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Abstract

In the framework of vibrational analysis of 2D periodic waveguides, Floquet-Bloch theorem is widely applied for
the determination of wave dispersion characteristics. In this context, the Wave Finite Element Method (WFEM) com-
bines Periodic Structure Theory (PST) with standard FE packages, enabling wave dispersion analysis of waveguides
involving structurally realistic unit-cells. For such applications, the computational efficiency of the WFEM, depends
on the choice of the formulation and can lead to numerical issues, worsen by extensive computational cost. This
paper presents a coupled wave-mode approach for the determination of wave dispersion characteristics in structurally
advanced periodic structures. It combines two scales of model order reduction. At the unit-cell’s scale, Component
Mode Synthesis (CMS) provides the displacement field associated with local resonances of the periodic structure,
while the free wave propagation is considered using a spectral problem projection on a reduced set of shape functions
associated with propagating waves, thus providing considerable reduction of the computational cost. An application
is provided for a bi-directionally stiffened panel and the influence of reduction parameters is discussed, as well as the
robustness of the numerical results.

Keywords: Wave, finite element, periodic structure, reduced model, stiffened plate

1. Literature survey

Two-dimensional periodic waveguides such as honeycomb sandwiches, stiffened panels or beam lattices are ex-
tensively encountered in the field of automotive and aerospace industry. These structures provide high structural
integrity and low weight. Yet, an optimal use in engineering requires their vibro-acoustic characteristics to be known
since they are prone to fatigue and fracture issues. They are also likely to generate important acoustic radiation in the
medium-frequency range. For this reason, numerical simulations are increasingly needed for the design and optimiza-
tion processes of automotive and aerospace structures using these materials. In the context of vibro-acoustic analysis
of composite waveguides, several methods have been proposed to perform analysis of wave propagation in the low-,
mid- or high-frequency range.

In the low frequency range, the vibrational behaviour of periodic structures is governed by the macroscopic, or
homogeneous material parameters. The mechanical energy propagates to the entire structure and does not produce
wave localization in the periodic cell. Several analytical models can be found in the literature for two dimensional
periodic waveguides. Mead [1] proposed a model for free-wave propagation in a flat plate stiffened using an orthogonal
array of beams. The same author [2] developed later a formulation based on Bloch theorem [3] and introduced
homogenization techniques and model order reduction for wave propagation in periodic waveguides. In [4, 5], the
authors developed further an analytical formulation based on modal expansion technique to predict the vibro-acoustic
of orthogonally stiffened panels. Analytical formulations are accurate at low frequency and can be extended with
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higher orders of the theory including kinematic assumptions. However it requires high-order derivatives leading to
an increased mathematical effort to obtain analytical solutions [6]. In [7], the author studied the dynamic response
of a sandwich panel using a dynamic stiffness approach and several Equivalent Single Layer (ESL) theories using an
homogenized orthotropic honeycomb core. The use of modal reduction can overcome some FEM methods limitations
between low- and mid- frequency range, but reaches its limits for composite materials which exhibit high modal
densities.

In the high frequency range, the mechanical energy mainly remains in the periodic cell and the diffusion between
the structure subsystems is weak. Then, the vibro-acoustic behaviour is governed by the periodic cells dynamics
and can be determined from a single periodic cell [8] using Bloch theorem. The averaged dynamic response of the
structure under such excitation can be estimated using Statistical Energy Analysis (SEA) [9]. However, SEA method
suffers significant limitations in the medium frequency range, considering it cannot provide the response of the long-
wavelength components.

In the medium-frequency range, the vibratory energy is partially localized in the periodic cell and propagates
through the plate. In the last decade, numerical methods based on multi-modal propagation received a lot of attention.
Among them, the Wave Finite Element (WFE) method [10, 11, 12] is an effective tool for providing the wave dis-
persion characteristics of a wide range of waveguides. The main feature of the WFE method is to combine periodic
structure theory with commercial finite element packages. Numerous applications were proposed for one-dimensional
homogeneous and periodic waveguides [11, 10, 13, 14, 15, 16]. A formulation was introduced for two-dimensional
waveguides [17] and applied to periodic structures in [18, 19, 20]. Still, the above-mentioned methods are based on
Floquet - Bloch theorem and face some drawbacks due to high computational costs when refined FEM meshes are re-
quired. Some numerical issues were investigated for example in [21] and a reduction method to compute the response
of one-dimensional waveguides under harmonic excitations was proposed in [22, 23]. However, there is still a lack of
studies in the literature concerning model order reduction strategies for the WFE method in the case of 2D periodic
waveguides.

