) the autocorrelation
of ξ only varies on a timescale very small compared to all
the other timescales of the problem, and in particular to
τp (Appendix F). K can also be estimated from analyti-
cal considerations, and we provide an order of magnitude
estimate which matches quantitatively the numerical es-
timate (Appendix G).

Eq. (2) can be understood as an effective Langevin
equation for the colloid, where the correlations between p
and ξ do not contribute to the MSD of the colloid. This
equation separates the effect of the solute particles in
two contributions that participate almost independently
to the diffusion of the colloid: an effective active force
which directly controls the motion of the colloid, and an
effective bath. Finally, we can compute ∆ξξ from the
autocorrelation function of ξ. This contribution is rep-
resented on Fig. 3(b). It remains linear at all times and
dominates the dynamics of the colloid at short times and
as long as the effect of local polarization is not felt by
the colloid. At times longer than & 10τ , the colloid be-
gins to self-propel, and the contribution from p becomes
dominant. The MSD that can be reconstructed from the
contributions we have identified perfectly matches the

MSD calculated directly from the N -body simulations
[Fig. 3(b)]. We show in Appendix E that the cross-
correlations between p and ξ lead to a negligible contri-
bution to the MSD. Remarkably, the contribution ∆pp(t)
perfectly matches the MSD computed from simulation at
long times, and the contribution ∆ξξ(t) perfectly matches
the MSD computed from simulation at short times.

As a final remark, we comment on the relation between
our effective Langevin equation [Eq. (2)] and the usual
description of active Brownian particles (ABP), which
are widely used in active matter theory [1]. The dynamics
of these particles is typically described by an overdamped
Langevin equation of the form ṙ = v0n+ ζ, where v0 is
the propulsion velocity, ζ is a white noise term, and n
is the orientation of the particle, which fluctuates with
time. In most cases, this orientation is assumed to have
exponential correlations: 〈n(0) · n(t)〉 ∼ e−Drt. In this
perspective, it is interesting to notice that Eq. (2) bears a
similar structure. However, and importantly, this equa-
tion and the parameters −K and τp (which play roles
analogous to v0 and D−1

r in ABP models), emerge from
microscopic considerations and are not postulated a pri-
ori. Moreover, our analysis also provides an example for
a propulsion mechanism where the orientation dynam-
ics is more complicated than purely exponential, with a
combination of different regimes, as shown on Fig. 3(a).

V. CONCLUSION

We have presented here a minimal model for a self-
propelled isotropic colloid in a bath of solute particles.
The self-propulsion relies on a local phase transition of
the solute particles, which attract each other when they
are close to the colloid. When two solute phases coex-
ist in the vicinity of the colloid, its local environment
becomes strongly polarized, and triggers self-propulsion
over long timescales, ultimately enhancing diffusion. We
determine numerically the range of parameters where this
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effect emerges. The originality of our model relies on the
fact that we account for the interactions within the envi-
ronment of the colloid, a feature which is usually absent
in the theoretical modeling of isotropic active colloids,
and which is here responsible for the propulsion mecha-
nism. From the analysis of the Brownian dynamics tra-
jectories, we propose an effective Langevin equation for
the dynamics of the colloid, which is compared to the
usual models of active Brownian particles.

Among the different perspectives opened by the
present work, it will be particularly interesting to study:
(i) such colloids in inhomogeneous environments or un-
der confinement [25], which will affect the polarization of
the solute particles around the colloid and its propulsion;
(ii) the effect of hydrodynamic interactions, which have
been shown to have a dramatic effect on the collective
dynamics of active colloids [26–28]; (iii) situations where
the phase separation is not driven by interparticle inter-
actions but by mixing particles in contact with different
thermostats [29–32].

