

Fourier Transform InfraRed spectroscopy contribution to disentangle nanomaterial (DWCNT, TiO 2) impacts on tomato plants

Clarisse Liné, Juan Reyes-Herrera, Mansi Bakshi, Mohammad Wazne, Valentin Costa, David Roujol, Elisabeth Jamet, Hiram Castillo-Michel, Emmanuel Flahaut, Camille Larue

▶ To cite this version:

Clarisse Liné, Juan Reyes-Herrera, Mansi Bakshi, Mohammad Wazne, Valentin Costa, et al.. Fourier Transform InfraRed spectroscopy contribution to disentangle nanomaterial (DWCNT, TiO 2) impacts on tomato plants. Environmental science.Nano, 2021, 10, pp.2920-2931. 10.1039/D1EN00455G . hal-03372967

HAL Id: hal-03372967 https://hal.science/hal-03372967

Submitted on 11 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Fourier Transform InfraRed spectroscopy contribution to disentangle 1 nanomaterial (DWCNT, TiO₂) impacts on tomato plants 2 3 Clarisse Liné^{a,b}, Juan Reyes-Herrera^c, Mansi Bakshi^{a,d}, Mohammad Wazne^c, Valentin Costa^a, 4 David Roujol^e, Elisabeth Jamet^e, Hiram Castillo-Michel^c, Emmanuel Flahaut^b and Camille Larue^{a*} 5 6 7 ^aLaboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France 8 ^b CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 9 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse cedex 9, France 10 ^cBeamline ID21, European Synchrotron Radiation Facility (ESRF), Grenoble, France 11 ^dInstitute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India 12 ^eLaboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-13 14 Tolosane, France 15 Abstract. Carbon nanotubes (CNTs) and titanium dioxide nanoparticles (TiO₂-NPs) are among the most 16 used nanomaterials (NMs). However, their impacts especially on the terrestrial ecosystems and on plants 17 are still controversial. Apart from obvious physico-chemical differences, a possible explanation of these 18 contrasting results could be the wide range of methods used to evaluate the toxicity at different levels of 19 plant physiology. Fourier Transformed InfraRed (FTIR) spectroscopy is a sensitive and widely informative 20 technique that probes the chemical composition of plants. In this study, we investigated the impacts of 21 CNTs and TiO₂-NPs (100 and 500 mg.kg⁻¹) on tomato plants after 5, 10, 15 and 20 days of exposure in soil. 22 Using morphological parameters, no toxicity was found except after 15 days of exposure (-57% in height 23 and -62% in foliar area for plants exposed to 100 mg.kg⁻¹TiO₂-NPs, but no impact after CNT exposure) while FTIR revealed effects of the two NMs starting after 5 days of exposure and being maximum after 15 days. 24 After spectral data treatment optimization, FTIR results suggested modifications in leaf cell wall 25 26 components of plants subjected to both NMs. Microarray polymer profiling confirmed changes in 27 xyloglucan and homogalacturonan levels for plants exposed to TiO₂-NPs. In summary, FTIR was an effective 28 screening method to evaluate the impacts of NMs on tomato plants and to identify their implications on 29 the plant cell walls.

30 1. Introduction

Over the last two decades, nanotechnologies have become increasingly important. Indeed, nanomaterials (NMs) present unique properties such as a large specific surface area which can be useful in many domains such as electronics, materials or food industry¹. In 2020, the Dutch Nanodatabase revealed that a total of 5000 consumer products officially contained NMs². Investigations about their possible use in medicine³ or in agriculture⁴ are also in progress.

Carbon nanotubes (CNTs) and titanium dioxide nanoparticles (TiO₂-NPs) are among the most widely used
 NMs². CNTs are part of the carbon-based NM family. They have remarkable optical, electrical, thermal,
 mechanical and chemical properties⁵ and are mainly used in batteries, plastic additives or sporting goods⁶.
 TiO₂-NPs are well known for photocatalytic applications⁷ and are included for example in food additives⁸
 or cosmetics⁹. Since NM applications are steadily increasing, their release in the environment, intentionally
 or not, is of great concern.

Assessing NM concentrations in the environment is a major bottleneck in ecotoxicology. Modeling studies
 were carried out on some NMs to evaluate this information in different environmental compartments.
 TiO₂-NPs have been identified as one of the most concerning NMs due to the high concentrations forecast:
 around 61 mg.kg⁻¹ in sludge treated soils against 12 µg.kg⁻¹ for CNTs¹⁰.

NM impacts on terrestrial ecosystems are still controversial, in particular on plants¹¹. Indeed, some authors reported higher germination rate and better yield after exposure to CNTs while other studies highlighted decreased root length or oxidative stress¹¹. The same conclusions were reached for TiO₂-NP impacts on plants¹²: while some beneficial effects were reported such as a higher germination rate or increased root and shoot length^{13–16}, other works described decreased germination rate, plant growth or genotoxic effects^{17–19}. Until now, the specific mechanisms implied in NM uptake (active *vs.* passive, apoplast *vs.* symplast, among other questions) and impact (*e.g.* nano specific or ion related, oxidative stress mediated)
 are still to be identified and require further research²⁰.

Apart from obvious physico-chemical differences, a possible explanation of these contrasting phytotoxicity results may also be the method used to evaluate NM impacts on plants. Many biomarkers can be assessed from the morphological to the gene scale showing variable sensitivity. Their use to evaluate plant health is conclusive when many of them are combined. But in the literature, most of the studies use a limited number of biomarkers leading to a potentially partial image of the toxicity effects and thus a biased risk assessment. The availability of routine, standardized and widely informative analytical methods to evaluate NM toxicity is a key to fill this current gap of knowledge²¹.

61 Fourier Transform InfraRed (FTIR) spectroscopy is a technique based on the vibrational state of molecules. 62 It allows the acquisition of a spectrum combining information on a multitude of compounds, unlike 63 chemical dosages which give access only to one compound (*e.g.* specific enzyme or secondary metabolite) 64 after a series of reactions²². There are two types of acquisition modes: either bulk analysis of the whole 65 plant (few minutes per sample) or 2D-imaging mode of cross sections (few hours per map)²³. In bulk mode, 66 sample preparation is very simple, consisting of grinding dry materials thus reducing artifacts. Therefore, 67 FTIR is a widely informative, easy to set-up and fast technique that could be used to screen NM effects on 68 different organisms. In plant biology, FTIR has been mainly used to characterize plant cell wall components 69 in a highly sensitive and more time-efficient manner than traditional methods which require isolation, extraction and fractionation of the different cell wall components^{24–28}. Recently, FTIR has been used in 70 71 ecotoxicological studies to analyze changes occurring in biological materials after exposure to biotic or abiotic stresses^{23,29–36}. For instance, Morales et al., Servin et al. and Zhao et al. highlighted changes in the 72 73 chemical environment of carbohydrates of both cilantro and cucumber exposed to CeO₂, ZnO or TiO₂ NPs^{33,35,36}. Radish sprouts exposed to Ag-NPs also exhibited modifications of their IR spectral signature in 74 75 the region related to lipids, proteins and particularly structural component peaks such as lignin, pectin and 76 cellulose³⁴. Likewise, very recently, we applied FTIR to evaluate the influence of plant species on their 77 response to a CNT contamination highlighting the role of cell wall composition³². Indeed, it has been 78 demonstrated several times that cell walls play a crucial role in plant response to abiotic stresses³⁷. Plant 79 cell walls are composed of complex polysaccharides and a small amount of proteins and their composition 80 can be modified in response to stress^{37–40}.

