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Abstract

This paper presents an improved numerical strategy for the broadband analysis of wave propagation in composite or
complex cross-sectional waveguides using the wave finite element method (WFE). Numerical analysis of such struc-
tures require highly discretized finite element models and leads to extensive computations. The proposed formulation
relies on a projection of the cross-sectional transfer matrices on a reduced set of shape functions associated to propa-
gating waves. Dispersion curves are then predicted only using a reduced number of eigenvectors. The performances
and stability of this method are evaluated using the wavenumbers and wave shapes. Validations are provided for a
sandwich composite beam and a cylindrical elasto-acoustic waveguide.

Keywords: Wave propagation, composite waveguides, dispersion curves, reduction, wave finite elements

1. Introduction

Wave propagation in composite waveguides in a
broadband frequency range is widely investigated in
automotive and aerospace industry. A waveguide is a
structure whose main dimensions exhibit a periodicity
or homogeneity in such a way that the propagation of
mechanical energy in the main direction (axis of a beam
or plane of a plate) is privileged. Waveguide hypothesis
can significantly reduce the size of the problem, since
the behavior of a single sub-structure of the guide yields
the response of the entire structure. Dynamical behavior
of such structures is determined by evaluating the set
of structural waves propagating through a cross-section
[1, 2]. One of the major interests of guided waves is
their potential for travelling long distances at velocities
governed by the dispersion phenomena. The knowledge
of these dispersion properties for propagating waves
is fundamental for an effective use in engineering, for
example in the field of structural health monitoring
(SHM).
Numerical prediction of these different waves and their
dispersion curves has been extensively studied in last
decades. The semi-analytical finite element (SAFE)
and wave and finite element (WFE) methods are,
among others, very efficient tools for this purpose. In
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the SAFE method, sinusoidal functions are employed
to formulate the displacement field in the direction of
propagation. Nevertheless, it is necessary to develop
specific semi-analytical elements for each application,
which can severely limit its interest for industrial
purposes. In order to overcome these limitations, the
WFE method combines periodic structure theory (PST)
introduced in Mead [3] with a finite element method
(FEM).
Therefore conventional finite element software pack-
ages can be easily used to compute mass and stiffness
matrices of the whole structure. The one-dimensional
WFE method was successfully applied to a wide
range of waveguides as beams-like structures [4, 5, 6],
plates [7] and more complex geometries as thin-walled
structures [8], tyres [9], pipes [10] and curved layered
shells [11].
As the application field of WFE method reaches
structurally advanced composite structures, vari-
ous numerical difficulties can appear, especially for
one-dimensional formulation which involves larger
cross-sections. Poor-conditioning of the transfer matrix
can lead to numerical errors (see Zhong and Williams
[12] for alternative formulations), aliasing effects and
round-off errors can also appear if cross-section length
is not sized carefully. However, for the determination of
propagating waves in industrial waveguides involving
a large number of degrees of freedom, major obstacle
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remains the large CPU time needed to solve the eigen-
problem. Some numerical issues were investigated for
example by Waki et al. [13] and a reduction strategy
based on a contributing waves selection was proposed
by Mencik [14] to compute forced response of elastic
waveguides [15]. Mencik et al. proposed a substruc-
turing technique to compute the appropriate wave
motion in multi-layered waveguides. Homogenisation
techniques were also investigated [16] to apply the
WFE to laminated composites.

Although the aforementioned reduction techniques
are interesting to compute forced responses using a
reduced number of wave modes, they do not reduce the
numerical costs associated with the computation of the
wave basis. Therefore, these techniques do not provide
a general reduction strategy to compute the propagating
waves in elaborated waveguides. This paper presents a
method, based on classical formulation of the periodic
structure theory, to calculate the dispersion curves
of propagating waves for complex cross-section or
composite waveguides involving an important number
of degrees of freedom. This alternative formulation
of WFE method relies on a frequency interpolation of
the transfer matrix eigenvectors through a subset of
eigensolutions. Thus, the propagating waves can be
determined accurately solving a smaller eigenproblem,
enabling the application of the WFE method to a
wide range of sophisticated cross-sectional waveguide
configurations.

The paper is organized as follows. In section 2, a brief
overview of the classical WFE formulation is shown.
Section 3 describes the proposed reduction strategy.
The model order reduction is formulated for the spec-
tral problem and the strategy of wave interpolation is
described; the wave basis is defined next, using a re-
duced set of propagating waves computed at the cut-on
frequencies, associated to the appearance of new prop-
agating waves over the frequency band; a method is
then proposed to improve the basis orthogonality and
approximate eigenvectors between the cut-on frequen-
cies. Numerical examples are brought in section 4.
The first application concerns a three-layered sandwich
beam; both the classical WFE formulation and an ana-
lytical low frequency solution described in [17] and [18]
are discussed, and the requirement for a refined FEM
of cross-section is highlighted; the reduction strategy is
then applied to a detailed FEM model. In the second
example, the reduced WFE formulation is extended to
an elasto-acoustic problem; dispersion curves are com-
puted for a cavity filled with fluid and compared to the

analytical solution.

