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Abstract

We present for the first time an approach for identifying the geometric and material characteristics of layered compos-

ite structures through an inverse wave and finite element approach. More specifically, this Non-Destructive Evaluation

(NDE) approach is able to recover the thickness, density, aswell as all independent mechanical characteristics such

as the tensile and shear moduli for each layer of the composite structure under investigation. This is achieved through

multi-frequency single shot measurements. It is emphasized that the success of the approach is independent of the

employed excitation frequency regime, meaning that both structural dynamics and ultrasound frequency spectra can

be employed. It is demonstrated that more efficient convergence of the identification process is attainedcloser to the

bending-to-shear transition range of the layered structure. Since a full FE description is employed for the periodic

composite, the presented approach is able to account for structures of arbitrary complexity. The procedure is ap-

plied to a sandwich panel with composite facesheets and results are compared with two wave-based characterization

techniques: the Inhomogeneous Wave Correlation method andthe Transition Frequency Characterization method.

Numerical simulations and experimental results are presented to verify the robustness of the proposed method.

Keywords: Structural identification, Non-Destructive Evaluation, Finite Elements, Wave Propagation, Layered

Structures, Ultrasound

1. Introduction

Composites are widely used in modern industry, due to their low density and high dynamic and static perfor-

mances. This goal has led to develop new sandwich structuresand composite materials in general, with tailored

properties and a wide range of possible configurations and topologies. However, the verification and Non-Destructive

Evaluation (NDE) of the actual mechanical properties of theassembled layered structure remains a very much open

engineering challenge. Experimental testing and system identification have played important roles in various fields

such as civil engineering, mechanical engineering and aerospace engineering due to their versatile applications suchas
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Nomenclature

M , K Mass and stiffness matrices of the periodic waveguide

D Dynamics Stiffness Matrix (DMS) of a waveguide’s modelled periodic segment

F Objective function to be minimized

T Transfer matrix of the wave propagation eigenproblem

f Forcing vector for an elastic waveguide

p Vector of structural characteristics to be identified

q Physical displacement vector for an elastic waveguide

x(t) Logged signal vector as a function of time

ρ, h, E, G, v Mass density, thickness and mechanical characteristics ofeach layer

Lx Dimension of a waveguide’s modelled periodic segment

L, R, I Left, right sides and interior indices

U0 Amplitude of applied excitation signal

cp Wave phase velocity

cg Wave group velocity

f0 Frequency of the applied excitation

k Wavenumber

l, lmax Index corresponding to layer number and total number of structural layers

m, mmax Index corresponding to each measured frequency and total number of measured frequencies

n0 Number of cycles for the Hanning windowed excitation

r f , f e Indices denoting wave characteristics obtained through measurements and the WFE scheme respectively

s Periodic segment positioning index

t Time

x0, x1 Coordinates of the excitation and monitoring locations on the waveguide

Φ
ω,+
q ,Φω,−q Grouped displacement eigenvectors for the positive and negative going elastic waves at frequencyω

Φ
ω,+

f ,Φω,−f Grouped forcing eigenvectors for the positive and negativegoing elastic waves at frequencyω

φq, φ f Displacement and forcing eigenvectors

β Arbitrary structural property

γ Propagation constant and eigenvalue of the wave propagation eigenproblem

ω Angular frequency
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assessing system conditions and reconciling numerical predictions with experimental investigations [1, 2, 3, 4, 5, 6].

In a broad context, ’system identification’ refers to the extraction of information about the system behavior directly

from experimental data [7, 8]. Over the past decades, different system identification methods in the time domain

[9, 10, 11], frequency domain [12, 13] and time-frequency domain [14, 15] have been proposed. System identification

has been applied extensively in the field of structural dynamics and it has been proven to be useful in the analysis of

the dynamic behavior of the structure. In the context of structural dynamics, system identification generally includes

modal-parameter identification by extracting the modal data of a structural system such as its natural frequencies,

damping ratio and mode shapes as well as physical-parameteridentification by extracting useful information related to

stiffness, mass and damping. Numerous approaches have been developed for system identification including stochas-

tic subspace identification method [16], extended Kalman filter method [17] and Bayesian approaches [18, 19, 20] to

cite a few of them.

The system identification approaches aforementioned are generally based on the measurement of structural vi-

bration information. Nowadays however, several researchers have shown that propagating wave properties can have

a high sensitivity to structural parameters than other structural responses. Therefore, sporadic but consistent efforts

have been directed to extract a system’s structural condition using wave propagation information over the past decade

[21, 22]. However, it is worth mentioning here that rare workreviewed in [21] and [22] are dependent on the model.

Though some efforts [23, 24, 25] have been devoted to inference the model parameters through wave propagation,

they have not resulted in full-fledged applications. Therefore, there is still significant room for further explorationin

system identification by integrating mathematical models of wave propagation. Many methods have been developed

to perform material characterization in composites. On cancite the experimental method for the characterization of

Nomex cores [26], or the vibratory identification techniqueproposed in Matter et al. [27]. Other methods based on nu-

merical strategies were also developed in [28, 29]. Recently, a Transition Frequency Characterization technique [30]

was developed to perform material identification in sandwich structures, based on the so-called bending-to-shear con-

version effect. However, such methods could not handle more complex topologies often encountered in transportation

industry, despite the considerable progress made on the numerical wave-based models in this field.