Appendix A: Brownian dynamics algorithm and
implementation

The overdamped Langevin equation that describes the
dynamics of a solute particle i interacting with particles
j in the presence of a solvent bath writes

vi(t) = − Di

kBT

∑
i 6=j

∇U(ri − rj) +
√

2Dηi(t) (A1)

where vi is the velocity of i, U is the pair interaction
potential between solutes, Di is the diffusion coefficient
of i at infinite dilution and ηi is a white noise. (A1) can
be directly integrated with the Euler scheme into

ri(t+ ∆t) =ri(t)−
Di

kBT

∑
i 6=j

∇U(ri − rj)∆t

+

∫ t+∆t

t

√
2Dηi(t

′) dt′ (A2)

where B(∆t) =
∫ t+∆t

t

√
2Dηi(t

′) dt′ is the Gaus-

sian random variable with variance 〈B2〉 =

2D
∫ t+∆t

t

∫ t+∆t

t
〈ηi(t′)ηi(t′′)〉dt′ dt′′ = 2D∆t. The

following equation of motion is thus iteratively used
to compute the successive positions of solutes included
in the square simulation box with periodic boundary
conditions, starting from a random initial configuration
of solute particles

ri(t+ ∆t) = ri(t)−
Di

kBT

∑
i6=j

∇U(ri−rj)∆t+
√

2D∆tηi

(A3)
As interactions are short-ranged, we use a cell list algo-
rithm to compute them, that reduces the algorithm order
to N , as described in [23].
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FIG. 4. Diffusion coefficient as a function of the parameters
ε and rcut (obtained from the MSD data shown on Fig. 2).

The system consists of a large colloid C of diameter σC

surrounded by N small solutes A and B of same diameter
σA. N = NA + NB is fixed to N = 500. We take σC =
5σA and DC = 1

5DA. The simulation box has the fixed
size Lbox = 70σA. The colloid is assumed to catalyze
isotropically the reaction A+C → B+C inside an area
of radius rcut. At each timestep of the simulation, the
distance r from the center of the colloid of each A particle
is computed. If it is smaller than rcut, A becomes B with
a probability equal to ∆t · kAB with ∆t the simulation
timestep. Also, the distances of B particles to the center
of the colloid are computed at each timestep. B becomes
an A particle with a probability ∆t · kBA if the distance
is larger than rcut. We take kAB = kBA = 10τ−1.

The simulation procedure is the following. First, the
system that contains only A particles without any re-
action is equilibrated for about 10τ . Then, 1000 inde-
pendent configurations of this system are taken as initial
configurations for runs where the chemical reaction oc-
curs. It takes some time for the system with reaction to
reach a stationary state, depending on the value of the
parameters rcut and ε. A stationary state is assumed to
be reached when the number of B particles at a distance
from the center of C smaller than rcut is almost constant.
The characteristic times τstationary needed to reach that
state, the values of the average number of particles in the
reaction area and the total simulation times are collected
in Table I for systems where an activity was observed.

Once a stationary state is reached, the radial distribu-
tion functions, the polarization vector p as a function of
time, and the mean squared displacements of C are com-
puted as averages over the independent realizations. The
total simulation time τtotal also depends on the parame-
ters: it is long enough to ensure that a regular diffusion
behavior is recovered in the case where activity is ob-
served.

Appendix B: Dependence of D over ε and rcut

We show on Fig. 4 the dependence of D over ε and
rcut (the values are obtained from the MSD data shown
on Fig. 2).
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ε = 2

rcut 5.5 6.5 7.5 8.25 9.0 10.5

τstationary 110 112 140 173 188 245

〈N〉 8 14 23 31 39 59

τtotal 750 750 1350 1350 2400 1650

ε = 2.5

5.5 6.5 7.5 8.25 9.0 10.5

60 123 115 138 147 156

8 16 28 38 49 73

750 750 1500 1200 2400 2550

ε = 3

5.5 6.5 7.5 8.25 9.0 10.5

67 98 91 94 94 109

9 18 30 41 52 78

750 750 1500 1350 2400 2700

TABLE I. Parameters of the simulated systems in the cases
where activity was observed

Appendix C: Additional snapshot: Colloid
surrounded by a dense crystal of solute

We expect that, for a given value of the density, when
ε is too large, the diffusion enhancement effect cannot be
observed as the B solute particles form a dense crystal
around the colloid and hinder the colloid. We show such
a situation on Fig. 5.

x

y

FIG. 5. Snapshot of a system displaying a dense cluster of
solute particles around the colloid in the stationary state (ρ =
0.3, ε = 3).

