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On the Behavior of MEMD in Presence
of Multivariate Fractional Gaussian Noise

Ali Komaty, Abdel-Ouahab Boudraa, Senior, IEEE,
Patrick Flandrin, Fellow, IEEE, Pierre-Olivier Amblard, and Jacques-André Astolfi

Abstract—Multivariate empirical mode decomposition
(MEMD) has been introduced to make standard EMD suitable
for direct multichannel signals processing. Unlike EMD, MEMD
is able to align sifted intrinsic mode functions (IMFs) from
multiple data channels. The aim of this work is to analyze
the behavior of MEMD under multivariate fGn (MfGn) with
different Hurst exponents, H , and strengths of link between
pairs of channels, ρ, of each sifted IMF. We report results
supporting the claim that, regardless of ρ values and for
both MfGns long-range and short-range dependent, MEMD
acts as filter bank on each channel of the input multivariate
signal. Whatever the ρ and H values, this equivalent filter
bank structure is dyadic with constant-Q band-pass filters. The
observed self-similar filter bank structure leads to a deeper
statistical studies of the variance distribution and zero-crossings
alignment in order to express this self-similarity in terms of
spectral densities of multidimensional IMFs. These statistical
properties generalize what was previously conducted for EMD
to MEMD and estimation strategy of H exponent is proposed.
The filter bank behavior of MEMD is illustrated on real
turbulent flow data and the estimated H exponent brings out
the long-range-dependent nature of the turbulent flow data. An
application to EEG data is also proposed.

Index Terms—EMD, Multivariate EMD, filter banks, Multi-
variate fractional Gaussian noise, Hurst exponent.

I. INTRODUCTION

Empirical mode decomposition (EMD) is a fully data-driven
method to decompose real world multicomponent signals into
a reduced number of intrinsic mode functions (IMFs), which
are typically AM-FM signals from which meaningful instan-
taneous amplitude and frequency are estimated [1],[2],[3],[4].
Properties of this decomposition, such as locality, complete-
ness, data-driven nature and multi-resolution aspect, have
made EMD a valuable tool for real world non-stationary
signals analysis and particularly in deterministic situations
[5],[6],[7],[8],[9],[10],[11]. For stochastic situations involving
broadband noise, namely, fractional Gaussian noise (fGn),
EMD acts as dyadic filter bank [12]. Despite its striking
features, EMD is only designed for univariate data. For signals
containing data channels (multivariate), application of EMD
channel-wise is suboptimal because it fails to effectively align
frequency responses from same index of IMFs of multiple
channels, and this makes IMF-by-IMF comparisons infeasible
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[13]. To resolve this problem, multivariate extension of EMD
(MEMD) has been designed to process a general class of
multivariate signals with an arbitrary number of channels,
and this is also motivated by recent advances in sensors
and data acquisition tools [14]. The aim of MEMD is to
give more insight into dynamics and interdependence between
multiple channels of the analyzed signal. This decomposition
acts as a quasi-dyadic filter bank under white Gaussian noise
(wGn) [15], and symmetric α-stable noise [16]. Scale-aligned
modes extracted by MEMD give better defined sub-band filters
compared to EMD [17]. It has been verified that under fGn,
the dyadic filter bank property of MEMD is preserved [18]-
[19]. However, these results have been obtained assuming that
components of multichannel data are uncorrelated, while in
many fields of applications multivariate measurements involve
specific properties such as short or long-range dependence of
the channels and self-similarity. To best of our knowledge, up
to now much less attention has been paid to the behavior of
MEMD for multivariate fGn (MfGn) as well as its exploitation
for Hurst exponent estimation. For more realistic situations, it
is important to investigate whether the filter bank structure is
preserved by MEMD under MfGn with correlated channels.
This work generalizes the studies conducted under wGn [15],
fGn [19], MfGn with uncorrelated channels [18],[20], and also
the findings in the case of EMD [12],[21].

Main contributions

1) We provide, to the best of our knowledge, the first behavior
analysis of MEMD under MfGn for different Hurst exponents,
H , and strengths of link, ρ, between pairs of channels of
each sifted IMF. The analyzed statistical properties allows us
to generalize what was previously shown for EMD to MEMD.