81 However, FTIR data processing is tedious due to spectrum complexity. Indeed, it contains overlapping 82 signals coming from many molecular bonds. A purely visual inspection of spectra is often insufficient to 83 draw a conclusion. Several factors could weaken this analysis and its subsequent conclusions: i) 84 sometimes, minor spectral differences not detected with the bare eye may contain critical information, ii) 85 the baseline may vary from one sample to another, iii) instrumental noise could induce bias. For these 86 reasons, it is important to find a way to process and analyze the data in a more systematic way using 87 statistical approaches (i.e. supervised classification, clustering method) in order to obtain meaningful information ⁴¹. 88

89 The main goal of this study was to develop the FTIR approach to evaluate the comparative impacts of two 90 types of NMs (CNTs and TiO₂-NPs) taking into account: (i) different NM concentrations and (ii) different 91 exposure durations. Seedlings of tomato (Solanum lycopersicum L.) were grown in soil contaminated with 92 CNTs or TiO₂-NPs at two different concentrations (100 and 500 mg.kg⁻¹ of soil) during different durations 93 (5, 10, 15 and 20 days). FTIR was used as the main technique to evaluate the impact of the two NMs on 94 tomato plants. Complementary morphological biomarkers were also assessed (height, biomass, number 95 of leaves, leaf surface area). Finally, to better understand the FTIR data, the cell wall composition was 96 further analyzed by microarray polymer profiling. Developing a reliable technique to assess in a screening 97 mode the biological effects of many different types of NMs is mandatory to accelerate the risk assessment 98 of these new materials being disseminated or intentionally introduced in our environment on a daily basis.

99 2. Materials and methods

100 2.1. Nanomaterials

- 101 TiO₂-NPs (ref 718467, Aeroxide P25, Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) were characterized
- in a previous experiment (same batch) and were composed of 80% anatase and 20% rutile with a nominal
- diameter of $25.0 \pm 5.7 \text{ nm}^{19}$. They had a specific surface area of $46 \pm 1 \text{ m}^2 \text{.g}^{-1}$ (Figure S1A)¹⁹.
- Double walled CNTs were synthesized by catalytic chemical vapor deposition (CCVD) at 1000°C of a mixture of CH₄ (18 mol.%) and H₂ using a Co:Mo/MgO-based catalyst (chemical composition: $Mg_{0.99}Co_{0.0075}MgO_{0.0025})^{42}$. The outer diameter ranged from 1 to 3 nm and the length varied from 1 to 100 microns (Figure S1B)⁴². The specific surface area was 980 m².g⁻¹ (Brunauer, Emmett and Teller (BET)
- 108 method; Micromerics Flow Sorb II 2300, Micromeritics, Norcross, GA, USA).
- Fresh NM suspension at 1 g.L⁻¹ were prepared with ultrapure water directly before use and dispersed using
 a sonication bath for 10 min (Elmasonic S30H, 280 W, Elma, Singen, Germany).
- 111

112 **2.2. Soil characteristics and contamination**

113 A silty sand soil (according to the United State Department of Agriculture⁴³) was used for this experiment 114 (Lufa-Speyer, 2.1, Speyer, Germany) with a composition of 88.0% sand, 9.1% silt and 2.9% clay. It contained 115 0.71 ± 0.08 % organic carbon, 0.06 ± 0.01 % nitrogen, had a pH of 4.9 ± 0.3 and a cation exchange capacity 116 of 4.3 ± 0.6 meq/100 g of soil. The soil water capacity was 60 mL/100 g of soil.

117 CNT or TiO₂-NP suspensions were added to the dry soil to reach a concentration of 100 or 500 mg NMs/kg 118 dry soil (ratio liquid/soil = 1/1 in mass). After 2 h on a shaker table, the soil mixture was filtered to remove 119 the water in excess. This soil preparation protocol ensured a soil contamination as homogeneous as 120 possible. These concentrations were chosen to be relevant for TiO₂-NP contamination in sludge amended 121 soils¹⁰ and comparable between NMs.

122 **2.3. Plant material and cultivation**

123 Organic seeds of tomato Solanum lycopersicum L. (var. Red Robin) were obtained from the French seed 124 company Germinance (Soucelles, France) and surface-sterilized using Ca(ClO)₂ (1%). Seedlings were first 125 grown in hydroponic conditions for 3 weeks until they reached the 5 leaf-stage. Plants were then placed 126 into control or contaminated soil until harvest after 5, 10, 15 or 20 days of exposure. Exposure durations 127 were chosen based on a literature study showing that more than 65% of articles studying CNT impacts on 128 plants used exposure duration of less than 15 days¹¹. Each exposure duration corresponded to an 129 independent experiment. The experiments were performed in a growth chamber with controlled 130 parameters: 10 h light/14 h dark photoperiod; 24°C during the day and 22°C during the night; and a 131 hygrometry of 85%.

Five different exposure conditions were set-up: control (only soil without NM contamination), 100 mg CNTs/kg dry soil (CNT 100), 500 mg CNT/kg dry soil (CNT 500), 100 mg TiO₂-NPs/kg dry soil (TiO₂ 100) and 500 mg TiO₂-NPs/kg dry soil (TiO₂ 500). Five biological replicates were performed in each case.

135 Morphological parameters were monitored every day (plant height and number of leaves). Upon harvest, 136 other morphological parameters were measured (total fresh leaf biomass and foliar surface area using a 137 camera and ImageJ software⁴⁴). Leaves were dried at 50°C during 24 h prior to FTIR analysis.

138

139 **2.4. FTIR analysis**

About 20 mg dry leaves were ground 2 x 15 s at maximum speed using a FastPrep grinding machine (MP Biomedicals, Illkirch-Graffenstaden, France). Each powdered sample was analyzed in attenuated total reflectance (ATR) mode using a diamond crystal (Thermo Nicolet Nexus, Smart Orbit, Thermo Fisher Scientific, Waltham, USA). Infrared spectra were collected in the range 4000 - 400 cm⁻¹. All the samples (5

biological replicates) were analyzed in (technical) triplicates and each spectrum was the sum of 64 scans.

145 OMNIC software (Thermo Fischer Scientific[®]) was used to export spectra.

146

147 2.5. Chemometric analysis for FTIR data

148 A chemometric analysis of FTIR spectra was developed using Orange software (BioLab, Ljubljana, Slovenia)⁴⁵ including the add-on Spectroscopy⁴⁶. During the first step, data were pre-processed to 149 150 eliminate possible analytical biases (such as detector noise and atmospheric background)²³. For this, a 151 Savitzky-Golay filter was applied (point window: 21, polynomial order: 2, derivative order: 2). This filter is 152 based on simplified least square procedures and permits removal of various instrumental and scattering 153 effects. A vector normalization was then applied to minimize the effects of the source power fluctuations 154 as well as to overcome variations due to the amount of leaf powder analyzed. The last step of the pre-155 processing was to select the region of interest in order to avoid background interferences^{23,47}. Here, we 156 focused on two regions of the spectra: between 2900 and 2700 cm⁻¹ corresponding to the lipid region and between 1800 and 800 cm⁻¹ corresponding to the so-called fingerprint region (including proteins and 157 158 polysaccharides). The region between 1800 and 2700 cm⁻¹ was removed because it mainly corresponded 159 to background interferences. With this pre-process, the robustness and accuracy of subsequent analyses 160 were improved and the interpretability of the data was increased by correcting issues associated with 161 spectral data acquisition.

A multivariate analysis was then performed on the pre-processed spectra with first a principal component analysis (PCA), followed by a linear discriminant analysis (LDA) when necessary⁴¹. PCA is an unsupervised method which searches for directions where data have the largest variance, whose results can show data structural information. While, LDA is a supervised method that looks for projections that maximize the ratio between-class to within-class. The combination of both methods is particularly useful when the 167 number of variables is large, especially if the number of observations (samples) is lower than the number 168 of variables (wavenumbers) as in this work. PCA allows reducing the number of variables, in this analysis 169 from 1246 variables to 10 components, the reduced dataset being then analyzed by LDA to enhance 170 differences between the classes, if any.

171 In order to identify the wavenumbers contributing the most to differences among groups, a logistic 172 regression was run on the pre-processed spectra. The logistic regression is a predictive model that yields 173 the probability of occurrence of an event by fitting data to a logistic curve. The least absolute shrinkage 174 and selection operator (LASSO) method was used to perform the regularization and feature selection. 175 Most relevant wavenumbers were identified by obtaining logistic regression coefficients; this feature extraction method has been already used in ATR-FTIR data analysis⁴⁸. For testing the robustness of the 176 177 statistical model used, the area under a receiver operating characteristics (ROC) curve (AUC) and K-fold 178 cross validation were used⁴¹. Finally, to compare the different spectra among them, the area under 179 differing absorption peaks was calculated by integrating the area starting from 0 on the pre-processed 180 spectra.

