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The Symmetric Exclusion Process (SEP), where particles hop on a 1D lattice with the restriction
that there can only be one particle per site, is a paradigmatic model of interacting particle systems.
Recently, it has been shown that the nature of the initial conditions – annealed or quenched –
has a quantitative impact on the long-time properties of tracer diffusion. However, so far, all
the studies in the quenched case focused on the low-density limit of the SEP. Here, we derive
the cumulant generating function of the tracer position in the dense limit with quenched initial
conditions. Importantly, our approach also allows us to consider the nonequilibrium situations of
(i) a biased tracer in the SEP and (ii) a symmetric tracer in a step of density. In the former situation,
we show that the initial conditions have a striking impact, and change the very dependence of the
cumulants on the bias.

Diffusion of interacting particles under strong confine-
ment gives rise to anomalous subdiffusive behaviours.
This is exemplified by single-file diffusion in narrow chan-
nels, in which particles cannot bypass each other and re-
main in the same order. For any tagged particle in the
system, this typically leads to a sublinear growth of the
fluctuations of positions 〈X2

t 〉 ∝
√
t [1], in contrast with

normal, linear-in-time fluctuations in the absence of con-
finement or in the absence of interactions. Such a subd-
iffusive behaviour was observed in different contexts, for
instance in porous media or in confined colloidal suspen-
sions [2–6].

The Symmetric Exclusion Process (SEP) is a classical
model of single-file diffusion. In this minimal represen-
tation, a one-dimensional lattice is populated by parti-
cles at density ρ. Each of them performs a symmet-
ric, continuous-time random walk, with the restriction
that there can only be one particle per site, which rep-
resents the hardcore interactions between particles. It
was established that the variance of the position of a
tracer scales as

√
t in the long-time limit, and the prefac-

tor was determined exactly as a function of the density:

〈X2
t 〉 ∼

t→∞
1−ρ
ρ

√
2t
π [7]. Important developments have

been considered during the past decades [8, 9].

First, even if it has been known for long that the
rescaled position satisfies a central limit theorem and
converges to a fractional Brownian motion with Hurst
index 1/4 [1, 7, 10–12], the large time expression of the
higher-order cumulants has been obtained only recently.
They have been first derived in the dense limit ρ→ 1 [13]
and dilute limit ρ→ 0 [14–16] [17]. A real breakthrough
came in 2017 when Imamura, Sasamoto and Mallick de-
rived the full probability law at any density [18].

Second, while the SEP in its original formulation pro-
vides a model of subdiffusion in crowded equilibrium sys-

tems, an important extension to non-equilibrium situa-
tions has been proposed by considering the general case
of a driven tracer in a bath of unbiased random walks
(still with exclusion, Fig. 1). The mean position [19, 20]
and all higher-order moments in the dense limit [13] have
been calculated, and shown to grow anomalously as

√
t.

Recent extensions of this model concern the case of sev-
eral driven tracers [21] or of a finite system [22, 23]. Note
that a similar behaviour of the first two cumulants is
found for a symmetric tracer in an inhomogeneous bath,
namely a step of density [18].

Last, recent studies have investigated the sensitivity of
tracer diffusion in single-file systems to the initial condi-
tions. Indeed, in analogy with the physics of disordered
systems, two distinct situations need to be considered. In
the annealed case (implicitly assumed in the results re-
minded above), particles are initially distributed accord-
ing to an equilibrium state of density ρ. In the quenched
case, the initial positions of the particles are fixed, with
the constraint that, at a macroscopic scale, they corre-
spond to a uniform density ρ. It was shown that, even
if the scaling at large time is the same, the prefactor of
the variance is different for the two settings [24]. This
came as a surprise, since the memory of initial condi-
tions could naively been expected to be lost at long time
(see however [25] for the description of a similar effect in
a different context). Extensions to the calculation of the
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FIG. 1. Biased tracer in a SEP. The bath particles (gray)
perform symmetric random walks with exclusion. The ran-
dom walk of the tracer (blue) is biased. Note that, when
p1 = p−1 = 1/2, this model is identical to the classical SEP.
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fourth cumulant, all cumulants and two-time correlation
functions in the dilute limit [14, 26] or to other single-file
models [27, 28] have recently been proposed.