As a consequence, the study is often restrained to lower frequencies due to coarsely meshed models or structural
approximations. In [24], the authors proposed a reduced strategy for studying propagating waves dispersion char-
acteristics in structurally advanced or composite waveguides. Several formulations using Bloch’s theorem can be
found in the literature for 2D periodic waveguides [25, 26, 17]. These methods require the resolution of an eigen-
problem depending on the spatial variables used in the periodicity conditions, and possible degrees of freedom (DOF)
condensation. One can discriminate these formulations between ”unknown-frequency” and ”unknown-wavenumber”
resolutions. These different approaches are discussed in section 2. Since these formulations generally involve exten-
sive computation when an important degree of discretization is required, the inners degrees of freedom condensation
can benefit Component Mode Synthesis (CMS). In [27], the authors successfully applied the CMS to a unknown-
frequency WFE method. However, this formulation requires to choose arbitrary real phase constants and is not suited
for damped structures. In order to provide a suitable numerical tool for wave analysis in structurally advanced periodic
waveguides, this paper focuses on the prediction of propagating waves dispersion characteristics using reduced com-
putation processes. The aim is to provide a suitable numerical tool for computing wave dispersion in two-dimensional
periodic systems using a CMS approach for the inners cell DOF condensation, then reducing the spectral eigenprob-
lem projecting the cell’s cross-sectional transfer matrix on a reduced set of shape functions. It allows the propagating
waves to be determined accurately by solving smaller eigenproblems, and enables low-cost broadband analysis of
finely meshed two-dimensional periodic waveguides.

This paper is organized as follows. In section 2, some WFE formulations for 2D periodic waveguides are re-
viewed. The purpose of this section is to classify the methods, highlight their numerical issues and motivate the
chosen ”unknown-k” formulation. We also introduce the proposed developments presented in the following section.
Section 3 describes the proposed reduction strategy. A CMS approach based on mode selection is first developed for
the dynamic condensation required in the proposed WFE formulation. A modal analysis is performed on the fixed
boundary unit cell; the main contributing modes of the periodic cell are retained to replace the inner cell’s DOFs; a
dynamic condensation of the modal participations allows to use classical 2D periodic WFE formulation used in [17].
Then a reduced formulation based on wave interpolation is provided to solve the spectral problem on a broadband
frequency range. A subset of solutions is computed at waves cut-on frequencies; a shape basis is determined using
a reduced number of propagating waves; an iterative process based on eigenvectors orthogonality is proposed to im-
prove the reduced basis numerical stability; spectral problem is then projected on the reduced-size basis and easily
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solved for the whole frequency band. Numerical application is brought in section 4. Orthogonally stiffened panels are
considered; classical WFE solutions are compared the proposed reduced formulation; the solutions sensitivity to both
modal and wave selection is investigated and the computational gains are discussed.

2. Review of the WFE formulations for 2D periodic waveguides

2.1. Application of the periodicity relations

In this section, an overview of the WFE formulation is given for the general 2D periodic waveguide. These
structures consists in a set of identical and regularly connected elements. A periodic cell is shown in Fig.1, the

Figure 1: Illustration of the 2D waveguide periodic cell.

degrees of freedom q are partitioned into edges (qB,qT ,qL,qR), corners (q1,q2,q3,q4) and inner qI DOFs. The
vector of nodal forces is defined similarly excepted for the internal DOFs where no external forces are applied: fI = 0.
It is assumed that opposite edges and the four corners have the same number of DOFs. Apart from these conditions,
the FEM discretization is arbitrary inside the periodic element. The relations between the element displacements can
be expressed using Bloch’s theorem:

qR = λxqL , qT = λyqB. (1)

for the edges, and
q2 = λxq1 , q3 = λyq1 , q4 = λxλyq1. (2)

for the corners. The forces relations can be expressed similarly:

fR = −λxfL , fT = −λyfB. (3)

for the edges forces, and
f2 = −λxf1 , f3 = −λyf1 , f4 = λxλyf1. (4)

for the corners forces. The propagation constants λx = e− jkxdx and λy = e− jkydy in x and y direction, involve the
wavenumbers kx and ky and the element size (dx × dy). The values kxdx and kydy are also called phase constants.
Similarly, the forces equilibrium leads to the following conditions

fB + λ−1
y fT = 0 , fL + λ−1

x fR = 0 (5)
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for the edges, and
f1λxλy + f2λy + f3λx + f4 = 0 (6)

for the corners.
The cell’s equation of motion can be used to form the spectral problem involving the wavenumbers kx, ky and the

frequency. Denoting K and M the stiffness and mass matrices and ω the circular frequency, the governing equation in
the element is written, assuming time-harmonic excitation:

(K − ω2M)q = f (7)

Different methods were provided to form a well-conditioned eigenproblem for the determination of wave disper-
sion characteristics in 2D periodic waveguides. The choice of a method strongly influences the problem size, the
results usability and model order reduction possibilities. One can discriminate between a given (kx, ky) formulation
(see section 2.2) and a given (ω, kx) formulation described in section 2.3.

2.2. Given (kx, ky) formulation

The cell’s DOFs can be ordered [25] as follows:

q =
[
qT

I qT
B qT

T qT
L qT

R qT
1 qT

2 qT
3 qT

4

]T
(8)

Using the periodicity relations defined section 2.1, one can define the reduced state vector q′ so that q = Rq′, or:

qI

qB

qT

qL

qR

q1
q2
q3
q4


=



I 0 0 0
0 I 0 0
0 Iλy 0 0
0 0 I 0
0 0 Iλx 0
0 0 0 I
0 0 0 Iλx

0 0 0 Iλy

0 0 0 Iλxλy




qI

qB

qL

q1

 (9)

Substituting Eq.(9) in the governing equation Eq.(7) and pre-multiplying by RT yields:

RT (K − ω2M)Rq′ = 0 (10)

In practice, the eigenvalues ωi are found for each couple (λx, λy) by specifying a range of values for kx and ky. Then,
the propagating solutions can be sorted in order to plot phase constants surfaces illustrated in Fig.2. One can note
than Eq.(10) requires the computation of a sizeable eigenproblem since the inner DOFs qI are involved.