181

182 **2.6. Cell wall composition by polysaccharide microarray analysis**

The cell wall composition was assessed according to Moller et al.⁴⁹. This technique integrates the sequential extraction of polysaccharides from cell walls, followed by generation of microarrays, which are probed with monoclonal antibodies (mAbs) with specificities for cell wall epitopes.

Cell wall polysaccharides were sequentially extracted from homogenates using three solvents: (i) 50 mM
diamino-cyclo-hexane-tetra-acetic acid (CDTA), pH 7.5, (ii) 4 M NaOH with 1% v/v NaBH4, and (iii) cadoxen
(31% v/v 1,2-diaminoethane with 0.78 M CdO). The three extraction solvents used are known to solubilize
pectins, non-cellulosic polysaccharides, and cellulose, respectively. For each extraction, a ratio of 6 µL

190 solvent for 1 mg fresh biomass was added to each tube before incubation with shaking for 1 h. After 191 centrifugation at 2500 g for 10 min, the supernatants were removed prior to addition of the next solvent 192 to pellets. All the supernatants were finally stored at 4°C. Forty μ L of diluted extracts (2/50, vol/vol) in TBS 193 (Tris-HCl 20 mM pH 7.5, NaCl 150 mM, pH 7.0) were then loaded in each well of a Bio-Dot apparatus (BIO-194 RAD, Marnes-la-Coquette, France) onto nitrocellulose membranes (Sigma-Aldrich). After blocking TBS-195 T/BSA 0.05% (0.05% Tween), the arrays were probed overnight at 4°C with primary mAbs directed against 196 different cell wall epitopes (https://plantcellwalls.leeds.ac.uk/plantprobes/) at a 1/250 dilution (vol/vol) 197 in TBS-T/BSA 0.05%: LM19 (for non-methylated homogalacturonans, HG), LM20 (for methylated HG, 198 mHG), LM25 for the XLLG, XXLG and XXXG motifs of xyloglucans, XG), LM15 (for the XXXG motif of XG and 199 to some extent single galactosyl substitution of the XXXG oligosaccharide, and LM24 (for the XLLG motif 200 of XG). After washing in TBS-T, the arrays were probed with anti-rat IgG secondary antibodies conjugated 201 to alkaline phosphatase (Sigma-Aldrich) at a 1/10,000 dilution (vol/vol) for 2 h before washing and 202 developing in a BCIP/NBT (5-bromo-4-chloro-3¢-indolyphosphate/nitro-blue tetrazolium chloride) 203 substrate. To check the activity of the mAbs, commercially purified polysaccharides were used as positive 204 controls: polygalacturonic acid (HG, Sigma-Aldrich), polygalacturonic acid methyl ester (mHG, Sigma-205 Aldrich), and XG (Megazyme, Libios, Pontcharra-sur-Turdine, France). The arrays were scanned using an 206 Epson Perfection V370 Photo (Nagano, Japon). Color intensity of each spot was quantified thanks to ImageJ 207 software.

208

209 2.7. Statistical analysis

Data (morphological parameters) were checked for homoscedasticity and normality. When assumptions were met for parametric analyses, a two-way ANOVA was used. Otherwise, a Kruskal-Wallis test was applied. A PCA was also performed on the full dataset. All statistical analyses were carried out using the

RStudio statistical software⁵⁰ (version 1.1.453) with multcompView⁵¹, lsmeans⁵², pgirmess⁵³, ggplot2⁵⁴
 packages.

215

216 **3. Results**

217 **3.1. Morphological responses**

Plant height and number of leaves were recorded during the time course of the four experiments (5, 10,
15 and 20 days of exposure) as well as plant biomass and leaf area at the end of the experiments. These
data are available in the Supplementary files (Figure S2, S3). No significant impact of NM exposure after 5,
10 and 20 days was evidenced for these parameters.

Differences were only detected after 15 days of exposure. Indeed, plants exposed to 100 mg.kg⁻¹ TiO₂-NPs were significantly smaller than the control (-57%, p-value < 0.05, Figure 1A). Plants exposed to 500 mg.kg⁻¹ TiO₂-NPs were 28% smaller than the control plant but this decrease was not significantly different (2.3 ± 0.3 cm for the control and 1.6 ± 0.4 cm for 500 mg.kg⁻¹ TiO₂-NPs). Although plants exposed to both CNT concentrations for 15 days were not significantly different in height from the control plants, there was an increase of 26% and 28% in soils contaminated with 100 and 500 mg.kg⁻¹ CNT, respectively (2.3 ± 0.3 cm for control, 2.9 ± 0.8 cm for 100 mg.kg⁻¹ CNT and 2.9 ± 0.5 cm for 500 mg.kg⁻¹ CNT).

The number of additional leaves at the end of the treatments was not significantly different between
conditions (Figure S2B); plants displayed an average of 1.8 additional leaf after 15 days.

On the one hand, the total leaf area of plants exposed to the two TiO_2 -NP concentrations was decreased after 15 days of exposure: 7.2 ± 2.4 cm² for 100 mg.kg⁻¹ TiO₂-NPs and 8.9 ± 2.6 cm² for 500 mg.kg⁻¹ TiO₂-NPs while that of the control was at 19.0 ± 2.7 cm² (p-value < 0.001, Figure 1B). On the other hand, no significant difference was found for plants exposed to CNTs.

Plant biomass was not significantly different for treated plants compared to the control after 15 days of
exposure but different in between exposed plants (p-value < 0.001, Figure 1C). However, plants exposed
to 500 mg.kg⁻¹ CNTs exhibited a trend for higher biomass compared to the control (+30%) while plants
exposed to 100 mg.kg⁻¹ TiO₂-NPs tended to be lighter than the control (-64%).

The PCA analysis of the different morphological parameters highlighted a significant impact of TiO_2 -NPs on tomato morphology after 15 days of exposure with a decrease in most of the assessed parameters while CNTs had a more mitigated impact at this developmental level (Figure 1D).

242

243 **3.2. Leaf chemical composition after FTIR analysis**

Again the highest differences were visible after 15 days of treatment, even though NM impact was visible already after 5 days, opposite to what was observed from morphological parameters. PC-LDA analyses on FTIR data for 5, 10 and 20 days of NM exposure are available in supplementary data (Figure S4).

247 After the different contaminant exposure, the composition of leaves was significantly different between 248 the three treatments according to the PC-LDA (Figure 2A). Looking at the distance of the barycenter of the 249 ellipses, the plants exposed to 500 mg.kg⁻¹ CNT exhibited the highest differences in comparison to the 250 control while those exposed to 100 mg.kg⁻¹ CNT showed the lowest differences. Both groups of the TiO₂-251 NP conditions were almost at the same distance from the control, but in the opposite direction to CNT 252 groups along the component 1 axis. This result suggests that the leaf composition is different between plants exposed to CNTs and TiO₂-NPs, confirming the different impacts seen at the morphological level 253 254 (decreased growth after TiO_2 -NP exposure vs. trend for an increase after CNT exposure).

Once a significant cluster structure was identified for the 15 day treatment case, feature extraction was
 performed with a logistic regression model. This model was tested by a stratified 3-fold cross-validation

257 method, obtaining average over classes scores of 0.932 of AUC, 0.889 of precision and a recall of 0.852, 258 notice that a strong and robust model have scores close to one⁴¹. A difference was highlighted in the so-259 called "lipid region" (Figure 2B, peak A, Table 1) with higher relative amounts for plants exposed to the 260 four different treatments in comparison to the control with the highest amount in leaves of plants grown 261 on soil contaminated by CNTs at 500 mg.kg⁻¹ (+ 29 \pm 2.3% of the area under the peak for CNT 500 in 262 comparison to the control). In the amide II peak^{55,56}, leaves of plants grown on contaminated soils 263 exhibited an increase in peak area in comparison to the control except for CNT 500 (12 ± 1% increase for CNT 100, 6 ± 7 % for TiO₂ 100 and 6 ± 1% TiO₂ 500) (Figure 2B, peak B; Table 1). Polysaccharides^{38,47,56,57} 264 265 also seemed to be impacted with differences in the areas of peaks C (1320 - 1312 cm⁻¹) and D (1160 - 1155) 266 cm⁻¹). Exposed plants displayed an increase in peak C area while a slight decrease in the peak D area was observed. Between 1080 and 1070 cm⁻¹ corresponding to hemicellulose^{38,47,56} (Figure 2B, peak E; Table 1), 267 268 a slight decrease in the peak area was detected for the leaves of plants grown on all contaminated soils. 269 Finally, a decrease in areas of peak F corresponding to pectin and various polysaccharides^{47,56,57} (1052 – 990 cm⁻¹, Figure 2B, peak F; Table 1) was noticed for the plants grown in soil contaminated with CNTs 270 271 whereas an increase in peak F area was detected for the plants grown with TiO_2 -NPs. Altogether, most of 272 the differences observed between the FTIR spectra were related to cell wall components (pectin, cellulose 273 or hemicellulose).