The propagation of guided waves in sandwich structures has indeed been the subject of intense research in the

recent years. Traditional analytical methods (i.e. classical plate theory, Mindlin type or first-order shear deforma-

tion theories) typically employed for modelling wave propagation in monolayers can only correctly capture the wave

characteristics in the low frequency range for thick structures. In contrast, Finite Element (FE) based wave methods

assume a full 3D displacement field and are therefore capableof capturing the entirety of wave motion types in the

waveguide under investigation in a very accurate and efficient manner. FE-based wave propagation within periodic

structures was firstly considered in the pioneering work of the author of [31]. The work was extended to two dimen-

sional media in [32]. The Wave and Finite Element (WFE) method was introduced in [33, 34] in order to facilitate the

post-processing of the eigenproblem solutions and furtherimprove the computational efficiency of the method, while

the extension of WFE method for two dimensional structures was introduced in [35].
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The principal novel contribution of this work is the development of a comprehensive methodology coupling pe-

riodic structure theory to FE in order to identify the characteristics of each individual layer of a composite structure

through experimental measurements on the entire structure. The method is robust and can account for structures of

arbitrary complexity. Both low as well as high frequency excitations can be employed for inverting the structural prob-

lem. It is shown that faster convergence can be acquired around the wave transition region [36, 37] which is a specific

type of wave conversion [38, 39], occurring in sandwich structures subject to flexural vibrations. Both experimental,

as well as numerical case studies are presented in order to validate the exhibited methodology.

The paper is organised as follows: In Sec.2 the FE computational scheme for predicting wave propagation in

multilayered structures is presented and targeted suggestions are made in order to effectively recover the structural

and material characteristics for the structure under investigation. A Hilbert Transform is employed to measure the

time of arrival of the wave pulses and subsequently the propagating wavenumbers. A Newton-like iterative scheme is

eventually employed for minimising the formulated objective function and recovering the mechanical characteristics

of each individual layer through solution of the system of eigenvalue expressions. In Sec.3 several experimental

and numerical case studies are presented for validating theexhibited identification approach. A periodic layered

structure is modelled and multi-frequency single wave shots are excited and measured. The structural and material

characteristics for each layer are then recovered. Conclusions are eventually drawn in Sec.4.

2. An inverse wave and finite element methodology for structural identification

Mathematical modeling can provide a good understanding andform the basis of a characterization process for

a mechanical system. Given the mathematical model, system identification can be implemented by fitting it to that

from experimental testing. In the present paper, the primary focus is to improve structural models by measurements

performed on the real structure using wave propagation measurement data. As a result, one can make inference about

the parameters of a mathematical model based on the observedmeasurements.

An arbitrarily complex and periodic in thexdirection waveguide is illustrated in Fig.1. The structuremay comprise

an arbitrary number of layers which may be anisotropic. It isassumed that some of the structural characteristics are

unknown (or even variable over time) and need to be evaluatedthrough a non-destructive evaluation process. The

identifiable properties include the thickness, density as well as the material characteristics of each individual layers.

In the following, a wave and finite element scheme is employedin order to recover the required properties of the

layered structure through the acquired propagating wave data.

2.1. Obtaining the reference wave characteristics

The required data to be extracted and later fed into the structural identification process are the wave phase speeds

(or wavenumbers) of specific wave types propagating within the laminate under investigation. A number of methods

can be employed for exciting and measuring specific propagating wave modes within a composite structure. Piezo-

electric [40] or even non-contact laser actuation [41] can be employed for exciting and measuring wave properties
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Figure 1: Caption of the WFE modelled composite waveguide with the left and right side nodesqL, qR bullet marked. The range of interior nodes

qI is also illustrated.

in the ultrasound frequency range, while within the structural dynamics spectrum more conventional shaker and ac-

celerometer devices can be employed (see also the experimental study presented in Sec.3.

With regard to numerical calculations, a number of approaches can be employed [42] for exciting the structure

and computing its response at any node. Different wave types can be excited by employing their corresponding

displacement field. Care has to be taken in order to ensure that a sufficiently fine discretization (at least 6-10 elements

per wavelength) has been employed for correctly capturing the propagating waves in the layered structure.

It is hereby assumed that the excitation frequency of the wave packages is known and can be controlled as well

as altered within a certain spectrum. It is generally beneficial to have a range of well separated excitation frequencies

(by at least 50% from each other) in order for the post-processing identification process to converge at a faster rate.

To avoid frequency leakage, a proper signal windowing technique should also be employed. A Hanning window was

chosen as the most appropriate and was employed throughout the results presented in this manuscript. The excitation

signals are quasi-monochromatic burst of amplitudeU0, centred around frequencyf0 and involving a number ofn0

cycles. Input signals are windowed so that the input signal is defined byu(t) = U0 sin

(

π f0t
n0

)

sin(2π f0t) for 0 ≤ t ≤
n0

f0
andu(t) = 0 for t >

n0

f0
.

An illustration of the configuration is depicted in Fig.2. The waveguide is excited at a specified central harmonic

signal of frequencyf0 at a locationx = x0 and the signal is monitored at locationx = x1, after which the signal has

travelled over a distance ofL = x1 − x0. Once the experimental or numerical signal measurements are logged, the
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Figure 2: Illustration of the suggested configuration for obtaining the reference wave characteristics to be later compared with the WFE ones. All

simulations are performed using ANSYS V4.15. Three-dimensional solid brick elements are employed for enhanced accuracy and a minimum

mesh density of 15 elements per wavelength is retained.

wavenumbers and group velocities of the excited waves can beeasily determined.