2) We show that whatever H and ρ values, MEMD acts
as filter bank on each channel of the input signal, and
this structure is dyadic with constant-Q band-pass filters.
Regardless of ρ values, and for both MfGns long-range
dependent and short-range dependent, first IMF presents the
characteristics of a high-pass filter, while the other IMFs
behave similarly to a band-pass filter.

3) Using the filter bank structure of MEMD, we get access
to the Hurst exponent H via the variance progression
across IMFs. We report results showing that for low and
high correlated channels, MEMD-based estimator performs
similarly than the discrete wavelet transform-based estimator,
but with the lowest standard deviations.
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4) We highlight the fact that for correlated channels, the
sifted modes are also correlated and the intensity of their link
is related to the Hurst exponents of these channels.

5) Filter bank behavior is illustrated on real turbulent flow data
and estimated H exponent brings out long-range-dependent
nature of turbulent flow data. Different power law behaviors
are observed on spectra of the modes, and particularly Kol-
mogorov’s spectral slope.

The paper is organized as follows. In section II we point out
the interest of multichannel data and we stress the importance
of taking into account the interdependence between channels
for processing of these data. Basics of EMD and MEMD are
given in Section III. We detail the MfGn model in Section
IV. Analyzed properties of MEMD and simulation setup are
presented in Section V. Results are presented and analyzed in
Section VI. Finally, conclusion is given in Section VII.

II. MULTICHANNEL DATA

Advances in sensor and data recording technologies has
resulted in the production of multichannel sets of data [22].
These new generations of sensors produce signals contain-
ing several data channels. Consequently, multivariate time
series analysis has gained popularity, particularly, in appli-
cations involving several recording of signals from a single
system. A growing number of signal applications requiring
multichannel data processing, include biomedical processing
(EEG/MEG/fMRI), color image processing and array pro-
cessing. Components of multichannel signal may have dif-
ferent scales, and particularly they may be correlated. Thus,
processing of such signals channel-wise is suboptimal since
the interdependence (correlation) between channels of these
signals is not exploitable and thus, hidden features of the
system (brain. . . ) cannot be revealed. Tools such as MEMD
are expected to give more insight into the dynamics and the in-
terdependence between channels of such signals. Furthermore,
there is an increase interest and significant research effort into
understanding real/complex biological or physical networks.
Indeed, many systems are considered as systems where the
global behavior emerges from the interaction and cannot be
predicted from the sole observation of the individuals [23].

III. BASICS OF EMD AND MEMD

Unlike standard decompositions that project data onto pre-
defined basis functions, bases of EMD and MEMD are derived
from the data. While EMD decomposes univariate data into
slow and fast oscillations, MEMD expands multivariate data
into slow and fast generalized oscillations (rotations).

A. EMD

EMD expands any real-valued signal x(t) into a limited
number of IMFs. We refer to discrete version of x(t) by
index sequences: x[n], n ∈ {1, 2, . . . , N}. Being fully data
driven, IMFs represent the inherent temporal modes (scales)
that characterizes x[n]. These modes are required to be narrow-
band. By construction, each IMF is a zero-mean whose number

of zero-crossings differs at most by one from the number of
its extrema. EMD ends up with an expansion of the form:

x[n] =

Mc∑
m=1

cm[n] + d[n] (1)

where Mc is the number of IMFs and cm[n] denotes the mth

IMF. Modes, (cm[n])Mc
m=1, in equation (1) are the bases of

x[n], and are sparse (with Mc � N ) and template free.
The component d[n] is called the residual of the decompo-
sition and cannot contain a full oscillation [1]. Designed to
operate in time-domain, EMD has been extended to handle
complex-valued time-series [24],[25],[26]. Complex version
introduced by Tanaka and Mandic [24] is based on the
inherent relationship between positive and negative frequency
components of a complex-valued signal, that are treated as
two separate independent signals. Since frequency components
are generally mutually dependent, this can lead to a loss of
information in the signal. To overcome this limitation, Altaf
et al., [25] developed an alternative version, that operates
completely in C domain, and sifts a single set of complex
IMFs. Another extension, introduced by Rilling et al., called
bivariate EMD [26], separates “fast rotating” components of a
complex-valued signal from “slowly rotating” ones. Envelope
curves are obtained by projecting input signal in multiple
directions. Local mean is calculated by averaging envelope
curves and is then subtracted from input signal repeatedly to
sift out rotating components [26]. To tackle multidimensional
signal problem, EMD has first extended to trivariate signals
where a triviate signal is represented as a pure quaternion,
with each of its component a real-valued time series [27]. All
these extensions have led to the development of MEMD.