The signals obtained here were averaged on the whole leaf biomass. For further analysis, chemical composition of the leaves was observed considering their age on the two 500 mg.kg⁻¹ NM treatments (Figure 3). Overall, the oldest and the youngest (at early development stage during contaminant exposure) leaves were the least impacted by NM contamination; leaves of plants exposed to TiO₂-NPs, in particular, had a chemical composition very similar to those of control plants (Figure 3A,D). However, intermediate leaves (Figure 3B, C) exposed to NM displayed different FTIR signatures than control plants, but similar inbetween them according to the PC-LDA with overlapping ellipses for both CNT and TiO₂-NP treated leaves.

282 **3.3. Cell wall composition by polysaccharide microarray analysis**

As FTIR analyses suggested a strong impact of NM treatments on cell wall components, a more precise characterization was carried out on three cell wall fractions enriched in pectin, hemicellulose or cellulose. Several mAbs recognizing the main polysaccharides found in dicot cell walls were used, namely HG, mHG and different XG epitopes. No significant signal was obtained with LM20 (recognition of mHG), and LM24 (recognition of XLLG motifs of XG) mAbs (results not shown). Signals were observed with the three other mAbs: LM19 (recognition of HG), LM25 and LM15 (recognition of XLLG, XXLG and XXXG motifs and of XXXG motifs of XG, respectively) (Figure 4).

290 Significant differences were found for HG (LM19) in the pectin-enriched fraction of leaves of plants 291 exposed for 15 days to 500 mg.kg⁻¹ TiO₂-NPs with a 58% increase (p= 0.028). The LM19 signal also increased 292 by nearly two-fold in the hemicellulose-enriched fraction although this increase was not significant. 293 Significant differences were also detected with LM25 for the same condition (500 mg.kg⁻¹ TiO₂-NPs) in the 294 hemicellulose-enriched fraction (+37% in comparison to the control, p= 0.046). However, no significant 295 difference was found with LM15 specific for the XXXG motif of XG. It can be concluded that XXLG is the 296 only XG motif whose amount was modified in leaves when plants were exposed to 500 mg.kg⁻¹ TiO₂-NPs 297 for 15 days. For CNT, no significant difference was found with all the mAbs tested here.

Altogether, it was not possible to detect mHG (LM19) or the XLLG motif of XG (LM24) in the tomato leaves whatever the treatment. Significant changes were only observed after the treatment with 500 mg.kg⁻¹ TiO₂-NPs, corresponding to an increase in the amount of HG (LM19) and of the XXLG motif of XG (LM25, vs LM15 and LM24).

302 4. Discussion

303 In this study, FTIR spectroscopy appeared to be a more sensitive technique to detect the impact of NM 304 treatment on plant compared to the traditionally used morphological biomarkers. Indeed, FTIR analysis 305 revealed a plant response to NM contamination even at the shortest time of exposure (5 days). Looking at 306 the morphological parameters, few differences were visible only after 15 days but not earlier which 307 seemed to be compensated later. FTIR also allowed assessing NM impacts on several biomacromolecules 308 (*i.e.* lipids, polysaccharides) in one single analysis, thus permitting to dedicate further research efforts to 309 look at the modifications of cell wall composition under the influence of NM exposure. The developed 310 chemometric analysis was quite powerful in highlighting differences between the experimental conditions 311 in an automated way, which would have not been possible by visual inspection of the FTIR spectra. FTIR 312 spectroscopy is thus a relevant method to identify early impacts of NMs on plants in a fast and reliable 313 way, thereby permitting a screening approach.

In this soil experiment, plant response to NMs was not **dose-dependent** since most of the time, impacts were not higher at the highest concentration. One hypothesis possibly explaining this result is that NMs can have different behaviors in the environment depending on the concentration used. Indeed, when the concentration is increased, it also leads to more chances for hetero- and homo-agglomeration phenomena which would result in decreasing NM mobility and bioavailability in soils^{58,59}.

319 The impacts of both NMs tended to increase with time until 15 days of exposure, and then decreased 320 (20 days: no detectable difference in morphological biomarkers and lower impact on biomacromolecules 321 such as lipids, polysaccharides or proteins as demonstrated by FTIR analysis). This decrease in impacts after 322 15 days of exposure could suggest a plant recovery. Likewise, when studying NM impact on individual 323 leaves of different ages, the oldest one (*i.e.* exposed for the longest period) was the least impacted in its 324 chemical composition while clear differences were visible on other fully-expanded leaves. This could also 325 correspond to a recovery or adaptation at the leaf level. Very little has been done so far to study plant 326 recovery after a NM exposure. One study reported that TiO₂-NPs had no major impact on tomato plants upon harvest (after 5 months of exposure), but some markers indicated that plants might have gone
through oxidative stress earlier in their life cycle²⁹. It has also been shown after exposure to different heavy
metals (Zn, Co, Cd, Ni, Mn) that the detoxification response was triggered during the first days of exposure
and then decreased back nearly to its basal level after 9 days⁶⁰. It would thus be interesting to investigate
NM impacts on biomacromolecules under chronic exposure conditions to confirm this hypothesis and
further improve risk assessment strategies.

333 CNTs and TiO₂-NPs have been chosen here as they are two very different NMs; in particular, they vary in 334 shape (tubular for CNTs vs. spherical for TiO2-NPs), in surface chemistry (carbon vs. metal oxide), in 335 diameter (1-3 nm diameter for CNTs vs. 25 nm for TiO₂-NPs) but they are both very insoluble. Their 336 behavior and impacts are thus expected to be quite different. Indeed, at the morphological level, TiO_2 -NPs 337 inhibited tomato development while CNTs tended to stimulate it. These results are consistent with previously published literature^{19,61}. However, regarding biomacromolecule composition NM triggered 338 339 quite similar impacts, especially on cell wall components, which might suggest a common response of 340 plants upon exposure to CNTs or TiO₂-NPs.

341 FTIR spectra showed that the relative amount of lipids in leaves was increased following exposure to both 342 NMs. This result is in agreement with studies performed on spinach, where TiO₂-NPs also increased the level of lipids after a foliar contamination^{33,35,62}. Using FTIR analysis, several studies also reported that 343 metal-based NMs increased the relative amount of lipids in Raphanus sativus (Ag-NPs)³⁴ and in Coriandrum 344 sativum (CeO₂-NPs)³³. Lipid accumulation is one of the plant responses to various stresses such as high 345 346 temperature, drought or heavy metals^{63,64}. Changes in the lipid composition and/or interactions between 347 lipids and specific membrane proteins can occur in order to reinforce the phospholipid membrane to resist the stress⁶⁵. 348

Differences in the FTIR spectra also occurred in the protein region. Several studies reported that NMs can impact proteins (increased or decreased content; *i.e.* proteins involved in redox regulation), depending on the exposure dose and the type of plant species⁶⁶. In particular, FTIR analysis also demonstrated a decrease in amide (both primary and secondary) in cucumber fruits and tomato leaves after exposure to TiO₂-NPs^{29,36}.