Time histories are initially registered at the excitation and monitoring locations. The maximum amplitudes of the

time history signalsx(t) are obtained from the Hilbert TransformsH[x(t)] of the acquired signals in the time domain.

Hilbert TransformH[x(t)] of the acquired time signalx(t) is used to evaluate the main attributes ofx(t). The signal

envelope is determined at emission,X0 and arrival,X1 while the time delay is defined by the time difference between

the maximal amplitudes of the envelopes. The total Time of Flight of the wave signal from the point of excitation to

the monitoring point is measured as the time differencet(x1) − t(x0) between the maximum amplitudes of the excited

and the monitored signal envelopes. In ultrasonic NDE, the wavenumber of the wave package is straightforward to

obtain as:

k =
ω

cp
(1)

where the phase velocity of the signalcp can be obtained from its ToF and its propagation distanceL. It is noted that

the phase velocity for a non-dispersive wave is equal to its group velocity.

2.1.1. Optimal excitation frequency range for the reference characteristics

As aforementioned, the exhibited scheme can be employed forboth in the high as well as the lower frequency

range. It is interesting to note that sandwich laminates comprising a soft core (e.g. honeycomb or foam one), generally

exhibit a so-calledtransition frequencywith regard to their propagating flexural wave speed behaviour.

Kurtze and Watters [43] were the first to observe and develop an asymptotic model for the wave dispersion into

symmetric flat thick sandwich structures. They divided the flexural wave speed of a sandwich panel (frequency-wise)

into three sections, the first characterized by the panel vibrating as a whole, the second by the core’s shear wave speed

and the third by each of the two facesheets vibrating separately and loaded with half of the core mass. In the same

work, it was also shown that the flexural wave type in the sandwich structure has its maximum group velocity value

at the transition frequency. As an illustrative example, the group velocities for a typical sandwich structure (to be

investigated in Sec.3) are computed and compared with the transient simulations in Fig.3 (see [30] for details of the

conducted simulation). Since thetransition frequencyof a sandwich composite is intensely sensitive to its structural

characteristics, it becomes evident that exciting the structure under investigation close to this frequency range can

unveil its intrinsic properties and facilitate the convergence of the algorithm.
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Figure 3: Comparison between theoretical dispersion curves and the velocities obtained by ToF with transient pulse simulations at various frequen-

cies. The transition frequency of the sandwich panel is clearly distinguished and characterized by a maximum value for the group velocity. (from

[30])

It is noted that this transition for most sandwich laminatedoccurs well within their ’structural dynamics’ response

range (typically between 2kHz-10kHz). If higher frequencies are excited for the identification process (e.g. ultrasound

range) then obviously exciting the transition range is not feasible, however the identification process will still converge

to the correct properties as shown in Sec.3.

2.2. Structural identification methodology

2.2.1. Considerations on the forward wave FE model

Once again, we consider the periodic complex waveguide illustrated in Fig.1. The propagation constants for

the elastic waves travelling in thex direction can be sought through the forward Wave and Finite Element (WFE)

scheme as described in Appendix A. It is noted that analytical multilayer modelling techniques [44] have also shown

to successfully predict the broadband wave properties for layered structures; however a FE based method is hereby

preferred thanks to its versatility (different numbers of layers and complex material properties arestraightforward to

take into account, with no need of altering the modelling approach). Moreover, 3D displacement fields are employed,

therefore retaining accuracy in a broadband frequency regime without any implicit strain field assumptions (such as

the ones used by shear deformation models [45]).

It is obvious that the number of solutions for the formulatedeigenvalue problem depends on its size. Most of the

obtained solutions however correspond to either fast decaying, evanescent waves or to numerical artefacts which bare

no physical value. By employing straightforward filtering approaches (typically by comparing the real and imaginary

parts of the obtained wavenumbers as in [46]) the propagating and positive-going wave types can be distinguished

and kept in a separate database for later comparing them withthe acquired reference wave characteristics. Using the

obtained wave mode shapesφq (see also Appendix A) the actual wave type can also be categorized (typically flexural,

shear or longitudinal) in order to ensure the fact that the user is always comparing WFE and reference values for the

same wave type.
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Due to the large number of numerical artefacts (especially for large models), it is challenging if not impossible

to experimentally reconstruct the vector of eigenvalues and attempt a direct inversion [47] of the eigenvalue prob-

lem of Appendix A (Eq.A.8). Moreover, given the experimental capability of individually exciting just one or two

propagating wave types in a structure it is oftentimes only possible to recover a single eigenvalue per frequency for

the eigenproblem of Eq.A.8. On the other hand, the employment of wave based measurements suggests that eigen-

value data for an unlimited number of frequencies can be extracted, which is the principal advantage of the suggested

method compared to modal based identification techniques.

