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This letter investigates the ergodic secrecy rate (ESR) of a reconfigurable intelligent surface (RIS)-assisted communication system in the presence of discrete phase shifts and multiple eavesdroppers (Eves). In particular, a closed-form approximation of the ESR is derived for both non-colluding and colluding Eves. The analytical results are shown to be accurate when the number of reflecting elements of the RIS N is large. Asymptotic analysis is provided to investigate the impact of N on the ESR, and it is proved that the ESR scales with log 2 N for both non-colluding and colluding Eves. Numerical results are provided to verify the analytical results and the obtained scaling laws.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) utilize a large number of passive reflecting elements to customize wireless communication environments [START_REF] Di Renzo | Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[END_REF]- [START_REF] Di Renzo | Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison[END_REF]. Due to the low-cost, high energy-efficiency and full-duplex advantages, RISs are regarded as a promising technology for next-generation wireless communications and hence have recently received significant academic and industrial attention [START_REF] Wu | Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[END_REF]- [START_REF] Pan | Intelligent reflecting surface aided mimo broadcasting for simultaneous wireless information and power transfer[END_REF].

RISs have various potential applications in wireless communications, which include the design of secure wireless systems based on the concept of physical layer security (e.g., [START_REF] Cui | Secure wireless communication via intelligent reflecting surface[END_REF]- [START_REF] Yang | Secrecy performance analysis of RIS-aided wireless communication systems[END_REF]). In [START_REF] Cui | Secure wireless communication via intelligent reflecting surface[END_REF]- [START_REF] Yu | Robust and secure wireless communications via intelligent reflecting surfaces[END_REF], the authors investigated optimization problems to jointly design the beamforming vectors and phase shifts at the transmitter and RIS, respectively. In general, there exist two objectives for the design of the phase shifts at the RIS: (i) to strengthen the legitimate channels by co-phasing the reflected signals with the signal directly received from the transmitter; and (ii) to suppress the eavesdropping channels by setting the reflected signals at the eavesdroppers (Eves) to be in opposite phase with respect to the signal from the transmitter. The key idea behind the optimization problems in existing works [START_REF] Cui | Secure wireless communication via intelligent reflecting surface[END_REF]- [START_REF] Yu | Robust and secure wireless communications via intelligent reflecting surfaces[END_REF] lies in achieving a favorable trade-off between these two design objectives, which requires the knowledge of the instantaneous eavesdropping channel state information (CSI) at the transmitter and RIS. However, the instantaneous eavesdropping CSI is difficult to obtain in practice, since the Eves are usually passive and do not actively communicate with other nodes. Motivated by this consideration, the authors of [START_REF] Wang | Intelligent reflecting surfaces assisted secure transmission without eavesdropper's CSI[END_REF] and [START_REF] Yang | Secrecy performance analysis of RIS-aided wireless communication systems[END_REF] considered RIS-assisted secrecy communications without assuming the knowledge of the instantaneous eavesdropping CSI.

Different from these existing works, this letter investigates the ergodic secrecy rate (ESR) of RIS-assisted systems in the presence of discrete phase shifts and multiple Eves. In particular, by approximately characterizing the distribution of the received signal-to-noise-ratios (SNRs) at the Eves, we obtain a closed-form approximation of the ESR for both noncolluding and colluding Eves. The analysis of the ESR, in fact, is essentially different from the analysis of the ergodic rate without security constraints [START_REF] Li | Ergodic capacity of intelligent reflecting surface-assisted communication systems with phase errors[END_REF], since the phase shifts at the RIS lead to a different impact on the intended receiver and Eves. Moreover, based on passive beamforming, the received SNRs at the destination and Eves depend on phase quantization errors and cascaded channels, that are different from those in massive multiple-input multiple-output (MIMO) systems. In order to provide insights, asymptotic analysis is also provided, which shows that the ESR scales with log N for both non-colluding and colluding Eves. Numerical results are illustrated to verify that the analytical results are accurate for large values of N .

Notation: C and Z denote the complex domain and integer set, respectively; we denote [1 : M ] {1, . . . , M }, where M is a positive integer, and [x] + max{0, x}; CN denotes the complex Gaussian distributions; E[•] denotes the expectation of a random variable; log(•) and ln(•) denote the base-two and natural logarithms, respectively; and κ is Euler's constant.