Appendix D: Values of the persistence time τp

The values of the persistence time τp for the different
sets of parameters used in Fig. 3(b) are given in Table
II.

ε = 2.5

rcut 5.5 9 10.5

τp 39 98 187

ε = 3

5.5 9 10.5

49 105 165

TABLE II. Values of the persistence time τp for the different
sets of parameters used in Fig. 3(b).

Appendix E: Contributions to the MSD deduced
from the effective Langevin equation

We show on Fig. 6 the mean squared displacement of
the colloid as a function of time, and contributions in Eq.
(3), for ε = 3 and rcut = 10.5.

0 200 400 600 800 1000 1200 1400
t

0

1000

2000

3000

4000

5000

6000 〈∆r2
C(t)〉

K2∆pp

∆ξξ

−K(∆ξp + ∆pξ)

FIG. 6. Mean squared displacement of the colloid as a func-
tion of time, and contributions in Eq. (3), for ε = 3 and
rcut = 10.5.

Appendix F: Autocorrelation of ξ

We show on Fig. 7 the autocorrelation of ξ as a func-
tion of time for different values of the parameters ε and
rcut.

Appendix G: Analytical estimate of the coefficient K

The coefficient K, that appears in the effective
Langevin equation in the main text [Eq. (2)] can also
be estimated from analytical arguments. The velocity of
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0 25 50 75 100 125 150 175 200
t

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
〈ξ

(0
)
·ξ

(τ
)〉

ε
2.5
3

ε
2.5
3

rcut
7.5
9
10.5

FIG. 7. Autocorrelation of ξ as a function of time for different
values of the parameters ε and rcut.

the colloid (averaged over a duration comparable to the
persistence time of the trajectory) can be estimated as

v = µC

∫
r∈P

dr c(r)∇U(r), (G1)

where µC = DC/kBT is the mobility of the colloid, c(r)
is the concentration of solute particles measured from the

centre of the colloid, and U is the WCA potential acting
between the colloid and the solute particles. The integral
is therefore an estimate of the net force acting on the
colloid. Using polar coordinates centered on the colloid,
assuming that the solute concentration can be written as
c(r, θ) ' C(θ)e−U(r)/kBT , and performing integration by
parts, we find that

v = −D0

[∫ ∞
0

dr (1− e−U(r)/kBT )

] ∫ π

−π
dθ C(θ)er.

(G2)
Similarly, the polarization can be estimated as p '∫
P dr c(r). Under the same assumption, one gets

p '
[∫ R+δ

R

dr r2e−U(r)/kBT

]∫ π

−π
dθ C(θ)er. (G3)

The coefficient K can be estimated as

K =
D0

∫∞
0

dr (1− e−U(r)/kBT )∫ R+δ

R
dr r2e−U(r)/kBT

(G4)

With the parameters used in numerical simulations, we
find K ' 0.037, whose order of magnitude matches cor-
rectly the numerical observations (K = 0.0425τ−1, see
caption of Fig. 3 in the main text).
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C. Bechinger, and T. Speck, Physical Review Letters
110, 238301 (2013).

[21] J. D. Weeks, D. Chandler, and H. C. Andersen, The
Journal of Chemical Physics 54, 5237 (1971).

[22] D. C. G. Pellicane and C. Caccamo, J. Phys.: Condens.
Matter 15, 375 (2003).

[23] D. Frenkel and B. Smit, Understanding Molecular Sim-
ulation: from algorithms to simulations, 2nd ed. (Aca-
demic Press, Boston, 2002).

[24] If rcut → ∞, all the solute particles are of type B, and a
phase transition occurs in the whole bulk, and not only
in the reaction area. The fluctuations in the density of
B particles are not confined to a small region of space
anymore, and are not localized at the close vicinity of the
colloid, therefore preventing the propulsion mechanism
from occurring.

[25] K. Lippera, M. Morozov, M. Benzaquen, and S. Miche-
lin, J. Fluid Mech. 886, A17 (2020).
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