354 Plant cell wall components were the most impacted after exposure to both NMs. It has been reviewed 355 several times that abiotic and biotic stresses can modify content of primary and secondary cell wall 356 components like cellulose and hemicellulose³⁷ which can in turn influence plant growth and biomass. 357 Indeed, it has been shown thatcell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality⁶⁷. For instance, in the case of drought 358 359 stress, plants developed mechanisms leading to differential cell wall modifications allowing the reduction 360 of the aerial parts while underground parts were increased to further investigate for residual water in the 361 soil³⁹. Here, cell walls of plants exposed to TiO_2 -NPs were the most impacted and subsequently their 362 growth was reduced up to 28% as well as their leaf area and biomass. Thess results are also in agreement 363 with nanoecotoxicology studies which reported that Ag-NPs also affected cellulose and hemicellulose 364 regions of FTIR spectra in radish sprouts (Raphanus sativus)³⁴. TiO₂-NP exposure also lead to an increase in the lignin band area of the FTIR spectra of cucumber fruit³⁶; however, they decreased lignin relative 365 366 content in tomato leaves but did not impact tomato fruit after exposure to TiO₂-contaminated sludge²⁹. 367 Cell wall components of rapeseed exposed to CNTs were also modified with a particular decrease in pectin relative amount³². It has finally been reported that metal lignin complexes may be formed which could be 368 369 responsible for changes in plant chemical environment and could lead to modifications in their nutritional properties^{33,36}. 370

371 Cellulose and hemicellulose are located inside primary cell walls and are responsible for the cell wall 372 rigidity³⁹. Cellulose provides mechanical strength for load-bearing due to the cross-linking by

hemicelluloses⁶⁸. Cell wall thickening represents a way for plant to resist both biotic and abiotic stress⁴⁰. 373 374 In fact, a thickening has been observed in plants as a response to mechanical intrusion of pathogens⁶⁹. It 375 has also been demonstrated that cellulose-deficient mutant plants are more sensitive to abiotic stress than 376 wild type plants³⁷. The increase in cellulose relative amount highlighted by FTIR could thus be a reaction 377 of plant exposed to NMs to limit their entry through cell walls. This hypothesis is consistent with the result 378 of the microarray profiling which demonstrated an increase in the LM19 labeling, ie. of lowly esterified 379 HG, also responsible for cell wall stiffening through the formation of the so-called egg boxes with calcium ions⁷⁰. 380

381 An alternative hypothesis to the increased accumulation of this cell wall component is that it represents 382 the main negatively charged molecule of cell walls. Indeed, HG with a low degree of methylesterification 383 contains some amount of free carboxyl groups which can bind cations. As such, it plays a crucial role as a buffer by sequestrating positively charged molecules such as most heavy metals^{40,71,72}. Using quantum dots 384 385 (QD, NPs with diameter < 10 nm), some authors showed that NPs can directly interact with cell walls either 386 through hydrogen bonds with cellulose –OH groups or via the conjugated C-C or C=C chains in lignin^{73,74}. 387 Furthermore, a recent study assessed the influence of NP surface charge on their fate in plants and 388 demonstrated an accumulation of negatively charged QD in cell walls⁷⁵. Here, both NMs bear negative 389 charges when analyzed in suspension. However, so far, we have no data about their status in soil. Thanks 390 to their large surface area, NMs exhibit high adsorption properties and could thus adsorb many molecules 391 from the soil which in turn could influence their overall surface charge. In our experiment, the increase in 392 the amount of LM19 epitopes could indicate a higher sequestration capability in response to the presence 393 of NM in the medium.

Another phenomenon that can be responsible for cell wall modification is the oxidative stress caused by NMs. Indeed, all types of NMs (*e.g.* carbon-based and metal based) have been reported to generate an excess of reactive oxygen species (ROS)⁷⁶. For instance, CNTs increased ROS content in epidermis cells of

397 Onobrychis arenaria as well as the activity of antioxidant enzymes such as peroxidases (POX) after 15 days 398 of exposure in hydroponic conditions⁷⁷. TiO₂-NPs also increased the level of catalase (CAT) and ascorbate 399 peroxidase (APX) activities in leaves of cucumber exposed for 150 days in sandy loam soil³⁶. Besides, ROS 400 can be associated with cell wall modifications since a sudden burst of ROS can lead to catalytic oxidation 401 of various substrates of the cell wall which results in cross-linking of cell wall components and growth 402 arrest⁷⁸. Class III peroxidases, also involved in the regulation of oxidative stress, can promote cell wall loosening via the hydroxylic cycle⁴⁹. Indeed, this has been demonstrated in A. thaliana exposed to nZVI 403 (nano zero valent iron) in agar medium⁷⁹. The authors concluded that root elongation was related to the 404 405 potential for nZVI to lead to H₂O₂ release causing OH radical-induced cell wall loosening in roots. This was 406 confirmed by the degradation of pectin-polysaccharides and a decrease in cell wall thickness. The 407 modification identified in the cell wall compounds in this work may thus also be explained by the oxidative 408 stress caused by the NMs tested which could be independent of NM internalization.

409

410 **5. Conclusion**

411 The use of FTIR spectroscopy in this study has allowed to identify similar impacts of CNTs and TiO₂-NPs on 412 tomato leaf cell walls despite their different physico-chemical properties. Microarray profiling confirmed 413 FTIR results and demonstrated significant modification in HG and XG for plants exposed to TiO₂-NPs 414 associated with a transiently reduced plant development (particularly visible after 15 days of exposure). 415 The same trend in cell wall modification was noticed for plants exposed to CNTs, though not significantly, 416 and with no impact on plant development. FTIR is a relatively easily accessible, fast and powerful technique 417 for a first screening approach. Although data processing is not straightforward, we have proposed a 418 strategy based on simple statistical analysis of the data which highlighted very slight modifications induced

- 419 by NM exposure and permitted us to focus the analysis further on the cell wall composition for a more
- 420 precise description of the physiological response.
- 421

422 Acknowledgements

- 423 Clarisse Liné received a grant from the Région Occitanie and the Université Fédérale de Toulouse. Mansi
- 424 Bakshi was supported by Toulouse Tech InterLab funding (SPECPLANP). Authors have no competing
- 425 interests to declare.

426 **Bibliography**

- Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. *Beilstein J Nanotechnol*.
 2018;9(1):1050-1074. doi:10.3762/bjnano.9.98
- 430 2. Danish Consumer Council, The Ecological council DE. Welcome to The Nanodatabase.
 431 https://nanodb.dk/en/search-database/. Published 2020. Accessed December 16, 2020.
- García-Hevia L, Valiente R, Fernández-Luna JL, et al. Inhibition of cancer cell migration by
 multiwalled carbon nanotubes. *Adv Healthc Mater*. 2015;4(11):1640-1644.
 doi:10.1002/adhm.201500252
- 435 4. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S. Nanotechnology: The new perspective in
 436 precision agriculture. *Biotechnol Reports*. 2017;15:11-23. doi:10.1016/j.btre.2017.03.002
- 437 5. Dresselhaus MS, Dresselhaus G, Avouris P. *Carbon Nanotubes: Synthesis, Structure, Properties, and*
- 438 *Applications*. Springer Science & Business Media; 2003. doi:10.1007/3-540-39947-X
- 439 6. Terrones M. Carbon nanotubes: synthesis and properties, electronic devices and other emerging
 440 applications. *Int Mater Rev.* 2004;49(6):325-377. doi:10.1179/174328004X5655
- 441 7. Gupta SM, Tripathi M. A review of TiO2 nanoparticles. *Chinese Sci Bullet*. 2011;56(16):1639-1657.
 442 doi:10.1007/s11434-011-4476-1
- Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. Titanium dioxide nanoparticles in food
 and personal care products. *Environ Sci Technol*. 2012;46(4):2242-2250. doi:10.1021/es204168d
- 445 9. Lu P-J, Huang S-C, Chen Y-P, Chiueh L-C, Shih DY-C. Analysis of titanium dioxide and zinc oxide
 446 nanoparticles in cosmetics. *J Food Drug Anal*. 2015;23(3):587-594. doi:10.1016/j.jfda.2015.02.009