However, in the quenched setting, (i) the cumulant
generating function (CGF) of a tracer in the SEP has
been calculated only in the the dilute limite ρ → 0 [29];
(ii) nonequilibrium situations, involving a driven tracer
or a step of density, have not been investigated in spite
of their importance.

In this Letter, we derive the full cumulant generating
function of the tracer position in the dense limit of the
SEP with quenched initial conditions. Our approach also
allows us to consider two typical nonequilibrium situa-
tions: (i) a biased tracer in the SEP and (ii) a symmetric
tracer in a step of density (see [30] for the results corre-
sponding to a combination of both). Strikingly, we show
that, in the former situation, the impact of the initial
conditions is not only quantitative but also qualitative,
and their nature changes the very dependence of the cu-
mulants on the bias.

Model.— The system that we study is a biased tracer
in the SEP (Fig. 1). Particles are initially positioned
uniformly at random on the infinite discrete line with
a density ρ. Each particle has an exponential clock of
average 1 and when the clock ticks, the particle chooses
to jump either to the left (with probability 1/2) or to the
right (with probability 1/2). If the arrival site is empty,
the jump is performed. Otherwise, it is canceled.

One of the particles is assumed to be a tracer and
to have different jumping rates: p1 to the right and
p−1 to the left. The tracer is initially at the origin
X(t = 0) = 0 and we study its displacement with
time X(t). We define the CGF ψ(t)(k) ≡ log〈eikX(t)〉,
whose expansion yields the cumulants κn(t), defined as

ψ(t)(k) ≡
∑∞
n=1

(ik)n

n! κn(t), where κ1 is the average dis-
placement and κ2 is the variance. Our goal is the deter-
mination, in the quenched setting (see below for a precise
definition), of the CGF and the cumulants in the high-
density limit ρ→ 1.

CGF in the high-density limit.— Let us first consider
a 1D lattice of finite size N in which all the sites are
occupied except M of them. We call these empty sites
vacancies, and their fraction is M/N = 1 − ρ. The high
density limit of the SEP corresponds to ρ → 1. Instead
of looking at the motion of the particles, one can equiva-
lently study the motion of the vacancies, which perform
random walks on the line. For simplicity, we adopt here
a discrete-time description: at each time step, each va-
cancy moves to a neighboring site. We will only derive
results in the long-time limit, in which this description
becomes equivalent to a continuous-time description.

When a vacancy crosses the tracer from left to right,
the tracer moves to the left and vice-versa. We num-
ber the vacancies and call Y j(t) the displacement of
the tracer generated by the j-th vacancy. We have
X(t) = Y 1(t) + . . . YM (t). The initial positions of the

vacancies are called Zj . P
(t)(X|{Zj}) is the probability

of a displacement X at time t knowing the initial posi-
tions of the vacancies. Similarly, P(t)({Y j}|{Zj}) is the
probability that up to time t vacancies induced displace-
ments {Y j} of the tracer. By definition,

P (t)(X|{Zj}) =
∑

Y1,...,YM

δX,Y1+···+YM
P(t)({Y j}|{Zj}).

(1)
In the high density limit (M/N → 0), the vacancies

perform independent random walks and interact inde-
pendently with the tracer. We neglect events of order
O[(1 − ρ)2] in which two vacancies interact with each
other, compared to events of order O(1−ρ) in which one
vacancy interacts with the tracer. This gives exact results

in the limit ρ → 1 [31, 32]. We call p
(t)
Z (Y ) the proba-

bility that in a system with a single vacancy initially at
Z, the tracer has displacement Y at time t. We have