2.2.2. Formulation of the identification objective function

The advantage of the exhibited WFE approach is therefore thefact that since the excitation frequency is controlled

and known, an unlimited number of eigenvalues (for the same wave) can be extracted for the corresponding number

of frequencies. Since each resultingjth eigenvalue (propagation constants for each wave type) can be expressed as

γ j, f e = e−ik j, f eLx (2)

the corresponding wavenumberk j can be given by

k j, f e =
logγ j, f e

−iLx
(3)

which can be directly compared to the reference wavenumber valuesk j,r f . The objective function of the identification

process to be minimized is then obtained through a least squares approach as

F (p) =
mmax
∑

m=1

(

km,r f − km, f e

)2
(4)

with km,r f andkm, f e being measured and calculated respectively at frequencyωm for the same wave type, whilep is

the vector of parameters to be identified; in the very generalcase this is expressed as

p =
{

Ex,1Ey,1Ez,1vxy,1vxz,1vyz,1Gxy,1Gxz,1Gyz,1h1ρm,1 · · · ρm,lmax

}⊤

(5)

for layersl ∈ [1, lmax]. In the above,mmax is the total number of reference eigenvalues which can be used in the

identification procedure. It is obvious that the minimum requiredmmax is equal to the number of parameters to be

identified, however results for additional frequencies will generally improve the precision of the identification process.

An excessivemmax is undesired, as for each computation ofF , an equivalent number of eigenproblems needs to be

solved.

In order to accelerate the Newton-like iterative scheme, the first (or even the second) gradient of the objective

function ∂F
∂βi

may be provided for each sought structural propertyβi as

∂F

∂βi
=

mmax
∑

m=1

(

2km, f e
∂km, f e

∂βi
− 2km,r f

∂km, f e

∂βi

)

(6)
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It is noted that the set of parameters may be considered to have constrained values (e.g.βi ∈ [βi,min, βi,max]), again for

practical reasons. In order to compute the gradient of the wavenumber values
∂km, f e

∂βi
, an expression of the mass and

stiffness matrices directly as a function of the material and geometric characteristics of each layer is greatly practical,

as derived in Appendix B. By employing the symbolic expressions for the mass and stiffness derivatives∂M
∂βi

, ∂K
∂βi

the

wavenumber sensitivity
∂km, f e

∂βi
can be computed as in [48].

The constrained minimization problem can be implemented within standard mathematics software and nonlinear

optimization algorithms (such asfminconin MATLAB) can be employed in order to compute the optimal parameter

vectorp that minimizesF (p) and corresponds to the identified structural properties. It is stressed that due to the

existence of several local minima inF , a global search algorithm should be employed during the solution process.

The minimum of the encountered solutions is retained as the global set of acquired structural characteristics.

The presented scheme is validated in the following Section through numerical, as well as experimental results.

It is shown that when clear wavenumber measurements are obtained, the approach can be exceptionally accurate.

Moreover, the procedure can be applied within a rational amount of time (especially if only one or two structural

parameters are to be sought) using conventional low-cost computing equipment. The generic iterative procedure of

the post-processing identification process is presented inAlgorithm 1.

Algorithm 1 Newton-like iterative scheme for identifying the parameters of a layered structure
1: Input measured reference wave characteristics. Determinetotal number of local minima to be investigated and

evaluated. Define identification criterion for objective functionF

2: i ← 1 Input structural parameters for initial design to be evaluated

3: Substitute new set of structural parameters in symbolic expressions ofM , K , ∂K
∂βi

, ∂M
∂βi

and formulate the corre-

sponding matrices for the periodic unit cell of the layered design under investigation

4: Solve the eigenproblem of Eq.A.8 for designi. Compute WFE wave velocities and wavenumbers

5: ComputeF and the sensitivity values∂F
∂βi

for each structural parameterβi to be recovered

6: if dF < Solution convergence criterionthen

7: Solution corresponds to a local minimum

8: if F < Identification criterionthen

9: Solution corresponds to global identification solution andprocess can end

10: else

11: Radically alter the structural parameters and go to Step 3

12: end if

13: else

14: Use∂F
∂βi

in order to alter structural parameters for converging towards a local minimum.i ← i+1 (next solution

step). Go to Step 3

15: end if
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Figure 4: General representation of the ToF measurements. The pulse input is generated using an excitation device at theinput point while the time

delay is measured at the monitoring point. Note that better results are obtained when no edge reflections are interferingwith the registered pulse.

3. Numerical and experimental case studies

3.1. Numerical validation of the identification scheme

3.1.1. Monolayer case study

The first numerical case study relates to identifying the thickness, density and Young’s modulus for a monolayer

metallic structure under investigation. The properties exhibited under Structure I (see Table 1) are employed for the

monolayer case-study which is modelled by 3D solid elementsin ANSYS V14.5. A longitudinal pressure wave exci-

tation is numerically imposed at a cross section of the modelled structure. A general presentation of the measurement

process is depicted in Fig.4).

The propagating waveform is depicted in Fig.5 for six wave pulses of different frequencies. As expected, negligible

dispersion occurs for all six pulses, thanks to the high number of cyclesn0 employed for the Hanning window process,

as well as to the non-dispersive nature of pressure waves. Itis clear that the absence of reflected and converted waves

at high frequencies allows a reliable determination of the wave envelope characteristics. It is stated that a quasi-

monochromatic burst is hereby assumed as excitation which may however not always be realistic. For structures

under real operating conditions a number of impediments mayexist. These could be related to the quality and feasible

amplitude of the signal (good signal to noise ratio is needed) as well as to the excitation bandwidth which in reality is

never monochromatic. Moreover, operational conditions (mainly temperature as well as pressurization effects) may

alter the wave propagation properties of a certain modelledstructure. As is the case with several fields of applied

research, a comprehensive uncertainty quantification needs to be performed before applying this methodology under

operational conditions, in order to determine the degree ofcertainty and confidence for the extracted results.
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Figure 5: Time acquisition atx = 0 (black curves) andx = 3cm (red curves) with the wave envelopes depicted in the monolayer structure. The

number of cycles isn0=9. The ToF is measured at the maximal amplitude of Hilbert transform (solid lines) signal.