II. SYSTEM MODEL AND PRELIMINARIES

We consider an RIS-assisted secure communication system with a source (S), an RIS (R) with N reconfigurable elements, a destination (D) and K Eves (E k , ∀k ∈ [1 : K]). The reconfigurable elements of the RIS are arranged in a uniform array of tiny antennas spaced half of the wavelength apart. All nodes are assumed to be equipped with a single antenna 1 

. The channels S → D, S → E k , S → R, R → D and R → E k are denoted by h SD ∈ C, h SE k ∈ C, h SR ∈ C N ×1 , h RD ∈ C N ×1 and h k ∈ C N ×1
, respectively. These channels are modeled as

h SD = g SD d -α 2 SD , h SE k = g SE k d -α 2 SE k , [h SR ] n = g SR,n d -α 2 SR , [h RD ] n = g RD,n d -α 2 RD and [h k ] n =
1 RIS-aided transmission has several applications when multiple antennas are not available at either the transmitter or the receiver, e.g., in device-todevice communications [START_REF] Di Renzo | Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[END_REF].

g k,n d -α 2 k
, where g SD , g SE k , g SR,n , g RD,n , g k,n ∼ CN (0, 1) denote the small-scale fading 2 

, d SD , d SE k , d SR , d RD and d k denote the distances S → D, S → E k , S → R, R → D and R → E k , respectively, ∀n ∈ [1 : N ], k ∈ [1 : K],
and α is the pass-loss exponent. Then, the received signal at D and E k can be written as

yD = √ P ηh T SR ΦhRD + hSD xS + nD, (1) 
yE k = √ P ηh T SR Φh k + hSE k xS + nE k , (2) 
respectively, where x S is the transmitted signal, E(|x S | 2 ) = 1, P is the transmit power, n D and n E k ∼ CN (0, δ 2 ) are the additive white Gaussian noises at D and E k , respectively, η ∈ (0, 1] is the amplitude reflection coefficient, Φ diag(e jφ1 , . . . , e jφN ) and φ n ∈ [0, 2π) is the phase shift of the nth element of the RIS. We assume that the RIS does not have access to the instantaneous eavesdropping CSI, so that it cannot design φ n in order to suppress the received SNRs at the Eves. However, the RIS is assumed to know the instantaneous legitimate CSI. Under these assumptions, the optimal value of φ n that maximizes the received SNR at D is φ * n = θSD -θSR,n -θRD,n, where θ SD , θ SR,n and θ RD,n denote the phases of g SD , g SR,n and g RD,n , respectively. Due to hardware limitations, φ n can only take a number of discrete values. In particular, the set of discrete phase shifts is denoted by

F 0, 2π 2 b , . . . , (2 b -1)2π 2 b
, where b denotes the number of quantization bits. Accordingly, we set

φ n = f 1 (φ * n ), where the function f 1 (φ * n ) maps φ * n to the nearest point in F , i.e., f1(φ * n ) = φi, if |φ * n -φi| ≤ |φ * n -φj |, φi, φj ∈ F, ∀j = i. (3)
Therefore, the phase quantization error is

Θ n = f 1 (φ * n ) -φ * n , which is uniformly distributed in -π 2 b , π 2 
b , similar to [START_REF] Li | Ergodic capacity of intelligent reflecting surface-assisted communication systems with phase errors[END_REF], [START_REF] Xu | Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF]. According to (1) and ( 2), the received SNRs at D and E k can be formulated, respectively, as follows

γD = ρ |hSD| + η N n=1 |[hSR]n[hRD]n| e jΘn 2 = ρ d -α 2 SD |gSD| + ηd -α 2 SR d -α 2 RD N n=1 |gSR,ngRD,n|e jΘn 2 , (4) 
γE k = ρ hSE k + η N n=1 |[hSR]n[h k ]n| e jψ k,n 2 = ρ d -α 2 SE k gSE k + ηd -α 2 SR d -α 2 k N n=1 |gSR,ng k,n | e jψ k,n 2 , (5) 
where

ψ k,n f 2 (φ * n , θ SR,n ) + θ k,n , θ k,n is the phase of g k,n and the function f 2 (φ * n , θ SR,n ) is defined as follows f2(φ * n , θSR,n) f1(φ * n ) + θSR,n. (6) 
The ESR 3 can be expressed as follows