2. Overview of the WFE

2.1. Free wave propagation in 1D-waveguides
In this section, a formulation of the WFE method is

given for free wave propagation in a one-dimensional
straight elastic and dissipative waveguide. The structure
can be assimilated to N identical subsystems of length
d connected along the main direction x. A unit cell of
the waveguide is illustrated Fig. 1. Displacements and

Figure 1: Illustration of a waveguide and the state vector of a unit cell
[1].

forces are written as q and f, and subscripts ’L’ and ’R’
denote the left and right edges of a cell. Both edges have
the same number n of degrees of freedom. Mesh com-
patibility is assumed between the N subsystems. The
discrete dynamic equation of a cell at frequency ω is
given by:

(−ω2M + jωC + K)q = f (1)

where M,C,K are the mass, damping and stiffness ma-
trices, respectively. For periodic structures, condensa-
tion on the left and right cross-sections of the inner
DOF’s is required. Introducing the condensed dynamic
stiffness operator D = −ω2M + jωC + K and reordering
degrees of freedom, equation can be stated as follows:[

DLL DLR

DRL DRR

] {
qL

qR

}
=

{
fL

fR

}
(2)

where DLL and DRR are symmetric and Dt
LR = DRL. De-

noting λ = e− jκd the propagation constant describing
wave propagation over the cell length d and κ associated
wavenumber, considering force equilibrium λfL +fR = 0
in a cell and invoking Bloch’s theorem [19], qR = λqL

into Eq. (2) leads to the following quadratic spectral
problem [1]:

(λiDLR +
1
λi

DRL + DLL + DRR)Φq
i = 0 (3)

where ((Φq)i, λi)i=1,...,2n stands for the wave modes of
the waveguide. The associated eigenvalue problem can
be formulated by an appropriate state vector Φq =
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[(Φq)t, (Φ f )t]t, leading to a symplectic transfer matrix
T.

T
{
Φq

Φ f

}
= λ

{
Φq

Φ f

}
(4)

with

T =

[
D−1

LRDLL D−1
LR

DRL − DRRD−1
LRDLL −DRRD−1

LR

]
(5)

where eigenvectors represents both nodal displacements
and forces associated to a wave mode. The dynamical
behavior of the global system can be expressed by ex-
panding amplitudes of incident and reflected waves on
a basis of eigenvectors. If the structure is undamped,
solutions are divided into propagative waves, whose
wavenumbers are real, and evanescent waves for which
wavenumbers are imaginary. In dissipative case, com-
plex wavenumbers are associated to decaying waves.

2.2. Computational issues for a complex cross-section
In practice, direct computation of the eigenprob-

lem Eq. (4) can be prone to numerical errors when the
meshed cross-section involves a large number of de-
grees of freedom. Indeed, the transfer matrix T requires
to inverse matrix D−1

LR which can be poorly conditioned.
To limit this issue, various formulations of the eigen-
problem are available, for example:[
−DRL −(DLL + DRR)

0 −DRL

] {
qL

λqL

}
= λ

[
0 DLR

−DRL 0

] {
qL

λqL

}
(6)

However, numerical errors can become serious when
eigenvalues are either very large (λi) or very small
(1/λi), see Zhong and Williams [12] for a detailed
discussion. When complex waveguides are considered,
an insufficient discretization of the cross-section will
produce significant errors, especially for eigensolu-
tions associated to waves whose section shape have
a short wavelength, whereas refined meshes exhibit
numerous evanescent solutions, thus considerably
increases computation time and worsen round-off er-
rors due to the truncation of inertia terms, see Waki [13].

Yet, structures considered in this paper require a high
degree of precision due to their geometry, their inner
components or for high order wave shapes calculation.
In these situations computation time grows exponen-
tially with the number of nodes involved. Classical tech-
niques based on modal basis reduction are not available,
since a cross-section boundary conditions are arbitrary
for a uniform waveguide or subjected to structural pe-
riodicity otherwise. Such an issue is addressed in the
next section, introducing projection on a reduced set of
shape functions.

3. Proposed reduction strategy

3.1. Spectral problem projection
3.1.1. Definition of a subspace for model order reduc-

tion
The basic principle of Model Order Reduction

(MOR) is to approximate Eq. (4) by creating a low order
system over a specified range of frequencies. Spectral
problem (3) can be rewritten:

S(λ, ω)uL(ω) = 0 (7)

where S stands for:

S(λ, ω) = λDLR(ω)+(DLL(ω)+DRR(ω))+
1
λ

DRL(ω) (8)

Most MOR techniques can be interpreted as the formu-
lation of two rectangular matrices B(r,n) and A(n,r) with
r � n, which are used for system (7) linear projection:

S̃(r,r) = BT S(n,n)A (9)

The quality of this approximation strongly depends on
the subspaces spanned by these matrices. Although ma-
trices A and B can be defined numerous ways, numeri-
cal stability commonly requires A to be real, equal to B
and orthogonal [20]:

A = B, B ∈ Rn∗r and BT B = I (10)

An effective way to obtain a reliable and low order re-
duced system is to make use of solution subsets from the
initial system. This process is used, among others, for
modal expansion or Krylov subspaces reduction [21].