Six wavenumber measurements are recovered for an equivalent number of different ultrasonic frequencies, namely

from 100kHz to 350kHz with a step of 50kHz. The reference wavecharacteristics related to the recovered wavenumber

values are shown in Fig.6. These are retained for comparisonwith the WFE obtained results for the same propagating

wave type which will form the objective function of the identification problem. The same process is repeated for a

flexural wave propagating within the monolayer structure with the results also presented in the same Figure.

Once the reference wave characteristicskm,r f are established, the objective functionF can be established as a

function of the structural properties to be identifiedE, ρ andh. A single element is employed for the formulation of

the WFE model which results in very fast eigenproblem solutions for Eq.A.8. An identification criterion equal to 10

is employed (suggesting that any local minimum with a value less than that would be considered as a solution). The

minimization process was completed in 58 iterations each ofwhich lasted approximately 8 seconds, resulting in a

total computation time of 460s on a conventional laptop device. This suggests that employing dedicated optimization

software and high-performance computing equipment would radically reduce this amount of post-processing. The

final value of the objective function when pressure wave measurements were employed was of the order of 10−1. The

second best identified solution gave an objective function value at the order of 101, therefore confirming the optimality

of the result. The identified parameters are exhibited in Table 1 and are in excellent agreement with the ones initially

used in the full FE model (maximum divergence is considerably less than 1%). The result therefore validates the

accuracy and robustness of the proposed scheme. It is noted that in theory, the Poisson’s ratio of the structure could
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Figure 6: Reference wavenumber values obtained through a numerical solution of the full FE model for the monolayer structure. Results for a

pressure propagating wave (�) and a flexural propagating one (©).

also be identified; however due to the low sensitivity exhibited by the propagating wavenumbers to this structural

parameter, the time required for the process to successfully converge is much greater.

3.1.2. Layered composite case study

A similar process was followed for extending the calculations to a layered composite structural configuration.

The properties for each layer are given as Structure II (lower facesheet), Structure III (core layer) and Structure IV

(upper facesheet) in Table 1. Once again, a pressure as well as a flexural wave excitation was imposed at a specific

cross-section of the modelled structure. A Hanning window was applied at all pulses withn0=9. The results for six

wave pulses of different frequencies are presented in Fig.7.

In order to find out the maximum number of parameters that can be identified within a rational amount of time

for the multilayer structure, we run the identification procedure for three, four, five and six unknown parameters. The

WFE model this time comprised three FEs (one for representing each structural layer). The identification criterion

was again set equal to 10. It was observed that the processes with five and six unknown parameters never converged

to a satisfactory value of the objective function after 18,000s of post-processing time (5 hours). This is due to the

existence of an important number of local minima that neededto be investigated by thefminconalgorithm. None of

the derived local solutions however had a value close to zero.

The identification process did converge when four parameters were considered unknown (ρII , Gxz,III , Ex,IV and

hIV ) with the corresponding indices taken as in Table 1. The minimization process converged after 137 iterations

each of which lasted approximately 14 seconds, resulting ina total computation time of 1950s on a laptop device.

The properties identified through the results corresponding to the pressure wave are again presented in Table 1. Very

good agreement exists between the recovered values and the ones initially injected in the full FE model (maximum
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Figure 7: Reference wavenumber values obtained through a numerical solution of the full FE model for the multilayer structure. Results for a

pressure propagating wave (�) and a flexural propagating one (©).

divergence again not greater that 1%), while the final value of the objective function was equal to 5.34. It is evident that

incorrect wavenumber measurements will radically increase the value of the calculated objective function, therefore

leading to a non-convergent problem. An experimental approach is employed in the following section in order to

further extend the validation process.

3.2. Structural identification through experimental measurements for a layered composite

The experimental validation is based on experimental set-up developed in. In this section, the proposed identifi-

cation strategy is applied to a sandwich structure, and results are compared with the ones obtained in Droz et al. [30]

from IWC method, static experiments and the Transition Frequency Characterization.

The structure is a rectangular sandwich plate measuring 60 cm× 288 cm, placed in a horizontal position as depicted

in Fig.(8). The structural response is measured using a Polytec laser vibrometer and is transmitted to the acquisition

system in order to compute the structural impedance at various points of the panel. The panel was excited using a

shaker, controled by the Polytec acquisition system and adhered to the structure through a force sensor.

The constitutive materials are a 10 mm-thick Nomex honeycomb core involving a 3.2 mm cell size, while prop-

agation is considered in the W-direction. The sandwich’s skins are 0.6 mm-thick Hexforce with multi-axial, carbon-

reinforced fibres. The density of the skins given by the manufacturer isρs = 1451 kg.m−3 and the core’s density is

ρc = 99 kg.m−3.