A CMS approach was proposed in [27] to reduced the computational expense associated with the phase constant
surfaces determination described above. The method uses a subset fixed-interface modes of the periodic element to
replace the interior DOFs. The inner DOFs qI are written as:

qI = ΦpΦ −K−1
II KIbqb (11)

whereΦ is a subset of the clamped boundary local modes, pΦ contains the associated modal participations, while the
term K−1

II KIbqb stands for the constraint modes where subscript b indicates the periodic element boundary DOFs. The
number of modes retained is significantly lower than the number of inner DOFs, the reduced state vector q′ in Eq.(10)
being written:

q̃′ =


pΦ

qB

qL

q1

 (12)
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Figure 2: Phase constant surfaces of a bi-directionally stiffened panel, obtained using given-(kx, ky) WFE formulation.

Then, the associated computation time is significantly reduced for each couple of (λx, λy) specified. The same au-
thors applied this procedure and obtained significant CPU time reduction in comparison with the standard approach.
Notwithstanding, this formulation suffers some drawbacks. Firstly, the specified wavenumbers (kx, ky) have to be
assumed real hence restraining the study to undamped systems, since no information is given on the imaginary parts
which are associated with propagating waves spatial attenuations. Secondly, the solutions provided here are not fitted
for a further use in forced response analyses, where the frequency is a given parameter. Later formulations of the
spectral problem were provided in section 2.3, allowing a dynamic condensation of the element inner DOFs.

2.3. Given (ω, kx) formulation

In [26], the author proceeds a dynamic condensation of the inner DOFs, and gives the explicit coefficients
X(ω, λx),Y(ω, λx),Z(ω, λx) so that the spectral problem Eq.10 can be written on the quadratic form:

(λyX + Y + λ−1
y Z)

 qL

qB

q1

 = 0 (13)
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A given (ω, ky) formulation can be obtained similarly by inverting the roles of ky and kx. Further investigations
regarding the resolution of linear, quadratic, polynomial or transcendental eigenproblems were carried out in [17].
The complex solutions λy are then sorted in order to retain mainly propagating waves. If the wavenumber ky is
purely imaginary the wave is evanescent, if ky is complex the wave is propagating and |=(ky)| is the spatial attenuation.
Therefore, the wave dispersion characteristics can be determined on a given-frequency form, enabling the computation
of forced responses from a wave-based method. An example of the results obtained by a given-(ω, ky) formulation is
described in Fig.3 for a thick-layered plate. Sinceω is given in this formulation, the group velocities can be determined
to evaluate the waves directivity in 2D waveguides.
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Figure 3: Group velocities of a multi-layered orthotropic plate at 400 kHz, obtained using given-(ω, ky) WFE formulation and plotted in polar
coordinates.

Yet, the latter formulation requires a dynamic condensation of the inner DOFs for each frequency step. It may
lead to extensive computation time when the periodic cell is investigated in higher frequencies, or contains a complex
geometry and needs refined FEM. Besides, the condensed eigenproblem Eq.(13) still involves numerous DOFs and
remains a major drawback for analysing structurally advanced periodic waveguides. In the following section a hybrid
formulation is proposed which combines the use of a modal reduction approach for the dynamic condensation with a
wave shape frequency-interpolation.
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3. Proposed model order reduction strategy

It should be noticed that the proposed formulation is a two-scale approach [28], using hybrid CMS formulation in
a wave approach context. The CMS, described in section 3.1 is performed at the cell’s scale (mesoscopic scale), while
a frequency-interpolation method based on propagating waves determination is detailed in section 3.2 to section 3.4.
As a convention, the symbol Φ is used for modes and Ψ is used for waves.

3.1. A Craig-Bampton reduction for the cell’s inner DOFs

The CMS procedure provides a significant reduction of the number of inner DOFs involved by replacing physical
displacements by the cell’s local modes. To this aim, the displacement vector q defined Eq.(7) is partitioned into the
inner cell’s displacements qI , and the boundaries displacements:

qb =
[
qT

B qT
T qT

L qT
R qT

1 qT
2 qT

3 qT
4

]T
(14)

Since there are no external forces applied on the cell’s inner DOFs, fI = 0, Eq.(7) can then be written:([
Kb KbI
KIb KI

]
− ω2

[
Mb MbI

MIb MI

]) (
qb

qI

)
=

(
fb

0

)
(15)

Therefore, a reduced set of coordinates is required to replace the physical DOFs qI . This reduced Ritz basis involves
vectors associated with static boundary modes Φb and selected component modes ΦC so that the displacements can
be written: (

qb

qI

)
=

[
I 0
Φb ΦC

] (
qb

PC

)
= B

(
qb

PC

)
(16)

where the vectors Φb are obtained by static condensation

Φb = K−1
I KIb (17)

the component modes ΦC are selected among the eigenvectors ΦI of Eq.(18)(
KI − ω2MII