3.1.2. Modal shapes - wave shapes
All reduced subspaces are not equivalent. In the field

of structural analysis, modal analysis provides an effi-
cient tool for numerous model order reduction strate-
gies. Ritz method is based on the hypothesis that dis-
placements field of a structure is spanned by its modal
shapes {φi}i=1,...,∞. In a wave approach context, displace-
ment of a bounded structure under harmonic excitation
can be expressed as a sum of wave mode amplitudes
[5]. Each stationary mode being linked to a wave re-
flection on the boundaries, both approaches can theo-
retically lead to the same conclusions [22]. Stationary
modes are boundary dependent and modal approaches
can lead to important system reduction if the structure
has a low modal density, but suffer limitations in mid-
frequencies. Moreover, modal selection has numerous
disadvantages, among other, a limited selection criteria:
each mode is associated to a wave at a specific boundary
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Figure 2: Illustration of the dispersion curves used for the eigenvectors
approximation.

dependent frequency. Consider the dispersion curves
shown Fig. 2. A limited set of eigenvectors is retained
at frequencies ω0, ω1 and ω2, supposing an appropri-
ate selection criteria can be found. They are denoted{
~φ(0)

i

}
1≤i≤r0

,
{
~φ(1)

i

}
1≤i≤r1

and
{
~φ(2)

i

}
1≤i≤r2

. Considering that
these eigenvectors represent the waves shapes through
an elementary section, the wave shape ~φ(ω) shown Fig.
2 can be approximated as:

~φ(ω) '
r0∑

i=1

~φ(0)
i ν(0)

i (ω) +

r1∑
i=1

~φ(1)
i ν(1)

i (ω) +

r2∑
i=1

~φ(2)
i ν(2)

i (ω)

(11)
where ν(0)

i , ν(1)
i , ν(2)

i are the reduced wave amplitudes.
Eigenvectors ~φi are associated to propagation constants
(λi, 1/λi) with the convention |λi| ≤ 1 for positive-
going solutions and |λi| ≥ 1 for negative-going solu-
tions. Their norms are closer to unity for propagating
waves and smaller for evanescent waves, in the dissi-
pative case, |λ| < 1. These eigenvalues provide a sim-
ple criteria to sort and filter propagating waves (details
are given in Section 3.2.2)). The following section de-
scribes the selection process and a method for comput-
ing an appropriate set of eigenvectors.

3.2. Definition of the wave basis

3.2.1. Selecting the appropriate waves
As noticed Section (3.1.2), accurate approximations

require the exact solution to be a linear combination of
the chosen eigenvectors. When a wave shape remains
the same on a given frequency band, eigensolutions
associated to this wave can be interpolated using an
single, chosen eigenvector. This interpolation strategy
is based on the hypothesis that major variations in the
deformed shapes of propagating waves occur close to
their cut-on frequencies.

This is an important statement for eigenvectors inter-
polation. Therefore, computation of the exact solutions

can be limited to a reduced set of chosen frequencies,
where eigenvectors are prone to important variations.
Singular deformed shape can be observed in several sit-
uations. First, when the wave enters the propagative do-
main the new mode of propagation is generally associ-
ated with a modification of its wave shape. In higher
frequency, boundary effects can occur. Other phenom-
ena as coupling effects, which are due to energetic ex-
changes between wave modes, can also contribute to
waves variations. Waves shapes at cut-on frequencies
are expected to be good candidates to enrich the reduced
basis, supposing a effective determination of their fre-
quencies can be done.

3.2.2. Identification of progressive waves appearance
Propagating waves have a positive wavenumber and

low imaginary part, excepted for highly decaying
waves. On the other hand, they are evanescent and
have a negative wavenumber before they reach their
cut-off frequencies. Considering wavenumbers are,
among other, a continuous function of the frequency,
the existence of a value ωA for which the wavenumber
κ(ωA) = 0 is assured. In terms of propagation constants,
this means λ = 1. The frequencies ωA associated to
eigenvalues λ = 1 can be determined by rewriting the
quadratic eigenvalue problem Eq. (7):

S(1, ωA)ΦA = 0 (12)

Wave cut-on frequencies and associated wave shapes
ΦA are then solutions of the eigenproblem of size n/2:

(K∗LL+K∗RR+K∗RL+K∗LR)ΦA = ω2
A(MLL+MRR+MRL+MLR)ΦA

(13)
where K∗ = (1 + jη)K is the complex stiffness consid-
ering Rayleigh damping (α = 0, β = η/ω).

Let us denote n0 the number of first-order waves,
n2 the number of higher-order waves in ∆ω and nA

the number of cut-on frequencies determined using
Eq. (13). As the first-order waves have the same cut-
on frequency (at ω = 0), the total number of cut-on
frequencies is nA = 1 + n2. This means that the num-
ber of cut-on frequencies is lower than the total number:
n0 + n2 of propagating waves in the frequency range.