P(t)({Y j}|{Zj}) ∼
ρ→1

∏M
j=1 p

(t)
Zj

(Y j). Note that there are

only two values of Y for which p
(t)
Z (Y ) is non-zero (Y = 0

and ±1 for Z ≶ 0)).
Using Eq. (1) and defining the Fourier transform of any

site-dependent function as f̃(k) =
∑∞
X=−∞ eikXf(X), we

obtain

P̃ (t)(k|{Zj}) ∼
ρ→1

M∏
j=1

p̃
(t)
Zj

(k). (2)

For self-consistency, we first consider the case in which
the vacancies have equal probability to be on any site
(except the origin). This is known in the literature as an-
nealed initial conditions. The cumulant-generating func-

tion Ψ
(t)
A (k) of X(t) is the logarithm of the average of

P̃ (t)(k|{Zj}) on all the initial positions of the vacancies

ψ
(t)
A (k) = log P̃

(t)
A (k), (3)

P̃
(t)
A (k) ≡ 1

(N − 1)M

∑
Z1,...,ZM 6=0

P̃ (t)(k|{Zj}). (4)

Using Eq. (2), we have, in the limit ρ → 1, P̃
(t)
A (k) =[

1 + 1
N−1

∑
Z 6=0

(
p̃
(t)
Z (k)− 1

)]M
, which, in the thermo-

dynamic limit M,N → ∞ with M/N = 1 − ρ constant,
leads to

lim
ρ→1

ψ
(t)
A (k)

1− ρ
=
∑
Z 6=0

(
p̃
(t)
Z (k)− 1

)
. (5)

We now turn to the case of quenched initial conditions.
The initial positions of the particles are fixed and one
averages over multiple realizations of the evolution of the
system. The cumulant-generating function conditioned
on the initial positions of the vacancies is given by [26]

ψQ(k, t|{Zj}) ≡ log P̃ (t)(k|{Zj}). (6)
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The quenched cumulant-generating function ψQ is then
defined as the average of this quantity over the initial
positions

ψQ(k, t) ≡ 1

(N − 1)M

∑
Z1,...ZM

ψQ(k, t|{Zj}). (7)

Using Eq. (2), and taking the thermodynamic limit,
we find that the high-density limit of the quenched
cumulant-generating function reads

lim
ρ→1

ψQ(k, t)

1− ρ
=
∑
Z 6=0

log p̃
(t)
Z (k). (8)

Let us emphasize the difference between Eqs. (5) and (8):
in the annealed case, the CGF is a linear combination of
the single-vacancy propagators, as opposed to the non-
linear dependence of the quenched case. This structure
is reminiscent of the expressions obtained in the opposite
limit of a dilute SEP [26].

Explicit results can be obtained by noting that the gen-
erating function associated with the single vacancy prop-

agator, defined as ˆ̃pZ(k, ξ) =
∑∞
t=0 p

(t)
Z (k)ξt, has been

determined in the calculation of the annealed CGF and

reads [13]

ˆ̃pZ(k, ξ) =
1

1− ξ

[
1 + (eiµk − 1)

1− f̂−µ(ξ)

1− f̂1(ξ)f̂−1(ξ)
f̂Z(ξ)

]
(9)

where µ ≡ sgn(Z) and f
(t)
Z is the probability for a va-

cancy to reach the origin for the first time at t starting
from Z. Its generating function reads

f̂Z(ξ) =
1 + µs

1 + µsα
α|Z| (10)

with α = (1−
√

1− ξ2)/ξ and s = p1 − p−1.
Large time limit of the quenched CGF.— Taking the

scaling limit ξ → 1 with (1 − ξ)|Z|2 kept constant (cor-
responding to the scaling limit t → ∞ with |Z|/

√
t

constant), Eq. (9) leads, after inverse Laplace transform,
to

p̃
(t)
Z (k) ∼

t→∞
1 + pµ

(
eiµk − 1

)
erfc

(
|Z|√

2t

)
. (11)

Using this result in Eq. (8), the large-time limit of the
involved Riemann sum yields

lim
ρ→1

ψQ(k, t)

1− ρ
∼

t→∞

√
2t

∫ ∞
0

dz log
{ [

1 + p1
(
eik − 1

)
erfcz

] [
1 + p−1

(
e−ik − 1

)
erfcz

] }
. (12)

This cumulant generating function, derived for a biased
tracer in a high-density SEP, is the key result of our Let-
ter.