Static measurements conducted on the layered structure provides the following mechanical characteristics for the

Young’s modulus of the facesheets and the shear modulus of the core along the investigated direction:

Emanuf= 70 GPa and Gmanuf ∈ [30− 38] MPa
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Table 1: Properties of numerically modelled structural layers and identified characteristics through the inverse WFE scheme

Structure I Structure II Structure III Structure IV

ρ = 7850 kg/m3 ρ = 3500 kg/m3 ρ = 150 kg/m3 ρ = 3500 kg/m3

h = 1 mm h = 0.5 mm h = 5 mm h = 1 mm

E = 170 GPa Ex = 150 GPa Ex = 95 MPa Ex = 150 GPa

- Ey = 85 GPa Ey = 95 MPa Ey = 85 GPa

- Ez = 85 GPa Ez = 150 MPa Ez = 85 GPa

v = 0.29 vxy = 0.15 vxy = 0.3 vxy = 0.15

- vxz = 0.1 vxz = 0.23 vxz = 0.1

- vyz = 0.1 vyz = 0.3 vyz = 0.1

- Gxy = 15 GPa Gxy = 20 MPa Gxy = 15 GPa

- Gyz = 23 GPa Gyz = 55 MPa Gyz = 23 GPa

- Gxz = 15 GPa Gxz = 35 MPa Gxz = 15 GPa

Identified structural characteristics of each layer

ρ = 7857.43 kg/m3 ρ = 3474.8 kg/m3 Gxz=35.44 MPa h=1.0038 mm

h = 0.9973 mm - - Ex=148.91 GPa

E = 174.32 GPa - - -
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Figure 8: Photo of the structure used to retrieve experimental wavenumbers.

The shaker is used to produce the harmonic excitation at the edge of the plate while the laser vibrometer is used to

measure normal displacement field at the surface, along a 50 cm line of 66 points. The IWC method [49] is employed

to estimate the propagating flexural wavenumbers in the plate. The frequency range of interest spans 0 and 4000Hz.

The phase velocities obtained by the IWC method are shown in Fig.9. Material properties obtained from the IWC

characterization [30] are:

EIWC = 62 GPa and GIWC = 37.8 MPa
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Figure 9: Flexural phase velocities obtained in the main direction of the plate. Inaccurate results are usually expected in the low frequencies for

the IWC method. The convergence however increases with frequency, providing approximated material properties and a good correlation with

analytical results.

The method proposed in Sec.2 is now applied to estimate the two mechanical characteristics mentioned above.

Pulse measurements are post-processed to retrieve the phase velocities at selected frequencies. Note that the extraction

of accurate phase velocities becomes easier in higher frequencies. Although wavenumbers can directly be retrieved
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in the considered frequency range, this is not always the case in higher frequencies. Additionally, the 1 m distance

required in this experimental set-up is due to the low wavenumbers of flexural waves in the sandwich panel. This

distance could be considerably reduced if ultrasonic wavesare employed to retrieve local dynamic properties.

The pulse generation at frequencyfn involves at least 10 cycles to limit dispersion effects occurring at these

frequencies and is controlled by the PSV Laser using a triggering procedure. The response is measured at 1 m from

the source for a selected number of frequencies between 500 Hz and 1500 Hz. The time signals are averaged at least

30 times to reduce experimental noise. Noteworthy, the group velocity can also be derived from measured phase

velocities and wavenumbers. Measured pulses are shown in Fig.10 at 6 different frequencies close to the transition

bandwidth.
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Figure 10: Measured pulse signals at acquisition point.

Note that a refined frequency sampling was used in [30] to evaluate the transition frequency at 880 Hz, and retrieve

the following material characteristics:

ETFC = 69.8 GPa and GTFC = 36.5 MPa

Taking into account the material characteristics providedby the manufacturer of the layered panel and presented
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Figure 11: Experimental procedure for the WFE-based model updating strategy.

above, the WFE iterative process is formed and the properties of the panel are identified through the presented,

Newton-like minimization scheme. The process depicted in Fig.11 and detailed by Algorithm 1 was programmed

and executed with the experimentally obtained flexural wavenumbers serving as the reference measured values. The

structural parameters to be identified are the Young’s modulus of the facesheet and the shear modulus of the core in

the direction of wave propagation. A new design was therefore generated after each iteration, taking into account the

first derivative ofF . After converging to a minimum ofF , the final value of the objective function was compared to

the identification criterion. If the identification condition was not satisfied, a drastically altered design was evaluated

by the iterative algorithm. Three elements comprise the WFEmodel which results in very fast model updating and

eigenproblem solutions for Eq.A.8. An identification criterion equal to 10 was employed while the minimization

process converged in 91 iterations each of which lasted approximately 14 seconds, resulting in a total computation

time of 1274s on a conventional laptop device.

The identified Young’s modulus for the skins of the laminate and the shear modulus of the honeycomb core in the

direction under investigation are computed as:

EWFE = 69.5 GPa and GWFE = 37.1 MPa

which are both in very good agreement with the values provided by the other methods mentioned above, therefore

experimentally validating the exhibited computational scheme.

4. Conclusions

In this work we have developed and applied a new identification technique based on FE modelling and the prop-

erties of propagating waves in multilayered structures. The principal contribution resulting from this work is a robust

numerical NDE procedure for recovering effective structural parameters of complex, layered composites. It can be

concluded that:
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(i) The method is able to extract layer characteristics including thicknesses, densities, tensile and shear moduli for

each individual layer and is robust enough to be applied in a broadband frequency range. Case studies elaborating

on both ultrasonic as well as low frequency ranges were presented. In the ultrasound range the wave characteristics

are straightforward to extract through the measured wave envelope, while in the low frequency regime dedicated

techniques can be employed such as the IWC approach.

(ii) The exhibited scheme was validated through comparisonwith experimental results as well as through full FE

transient response predictions. Excellent agreement is observed for the identified structural parameters.