3.2.3. Exact wave computation using classical WFEM
Denoting ωA(k) with 1 ≤ k ≤ nA the cut-on frequency

of the kth wave, the exact eigensolutions can be com-
puted for each new propagating wave from the system
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of nA independent quadratic eigenproblems:
S(λ, ωA(1)) {ΦuL } = {0}

...
S(λ, ωA(k)) {ΦuL } = {0}

...
S(λ, ωA(nA)) {ΦuL } = {0}


(14)

Each line of system (14) can be solved using for exam-
ple Eq. (6), and provides n eigensolutions (λi,Φi):

Φ =

{
ΦuL

ΦuR

}
(15)

Eigenvectors ΦuL
i (ωA(k)) stands for the deformed shape

on the left side of a cell, associated with ith wave at kth
wave cut-on frequency. Rectangular matrices A and B
used for linear projection Eq. (9) can be build upon these
eigenvectors.

3.2.4. Properties of wave functions
To summarize, the determination of a reduced set of

eigenvectors is proposed to approximate full solutions
over the whole frequency range, reducing the compu-
tation to one modal analysis and less than nA quadratic
eigenproblems of size n/2, where nA is the number of
cut-on frequencies in ∆ω. These vectors are indepen-
dent of the cell length and a normalization can be per-
formed to improve numerical conditioning.

3.3. Wave basis optimization
In this section, the reduced wave basis for linear

projection is determined using selected eigenvectors.
For a sake of clarity, unit-normalized deformed shape
Φ

uL
i (ωA(k)) will be written Φi(k):

Φi(k) = Φ
uL
i (ωA(k)) , 1 ≤ i ≤ n (16)

3.3.1. Restriction to propagative waves
At this point, no selection criteria was applied to the

n eigenvectors Φi(k). If their wavenumbers are purely
imaginary, they are evanescent. If a wavenumber is
complex the wave is propagating and |=(κ)| is the wave
attenuation. In order to retain the least decaying waves
and exclude highly dissipative waves, displacement can
be expanded using only the positive-going propagative
waves. This selection can be done for example retaining
a number of eigenvectors for which<(κ) � |=(κ)|, say
ñk � n for the kth computed frequency.
The solutions subspace will be spanned using ñ follow-
ing vectors:{
Φ̃i(k) , 1 ≤ i ≤ ñk

}
1≤k≤nA

and ñ =

nA∑
k=1

ñk (17)

3.3.2. A simple optimization process for wave functions
However, the concatenation of these wave shapes

may involve redundant vectors, leading to a larger ba-
sis and numerical instabilities. This issue appears when
two wave shapes (Φ̃i(k))i and (Φ̃i(k + 1))i are computed
at close frequencies. In this case, vectors associated to
the same wave can be correlated. Denoting .̄ and .T the
complex conjugate and transposition, respectively, we
can define correlation between to complex vectors us-
ing modal assurance criteria (MAC):

Mac(φ, ψ) =
(φT ψ̄) (ψT φ̄)
(φT φ̄) (ψT ψ̄)

(18)

Let us define the orthogonality relation, in the sense of
MAC correlation, between two vectors φ and ψ as:

φ ⊥ε ψ ⇔ Mac(φ, ψ) ≤ ε (19)

where ε ∈ [0 , 1] is a numerical criteria describing
maximal tolerance for vector correlation in the re-
duced basis. We extend this definition to a vector’s
orthogonality to a set φ ⊥ε {ψ} , as the vector φ being
orthogonal to all the elements of {ψ}.

In order to retain a limited number of sufficient vec-
tors an iterative filtering procedure can be done, defin-
ing:

Ψ(1) =
{
Φ̃i(1) , 1 ≤ i ≤ ñ1

}
(20)

then building the reduced basis from the recursive form:

Ψ(k + 1) =
{
Ψ(k) , Ψ̃(k + 1)

}
(21)

where Ψ̃(k+1) contains the vectors of (Φ̃i(k+1))1≤i≤ñk+1

which are orthogonal to the elements of {Ψ(1), ...,Ψ(k)}.
The retained elements Ψ̃(k + 1) are defined as:

Ψ̃(k + 1) =
{
χ ∈ (Φ̃i(k + 1))1≤i≤ñk+1 \ χ ⊥ε Ψ(k)

}
(22)

The normalized and numbered vectors (Ψ̃ j(k)) j,k are de-
noted Γi. It is also possible to evaluate wave correlation
between two vectors Ψi(k) and Ψ j(k + 1) at frequen-
cies ωA(k) and ωA(k+1) using Zhong and Williams [12]
method, in which case the following product is maxi-
mized:

(Ψi(k))T [Jn] (Ψ j(k + 1)) where [Jn] =

[
0 In

−In 0

]
(23)

3.3.3. Building the reduced basis
Summarizing, the basis for wave expansion is de-

fined using Eq. (13) to compute a reduced set of fre-
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quencies used to form system Eq. (14). Thus the re-
duced basis can be build from iterative procedure de-
scribed Eqs. (20)-(22). Considering hypothesis on nu-
merical stability Eq. (10), all the vectors of matrix A are
real. This means that for an undamped waveguide vec-
tors can be retained as they are defined earlier, whereas
in dissipative cases it is preferable to display complex
vectors Γi as:[

Γ∗i1 Γ∗i2

]
=

[
<(Γi) =(Γi)

]
(24)

where < and = denote real and imaginary parts. How-
ever, the use of complex vectors for the reduced ba-
sis theoretically leads to the same conclusions, provid-
ing hermitian product for matrices projection. In most
cases, wave dispersion is required on a frequency range
starting at 0 Hz. Then, a set of undeformed motions,
computed using system Eq. (25), is enough to describe
first-order shape functions.[

KLL KLR

KRL KRR

] {
qL

qR

}
=

{
0
0

}
(25)

These real vectors, say nc, represent cell rigid motions
of the waveguide under first-order waves.