Symmetric tracer.— We first focus on the situation
where the tracer is symmetric, i.e. p1 = p−1 = 1/2. The
CGF [Eq. (12)] takes the simple form:

lim
ρ→1

ψQ(k, t)

1− ρ

∼
t→∞

√
2t

∫ ∞
0

dz log

[
1− sin2

(
k

2

)
erfc(z)erfc(−z)

]
.

(13)

The known cumulants κQ2 and κQ4 are retrieved [14], but
more generally all the cumulants can be deduced from
Eq. (13) by a simple series expansion.

Biased tracer.— In the case of a biased tracer (s =
p1 − p−1 6= 0), all the cumulants can be computed from

Eq. (12), and the first three read

lim
ρ→1

κQ1 (t)

1− ρ
∼

t→∞
s

√
2t

π
, (14)

lim
ρ→1

κQ2 (t)

1− ρ
∼

t→∞

√
t

π

(
1 + s2(1−

√
2)
)
, (15)

lim
ρ→1

κQ3 (t)

1− ρ
∼

t→∞
s

√
t

2π

×

[
6
√

2(3 + s2)

π
arctan

1√
2
− 1− 3

√
2− 3(

√
2− 1)s2

]
.

(16)

Several comments are in order: (i) the first cumulant
is identical in the quenched and in the annealed settings
[13], as in the opposite limit of low-density (in which only
the first cumulant was computed [24]). (ii) The identity
between odd cumulants on the one hand and even cumu-
lants on the other hand, shown in the annealed case [13],
does not hold for quenched initial conditions. (iii) Impor-
tantly, there is a strong impact of the initial conditions
on the second cumulant. Indeed, in the annealed case, it
was shown that, the variance is independent of the bias,

and reads lim
ρ→1

κA
2 (t)
1−ρ ∼

t→∞

√
2t
π , as opposed with Eq. (15).
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FIG. 2. Cumulants κQ
1 , κQ

2 , κQ
3 of a biased tracer in the quenched SEP at density ρ = 0.95 for biases s = p1 − p−1 = 0.2,

0.5, 0.8 and 1 (blue to red). The numerical simulations (circles) are performed with deterministic initial conditions. We

denote ρ0 = 1 − ρ and we compute the scalings for κQ
2 and κQ

3 from Eq. (12): f2(s) =
[
1 + s2(1−

√
2)
]
/
√

2π and f3(s) =[
6
√

2(3 + s2) arctan(2−1/2)/π − 1− 3
√

2− 3(
√

2− 1)s2
]
/
√

4π. In the three sub-figures, the dashed gray line corresponds to

our prediction:
√

2t.
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FIG. 3. Cumulants κQ
1 , κQ

2 , κQ
3 of a tracer in the quenched SEP with densities ρ− behind the tracer and ρ+ in front of it. From

blue to red, (ρ−, ρ+) = (0.96, 0.9), (0.98, 0.96), (0.99, 0.95), (0.99, 0.98). The numerical simulations (cicles) are performed with
deterministic initial conditions. The gray lines are the predictions deduced from Eq. (19). We denote ρ0 = 1− ρ.

This very striking difference emphasizes the importance
of the initial conditions of the system on the long-time dy-
namics of this nonequilibrium situation, with both qual-
itative and quantitative consequences. Agreement with
numerical simulations performed with the choice of de-
terministic initial conditions [30] is displayed on Fig. 2.