(iii) It was shown that faster convergence of the post-processing identification algorithm was attained within the

so-called wavenumber transition spectrum where the bending-to-shear transition phenomenon can be easily captured

using the WFE method.

(iv) It is emphasized that the proposed wave-based method has significant advantages compared to modal identifi-

cation approaches. More precisely the accuracy of the structural parameters is not altered by the presence of uncertain

boundaries since the data is obtained locally, through single-shot measurements. This is a considerable advantage

compared to a number of stationary and other existing methods, since it can then be applied in situ and without requir-

ing additional sampling of the structure. The use of unlimited and user-selected excitation frequencies can effectively

increase the number of parameters to be identified through the inverse wave modelling, resulting in a significant

increase of the method’s robustness in a broadband frequency sense.

(v) The principal drawback of the presented approach is the required computational effort. This can range from

negligible (when a single structural parameter is sought) to intense, when typically more than three parameters are

to be identified and several iterations need to be completed before the Newton’s scheme converges to the desired

solution. Providing expressions of the wavenumber sensitivity to the investigated structural parameters under investi-

gation can accelerate the convergence process. Drastic computational savings can be attained by a-priori solving the

WFE forward model for a fine grid of variables and using a neural-network type approach for extracting the desired

parameters; this is currently a topic of further research.
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Appendix A. The forward wave and finite element modelling approach

Linear elastic wave propagation is considered in thex direction of the arbitrarily layered structural waveguideof

Fig.1. The problem can be condensed using a transfer matrix approach as in [33]. The frequency dependent Dynamic

Stiffness Matrix (DMS) of the waveguide’s periodic segment can bepartitioned with regard to its left/right sides and

internal DoF as
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(A.1)

with q the displacement andf the forcing vectors. Using a Guyan-type condensation for the internal DoF the problem

can be expressed as




















DLL − DLI D−1
II DIL DLR − DLI D−1

II DIR

DRL − DRID−1
II DIL DRR− DRID−1

II DIR







































qL

qR



















=



















fL

fR



















(A.2)

Assuming that no external forces are applied on the segment the displacement continuity and force equilibrium equa-

tions at the interface of two consecutive periodic segmentssands+ 1 give

qs+1
L = qs

R

f s+1
L = −f s

R

(A.3)

Using Eqs.(A.2),(A.3) the relation of the displacements and forces of the left and right sides of the segment can

be written as
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(A.4)

and the expression of the symplectic transfer matrixT can be written as

T =





















D11 D12

D21 D22





















[2 j×2 j]

(A.5)

with
D11 = −(DLR − DLI D−1

II DIR)−1(DLL − DLI D−1
II DIL )

D12 = (DLR − DLI D−1
II DIR)−1

D21 = −DRL + DRID−1
II DIL+

+(DRR− DRID−1
II DIR)(DLR − DLI D−1

II DIR)−1(DLL − DLI D−1
II DIL )

D22 = −(DRR− DRID−1
II DIR)(DLR − DLI D−1

II DIR)−1

(A.6)
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With a wave propagating freely along thex direction, the propagation constantγ = e−ikLx relates the right and left

nodal displacements and forces by

qs
R = γq

s
L

f s
R = −γf

s
L

(A.7)

By substituting Eqs.A.3, A.7 in Eq.A.4, the free wave propagation is described by the eigenproblem
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whose eigenvaluesγw and eigenvectorsφw =



















φq

φ f



















w

solution sets provide a comprehensive description of the

propagation constants and the wave mode shapes for each of the elastic waves propagating in the structural waveguide

at a specified angular frequencyω. Both positive going (withγ+w andφ+w) and negative going waves (γ−w andφ−w) are

sought through the eigensolution. Positive going waves arecharacterised [50] by

| γ+w |≤ 1,

ℜ(iωφ+⊤f φ
+
q ) < 0 if | γ+w |= 1

(A.9)

stating that when a wave is travelling in the positivex direction its amplitude should be decreasing, or that if its

amplitude remains constant (in the case of propagating waves with complete absence of attenuation), then there is

time averaged power transmission in the positive direction.

Appendix B. Structural FE matrices expressed directly as a function of layer mechanical characteristics

A linear solid FE is hereby considered as shown in Fig.12. Following the isoparametric notation introduced in

[51] the geometry of the element is described as
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(B.1)

The displacement interpolations are expressed as
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Figure 12: The considered cuboid solid FE
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(B.2)

Linear shape functions are assumed for the element

N1 =
1
8(1− ξ)(1− η)(1+ µ)

N2 =
1
8(1− ξ)(1− η)(1− µ)

N3 =
1
8(1− ξ)(1+ η)(1− µ)

N4 =
1
8(1− ξ)(1+ η)(1+ µ)

N5 =
1
8(1+ ξ)(1− η)(1+ µ)

N6 =
1
8(1+ ξ)(1− η)(1− µ)

N7 =
1
8(1+ ξ)(1+ η)(1− µ)

N8 =
1
8(1+ ξ)(1+ η)(1+ µ)

(B.3)

The element stiffness matrixk is formally given by the volume integral

23



k =
∫ 1

−1

∫ 1

−1

∫ 1

−1
B⊤DB|J| dηdξdµ (B.4)

while the element mass and damping matricesm, c can be determined as

m =
∫ 1

−1

∫ 1

−1

∫ 1

−1
N⊤ρmN|J| dηdξdµ (B.5)

c =
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−1
N⊤γ N|J| dηdξdµ (B.6)
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(B.7)

while ρm is the mass density of the material andγ the material damping coefficient. It is also noted that