)
ΦI = 0 (18)

and the inner DOFs displacements are replaced with a reduced set of modal participations PC . In Craig-Bampton
procedure, modal selection is based on the lower resonance frequencies. This method can be extended in a wave
approach context since the aim here is to capture the local deformed shape of the periodic cell. The underlying
hypothesis is that when a wave propagates through the periodic waveguide, the displacements inside a unit-cell can be
expanded on a subset of stationary modes. Therefore, one can choose [29] modes into the frequency range [0, 2ωmax],
where ωmax is the maximum frequency of interest for the wave dispersion analysis. Then, the stiffness and mass
matrices can be written in the reduced set of coordinates using the projection matrix BΦ defined Eq.(16):

K̃ = BT
ΦKBΦ , M̃ = BT

ΦMBΦ (19)

It should be noted that free modes could also be used for the CMS procedure. Yet, they do not improve the reduced
model accuracy and require additional projection of the boundary degrees of freedom. As mentioned in section 2.3,
the reduced matrices can be used to perform dynamic condensation in order to obtain a spectral problem of size[
qT

1 qT
L qT

B

]T
. However the size of this state vector remains a major drawback when a large frequency band is

considered. A wave-based reduced formulation for broadband analysis of 2D homogeneous or periodic waveguides
is developed in the following.
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3.2. Determination of a reduced frequency sample for the wave shape interpolation
The principle of the model order reduction (ROM) strategy proposed here is to reduce Eq.(13) using a subset of

the propagating waves solutions. The main assumption is that a waveguide cross-sectional deformed shape for a given
wave type at a given frequency can be used to describe the motion of the periodic cell for the same wave in a large
frequency range around this given frequency. It will be considered further in this paper for 2D periodic problems.
In order to identify a suitable reduced subset Ω̃ of the frequency range Ω, one can consider the specific behaviour of
propagating waves in periodic waveguides. Indeed, in such structures the real wavenumbers remain between k = 0 and
k = π/d (see [30]). The wave shapes are then retained at the mid-aliasing frequencies, defined by the wavenumber:
k = π/(2d). Therefore, the frequency subset can be determined by using given (kx, ky) formulation. From the reduced
matrices defined Eq.(19), the dispersion relation defined Eq.(10) can be written using reduced modal participations:

Λ′L(λx, λy)
(
K̃ − ω2M̃

)
Λ′HL (λx, λy)


q1
qL

qB

PC

 = 0 (20)

where Λ′L is the definite positive Hermitian matrix detailed in Appendix A. In this given (kx, ky) formulation, the
propagating solutions are associated with the real eigenvalues of Eq.(20). These solutions form the frequency subset
Ω̃ used in the following to span the reduced wave basis.

3.3. Resolution of the spectral problem on the frequency subset ∆ω

Considering matrices K̃ and M̃ defined section 3.1 and the given frequency ω̃ ∈ Ω̃, the reduced dynamic stiffness
defined as D̃ = K̃ − ω̃2M̃ can be ordered as follows:(

D̃b D̃bI
D̃Ib D̃I

) (
qb

PC

)
=

(
fb

0

)
(21)

Then, the modal participations PC can be condensed on the cell’s boundaries so that:

D = D̃b − D̃bID̃−1
I D̃Ib (22)

The dynamic stiffness can then be ordered as in Eq.(B.1), so that the spectral problem can be written in terms of this
condensed matrix:

ΛL(λx, λy) D(ω)ΛR(λx, λy)

 q1
qL

qB

 = 0 (23)

In this case the problem is not linear since λx is the unknown and (ω, λy) are given. Therefore, a quadratic eigenprob-
lem in λx can be formed using Eqs.(23,B.1):λx

 A11 A1L A1B
AL1 ALL ALB
AB1 ABL ABB

 +

 B11 B1L B1B
BL1 BLL BLB
BB1 BBL BBB

 +
1
λx

 C11 C1L C1B
CL1 CLL CLB
CB1 CBL CBB



 q1

qL

qB

 = 0 (24)

where the coefficients Aij, Bij and Cij are detailed Appendix B. Then denoting A, B, C these matrices, the quadratic
eigenproblem Eq.(24) can be solved using the following linearisation:[

−C 0
0 I

] (
q
λxq

)
= λx

[
B A
I 0

] (
q
λxq

)
(25)

For the sake of clarity, the spectral problem Eq.(24) will be denoted: S
(
λx, λy, ω

)
Ψ = 0, where the solution Ψ is the

wave shape on the condensed DOFs defined as:

Ψ =

 q1
qL

qB

 (26)
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The solutions of Eq.(24) are computed on the mid-aliasing frequency subset Ω̃ defined in section 3.2. Accordingly,
an appropriate reduced basis for the ROM can be spanned using solutions of the following system of equations:

S
(
λx, λy, ω̃1

)
Ψ = 0

· · ·

S
(
λx, λy, ω̃j

)
Ψ = 0 ; ω̃j ∈ Ω̃

· · ·

S
(
λx, λy, ω̃n

)
Ψ = 0

(27)

where n is the number of elements in the subset Ω̃. For each given ω̃j, discrete values of ky are chosen in the range
[−π/dy, π/dy]. The values of λy are derived from these choices of ky, with λy = e− jdyky . It is noteworthy that the
CPU time required to solve the n eigenproblems Eq.(27) is considerably lower than for solving Eq.(24) on the whole
frequency domain Ω. The reduced basis can be built using these eigenvectors. However, each line of Eq.(27) yields
2 × N solutions, where N is the size of Ψ =

[
qT

1 ,q
T
L ,q

T
B

]T
, corresponding to the number of DOFs in the state vector.