3.4. Formulation of the reduced eigenproblem

3.4.1. Projection of dynamic stiffnesses
Considering sections (3.1) and (3.3), matrix B(n,r) de-

fined Eq. (9) can be expressed using notations Eq. (24)
as:

B =
[
Γ1 , ..., Γnc ,Γ

∗
nc+1 , ..., Γ

∗
nc+r

]
(26)

where r is the sum of nc and the number of retained
wave functions selected among the ñ vectors defined
Eq. (17). Spectral problem Eq. (7) can now be rewrit-
ten:[
λD̃LR(ω) + (D̃LL(ω) + D̃RR(ω)) +

1
λ

D̃RL(ω)
]
µL = 0

(27)
where D̃i j stands for the projected dynamic stiffnesses:

D̃i j = BT Di jB (28)

The r × r eigenproblem can now be written:[
−D̃RL −(D̃LL + D̃RR)

0 −D̃RL

] {
µL

µR

}
= λ

[
0 D̃LR

−D̃RL 0

] {
µL

µR

}
(29)

3.4.2. Desired eigensolutions and error evaluation
The reduced eigenproblem can also be formulated:

S̃Φ̃ = λ̃Φ̃ (30)

where

S̃ =

[
0 I

D̃−1
LRD̃RL D̃−1

LR(D̃LL + D̃RR)

]
(31)

and the (r × 1) reduced eigenvectors are denoted:

Φ̃ =

{
µL

µR

}
(32)

Reduced eigenvectors are written in spatial coordinates
Φ̄ = BΦ̃, as:

B =

[
B 0
0 B

]
(33)

The expanded (n × n) transfer matrix is defined as well:
S̄ = BS̃BT . The error on the reduced system eigen-
solutions (λ̃, Φ̃), induced by the aforementioned basis
reduction can be expressed as:

ε =
‖(S − S̄)Φ̄‖
‖Φ̄‖

(34)

As S̄Φ̄ = λ̃Φ̄, we obtain:

ε =
‖(S − λ̃I)Φ̄‖
‖Φ̄‖

(35)

Then, the error induced by the wave base truncation can
be defined by injecting the reduced eigensolutions in the
full eigenproblem. Thus no knowledge of the exact so-
lutions (λ,Φ) is required.

3.4.3. Discussion
The size, r, of the reduced eigenproblem described

above depends on the number of propagating waves in
the frequency band ∆ω. The number of resolutions, nA,
of the full eigenproblem is independent of the number
of frequency samples N f s = ∆ω/δω + 1. As a result,
the computational cost will be greatly reduced, solving
nA � N f s full eigenproblems of size (n × n) and N f s

reduced problems of size (r × r) � (n × n).

3.5. Algorithm for the reduced WFE method

The proposed reduction strategy is illustrated figure
3, each step is detailed as follows:

. Build the mass and stiffness matrices of the waveg-
uide cross-section and reorder as described Eq. (2).
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. Identify the cut-on frequencies over the frequency
band using Eq. (13).

. Solve the nA eigenproblems defined Eq. (14).

. Select eigenvectors associated with propagating
waves using section 3.3.

. Build the wave basis Eq. (26) using the optimiza-
tion process proposed Eqs. (20)-(22).

. Solve the N f s reduced eigenproblems of size (r×r)
given Eq. (29).

. Derive eigensolutions using projection defined
Eq. (33).

Mesh a waveguide cross-section (using FEM)

Identify the       cut-on frequencies :

Solve the reduced eigenproblem :

solve the full eigenproblem :

Select positive-going propagating waves :

Build the reduced basis :

Derive the dispersion curves

For :

steps 

steps 

Figure 3: Procedure for the reduced wave finite element method.

4. Numerical applications

4.1. Example 1: Sandwich beam

In this section, three solutions for free wave propaga-
tion in the sandwich beam illustrated Fig. 4, are com-
pared. An analytical formulation depicted in Ref. [17],
and results obtained from WFE method in Ref. [18] are
compared to a WFE formulation using a refined FEM

for the cross-sectional discretization. The limitations of
a coarse mesh are discussed and the requirement for a
refined mesh for the WFE computation is highlighted.
Then, the proposed reduction strategy is applied to the
refined FEM model and results are discussed.

Figure 4: Illustration: sandwich beam

4.1.1. Description
The rectangular cross-section three-layered sandwich

beam is composed of a rubber core surrounded by two
steel layers. Detailed description of the layers is given
Table 1. The width of the beam is 40 mm and the total
thickness is 25 mm. A constant loss factor η = 0.01 is
assumed for the numerical modeling while no damping
is considered in the analytical formulation. The coarse

Layer - Thickness Density Young Modulus Poisson
material (mm) (kg.m−1) (Pa) Coefficient
3 - Steel skin 2 7850 210 × 109 0.3
2 - Rubber core 20 950 1.5 × 106 0.48
1 - Steel skin 3 7850 210 × 109 0.3

Table 1: Material properties for the sandwich beam layers

mesh used in Ref. [18] has 8 linear block elements hav-
ing 3 degrees of freedom (DOF) per node and a total
of 45 DOFs. The proposed refined mesh has 224 lin-
ear elements and 1530 DOFs, both cells have a length
d = 2 × 10−3 m in the direction of propagation, their
meshes are shown Fig. 5.