B =
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(B.8)

The Jacobian matrix of the element is

J =
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(B.9)

while the the flexibility matrix of the element for an orthotropic materialD−1 can generally be written as

24



D−1 =
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(B.10)

The assumption of the undeformed FE being a rectangular parallelepiped is hereby adopted. The coordinates

x1, x2, x3, x4, x5, x6, x7, x8, y1, y2, y3, y4, y5, y6, y7, y8, andz1, z2, z3, z4, z5, z6, z7, z8, can then be replaced byLx, Ly, Lz in

the expression ofB. The generic expression form is thus given as

m = (ρLxLyLz)













































































































































































































































































































































































1/27 0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/54 0 0 1/108 0 0 1/216 0 0 1/108 0 0

0 1/27 0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/54 0 0 1/108 0 0 1/216 0 0 1/108 0

0 0 1/27 0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/54 0 0 1/108 0 0 1/216 0 0 1/108

1/54 0 0 1/27 0 0 1/54 0 0 1/108 0 0 1/108 0 0 1/54 0 0 1/108 0 0 1/216 0 0

0 1/54 0 0 1/27 0 0 1/54 0 0 1/108 0 0 1/108 0 0 1/54 0 0 1/108 0 0 1/216 0

0 0 1/54 0 0 1/27 0 0 1/54 0 0 1/108 0 0 1/108 0 0 1/54 0 0 1/108 0 0 1/216

1/108 0 0 1/54 0 0 1/27 0 0 1/54 0 0 1/216 0 0 1/108 0 0 1/54 0 0 1/108 0 0

0 1/108 0 0 1/54 0 0 1/27 0 0 1/54 0 0 1/216 0 0 1/108 0 0 1/54 0 0 1/108 0

0 0 1/108 0 0 1/54 0 0 1/27 0 0 1/54 0 0 1/216 0 0 1/108 0 0 1/54 0 0 1/108

1/54 0 0 1/108 0 0 1/54 0 0 1/27 0 0 1/108 0 0 1/216 0 0 1/108 0 0 1/54 0 0

0 1/54 0 0 1/108 0 0 1/54 0 0 1/27 0 0 1/108 0 0 1/216 0 0 1/108 0 0 1/54 0

0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/27 0 0 1/108 0 0 1/216 0 0 1/108 0 0 1/54

1/54 0 0 1/108 0 0 1/216 0 0 1/108 0 0 1/27 0 0 1/54 0 0 1/108 0 0 1/54 0 0

0 1/54 0 0 1/108 0 0 1/216 0 0 1/108 0 0 1/27 0 0 1/54 0 0 1/108 0 0 1/54 0

0 0 1/54 0 0 1/108 0 0 1/216 0 0 1/108 0 0 1/27 0 0 1/54 0 0 1/108 0 0 1/54

1/108 0 0 1/54 0 0 1/108 0 0 1/216 0 0 1/54 0 0 1/27 0 0 1/54 0 0 1/108 0 0

0 1/108 0 0 1/54 0 0 1/108 0 0 1/216 0 0 1/54 0 0 1/27 0 0 1/54 0 0 1/108 0

0 0 1/108 0 0 1/54 0 0 1/108 0 0 1/216 0 0 1/54 0 0 1/27 0 0 1/54 0 0 1/108

1/216 0 0 1/108 0 0 1/54 0 0 1/108 0 0 1/108 0 0 1/54 0 0 1/27 0 0 1/54 0 0

0 1/216 0 0 1/108 0 0 1/54 0 0 1/108 0 0 1/108 0 0 1/54 0 0 1/27 0 0 1/54 0

0 0 1/216 0 0 1/108 0 0 1/54 0 0 1/108 0 0 1/108 0 0 1/54 0 0 1/27 0 0 1/54

1/108 0 0 1/216 0 0 1/108 0 0 1/54 0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/27 0 0

0 1/108 0 0 1/216 0 0 1/108 0 0 1/54 0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/27 0

0 0 1/108 0 0 1/216 0 0 1/108 0 0 1/54 0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/27













































































































































































































































































































































































(B.11)

a very similar expression is true forc, while the symbolic generic expression ofk can be derived exactly in the same

way but is hereby intentionally omitted for the sake of brevity. This implies the very practical fact of the mass,

damping and stiffness matricesm and k for each independent layer of the structure being a direct expression of

the structural and material characteristicsρ, Lz,Ex,Ey,Ez,Gxy,Gxz,Gzy, vxy, vxz, vzy. It is obvious that for an isotropic

layer, the above expressions are radically simplified, while the stiffness and mass matrices of a multilayer structure

can be obtained by assembling the discrete layer matrices. ANewton-like iterative scheme can then be effectively

employed for minimising the objective function and solvingthe system of eigenvalue expressions for recovering the

mechanical characteristics of each individual layer.
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The generic sensitivity expressions
∂k
∂βi

,
∂m
∂βi

as well as
∂2k
∂β j∂βi

,
∂2m
∂β j∂βi

with βi , β j being design parameters

can therefore be calculated as a function ofEx,Ey,Ez, vxy, vxz, vyz, Gxy,Gxz,Gyz, Lx, Ly, Lz by differentiating over the

generic expressions fork, m. The sensitivities of the global matrices∂K
∂βi

, ∂M
∂βi

can then be computed by assembling

the individual element sensitivity matrices together.
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