Retaining all of the 2×N solutions Ψ at the n frequencies would lead to an extensive wave shape basis, while the only
solutions of interest are associated with propagating waves. This issue is discussed below.

3.4. Building a reduced wave shape basis

The idea is to select propagating waves using their dispersion characteristics in order to build a reduced wave basis.
A complex wavenumber kx = j ln(λx) is associated with each eigenvector Ψ, and its imaginary part =(k) is the wave
attenuation. The wave is evanescent when the wavenumber is purely imaginary, while real positive wavenumbers are
associated with the least decaying positive-going waves. Yet, damped structures can produce highly decaying waves
and the determination of propagating solutions can be delicate. In this study, a propagating wave is described by the
following conditions: 

0 ≤ <(kx) ≤ π/dx Positive-going waves
=(kx) ≤ 0 Physical solutions
|=(kx)| ≤ α<(kx) Least-decaying waves, α ' 0.01

(28)

We denote Ψ
( j)
i the eigenvector associated with the i-th propagating eigenvector at the frequency ω̃ j. Therefore, the

solution subspace can be written:
Ψ = {Ψ

( j)
1 , . . . ,Ψ

( j)
p( j)}1≤ j≤n (29)

where p( j) stands for the number of propagating waves retained at frequency ω̃ j. We denote p =
∑n

i=1 p(i) the total
number of vectors in Ψ. For a sake of clarity the j-th column of matrix Ψ is a vector, denoted Ψ( j). In practice, this
set may involve redundant vectors and lead to an unnecessary large wave basis when a wave shape remains the same
at several frequencies in Ω̃. Considering modal assurance criteria (MAC) as an indicator of correlation between two
complex eigenvectors, the orthogonality relation ⊥ε can be written:

ψ1 ⊥ε ψ2 ⇔

∣∣∣∣∣∣ (ψT
1 ψ̄2) (ψT

2 ψ̄1)

(ψT
1 ψ̄1) (ψT

2 ψ̄2)

∣∣∣∣∣∣ ≤ ε (30)

The criteria ε ∈ [0 , 1] is chosen close to 1 and describes the tolerance for the orthogonality relation. This definition
is extended to define the orthogonality between a vector and a set ψ1 ⊥ε {ψ}, when ψ1 is orthogonal to all the vectors
in {ψ}. An optimisation procedure is required to reduce the number of vectors in the wave basis. In order to create
this subset Ψ̃ ofΨ by elimination of correlated wave shapes and build a reduced wave basis providing good numerical
stability, we propose the algorithm described Eq.(31).

First, the vector subset Ψ̃ is built by recurrence using ⊥ε orthogonality. Note that the choice of ε influences the
size of the reduced basis and the ROM efficiency. Then, a simple way to improve numerical stability is to normalize
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the remaining vectors and dissociate their real and imaginary parts. Thus, the wave basis Γ is purely real and well-
conditioned. 

Define Ψ̃(1) = Ψ(1)

for j = 1 to j = p − 1
if Ψ( j + 1) ⊥ε

{
Ψ̃

}
do

{
Ψ̃

}
=

[ {
Ψ̃

}
,Ψ( j + 1)

]
end if

end for

define the normalized Γi =
Ψ̃(i)
‖Ψ(i)‖

dissociate complex vectors: Γi into:
[
<(Γi) =(Γi)

]
build the wave basis Γ = [Γ1, . . . ,Γr]

(31)

The state vector can be written in terms of wave participations: q1
qL

qB

 =


Γ(1) 0 0
0 Γ(L) 0
0 0 Γ(B)




w1

wL

wB

 (32)

where Γ(1), Γ(L) and Γ(B) are associated to the displacements of the corner, left and bottom edges of the periodic cell,
while w1, wL, wR are vectors of size r, containing the reduced wave participations. The global displacements vector
in the periodic cell, involving modal participations as described in section 3.1, can be expanded on the wave basis as:

q1
q2
q3
q4
qL

qB

qR

qT


= B̃Ψw =



Γ(1)

Γ(2) 0
Γ(3)

Γ(4)

Γ(L)

Γ(B)

0 Γ(R)

Γ(T )





w1
w2
w3
w4
wL

wB

wR

wT


(33)

where Γ(1) = Γ(2) = Γ(3) = Γ(4), Γ(L) = Γ(R) and Γ(B) = Γ(T ). It is noteworthy that wave participations are defined
separately for each of the periodic cell’s components. Geometrically, it means that three different shape basis are
defined for the corners and both pairs of opposite edges, and each of these components are provided with independent
coefficients. Since the coefficients in Appendix B are linear with respect to matrix D, one can build reduced dynamic
stiffness B̃T

Ψ
DB̃Ψ. Then denoting:

BΨ =

[
B̃Ψ 0
0 I

]
(34)

and using Eq.(19), one can write reduced mass and stiffness matrices leading to a reduced CPU computation for the
dynamic condensation Eq.(22) and the spectral eigenproblem Eq.(24):

K̃Ψ = BT
ΨBT

Φ K BΦBΨ , M̃Ψ = BT
ΨBT

Φ M BΦBΨ (35)

To summarize, a modal basis is defined using Eqs.(16,17,18,19) in order to replace the inner DOFs of the periodic
cell with a reduced set modal participations so that the dynamic condensation Eq.(22) can be easily done on the
frequency range Ω. Then, the spectral problem Eq.(24) is solved on a small frequency subset Ω̃, defined using
Eq.(20). The solutions of system Eq.(27) associated with positive-going propagating waves are selected using the
conditions Eq.(28), and a reduced set of eigenvectors is built using the algorithm provided Eq.(31). Therefore, the
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wave participations are defined using Eq.(33) and reduced mass and stiffness matrices are provided using Eqs.(34,35).
Finally, a reduced size spectral problem Eq.(24) can be solved on the whole frequency range Ω, while the physical
solutions can be derived using Eqs.(16,33).