Step of density.— Finally, we consider an unbiased
tracer in a step of density, as studied in the annealed
case [18, 33]. The density in front of the tracer (resp.
behind the tracer) is denoted ρ+ (resp. ρ−). The aver-
age density is ρ = (ρ+ + ρ−)/2 and we define the step
σ = (ρ−− ρ+)/[2(1− ρ)]. For annealed initial conditions
in the high-density limit, it is shown in Supplemental
Material [30], and in agreement with the general results
of [18], that all odd (resp. even) cumulants are identical
and read

lim
ρ→1

κAodd(t)

1− ρ
∼

t→∞
σ

√
2t

π
, (17)

lim
ρ→1

κAeven(t)

1− ρ
∼

t→∞

√
2t

π
, (18)

Note that the cumulants have the same expression than
for a biased tracer in a homogeneous bath of density ρ if
the substution s = p1 − p−1 7→ σ is made [13].

For quenched initial conditions, the previous derivation

can be adapted [30], and leads to

lim
ρ→1

ψQ(k, t)

1− ρ
∼

t→∞

√
2t

×
∑
µ=±1

(1 + µσ)

∫ ∞
0

dz log

[
1 +

1

2

(
eiµk − 1

)
erfcz

]
.

(19)

One striking consequence is that the even cumulants are
the same as those for a tracer in a homogeneous bath
whose effective density is the average of ρ+ and ρ−, as
deduced from Eq. (13).

The odd cumulants are all proportional to the step σ,
the lowest ones read

lim
ρ→1

κQ1 (t)

1− ρ
∼

t→∞
σ

√
2t

π
, (20)

lim
ρ→1

κQ3 (t)

1− ρ
∼

t→∞
σ

√
t

2π

[
6
√

2

π
arctan

1√
2
− 1

]
. (21)

We note that while the average displacement κQ1 is
identical to the case of annealed initial conditions [Eq.
(17)], the prefactors of the higher-order odd cumulants
are modified. Last, we compare in Fig. 3 our analytical
prediction against the numerical simulations and again
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observe a very good agreement. Finally, we emphasize
that the CGF can be derived in the general case com-
bining a biased tracer in a density step [30].

As a last observation, we note the strong similarity
between the CGF given by Eq. (13) in the dense regime
ρ → 1 and the CGF derived in the opposite regime of
ρ → 0 [14, 26]. The functional dependence of the CGF
on ρ in these two regimes could lead us to propose the
following expression for the CGF at arbitrary density:

ψapprox
Q (k, t) ∼

t→∞
ρ(1− ρ)

√
2t

×
∫ ∞
0

dz log

[
1− sin2

(
k

2ρ

)
erfc(z)erfc(−z)

]
. (22)

The quantitative agreement between the first cumulants
computed from Eq. (22) and numerical simulations [30]
could further point towards the exact nature of this ex-
pression. However, even though the second cumulant
that could be deduced from (22) is identical to the exact
expression obtained from macroscopic fluctuation theory
[14], this is not true for the fourth cumulant. Finally, Eq.
(22) is a good approximation for arbitrary ρ but is exact
only in the limits of ρ → 0 and ρ → 1. The calculation
of the CGF with quenched initial conditions at arbitrary
density, that would be the counterpart of the result ob-
tained in the annealed case [18], remains a challenging
open question.

[1] T. Harris, Journal of Applied Probability 2, 323 (1965).
[2] V. Gupta, S. S. Nivarthi, A. V. McCormick, and H. Ted

Davis, Chemical Physics Letters 247, 596 (1995).
[3] K. Hahn, J. Kärger, and V. Kukla, Physical Review Let-

ters 76, 2762 (1996).
[4] Q. Wei, Science 287, 625 (2000).
[5] T. Meersmann, J. W. Logan, R. Simonutti, S. Caldarelli,

A. Comotti, P. Sozzani, L. G. Kaiser, and A. Pines, Jour-
nal of Physical Chemistry A 104, 11669 (2000).

[6] B. Lin, M. Meron, B. Cui, S. A. Rice, and H. Diamant,
Physical Review Letters 94, 216001 (2005).