Figure 5: Cross-section discretization using a coarse mesh (left) and a
refined mesh (right).

4.1.2. Refined FEM model for the WFE method
Real wavenumbers obtained using the analytical,

coarsely meshed WFE and finely meshed WFE for-
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mulations are presented Fig. 6 over the frequency
range ∆ω = [0, 1000 Hz]. Below 450 Hz: coarse

Figure 6: Dispersion curves for the global waveguide. Refined WFE:
(red - � - � -), Coarse WFE: (black ——), Analytical solution: (black
- - - -).

and refined WFE formulations provide similar results
for the longitudinal (1), torsional (2) and transverse
flexural (3) waves. The flexural (4) wave slightly differs
from the coarse model, while the complex thickness
contractional (5) is clearly different between the two
models. Note that the cut-on frequency for this last
wave is 500 Hz, instead of 470 Hz for the coarse model,
and a second-order longitudinal wave (6) cuts-on at
300 Hz in the refined model only.

After 500 Hz: the analytical solution (A1) and both
WFE formulations appears to be consistent for the
longitudinal wave (1). Fig. 7 shows a zoom of the
propagating wavenumbers previously depicted in Fig.
6. Three orders of longitudinal waves are highlighted,
compared to the analytical solution and illustrated.
Only the refined model differentiates the 3 longitudinal
wave modes described Fig. 7. It can also be seen
that several forms of longitudinal waves can coexist
at the same frequencies. L2 and L3 waves exhibit the
impedance mismatch between the skins and the soft
core of the beam. The coarse model accuracy for these
waves can be explained by possibility to approximate
them using 4 linear elements in the beam thickness. The
coarse model fails to compute the transverse flexural
wave (A2) predicted by the analytical formulation. This
wave mode appears to require a finer meshing for the
inner rubber core. However, the analytical solution,
based on a thickness homogenization does not entirely
describe the waveguide behavior. Indeed, between
800 Hz and 1000 Hz three localized transverse flexural
waves, presented Fig. 8, are propagating. They are
associated to the transverse wave localization in the

Frequency (Hz)
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rt

L1 - wave L2 - wave L3 - wave

L1
L2

L3

Figure 7: Deformed shapes associated with 3 orders of longitudinal
waves and detailed wavenumbers.

skins or in the core. T1 is the symmetric transverse
wave with opposed skin-core phase, T2 is the anti-
symmetric transverse wave localized in the skins, T3
is the local third-order transverse wave in the core.
Most of the wave modes from the coarse model are

T1 Wave T2 Wave

T3 Wave

Figure 8: Deformed shapes associated with three transverse waves.
T1 and T2: 3D view.

incorrect after 500 Hz. At 750 Hz, artificial veering
occurs around k = 15 when the wave shapes turns more
warped, leading to possible confusions in the wave
modes matching.

The importance of a finely meshed model for the
application of WFE method to a sandwich beam has
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been confirmed. The coarse model presented above
fails to predict the wave propagation in this waveguide,
especially over 500 Hz, and most of the wave shapes
computed are erroneous. However, accurate dispersion
curves and wave shapes can be obtained using the WFE
method, under the condition that the model is highly
discretized and the sampling frequency is small enough
to match properly the wave modes.

4.1.3. Reduced WFE formulation
The proposed reduction strategy is applied to the re-

fined model described above and compared to the classi-
cal WFE formulation. Real wavenumbers are presented
Fig. 9. Vertical lines denote the cut-on frequencies,
where the the full eigenproblems are solved. Note that
all of the propagating waves starts at the predicted cut-
on frequencies. Other cuts-on are linked to important
veerings associated to a propagating wave appearance,
such as the thickness contractional wave at 500 Hz, or
complex waves turning into propagating waves. There
are 4 primary waves at 0 Hz and 8 cut-on frequencies,
which is consistent with the 12 final branches identi-
fied on the dispersion curves Fig. 9. This result shows
that the number of propagating waves was correctly
predicted using Eq. (13). Very good correlation is ob-

Figure 9: Comparison between reduced (red �) and full (black —)
wavenumbers for the sandwich waveguide. Vertical blue lines stand
for predicted cut-on frequencies.