Rs = [RD -RE] + , (7) 
where

R D = E γD [log(1 + γ D )]
and R E denote the ergodic rates from S to D and from S to the Eves, respectively. Given {Θ n } N n=1 , an approximated expression of R D can be found in [15, Eq. ( 13)]. By averaging over {Θ} N n=1 , R D can be calculated as shown in [START_REF] Pan | Intelligent reflecting surface aided mimo broadcasting for simultaneous wireless information and power transfer[END_REF] at the top of the next page, where

A 1 η 2 d -α SR d -α RD , A 2 √ πη2 b 4 d -α 2 SD d -α 2 SR d -α 2 RD sin π 2 b and A 3 η 2 2 2b 32 d -α SR d -α RD 1-cos 2π 2 b . Remark 1:
The analysis of the ESR for the considered RISassisted system relies only on the knowledge of the statistical eavesdropping CSI, which can be obtained by using several methods, such as those used in [START_REF] Shang | Unmanned aerial vehicle meets vehicle-to-everything in secure communications[END_REF].

In the following sections, R E is calculated for non-colluding and colluding Eves, respectively.

III. NON-COLLUDING EVES

In the non-colluding case, R E can be expressed as follows

RE = max k∈[1:K] RE k , (9) 
where

R E k E γE k [log(1 + γ E k )].
In order to derive R E k , the distribution of γ E k in (5) needs to be computed.

A. Distribution of γ E k

Before deriving the distribution of γ E k , we introduce the following lemma.

Lemma

1: The phase ψ k,n , k ∈ [1 : K], n ∈ [1 : N ], in (5) has the following properties: a) ψ k,n is uniformly distributed in [0, 2π); b) ψ k,n is independent of f 2 (φ * n , θ SR,n ) defined in (6); c) ψ k,i is independent of ψ k,j , ∀i = j, i, j ∈ [1 : N ]. Proof 1: See Appendix A.
Based on Lemma 1, the distribution of γ E k in ( 5) is provided in the following lemma.

Lemma 2: When N is large, γ E k can be approximated with an exponential random variable with mean Lemma 2] and the fact that {ψ k,n } N n=1 are independent and identically distributed uniform random variables in [0, 2π) as proved in Lemma 1, [START_REF] Wu | Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[END_REF], the proof follows.

λ E k = ρ d -α SE k + N B k , where B k η 2 d -α SR d -α k . Proof 2: Define G k N n=1 |g SR,n g k,n | e jψ k,n , k ∈ [1 : K]. Based on [20,
G k ∼ CN (0, N ) as N → ∞. Furthermore, since g SE k is independent of G k , we have d -α 2 SE k g SE k +ηd -α 2 SR d -α 2 k G k ∼ CN 0, d -α SE k +N B k , as N → ∞. Recalling that γ E k = ρ d -α 2 SE k g SE k + √ B k G k 2 in ( 
Remark 2: The authors of [START_REF] Li | Ergodic capacity of intelligent reflecting surface-assisted communication systems with phase errors[END_REF] approximated R D based on the fact that Jensen's inequality is tight, rather than an upper bound, if Var[γD] E 2 [γD] → 0, as N → ∞. However, Lemma 2 shows that Jensen's inequality cannot be applied for approximating R E , since 3 We assume that the RIS appropriately customizes the wireless channel but we consider that the distribution of the signal transmitted by S is always Gaussian. It is worth mentioning that the information-theoretic characterization of RIS-assisted transmission and the calculation of the optimal input distribution in the presence of an RIS is an open issue that is currently under active research [START_REF] Karasik | Beyond max-snr: Joint encoding for reconfigurable intelligent surfaces[END_REF]. This is, however, beyond the scope of this letter.

Var[γE k ] E 2 [γE k ] → 1, as N → ∞.
RD ≈ log 1+ρ N η 2 d -α SR d -α RD +d -α SD + π 3 2 η 4 d -α 2 SD d -α 2 SR d -α 2 RD N n=1 EΘ n [cos Θn]+ π 2 η 2 8 d -α SR d -α RD N-1 i=1 N k=i+1 EΘ i ,Θ k [cos(Θ k -Θi)] = log 1 + ρN A1 + ρd -α SD + ρN A2 + ρN (N -1)A3 , (8) 

B. Ergodic Secrecy Rate

The ESR for non-colluding Eves is summarized in the following theorem.

Theorem 1: When N is large, the ESR for non-colluding Eves can be expressed as follows

Rs ≈ RD + 1 ln 2 max k∈[1:K] e 1 λ E k Ei - 1 λE k + , (10) 
where Ei(x) -

∞ -x e -t
t dt, x < 0, is the exponential integral function [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF]Eq. 8.211].