4. Numerical results: orthogonally stiffened panels

4.1. Problem description
In this section, the formulation developed in the paper is used to provide wave dispersion characteristics (wavenum-

bers, group velocities, wave modes) in bidirectionally stiffened panels. The wave propagation in such structures is
extensively studied in the literature [31, 32]. The mode selection and wave-based interpolation parameters introduced
in section 3 are used here to study the stability and accuracy of the proposed method. A flat panel reinforced by
stiffeners with rectangular cross-sections is considered in this example. The unit-cell of the periodic plate is shown in
Fig.4. The skin is an aluminium plate of thickness h = 0.8 mm and the stiffeners are rectangular aluminium beams
of width l1 = l2 = 10 mm and height h1 = 20 mm and h2 = 10 mm. A structural loss factor η = 0.5% is introduced
and the spacing between the stiffeners is L1 = 0.08 m in the y-direction and L2 = 0.12 m in the x-direction. The The
FE model built using ANSYS 14.0 Software involves 600 4-nodes SHELL63 (DKT) elements for the skins, and 50
rectangular BEAM44 elements with cubic interpolation for the stiffeners. Therefore, the periodic cell has a total of
3906 DOFs, involving 3306 DOFs inside the periodic cell and 600 DOFs on the cell’s boundaries. Since the stiffened
panel exhibits two localized resonance at 840 Hz and 2040 Hz, the frequency range studied in this application is
[0 − 2500] Hz.

h

l1
l2h1

h2

L1

L2

z

y

x

Figure 4: Illustration of the stiffened panel’s periodic cell

4.2. Reduced WFEM solution
The proposed reduction strategy is applied to the model described above and compared to the standard formulation

of the WFEM. Five stationary modes are employed to describe the inner cell’s displacements, according to the CMS
procedure described section 3.1 and 15 waves are determined using the procedure Eq.(31) to build the reduced solution
subspace. Real wavenumbers associated with the propagating waves in the x-direction are presented in Fig.5 using
the standard WFEM and the proposed formulation. Vertical lines, where the full eigenproblems are solved denote
the mid-aliasing frequencies. Note that all of intersections between the propagating waves and the mid-aliasing
frequency are correctly predicted. A very good correlation is observed between the standard WFEM formulation
and the reduced model, involving modal condensation and wave-based interpolation. The maximal error on the
wavenumbers is err = 0.8% for the flexural wave. The modal basis is built using a subset of stationary modes
between 0 and 2500 Hz, and the wave basis is computed using a correlation criteria ε = 0.99 described Eq.(30), and
provides a reduction of the quadratic eigenproblem from 600 boundary DOF’s to 120 wave participations.
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Figure 5: Real wavenumbers in the y-direction (for kx = 0) using the standard WFE method and the proposed CMS - wave interpolation strategy

A significant reduction of the computational cost is observed for the proposed method. CPU time using Matlab
7.14 running on Linux with two AMD 64×2 dual core 6000+ processors are given in Table 1. The CMS procedure re-
quires an additional modal analysis, but provides an important reduction (95.5%) of the time required for the dynamic
condensation. On the other hand, the wave based reduction strategy also provides a considerable reduction (95.7%)
of the time required to solve the quadratic eigenproblems, in comparison with the standard formulation involving the
edges unit-cell nodal displacements. Therefore, the proposed formulation provides a total of 80% reduction of the
computational cost. Noteworthy that a higher frequency sampling will increase the wave-based reduction efficiency.

Time per iteration (s) WFEM CMS-WFEM Interp-WFEM Proposed method

Modal Analysis (×1) � 258 � 258
Dynamic Condens.(×500) 1.85 0.082 1.85 0.082
Building wave basis (×1) � � 17 8.16
Spectral problem (×500) 1.55 1.55 0.066 0.066

Total Time 1700 1074 (-37%) 975 (-43%) 340 (-80%)

Table 1: Stiffened plate: CPU time for the standard and reduced WFE formulations.

The aforementioned reduction strategy is then applied in the 2D k-space, and compared to the given - (ω, ky)
standard WFE formulation, presented in section 2.3. The wavenumbers kx and ky are shown in Fig.6 at 1500 Hz, and
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exhibit a very good correlation between the standard WFEM and the proposed method. The flexural (’o’), shear (’�’)
and longitudinal waves (’+’) are accurately predicted by the reduced formulation (’O’). Besides, in Fig.7 the localized
resonances, associated with important variations of the directivity and appearance of angular bandgaps for the flexural
wave, are predicted as well at 2400 Hz. At this frequency, the reduced model exhibits a good accuracy, although kx is
given for all the values of the first Brillouin zone. Therefore, the k-space can be accurately determined in broadband
frequency range and provide the required 2D wave dispersion characteristics of the periodic structure.
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Figure 6: Comparison of the k-space solutions at 1500 Hz using standard WFEM and the proposed formulation (black ’o’).
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Figure 7: Comparison of the k-space solutions at 2400 Hz using standard WFEM and the proposed formulation (black ’o’).