served between the classical formulation and the re-
duced model, built only using 10 eigensolutions: at the
2 frequency range boundaries and the 8 cut-on frequen-
cies. The reduced wave basis is computed using a corre-
lation criteria ε = 0.6, and contains 124 vectors instead
of 1530 for the full system. Veering phenomena, where
important variations of the wave shapes can occur, are
accurately estimated using the reduced wave basis, see
Fig. 9 at 650 Hz for the wavenumber k ' 13. The error

on the wave shapes, defined Eq. (35) is presented Fig.
10 for the main propagating waves. Wave matching is
provided in order to compare the errors associated with
each propagating wave. A color scatter is also proposed
to identify mostly propagating wave modes. It shows a
good accuracy between full and reduced WFE, the max-
imal error being around 5×10−4. Cut-on frequencies are
identified by vertical dashed lines. At 230 Hz, 300 Hz
and 650 Hz, it is noticeable that each appearing wave
shapes retained provide accurate solutions around the
cut-on frequency. Significant reduction of CPU time is
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Figure 10: Error ε for the propagating waves eigenvectors (|Im(k)| <
1).

observed for the proposed WFE formulation, a detailed
description is given table 2. This method provides a
97% reduction of CPU time in comparison with classi-
cal WFE formulation, and provides accurate dispersion
curves and wave shapes. Note that most of the compu-
tation time for the reduced model is due to the 10 full
computations, and similar accuracy was obtained by in-
creasing the correlation criteria ε = 0.95 and using only
6 full computations, leading to a 148 vectors basis.

4.1.4. Conclusions
In this example, the proposed reduced WFE formula-

tion was applied to a finely discretized cross-section of
a sandwich beam. First, the requirement for a refined
FEM model was demonstrated by comparing the WFE
solutions with an analytical solution and a coarsely
meshed WFE model. Higher orders for propagating
waves were identified. Then, the proposed reduced
formulation was compared to a full computation and
showed a very good agreement for both wavenumbers
and wave shapes. Note that the proposed criteria for
the choice of full computation frequencies can be ex-
cessive when numerous waves are propagating and lead
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Classical WFE Number of Time per CPU time
iterations iteration

Resolution Total:
[0, 1000 Hz] per 2 Hz ×500 152s 21h 07m
Reduced WFE Number of Time per CPU time

iterations iteration
Appearance ωA(k) ×1 16s 16s
Full solution at ωA(k) ×10 152s 25m 20s
Building reduced basis ×1 132s 2m 12s
Resolution
[0, 1000 Hz] per 2 Hz ×500 0.09s 45s

Total: 28m 33s

Table 2: Sandwich beam: CPU time for the full and reduced WFE
formulations.

to unnecessary rich wave basis lowering the numerical
reduction efficiency.

4.2. Example 2: Elasto-acoustic waveguide

4.2.1. Description
As mentioned earlier, guided waves have numerous

applications in structural dynamics. Elasto-acoustic
waveguides are also a topic of interest, especially in
SHM for crack and leakages detection. The theory of
the propagation of vibro-acoustic waves in fluid-filled,
cylindrical elastic shells has been studied in detail by
Fuller and Fahy 1982 [23]. This example provides an
extension of the reduced WFE formulation for a coupled
fluid-structure system, where the inner fluid involves
an important number of degrees of freedom to ensure
decent discretization with FEM. The WFE formulation
has been proposed by Mencik and Ichchou [24] to pre-
dict the forced response of a fluid-filled pipe shown
Fig. 11a. The reduced WFE formulation can be applied
as detailed Section 2 by using the dynamic stiffnesses
described in [24], which exhibit quadratic dependence
with respect to ω. A formulation is proposed in Ap-
pendix A to determine the cut-on frequencies by solv-
ing a linear eigenproblem in ω2 instead of a quadratic
problem in ω. In this example we consider a similar
elastic pipe filled with an homogeneous, barotropic and
compressible fluid whose viscosity is neglected. The
cross-section shown Fig. 11b is defined as Re − Ri = h
with Re = 80 mm and h = 5 mm, the pipe has a Young
modulus E s = 190 Gpa, density ρs = 7800 kg.m−3 and
Poisson ratio ν = 0.29. The fluid has a sound veloc-
ity ca = 1484 m.s−1 and a density ρa = 1000 kg.m−3.
The finite element model of a representative section of
length d = 5mm involves three-dimensional linear ele-

Figure 11: (a) Illustration of an elastic pipe filled with acoustic fluid.
(b): Finite element model of a representative section of the elasto-
acoustic pipe.

ments and n = ns +na = 1706 degrees of freedom where
superscripts s and a refer to solid and fluid domains.

4.2.2. Results
The dispersion curves are computed at frequencies

between 0 Hz and 20 kHz and wavenumbers real parts
are presented Fig. 12. A very good correlation is

Figure 12: Comparison between reduced (red �) and full (black —)
WFE formulations for the elasto-acoustic waveguide. Analytical low
frequency solutions for axial quasi-longitudinal extensional and tor-
sional waves (- - -).

observed between the two WFE formulations over the
whole frequency band. The 8 cut-on frequencies are
identified and 10 full computations are performed. The
analytical solution is given for torsional and longitudi-
nal waves at low frequencies and is consistent with nu-
merical solutions. The reduced wave basis is computed
using a correlation criteria ε = 0.8 and contains 148
vectors. Significant reduction of CPU time is observed
with this reduced formulation, a detailed description is
given Table 3. The reduction provides a 94% reduction
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of CPU time in comparison with classical WFE formu-
lation, and gives accurate dispersion curves and wave
shapes. The accuracy of this method relies on the num-