Proof 3: When N is large, based on Lemma 2, R E k in (9) can be approximated as follows

R E k ≈ ∞ 0 log(1 + x) 1 λ E k e -x λ E k dx = 1 ln 2 ∞ 0 e -x λ E k 1 + x dx = - e 1 λ E k ln 2 Ei - 1 λ E k , (11) 
where the last equality is based on [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF]Eq. 3.352.4]. Combining ( 7), ( 9) and ( 11), the theorem is proved.

C. Asymptotic Analysis

To obtain insights from the obtained ESR, its asymptotic behavior is analyzed in the following corollary. 

R D ≈ log ρA 3 N 2 1 ρA 3 N 2 + A 1 A 3 N + d -α SD A 3 N 2 + A 2 -A 3 A 3 N +1 → 2 log N + log ρ + log A 3 , as N → ∞. (12) 
In addition, R E k in ( 11) can be further expressed as follows

R E k (a) ≈ e 1 λ E k ln 2 -κ + ln(λ E k ) + ∞ i=1 (-1) i+1 i • i! • λ i E k (b) → log(λ E k ) - κ ln 2 (c) = log (N ρB k ) + log 1 + d -α SE k N B k - κ ln 2 → log N + log ρ + log B k - κ ln 2 , as N → ∞. ( 13 
)
where (a) is based on [START_REF] Guan | Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[END_REF] 7), ( 9), ( 12) and ( 13), the corollary follows.

Remark 3: Compared with the scaling law 2 log N for nonsecrecy transmission with discrete phase shifts [START_REF] Li | Ergodic capacity of intelligent reflecting surface-assisted communication systems with phase errors[END_REF], Corollary 1 shows that the ESR scales with log N .

IV. COLLUDING EVES

When the Eves are colluding, they can combine their received signals for information interception. Based on [START_REF] Pinto | Secure communication in stochastic wireless networks-part II: Maximum rate and collusion[END_REF], R E in (7) can be expressed as follows

RE = E {γ E k } K k=1 log 1 + K k=1 γE k . ( 14 
)
Since common random variables {g SR,n } N n=1 are present in every γ E k as shown in [START_REF] Wu | Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[END_REF], {γ E k } K k=1 are correlated random variables. However, the following lemma shows that such correlation is negligible for large values of N .

Lemma

3: γ Ei is independent of γ Ej if N → ∞, i, j ∈ [1 : K], i = j. Proof 5: Let us define HE k d -α 2 SE k gSE k + √ B k N n=1 |gSR,ng k,n | e jψ k,n . Thus, γ E k = ρ|H E k | 2 . According to Lemma 1-a), E e jψ k,n = 0 and E [HE k ] = 0, ∀k ∈ [1 : K]. Moreover, since ψ i,n is independent of ψ j,m if i = j or n = m, we have E[HE i HE j ] = 0, ∀i = j.
Therefore, the covariance of H Ei and H Ej is zero. Furthermore, based on Lemma 2, {H k } K k=1 are uncorrelated complex Gaussian variables if N → ∞, and hence {H k } K k=1 are independent of each other. This completes the proof.

A. Ergodic Secrecy Rate

Based on Lemma 2 and Lemma 3, the ESR is provided in the following theorem.

Theorem 2: When N is large, and λ Ei = λ Ej , ∀i = j, i, j ∈ [1 : N ], the ESR for colluding Eves can be approximated as follows

Rs ≈   RD + 1 ln 2 K i=1 e 1 λ E i Ei - 1 λE i K j=1,j =i λE i λE i -λE j   + . ( 15 
)
Proof 6: Based on Lemma 2 and Lemma 3, if λ Ei = λ Ej , ∀i = j, K k=1 γ E k has the following probability density function (PDF) [START_REF] Ross | Introduction to probability models[END_REF]:

f K k=1 γ E k (x) = K i=1 1 λE i e -x λ E i K j=1,j =i λE i λE i -λE j . ( 16 
)
Combining ( 11), ( 14) and ( 16), we obtain

RE ≈ - 1 ln 2 K i=1 e 1 λ E i Ei - 1 λE i K j=1,j =i λE i λE i -λE j . ( 17 
)
Recalling ( 7), the theorem is proved. Remark 4: Theorem 2 corresponds to the case that the Eves lie in different locations, so that {γ E k } K k=1 have different means. When the Eves are clustered relatively closely together, {γ E k } K k=1 have the same (or a very similar) mean. In this case, the ESR can be analyzed in a similar way, whose details are not provided due to space limitations. 