- Sun TY, Bornhöft NA, Hungerbühler K, Nowack B. Dynamic probabilistic modeling of environmental
 emissions of engineered nanomaterials. *Environ Sci Technol*. 2016;50(9):4701-4711.
 doi:10.1021/acs.est.5b05828
- 450 11. Liné C, Larue C, Flahaut E. Carbon nanotubes : impacts and behaviour in the terrestrial ecosystem
 451 A review. *Carbon N Y*. 2017;123:767-785. doi:10.1016/j.carbon.2017.07.089
- 452 12. Cox A, Venkatachalam P, Sahi S, Sharma N. Silver and titanium dioxide nanoparticle toxicity in
 453 plants: A review of current research. *Plant Physiol Biochem*. 2016;107:147-163.
 454 doi:10.1016/j.plaphy.2016.05.022
- 455 13. Zheng L, Hong F, Lu S, Liu C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of
 456 spinach. *Biol Trace Elem Res*. 2005;104(1):083-092. doi:10.1385/BTER:104:1:083
- Clément L, Hurel C, Marmier N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and
 plants Effects of size and crystalline structure. *Chemosphere*. 2013;90(3):1083-1090.
 doi:10.1016/j.chemosphere.2012.09.013
- 460 15. Hatami M, Ghorbanpour M. Nano-anatase TiO2 modulates the germination behavior and seedling
 461 vigority of the five commercially important medicinal and aromatic plants. *J Biol Environ Sci.*462 2014;22(8):53-59.
- Larue C, Laurette J, Herlin-Boime N, et al. Accumulation, translocation and impact of TiO2
 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. *Sci Total Environ*. 2012;431:197-208. doi:10.1016/j.scitotenv.2012.04.073
- 466 17. Ghosh M, Bandyopadhyay M, Mukherjee A. Genotoxicity of titanium dioxide (TiO2) nanoparticles
 467 at two trophic levels: Plant and human lymphocytes. *Chemosphere*. 2010;81(10):1253-1262.
 468 doi:10.1016/j.chemosphere.2010.09.022

- 18. Castiglione MR, Giorgetti L, Geri C, Cremonini R. The effects of nano-TiO2 on seed germination,
 development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. *J Nanoparticle Res.* 2011;13(6):2443-2449. doi:10.1007/s11051-010-0135-8

Vijayaraj V, Liné C, Cadarsi S, et al. Transfer and ecotoxicity of titanium dioxide nanoparticles in the

- terrestrial and aquatic ecosystems : a microcosm study. *Environ Sci Technol*. 2018;52(21):12757-
- 474 12764. doi:10.1021/acs.est.8b02970

472

19.

- Reddy PVL, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. Lessons learned: are
 engineered nanomaterials toxic to terrestrial plants? *Sci Total Environ*. 2016;568:470-479.
 doi:10.1016/j.scitotenv.2016.06.042
- Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: challenges and future
 needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27(1):1-35.
 doi:10.1080/10590500802708267
- 481 22. Sravan Kumar S, Manoj P, Giridhar P. Fourier transform infrared spectroscopy (FTIR) analysis,
 482 chlorophyll content and antioxidant properties of native and defatted foliage of green leafy
- 483 vegetables. *J Food Sci Technol*. 2015;52(12):8131-8139. doi:10.1007/s13197-015-1959-0
- Baker MJ, Trevisan J, Bassan P, et al. Using Fourier transform IR spectroscopy to analyze biological
 materials. *Nat Protoc*. 2014;9(8):1771-1791. doi:10.1038/nprot.2014.110
- 486 24. Szymanska-Chargot M, Zdunek A. Use of FT-IR spectra and PCA to the bulk characterization of cell
 487 wall residues of fruits and vegetables along a Fraction Process. *Food Biophys*. 2013;8(1):29-42.
 488 doi:10.1007/s11483-012-9279-7
- 489 25. Largo-Gosens A, Hernandez-Altamirano M, Garca-a-Calvo L, Alonso-Siman A, Alvarez J, Acebes JL.
 490 Fourier transform mid infrared spectroscopy applications for monitoring the structural plasticity of

491 plant cell walls. *Front Plant Sci.* 2014;5:303. doi:10.3389/fpls.2014.00303

- Chylińska M, Szymańska-Chargot M, Zdunek A. FT-IR and FT-Raman characterization of noncellulosic polysaccharides fractions isolated from plant cell wall. *Carbohydr Polym*. 2016;154:48-54.
- 494 doi:10.1016/J.CARBPOL.2016.07.121
- 495 27. Gierlinger N. New insights into plant cell walls by vibrational microspectroscopy. *Appl Spectrosc*496 *Rev.* 2018;53(7):517–551. doi:10.1080/05704928.2017.1363052
- 497 28. McCann M, Hammouri M, Wilson R, Belton P, Roberts K. Fourier transform infrared 498 microspectroscopy is a new way to look at plant cell walls. *Plant Physiol*. 1992;100(4):1940-1947.
- 499 doi:10.1104/pp.100.4.1940
- Bakshi M, Liné C, Bedolla DE, et al. Assessing the impacts of sewage sludge amendment containing
 nano-TiO2 on tomato plants: A life cycle study. *J Hazard Mater*. 2019;369:191-198.
 doi:10.1016/J.JHAZMAT.2019.02.036
- 30. Dao L, Beardall J, Heraud P. Characterisation of Pb-induced changes and prediction of Pb exposure
 in microalgae using infrared spectroscopy. *Aquat Toxicol.* 2017;188:33-42.
 doi:10.1016/j.aquatox.2017.04.006
- 50631.Thumanu K, Sompong M, Phansak P, Nontapot K, Buensanteai N. Use of infrared microspectroscopy
- 507 to determine leaf biochemical composition of cassava in response to Bacillus subtilis CaSUT007. *J*
- 508 Plant Interact. 2015;10(1):270-279. doi:10.1080/17429145.2015.1059957
- Liné C, Manent F, Wolinski A, Flahaut E, Larue C. Comparative study of response of four crop species
 exposed to carbon nanotube contamination in soil. *Chemosphere*. 2021;274:129854.
 doi:10.1016/j.chemosphere.2021.129854 0045-6535
- 512 33. Morales MI, Rico CM, Angel Hernandez-Viezcas J, et al. Toxicity assessment of cerium oxide

513 nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. *J Agric Food Chem*.

514 2013;61:6224–6230. doi:10.1021/jf401628v

- 51534.Zuverza-Mena N, Armendariz R, Peralta-Videa JR, Gardea-Torresdey JL. Effects of silver516nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value.
- 517 Front Plant Sci. 2016;7:1-11. doi:10.3389/fpls.2016.00090
- 518 35. Zhao L, Peralta-Videa JR, Rico CM, et al. CeO2 and ZnO nanoparticles change the nutritional 519 qualities of cucumber (Cucumis sativus). *J Agric Food Chem*. 2014;62(13):2752-2759. 520 doi:10.1021/jf405476u
- Servin AD, Morales MI, Castillo-Michel H, et al. Synchrotron verification of TiO2 accumulation in
 cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain.
 Environ Sci Technol. 2013;47(20):11592-11598. doi:10.1021/es403368j
- 524 37. Le Gall H, Philippe F, Domon J-M, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to
 525 abiotic stress. *Plants*. 2015;4(1):112-166. doi:10.3390/plants4010112
- 38. Alonso-Simón A, García-Angulo P, Mélida H, Encina A, Álvarez JM, Acebes JL. The use of FTIR
 spectroscopy to monitor modifications in plant cell wall architecture caused by cellulose
 biosynthesis inhibitors. *Plant Signal Behav*. 2011;6(8):1-7. doi:10.4161/psb.6.8.15793
- 529 39. Tenhaken R. Cell wall remodeling under abiotic stress. *Front Plant Sci.* 2014;5:771.
 530 doi:10.3389/fpls.2014.00771
- Krzesłowska M. The cell wall in plant cell response to trace metals: polysaccharide remodeling and
 its role in defense strategy. *Acta Physiol Plant*. 2011;33:35-51. doi:10.1007/s11738-010-0581-z
- 533 41. Gautam R, Vanga S, Ariese F, Umapathy S. Review of multidimensional data processing approaches
 534 for Raman and infrared spectroscopy. *EPJ Tech Instrum*. 2015;2(1):8. doi:10.1140/epjti/s40485-