[7] R. Arratia, The Annals of Probability 11, 362 (1983).
[8] B. Derrida, Journal of Statistical Mechanics: Theory and

Experiment 2007, P07023 (2007).
[9] K. Mallick, Physica A 418, 17 (2015).
[10] F. Spitzer, Advances in Mathematics 5, 246 (1970).
[11] H. Spohn, Journal of Statistical Physics 59, 1227 (1990).
[12] M. Peligrad and S. Sethuraman, Alea 4, 245 (2008).
[13] P. Illien, O. Bénichou, C. Mej́ıa-Monasterio, G. Oshanin,

and R. Voituriez, Physical Review Letters 111, 38102
(2013).

[14] P. L. Krapivsky, K. Mallick, and T. Sadhu, Journal of
Statistical Physics 160, 885 (2015).

[15] P. L. Krapivsky, K. Mallick, and T. Sadhu, Physical
Review Letters 113, 078101 (2014).

[16] C. Hegde, S. Sabhapandit, and A. Dhar, Phys. Rev. Lett.
113, 120601 (2014).

[17] In this limit, the SEP is equivalent to the model of hard
Brownian particles on a line.

[18] T. Imamura, K. Mallick, and T. Sasamoto, Phys. Rev.
Lett. 118, 160601 (2017).

[19] S. F. Burlatsky, G. Oshanin, M. Moreau, and W. P.
Reinhardt, Phys. Rev. E 54, 3165 (1996).

[20] C. Landim, S. Olla, and S. B. Volchan, Communications
in Mathematical Physics 192, 287 (1998).

[21] A. Poncet, O. Bénichou, V. Démery, and G. Oshanin,
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STEP OF DENSITY IN THE DENSE SYMMETRIC EXCLUSION PROCESS

We consider the symmetric exclusion process with different initial densities in front of and behind a tracer which
is initially at the origin. We call ρ+ the density in front and ρ− the density behind. The average density is ρ =
(ρ+ + ρ−)/2. We will consider the dense limit ρ→ 1. We define the step σ = (ρ− − ρ+)/[2(1− ρ)] and remark that
1− ρ± = (1− ρ)(1± σ).

We look at a 1D lattice of finite size N , with N = N+ +N−+ 1. N+ (resp. N−) is the number of sites with strictly
positive (resp. strictly negative) indices. We consider M+ vacancies at initial positions Z+

j > 0 (j = 1, . . .M+) and

M− vacancies at initial positions Z−j < 0 (j = 1, . . .M−). The densities are such that M±/N± = 1− ρ±. One checks
that Eq. (2) of the main text is modified into

P̃ (t)(k|{Z+
j }, {Z

−
j }) ∼ρ→1

M+∏
j=1

p̃
(t)

Z+
j

(k)

M−∏
j=1

p̃
(t)

Z−
j

(k). (S1)

We now investigate the two cases studied in the article: annealed and quenched initial conditions.

Annealed initial conditions

In the case of annealed initial conditions, the average propagator (Eq. (4) of the main text) is now defined as

P̃
(t)
A (k) ≡ 1

(N+)M+(N−)M−

∑
Z+

1 ,...,Z
+
M+

>0

∑
Z−

1 ,...,Z
−
M−

<0

P̃ (t)(k|{Z+
j }, {Z

−
j }). (S2)

We use Eq. (S1) and quickly obtain

P̃
(t)
A (k) ∼

ρ→1

[
1

N+

∑
Z>0

p̃
(t)
Z (k)

]M+
[

1

N−

∑
Z<0

p̃
(t)
Z (k)

]M−

(S3)

∼
ρ→1

[
1 +

1

N+

∑
Z>0

(
p̃
(t)
Z (k)− 1

)]M+
[

1 +
1

N−

∑
Z<0

(
p̃
(t)
Z (k)− 1

)]M−

. (S4)