Sensitivity of the CMS to the modal basis
The accuracy of the proposed ROM strategy relies essentially on two parameters: the number of modes retained

for the CMS procedure and the number of wave shapes used to span the solution subspace. For the CMS procedure,
the fixed-interface modes are usually retained between 0 and two times the maximal frequency. An insufficient
number of modes is expected to produce significant errors in the determination of high-order wave shapes, since the
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displacement field inside the periodic cell can no longer be described. In Fig.8, the dispersion curves are compared
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Figure 8: Influence of the modal basis used in the CMS procedure. Real part of wavenumbers in the y-direction (kx = 0).

using three different mode selection for the modal synthesis. The first basis (CMS 2500 Hz, ’o’) involves the four
modes until 2500 Hz. It show good agreement with the full model, including the frequency band-gaps for the flexural
waves at 850 Hz and 2000 Hz. The wave shapes associated with both local resonances at 800 Hz and 2000 Hz
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Figure 9: (a): Deformed shape of the periodic cell for the first local resonance at 800 Hz. (b): Deformed shape of the periodic cell for the second
local resonance at 2000 Hz.

are shown in Fig.9. The second basis (CMS 1500 Hz, ’×’) requires the two modes below 1500 Hz and accurately
describes the first band-gap, but fails to predict the second band-gap at 2000 Hz. Similarly, the third basis (CMS 0
Hz, ’+’) is limited to the the static constrained modes. Therefore the model is then limited to the low frequencies and
fails to predict the band-gaps and high-order flexural waves. However it can be noticed that the longitudinal and shear
waves are in good agreement in the three configurations. It can be explained since their shapes remain the same on
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the frequency range and can be described using the static constrained modes. The shape of the longitudinal wave at
1000 Hz and the shear wave at 750 Hz are shown respectively in Fig.10 and Fig.11.
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Figure 10: Deformed shape of the periodic cell for the longitudinal wave at 1000 Hz. Blue ’�’: undeformed ; red ’.’: deformed shape

Sensitivity of the method to wave-based reduction
The aforementioned wave-based interpolation involves a parameter ε introduced in Eq.(30), to build the reduced

set of shape vectors using a chosen subspace of the spectral problem solutions. The effect of this wave basis refinement
is shown in Fig.12. In the proposed example, a choice of ε = 0.85 would considerably reduce the number of vectors
retained in the shape basis but leads to an important error for the second and third orders of the flexural wave. The
third order flexural wave shape is shown at 2500 Hz in Fig.13. Noteworthy, this displacement field cannot be described
using the first and second orders flexural wave shapes. Oppositely, ε = 1 would mean that all of the propagating wave
solutions are retained at each interpolation frequency. Therefore, it can be seen that the wave correlation parameter
strongly influences the wave selection and the accuracy of the reduced model.

5. Concluding remarks

The effectiveness of wave dispersion analysis for predicting the vibro-acoustic behaviour of large-scaled 2D
waveguides led to numerous research work in the last decade. The Wave Finite Element Method (WFEM) is suit-
able tool for such purposes, but suffers numerical drawbacks throughout structurally advanced structures, industrial
applications or for analysing localized wave propagation in broadband frequency ranges. In this paper, a formulation
of the WFEM is described for 2D homogeneous or periodic waveguides, requiring large-scaled, structurally advanced
or finely meshed finite element descriptions. This formulation is based on a two-scale model order reduction combin-
ing modal synthesis in the periodic cell with an innovative wave-based interpolation strategy, involving a projection of
the spectral problem on a solution subspace associated with propagating wave shapes. The proposed formulation was
applied for the k-space analysis of a bi-directionally stiffened panel on the frequency range [0 − 2500Hz]. It provided
very good results and a significant reduction of the computational cost. The stability of the method was investigated
considering two key parameters of the wave – mode selection procedure: First, the influence of the fixed-interface
modes used in the CMS to predict local resonances effects (important for stiffened panels) was highlighted. Notewor-
thy, these modes are essential to describe the inner cells displacement field, thereby the vibro-acoustic characteristics
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Figure 11: Deformed shape of the periodic cell for the shear wave at 750 Hz. Blue ’�’: undeformed ; red ’.’: deformed shape

of the panel. Therefore, the authors recommend to select the modes between 0 and 2 × ωmax, where ωmax is the up-
per limit of the frequency range considered. Secondly, the effects of wave correlation criteria ε were investigated to
study the method’s robustness. The proposed wave-based interpolation was successfully applied to reduce the spectral
problem arising from Bloch’s theorem, using propagating wave shapes participations on the cell’s edges instead of
the nodal displacements. A wave correlation criteria ε of 0.99 was chosen and provided accurate dispersion curves
and significant reduction of the computational time. Besides, since most of the computational cost is associated to the
propagating waves determination, an iterative procedure can be employed to enrich the wave basis to reach a required
level of accuracy. It is hoped that it will provide an efficient numerical tool, encompassing numerical difficulties
associated with the spectral analysis of industrial of structurally advanced 2D, continuous or periodic waveguides.
An efficient prediction of local resonance effects and high-order propagating waves will provide useful results for the
acoustic analysis of periodic panels.
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Figure 12: Influence of the wave selection criteria on the reduced model accuracy. The wavenumbers ky are determined for a given kx = 0.
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Appendix A. Determination of a reduced frequency subset using a fixed (kx, ky) formulation