B. Asymptotic Analysis

The asymptotic behavior of the obtained ESR for colluding Eves is provided in the following corollary.

Corollary 2:

As N → ∞, R s → log N + log A 3 + κ ln 2 - K i=1 log B i K j=1,j =i

Bi

Bi-Bj , which implies that the ESR for colluding Eves also scales with log N .

Proof 7: From ( 11), ( 13) and ( 17), we have

R E → K i=1 log N +log ρ- κ ln 2 +log B i K j=1,j =i λ Ei λ Ei -λ Ej (a) → K i=1 log N +log ρ- κ ln 2 +log B i K j=1,j =i B i B i -B j (b) = log N +log ρ- κ ln 2 + K i=1 log B i K j=1,j =i B i B i -B j , (18) 
where (a) holds since λ

E k = ρN B k 1 + d -α SE k N B k → ρN B k
as N → ∞, and (b) is based on the fact that

K i=1 K j=1,j =i

Bi

Bi-Bj = 1, as proved in [START_REF] Ross | Introduction to probability models[END_REF]Chapter 5]. Combining [START_REF] Pan | Multicell mimo communications relying on intelligent reflecting surfaces[END_REF], ( 12), ( 14) and ( 18), the proof follows. Remark 5: Comparing Corollaries 1 and 2, we evince that only the last terms for the asymptotic ESR are different, i.e., max k∈[1:K] log B k and

K i=1 log B i K j=1,j =i

Bi

Bi-Bj for noncolluding and colluding Eves, respectively. In addition, the ESRs for both non-colluding and colluding Eves have the same scaling law, i.e., log N .

C. Large Number of Eves

To obtain more insights from the obtained ESR, we provide a simplified expression of R s for large values of K in the following corollary.

Corollary 3: When N and K → ∞, the ESR for colluding Eves can be approximated as follows

Rs ≈ RD -log 1 + K k=1 λE k + . ( 19 
)
Proof 8: According to [START_REF] Sanayei | Opportunistic beamforming with limited feedback[END_REF]Theorem 4], R E in ( 14) can be approximated as RE ≈ log 1 + E K k=1 γ k . This completes the proof.

Based on Lemma 3, Var K k=1 γ E k → K k=1 λ 2 E k as N → ∞. Thus, Var[ K k=1 γ k ] (E[ K k=1 γ k ]) 2 → K k=1 λ 2 E k ( K k=1 λE k ) 2 → 0 as N and K → ∞.
V. NUMERICAL RESULTS In this section, numerical results are provided to verify the analytical results stated in the theorems and corollaries. For Fig. 1 shows the impact of the number of reconfigurable elements N on the ESR, when the number of Eves is K = 5. We observe that the approximated analytical results in Theorems 1 and 2 match well with Monte Carlo simulations almost for all values of N . This is because the ESR is zero for small values of N , and starts to be positive for large values of N , i.e., N ≥ 46 in the considered case. We also observe that the ESR increases with N . For example, the ESRs are about 3.7 bps/Hz and 2.5 bps/Hz for non-colluding and colluding Eves, respectively, if N = 100. In addition, the analytical results obtained in Corollaries 1 and 2 asymptotically approach the simulations as N becomes sufficiently large, which confirms the scaling laws. The setup with non-colluding Eves provides a larger secrecy rate since only the "best" Eve determines the ESR. There exists a constant gap of about 1 bps/Hz between the ESRs for non-colluding and colluding Eves if N exceeds 10 4 .

In Fig. 2, the ESR as a function of the number of Eves K for N = 250 is shown. The figure confirms the findings in Corollary 3 for colluding Eves, and we observe that the approximation in [START_REF] Shang | Unmanned aerial vehicle meets vehicle-to-everything in secure communications[END_REF] becomes tighter as K increases. The ESR for non-colluding Eves is less affected by K. We observe, in particular, that there exists an ESR floor of about 5 bps/Hz for large values of K. This is because the ESR for noncolluding Eves is determined by the nearest Eve to the source.

In the considered simulation setup, the nearest Eve is located at around (0, -20) m, when K is large.