We now consider the large size limit M±, N± → ∞ at constant densities: M+/N+ = 1 − ρ+ = (1 − ρ)(1 + σ) and
M−/N− = 1 − ρ− = (1 − ρ)(1 − σ). This gives us an expression for the annealed cumulant-generating function at
high density:

lim
ρ→1

ψ
(t)
A (k)

1− ρ
= lim
ρ→1

log P̃
(t)
A (k)

1− ρ
=
∑
Z 6=0

(
p̃
(t)
Z (k)− 1

)
+ σ

∑
Z>0

(
p̃
(t)
Z (k)− p̃(t)−Z(k)

)
. (S5)

Using the Laplace transform of p̃
(t)
Z (k) [Eq. (11) of the main text], we obtain

lim
ρ→1

ψ̂A(k, ξ)

1− ρ
∼
ξ→1

1√
2

1

(1− ξ)3/2
{
p1(1 + σ)(eik − 1) + p−1(1− σ)(e−ik − 1)

}
. (S6)



7

This gives us the following large-time scaling:

lim
ρ→1

ψA(k, t)

1− ρ
∼
ξ→1

√
2t

π

{
p1(1 + σ)(eik − 1) + p−1(1− σ)(e−ik − 1)

}
. (S7)

In the case of symmetric jumps, p1 = p−1 = 1/2, we obtain the cumulants given in Eqs. (17) and (18) of the main
text.

Quenched initial conditions

In the case of quenched initial conditions, the average of the cumulant-generating function (Eq. (7) of the main
text) is now defined as

ψQ(k, t) ≡ 1

N
M+

+ N
M−
−

∑
Z+

1 ,...,Z
+
M+

>0

∑
Z−

1 ,...,Z
−
M−

<0

ψ(k, t|{Z+
j }, {Z

−
j }) (S8)

with ψ(k, t|{Z+
j }, {Z

+
j }) ≡ log P̃ (t)(k|{Z+

j }, {Z
−
j }). We use Eq. (S1) and obtain

lim
ρ→1

ψQ(k, t)

1− ρ
= (1 + σ)

∑
Z>0

log p̃
(t)
Z (k) + (1− σ)

∑
Z<0

log p̃
(t)
Z (k). (S9)

We now consider the expression of p̃
(t)
Z (k) given in Eq. (11) of the main text. Performing the Riemann summation,

we obtain the large time scaling of the quenched cumulant-generating function:

lim
ρ→1

ψQ(k, t)

1− ρ
∼

t→∞

√
2t

[
(1 + σ)

∫ ∞
0

dz log
[
1 + p1

(
eik − 1

)
erfcz

]
+ (1− σ)

∫ ∞
0

dz log
[
1 + p−1

(
e−ik − 1

)
erfcz

]]
.

(S10)
This is the result that we report in Eq. (19) of the main text, in the case of symmetric jumps (p1 = p−1 = 1/2).

DEFINITE INTEGRALS OF POWERS OF THE COMPLEMENTARY ERROR FUNCTION

We recall some results from Ref. [S1] (2.8.20) that are useful to compute the quenched cumulants up to order 4.∫ ∞
0

dzerfcz =
1√
π

(S11)∫ ∞
0

dzerfc2z =
2−
√

2√
π

(S12)∫ ∞
0

dzerfc3z =
3

π3/2

[
π(1−

√
2) + 2

√
2 arctan

√
2

2

]
(S13)

∫ ∞
0

dzerfc4z =
2

π3/2

[
π(2− 3

√
2) + 6

√
2

(
2 arctan

√
2

2
− arctan

√
2

4

)]
(S14)

NUMERICAL SIMULATIONS

Uniform density

The simulations requiring an uniform density (Fig. 2) are performed with periodic boundary conditions. The size
of the system is N = 1000 and the density is 0.95. Therefore, there are K = 950 particles and 50 vacancies. Initially,
the vacancies are on the sites 20(k+ 1/2) for 0 ≤ k ≤ 49 (a density of 0.98 is achieved in a similar way). We monitor
the position of the particle initially at the origin (tracer).
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The time evolution of the system is achieved in the following way. We draw a random number according to an
exponential law of rate 1/K, it corresponds to the time increment. We then choose a particle uniformly at random
and attempt to move it to its left or right neighboring site with equal probabilities (for the bath particle) or according
its jump probabilities (for the tracer). If the arrival site is empty, the jump is done, otherwise it is rejected.