- 015-0018-6
- Flahaut E, Bacsa R, Peigney A, Laurent C. Gram-scale CCVD synthesis of double-walled carbon
 nanotubes. *Chem Commun (Camb)*. 2003;(12):1442-1443. doi:10.1039/B301514A
- 43. Soil Survey Staff ., Natural Resources Conservation Service ., U.S. Department of Agriculture . *Soil*
- 539Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys.; 1999.
- 540 44. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. *Nat*541 *Methods*. 2012;9(7):671-675.
- 542 45. Demšar J, Erjavec A, Hočevar T, et al. *Orange: Data Mining Toolbox in Python Tomaž Curk Matija*543 *Polajnar Laň Zagar*. Vol 14.; 2013.
- 544 46. Toplak M, Birarda G, Read S, et al. Infrared Orange: connecting hyperspectral data with machine
 545 learning. *Synchrotron Radiat News*. 2017;30:40-45.
- 546 47. Türker-Kaya S, Huck CW. A review of mid-infrared and near-infrared imaging: principles, concepts
- and applications in plant tissue analysis. *Molecules*. 2017;22:168. doi:10.3390/molecules22010168
- Savassa SM, Castillo-Michel H, Pradas del Real AE, Reyes-Herrera J, Rodrigues Marquesa JP, de
 Carvalho HWP. Ag nanoparticles enhancing Phaseolus vulgaris seedling development:
 understanding nanoparticle migration and chemical transformation across the seed coat. *Environ Sci Nano*. 2021;8:493-501. doi:10.1039/d0en00959h
- Moller I, Sørensen I, Bernal AJ, et al. High-throughput mapping of cell-wall polymers within and
 between plants using novel microarrays. *Plant J.* 2007;50:1118-1128. doi:10.1111/j.1365313X.2007.03114.x
- 555 50. Fox J. An R and S-Plus Companion to Applied Regression. Sage Publications; 2002.

- 556 51. Lenth R V. Least-Squares Means: The *R* Package Ismeans. *J Stat Softw*. 2016;69(1):1-33.
 557 doi:10.18637/jss.v069.i01
- 558 52. Giraudoux P, Antonietti J-P, Beale C, Pleydell D, Treglia M. Spatial Analysis and Data Mining for Field
 559 Ecologists [R package pgirmess version 1.6.9]. *J Stat Softw*. 2018.
- 560 53. Wickham H. *Ggplot2 : Elegant Graphics for Data Analysis*. Springer; 2009.
- 561 54. Lê S, Josse J, Rennes A, Husson F. *FactoMineR: An R Package for Multivariate Analysis*. Vol 25.; 2008.
- 55. Sene C, McCann M, Wilson R, Grinter R. Fourier-Transform Raman and Fourier-Transform Infrared
 Spectroscopy (An Investigation of Five Higher Plant Cell Walls and Their Components). *Plant Phys.*
- 564 1994;106(4):1623-1631. doi:10.1104/pp.106.4.1623
- 565 56. Regvar M, Eichert D, Kaulich B, Gianoncelli A, Pongrac P, Vogel-Mikuš K. Biochemical
 566 characterization of cell types within leaves of metal-hyperaccumulating Noccaea praecox
 567 (Brassicaceae). *Plant Soil*. 2013;373(1-2):157-171. doi:10.1007/s11104-013-1768-z
- 568 57. Schulz H, Baranska M. Identification and quantification of valuable plant substances by IR and 569 Raman spectroscopy. *Vib Spectrosc.* 2007;43(1):13-25. doi:10.1016/j.vibspec.2006.06.001
- 57058.Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S. Metal-based571nanoparticles in soil: fate, behavior, and effects on soil invertebrates. *Environ Toxicol Chem*.
- 572 2012;31(8):1679-1692. doi:10.1002/etc.1880
- 573 59. Baalousha M, Sikder M, Prasad A, Lead J, Merrifield R, Chandler GT. The concentration-dependent
 574 behaviour of nanoparticles. *Env Chem*. 2015:1-4. doi:10.1071/EN15142
- 575 60. Lešková A, Giehl RFH, Hartmann A, Fargašová A, von Wirén N. Heavy metals induce iron deficiency
- 576 responses at different hierarchic and regulatory levels. *Plant Physiol*. 2017;174:1648-1668.
- 577 doi:10.1104/pp.16.01916

578	61.	Khodakovskaya M V., Kim B-S, Kim JN, et al. Carbon nanotubes as plant growth regulators: effects
579		on tomato growth, reproductive system, and soil microbial community. Small. 2013;9(1):115-123.
580		doi:10.1002/smll.201201225

- 581 62. Rico CM, Morales MI, Barrios AC, et al. Effect of cerium oxide nanoparticles on the quality of rice
 582 (Oryza sativa L.) grains. *Environ Sci Technol*. 2013;47:5635-5642. doi:10.1021/jf404046v
- Kuczyńska A, Cardenia V, Ogrodowicz P, Kempa M, Rodriguez-Estrada MT, Mikołajczak K. Effects of
 multiple abiotic stresses on lipids and sterols profile in barley leaves (Hordeum vulgare L.). *Plant Physiol Biochem*. 2019;141:215-224. doi:10.1016/j.plaphy.2019.05.033
- 586 64. Nesterov VN, Rozentsvet OA, Murzaeva S V. Changes in lipid composition in the tissues of fresh 587 water plant Hydrilla verticillata induced by accumulation and elimination of heavy metals. *Russ J* 588 *plant Physiol.* 2009;56:85-93. doi:10.1134/S1021443709010130
- 589 65. Guo Q, Liu L, Barkla B. Membrane lipid remodeling in response to salinity. *Int J Mol Sci*.
 590 2019;20(17):4264. doi:10.3390/ijms20174264
- 591 66. Hatami M, Kariman K, Ghorbanpour M. Engineered nanomaterial-mediated changes in the 592 metabolism of terrestrial plants. *Sci Total Environ*. 2016;571:275-291. 593 doi:10.1016/j.scitotenv.2016.07.184
- 594 67. Cosgrove DJ. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, 595 mechanics, and the action of wall-modifying enzymes. *J Exp Bot*. 2016;67(2):463–476. 596 doi:10.1093/jxb/erv511
- 597 68. Sattelmacher B, Horst WJ, eds. *The Apoplast of Higher Plants: Compartment of Storage, Transport* 598 *and Reactions*. Dordrecht: Springer Netherlands; 2007. doi:10.1007/978-1-4020-5843-1

599 69. Voigt CA. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae.

600 Front Plant Sci. 2014;5:168. doi:10.3389/fpls.2014.00168

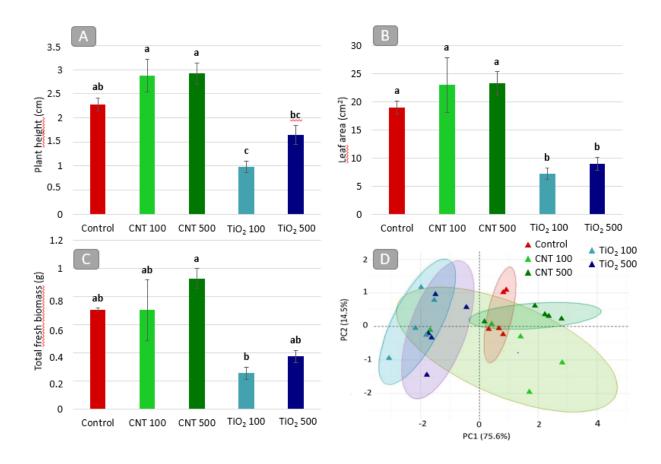
- Wolf S, Mouille G, Pelloux J. Homogalacturonan methyl-esterification and plant development. *Mol Plant*. 2009;2(5):851-860. doi:10.1093/mp/ssp066
- Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for
 uptake, translocation and accumulation of nanomaterials in plants Critical review. *Nanotoxicology*. 2016;10(3):257-278. doi:10.3109/17435390.2015.1048326
- Kartel M, Kupchik L, Veisov B. Evaluation of pectin binding of heavy metal ions in aqueous solutions. *Chemosphere*. 1999;38:2591–2596.
- Djikanović D, Kalauzi A, Jeremić M, et al. Interaction of the CdSe quantum dots with plant cell walls.
 Colloids Surfaces B Biointerfaces. 2012;91(1):41-47. doi:10.1016/j.colsurfb.2011.10.032
- 610 74. Sun H, Wang M, Lei C, Li R. Cell wall: An important medium regulating the aggregation of quantum
 611 dots in maize (Zea mays L .) seedlings. *J Hazard Mater*. 2021;403:123960.
 612 doi:10.1016/j.jhazmat.2020.123960
- 613 75. Majumdar S, Ma C, Villani M, et al. Surface coating determines the response of soybean plants to
 614 cadmium sulfide quantum dots. *NanoImpact*. 2019;14:100151. doi:10.1016/j.impact.2019.100151
- 615 76. Begum P, Fugetsu B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus
 616 tricolor L) and the role of ascorbic acid as an antioxidant. *J Hazard Mater*. 2012;243:212-222.
 617 doi:10.1016/j.jhazmat.2012.10.025
- 618 77. Smirnova E, Gusev A, Zaytseva O, et al. Uptake and accumulation of multiwalled carbon nanotubes
 619 change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. *Front*620 *Chem Sci Eng.* 2012;6(2):132-138. doi:10.1007/s11705-012-1290-5
- 621 78. Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell

622	wall. Trends Plant Sci. 2004;9(11):534-540. doi:10.1016/J.TPLANTS.2004.09.002

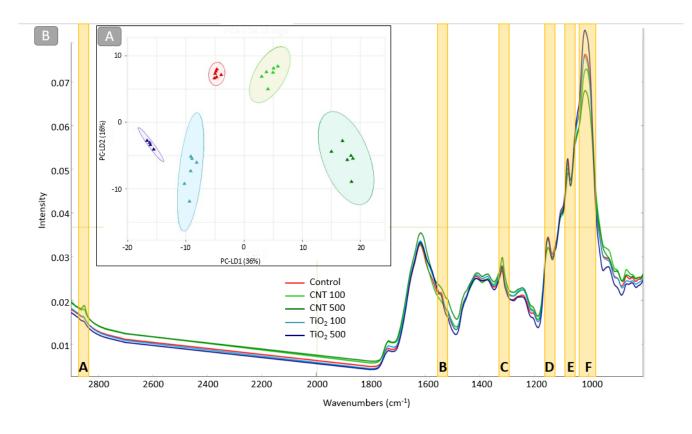
- 623 79. Kim JH, Lee Y, Kim EJ, et al. Exposure of iron nanoparticles to Arabidopsis thaliana enhances root
- 624 elongation by triggering cell wall loosening. *Environ Sci Technol.* 2014;48(6):3477-3485.
- 625 doi:10.1021/es4043462

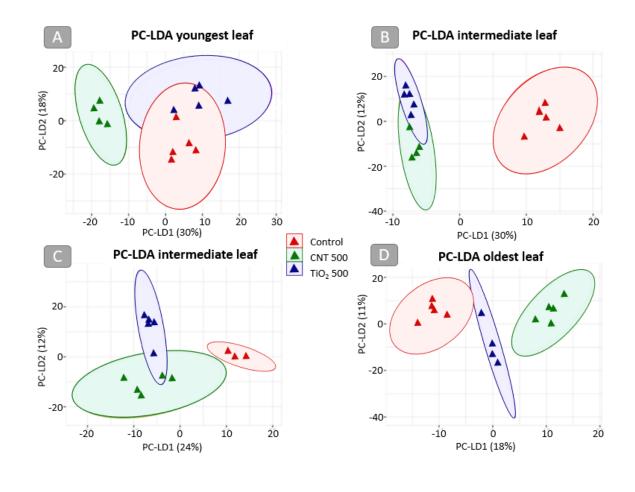
Figure captions

Figure 1. Morphological responses of tomato plants: plant height (A), total leaf area (B) and total fresh biomass (C) after exposure during 15 days in soil contaminated with CNTs or TiO_2 -NPs at 100 or 500 mg.kg⁻¹ (CNT 100, CNT 500, TiO_2 100, TiO_2 500) with standard errors (n = 5). Different letters imply statistical differences (p<0.05). D is the PCA using all the morphological parameters (leaf number, plant height, leaf area and biomass).


634

635 Figure 2. (A) PC-LDA analysis of the normalized FTIR spectra for tomato leaves after 15 days of exposure in 636 soil contaminated with CNTs or TiO₂-NPs at 100 or 500 mg.kg⁻¹ (CNT 100, CNT 500, TiO₂ 100, TiO₂ 500) 637 including also the barycenter of the ellipse for each treatment. (B) Normalized FTIR spectra for tomato 638 leaves after 15 days of exposure in soil contaminated with CNTs or TiO₂-NPs. Peaks contributing the most 639 to differences among groups are highlighted in yellow. Peak A = 2852-2848 cm⁻¹, lipid region. Peak B = 640 1550-1537 cm⁻¹, amide II region. Peak C = 1320-1312 cm⁻¹, carboxyl region. Peak D = 1160-1155 cm⁻¹, polysaccharide region (cellulose). Peak E = 1082-1070 cm⁻¹, polysaccharide region (hemicelluloses). Peak F 641 642 = 1052-990 cm⁻¹, pectin and various polysaccharides region.


643


Figure 3. PC-LDA of the FTIR spectra (between 1800-800 and 2900-2700 cm⁻¹) acquired on individual tomato leaves after 15 days of exposure in soil containing 500 mg.kg⁻¹ CNTs or TiO₂-NPs (Control, CNT 500 and TiO₂ 500) (A youngest leaf, B intermediate leaf, C intermediate leaf and D oldest leaf). PC-LDA were run with Orange software and drawn with RStudio (ggplot2).

- 649 Figure 4. Polysaccharide microarray analysis of cellulose-, hemicelluloses- and pectin-enriched fractions of
- tomato cell wall leaves exposed for 15 days to 500 mg.kg⁻¹ CNT or TiO₂-NPs. The detection was performed
- on nitrocellulose membranes which were subsequently scanned. The signals were then quantified. Results
- are expressed in intensity in comparison to the control and standard errors are indicated (n=5). LM25 is
- 653 specific for XG (motifs XLLG, XXLG and XXXG), LM15 for XG (motif XXXG) and LM19 for HG.

666 Figure 4.

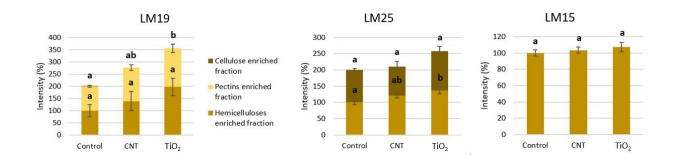


Table 1. Peaks contributing the most to differences among treatments extracted from the logistic regression for 15 days of exposure with the band letter corresponding to the figure 2 together with the area under the absorption peak extracted from normalized FTIR spectra the for the five different conditions (Control, CNT 100, CNT 500, TiO₂ 100 and TiO₂ 500). Areas are expressed in % in comparison to

the control with standard errors.

Wavenumbers (cm ⁻¹)	Band	Assignment	Main compounds	Refer ences	CNT 100	CNT 500	TiO₂ 100	TiO₂ 500	P-value
2852 - 2848	A	CH ₂ symmetric stretch	Lipids	47,57	+25 ± 0%	+29 ± 2%	+12 ± 2%	+6 ± 0%	<0.001
1550 - 1537	В	N-H and C=N	Amide II	55,56	-12 ± 1%	+1 ± 1%	-6 ± 7%	-6 ± 1%	0.041
1320 - 1312	С	C-H bend	Carboxyl groups from ligands, proteins, various polysaccharides (cellulose)	38,47,56, 57	+5 ± 1%	+15 ± 3%	+3 ± 5%	+3 ± 1%	0.018
1160 - 1155	D	OH or C-O stretch	Various polysaccharides (mainly cellulose)	38,47,56, 57	-1 ± 0%	-5 ± 1%	-1 ± 1%	-1 ± 1%	0.004
1082 - 1070	E	C-O ring stretch	Various polysaccharides (hemicelluloses in particular)	38,47,56	-5 ± 1%	-6 ± 1%	-3 ± 1%	-1 ± 0%	0.033
1052 - 990	F	O-H and C-OH stretch	Pectin, various polysaccharides	47,56,57	-1 ± 2%	-6 ± 1%	+2 ± 3%	+9 ± 1%	<0.001

675