VI. CONCLUSIONS

This letter investigated the ESR of an RIS-assisted communication system in the presence of discrete phase shifts and multiple Eves. We obtained an approximated closed-form expression of the ESR and unveiled that the ESR scales with log N in the presence of both non-colluding and colluding Eves. An interesting future direction is to analyze the ESR of RIS-assisted systems in the presence of multi-antenna transmitters. For example, the recent research works in [START_REF] Qian | Beamforming through reconfigurable intelligent surfaces in single-user MIMO systems: SNR distribution and scaling laws in the presence of channel fading and phase noise[END_REF], [START_REF] Zappone | Overhead-aware design of reconfigurable intelligent surfaces in smart radio environments[END_REF] could be generalized in order to take into account security constraints.

APPENDIX A PROOF OF LEMMA 1

Let us denote X 1,n f 2 (φ * n , θ SR,n ), X 2,n θ k,n and Y n ψ k,n . Accordingly, Y n = X 1,n + X 2,n as shown in Section II. We note that the random phases X 1,n , X 2,n and Y n have a uniform circular distribution.

Given X 1,n = x 1 , ∀x 1 ∈ [0, 2π),

Y n = x 1 + X 2,n is uni- formly distributed in [x 1 , x 1 + 2π) = [x 1 , 2π) ∪ [2π, x 1 + 2π).
Since Y n has a circular uniform distribution, [2π, x 1 + 2π) is equivalent to [0, x 1 ). Thus, Y n is uniformly distributed in [0, 2π), which proves Lemma 1-a).

Since X 1,n and X 2,n are independent, their joint PDF is We can construct the following Jacobian matrix 

Thus, the joint PDF of X 1,n and Y n can be written as 

which implies that Y n is independent of X 1,n . Thus, Lemma 1-b) is proved. For ∀i = j and i, j ∈ [1 : N ], we have Y i = X 1,i + X 2,i and Y j = X 1,j + X 2,j . Although the same random phase θ SD is present in both Y i and Y j as shown in Section II, Y i is still independent of Y j , due to the following two facts: (i) Y i and Y j are independent of X 1,i and X 1,j , respectively, according to Lemma 1-b); (ii) X 2,i is independent of X 2,j . Therefore, Lemma 1-c) is proved.

Corollary 1 :ln 2 -

 12 As N → ∞, R s → log N + log A 3 + κ max k∈[1:K] log B k , which implies that the ESR for noncolluding Eves scales with log N .Proof 4: From (8), we have

Fig. 1 .

 1 Fig. 1. Ergodic secrecy rate vs. N , for K = 5.

  illustrative purposes, we set α = 3, b = 3 bits, P = 20 dBm, σ 2 = -96 dBm and η = 0.8. In addition, S, R and D are located at (0, 0) m, (100, 0) m and (90, 20) m, respectively. As for the Eves, E k is located at 90k K , -20 m, k ∈ [1 : K]. For the considered simulation setup, the ESR is zero in the absence of RIS. In this case, in fact, the ESR for non-colluding Eves can be expressed as Rs = f3(dSD) -max k∈[1:K] f3(dSE k ) -α /(1 + t)dt, x > 0. Therefore, R s = 0 since f 3 (x) is a decreasing function of x and d SD ≥ d SE k in the considered network configuration, ∀k ∈ [1 : K].

fX 1 ,

 1 n ,X 2,n (x1, x2) = fX 1,n (x1)fX 2,n (x2) = 1 2π fX 1,n (x1).(20)

JX 1 , 1 ∂x 1

 111 n ,Yn (x1, x2) = ∂x

fX 1 ,

 1 n ,Yn (x1, y) = fX 1,n ,X 2,n (x1, x2) det(JX 1,n ,Yn (x1, x2)) = 1 2π fX 1,n(x1)= fX 1,n (x1)fY n (y),

  Fig. 2. Ergodic secrecy rate vs. K, for N = 250.
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Since the elements of the RIS are spaced half of the wavelength apart and we assume that the location of the RIS cannot be optimized to ensure strong line-of-sight links, we have, as a first approximation similar to[START_REF] Yang | Secrecy performance analysis of RIS-aided wireless communication systems[END_REF]-[START_REF] Qian | Beamforming through reconfigurable intelligent surfaces in single-user MIMO systems: SNR distribution and scaling laws in the presence of channel fading and phase noise[END_REF], that the channels can be modeled as independent and identically distributed, and follow a Rayleigh distribution.