The moments of the tracer are recorded every time interval ∆t = 1 and they are averaged over 2 · 106 simulations.
In Figs. 2 and 3 the data is averaged over bins of equal size in logarithmic time.

Step of density

The simulations requiring an step of density are performed using open boundary conditions: there is a reservoir at
density ρ− on the left and a reservoir at density ρ+ on the right. The size of the system is N = 10000, it is large
enough for the influence of the reservoirs (which are annealed, by definition) to be negligible. Initially, all the sites are
occupied except those at positions `+(k+1/2) and −`−(k+1/2) for k ≥ 0, with `+ = (1−ρ+)−1 and `− = (1−ρ−)−1.

The time evolution of the system is implemented by a Gillespie algorithm similar to the one described for uniform
density. The additional ingredients are (i) the left reservoir is associated with a rate ρ−/2 at which a particle is
created on the leftmost site if it is empty; (ii) if a particle on the leftmost site tries to jump to the left, it destroyed
with probability (1− ρ−); and mutatis mutandis for the right reservoir.

The moments of the tracer are recorded every time interval ∆t = 1 and they are averaged over 2 · 104 simulations.
In Fig. 3 the data is averaged over bins of equal size in logarithmic time.

APPROXIMATE EXPRESSION IN THE SYMMETRIC CASE

At the end of the article, we put forward the following approximate expression for the CGF of a tagged particle in
the symmetric SEP with quenched initial conditions,

ψapprox
Q (k, t) ∼

t→∞
ρ(1− ρ)

√
2t

∫ ∞
0

dz log

[
1− sin2

(
k

2ρ

)
erfc(z)erfc(−z)

]
. (S15)

This expression is exact in the limits ρ→ 0 [S2] and ρ→ 1 (this article). It leads to the following expressions for the
lowest cumulants,

κQ2 (t) ∼
t→∞

1√
2π

1− ρ
ρ

√
2t, (S16)

κQ,approx4 (t) ∼
t→∞

√
2

π

(
9

π
arctan

1

2
√

2
− 1

)
1− ρ
ρ3

√
2t, (S17)

κQ,approx6 (t) ∼
t→∞

[∫ ∞
0

dz
15

4
(1− erf2z)

((
erf2z − 1

2

)2

− 7

60

)]
1− ρ
ρ5

√
2t. (S18)

These expressions look in good agreement with numerical simulations (Fig. S1) which could points towards the exact
nature of this expression. Unfortunately, the fourth cumulant has been computed rigorously [S3] and reads

κQ,exact4 ∼
t→∞

√
2

π

{
(1− 2ρ)2

[
9

π
arctan

(
1

2
√

2

)
− 1

]
+ ρ(1− ρ)

(
2− 3√

2

)}
1− ρ
ρ3

√
2t (S19)

As expected, the exact and approximate expressions are equal in both limits ρ→ 0 and ρ→ 1. Furthermore we show
on Fig. S2 that the difference between the prefectors from the exact and approximate expressions is always less than
15 % so that the approximate expression that we put forward is reasonnable.
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FIG. S1. Quenched cumulants κQ
2 , κQ

4 and κQ
6 from numerical simulations at densities 0.25, 0.5 and 0.75 (blue to red). The

dashed gray line corresponds to the approximate predictions from Eqs. (S16)-(S18).
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FIG. S2. Comparison between the approximate solution (Eq. (S17), dashed gray line) and the exact solution (Eq. (S19),

continuous black line) for the prefactor of the fourth quenched cumulant κQ
4 . We plot [ρ3/(1− ρ)]κQ

4 /
√

2t and observe that the
maximum deviation of the approximate prefactor remains small.