Classical WFE Number of Time per CPU time
iterations iteration

Resolution Total:
[0, 20000Hz] per 100Hz ×200 215s 11h 56m 40s
Reduced WFE Number of Time per CPU time

iterations iteration
Appearance ωA(k) ×1 28s 28s
Full solution at ωA(k) ×10 215s 2150s
Building reduced basis ×1 196s 196s
Resolution
[0, 20000 Hz] per 100 Hz ×200 0.08 16s

Total: 39m 50s

Table 3: Pipe filled with fluid: CPU time for the full and reduced WFE
formulations.

ber and frequencies of the full computations retained.
A reduced basis containing only low frequency eigen-
vectors is expected to produce significant errors as the
frequeny induces changes of the waves shapes. An ex-
ample is given Fig. 13, where the wavenumbers are
computed from 0 Hz to 20 kHz, while only 4 cut-on fre-
quencies are retained. The correlation criteria is ε = 0.8
and propagating waves are retained if |=(k)| ≤ 0.5, lead-
ing to a (60 × 60) reduced system. A good accuracy is
shown for the waves whose cut-on frequencies are re-
tained. Wavenumbers are correct until 20 kHz while the
last eigenvector is computed at 10,5 kHz. This result in-
dicates that the reduced system solutions are consistent
with the number of wave shapes retained for the reduced
basis. However, no solutions are found for the higher-
order waves. Noteworthy that the number of eigenvec-
tors needed for the reduced basis can be overestimated
if an important number of complex waves are retained.
This issue can occur in highly dissipative structures.

4.2.3. Conclusions

In this example, the proposed reduced WFE formu-
lation is applied to a cylindrical elastic shell filled with
fluid. Dispersion curves are accurately determined with
a reduction of 94% of the computation time. As ex-
pected, a truncated wave basis may not accurately pre-
dict the system solutions, the errors are consistent with
the frequencies retained for the reduced wave base com-
putations.

Figure 13: Wavenumbers for an elasto-acoustic waveguide. Reduced
WFE formulation: (red �). Full WFE (gray —).

5. Concluding remarks

The main limitation of the WFE method for the
broadband analysis of composite waveguides is due to
their cross-sectional discretization. Coarsely meshed
model produces inaccurate solutions and restrains the
analysis to low-order propagating phenomena, espe-
cially within the field of composite structures where in-
ternal components can enable numerous localized wave
modes. In this paper a reduction strategy was presented
to study wave propagation in such waveguides. It pro-
vides a significant reduction of the computation time
and enables broadband WFE analysis for a wide range
of composite waveguides with complex cross-sectional
geometries. The method was successfully applied to
a refined model of a laminated composite beam. An
error evaluation on the reduced eigenvectors was pro-
posed and high-order localized wave modes were accu-
rately predicted although a 97% reduction of the compu-
tation time. An elasto-acoustic pipe was considered. A
adapted formulation was provided to identify the cut-on
frequencies from a linear eigenproblem. The influence
of a truncated basis was evaluated and showed good
agreement with the proposed wave selection. Further-
more, the proposed method might be used to study high-
order waves in composite waveguides such as wave lo-
calization and couplings. Further applications will be
reported.
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Appendix A. An extension for the fluid - structure
interaction

Considering the (U,p) formulation for the elasto-
acoustic problem [24]:

−ω2
[

Ms 0
ρ0CT Ma

] {
u
p

}
+

[
Ks −C
0 Ka

] {
u
p

}
=

{
Fs

Fa

}
(A.1)

where Ms, Ks, Ma, Ka stand for the structural and
acoustic masses and stiffnesses, C is the fluid - structure
coupling matrix, and Fs, Fa are the structural and acous-
tic forces vectors. Following the steps described section
3 and using same notation and Ds,a = K s,a−ω2Ms,a, the
spectral problem can be written: λDs

LR + 1
λ
Ds

RL + Ds
LL + Ds

RR −
(
λCLR + 1

λ
CRL + CLL + CRR

)
−ρ0ω

2
(
λCT

LR + 1
λ
CT

RL + CT
LL + CT

RR

)
λDa

LR + 1
λ
Da

RL + Da
LL + Da

RR

 { u
p

}
=

{
0
0

}
(A.2)

Then denoting Σ. = .LL + .LR + .RL + .RR and finding
unknown cut-on frequencies ωA for wich λ = 1 leads to
the eigenproblem:[

ΣKs −ΣC
0 ΣKa

] {
u
p

}
= ω2

A

[
ΣMs 0
ρ0ΣCT ΣMa

] {
u
p

}
(A.3)

Henceforth, the generalization of the reduced formula-
tion is straightforward and leads to the eigenproblem:[
−KRL −(KLL + KRR)

0 −KRL

] {
µL

µR

}
= λ

[
0 KLR

−KRL 0

] {
µL

µR

}
(A.4)

with the dynamic stiffness operator [25]:

K = −ω2
[

Ms 0
0 Ma

]
+ jω

[
0 ρ0C

ρ0CT 0

]
+

[
Ks 0
0 Ka

]
(A.5)

Solution µ defined Eq. 29 is written:

µ =

{
u
Ψ

}
(A.6)

where u stands for the spatial displacement andΨ is the
acoustic velocity potential.

13