The following convention is used:

q =
[
qT

1 qT
2 qT

3 qT
4 qT

L qT
B qT

R qT
T PT

C

]T
=

(
qb

PC

)
(A.1)

Then, using the periodicity relations defined section 2.1, the displacement vector involving modal participations
can be written: (

qb

PC

)
= Λ′R


q1
qL

qB

PC

 (A.2)

with

Λ′R =

(
ΛR 0
0 IC

)
(A.3)

where IC is an identity matrix of the size of PC , and ΛR contains the propagation constants from the periodicity
conditions:

ΛR =



Is 0 0
λxIs 0 0
λyIs 0 0
λxλyI 0 0

0 I 0
0 0 I
0 λxI 0
0 0 λyI


(A.4)

Note that the vector PC is kept in the spectral eigenproblem since the frequency is unknown and no condensation
of the inner DOFs can be done. Similarly, the matrix ΛL being defined as:

ΛLfb = 0 (A.5)

it yields:

Λ′L =

(
ΛL 0
0 IC

)
(A.6)

where

ΛL = ΛH
R =

 I λ−1
x I λ−1

y I λ−1
x λ
−1
y I 0 0 0 0

0 0 0 0 I 0 λ−1
x I 0

0 0 0 0 0 I 0 λ−1
y I

 (A.7)

Therefore, the eigenproblem providing mid-aliasing frequency values: kx = π
2dx

, retained for the reduced solution

subspace computation, can be written, with λy given and λx = exp(− j
π

2
) = − j as:[

Λ′L(λx, λy)BT
Φ

(
K̃ − ω2

jM̃
)

BΦΛ
′
R(λx, λy)

]
Φ = 0 (A.8)

Appendix B. Formulation of the spectral eigenproblem for the 2D periodic waveguide

The condensed dynamic stiffness defined Eq.(22) can be ordered as follows:

D11 D12 D13 D14 D1L D1B D1R D1T
D21 D22 D23 D24 D2L D2B D2R D2T
D31 D32 D33 D34 D3L D3B D3R D3T
D41 D42 D43 D44 D4L D4B D4R D4T
DL1 DL2 DL3 DL4 DLL DLB DLR DLT
DB1 DB2 DB3 DB4 DBL DBB DBR DBT
DR1 DR2 DR3 DR4 DRL DRB DRR DRT
DT1 DT2 DT3 DT4 DTL DTB DTR DTT





q1
q2
q3
q4
qL

qB

qR

qT


=



f1
f2
f3
f4
fL

fB

fR

fT


(B.1)
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Using the matrices ΛL and ΛR defined in Appendix A, the product ΛL(λx, λy) D(ω)ΛR(λx, λy) can be developed
using the decomposition proposed for D. Therefore, the coefficients A, B and C are constant in a given (ω, λy)
formulation. Eq.(23) becomes a quadratic eigenvalue problem in λx, written:λx

 A11 A1L A1B
AL1 ALL ALB
AB1 ABL ABB

 +

 B11 B1L B1B
BL1 BLL BLB
BB1 BBL BBB

 +
1
λx

 C11 C1L C1B
CL1 CLL CLB
CB1 CBL CBB



 q1

qL

qB

 = 0 (B.2)

where λx coefficients are:

A11 = D12 + D34 + D32λ−1
y + D14λy (B.3a)

A1L = D1R + D3Rλ−1
y (B.3b)

AL1 = DL2 + DL4λy (B.3c)
ALL = DLR (B.3d)

AB1 = DB2 + DT4 + DT2λ−1
y + DB4λy (B.3e)

ABL = DBR + DTRλ−1
y (B.3f)

A1B = ALB = ABB = 0 (B.3g)

the constant coefficients are:

B11 = D11 + D22 + D33 + D44 + (D31 + D42)λ−1
y + (D13 + D24)λy (B.4a)

B1L = D1L + D2R + (D3L + D4R)λ−1
y (B.4b)

B1B = D1B + D3T + D3Bλ−1
y + D1Tλy (B.4c)

BL1 = DL1 + DR2 + DL3λy + DR4λy (B.4d)
BLL = DLL + DRR (B.4e)
BLB = DLB + DLTλy (B.4f)

BB1 = DB1 + DT3 + DT1λ−1
y + DB3λy (B.4g)

BBL = DBL + DTLλ−1
y (B.4h)

BBB = DBB + DTT + DTBλ−1
y + DBTλy (B.4i)

and the coefficients in 1
λx

are:

C11 = D21 + D43 + D41λ−1
y + D23λy (B.5a)

C1L = D2L + D4Lλ−1
y (B.5b)

C1B = D2B + D4T + D4Bλ−1
y + D2Tλy (B.5c)

CL1 = DR1 + DR3λy (B.5d)
CLL = DRL (B.5e)
CLB = DRB + DRTλy (B.5f)
CB1 = CBL = CBB = 0 (B.5g)

22