B. MEMD
MEMD is an extension of EMD developed to process

multivariate data having an arbitrary number of input channels
[14]. These data exhibit rotational components that require
appropriate treatment for their time-frequency analysis. Thus,
principle of separating oscillations that underpins EMD is
generalized for separating rotations. An important property of
MEMD is the modes alignment which consists in finding a set
of common scale/modes across different components of a mul-
tivariate signal, thus ensuring that the modes are matched both
in number and in scale properties [14]. Consider a sequence
of P -dimensional vectors x(t) = (x1(t), x2(t), . . . , xP (t))t∈R
representing a multivariate signal. We refer to discrete version
of x(t) by sequence: x[n] = (x1[n], x2[n], . . . , xP [n]) where
n ∈ {1, 2, . . . , N}. MEMD uses a vector-value form of
relation (1) to decompose the P -variate signal x[n] as follows

x[n] =

M∑
m=1

cm[n] + d[n], cm, d ∈ RP (2)

where M is the number of extracted P -variate modes,
(cm)Mm=1 (cm[n] = (cm,1[n], . . . , cm,P [n])), contains scale-
aligned intrinsic joint rotational modes and d[n] is the P -
variate residue. Expansion generated by MEMD is a sparse
decomposition (with M � N ). MEMD estimates the local-
mean, in a P -dimensional space through averaging of multiple
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envelopes obtained by taking signal projection along multiple
uniformly distributed directions in this space. Extrema of such
univariate projections are then interpolated component-wise
and averaged to yield multi-dimensional signal mean [14].
To obtain the projections of x[n] in P -dimensional space,
a sampling scheme based on low discrepancy Hammersley
sequence is used [28]. The direction vectors are governed by
an approximate sampling of a P -dimensional hypersphere and
accuracy of mean calculation depends on the distribution of
direction vectors. Let us consider sθv = (sv1, s

v
2, . . . , s

v
P )Vv=1

a set of direction vectors along directions given by angles
θv = (θv1, θv2, . . . , θvP−1). Algorithm 1 summarizes the dif-
ferent steps of MEMD where an uniform sampling scheme is
used to assign equal weighting to all the projection directions.
A noise-assisted version of MEMD (NA-MEMD) has been
proposed for computation of EMD, in order to produce local-
ized frequency estimates at accuracy level of instantaneous
frequency [29]. Reported results show the interest of NA-
MEMD applied channel-wise, over EMD and EEMD.

Algorithm 1: Sifting process of MEMD,m ∈ {1, 2, . . . ,M}.

Input: x[n]. Outputs: (cm)Mm=1, d[n].
1) Choose a suitable point set for sampling a (P − 1) unit sphere.
2) Calculate a projection, denoted by pθv [n], of x[n] along the

direction sθv , for all v (the whole set of direction vectors),
giving (pθv [n])Vv=1 as the set of projections.

3) Find the time instants (niθv )Vv=1 corresponding to the maxima
of the set of projected signals (pθv [n])Vv=1.

4) Interpolate [niθv , x(niθv )] to obtain the multivariate envelope curves
(eθv [n])Vv=1.

5) For a set of V direction vectors, the multivariate mean m[n] of the
envelope curves is calculated as:
m[n] = 1

V

∑V
v=1 eθv [n].

6) Extract ”detail” d[n] using d[n] = x[n]−m[n]. If d[n] fulfills the
stopping criterion for a multivariate IMF, apply the above procedure
to x[n]− d[n], otherwise apply it to d[n].

IV. MULTIVARIATE FGN MODEL

fGn is of a particular interest in signal processing for its
ability to describe long-range dependent phenomena. This
noise is defined as an approximate derivative of the fractional
Brownian motion (fBm), which is a self-similar centered
continuous Gaussian process. Discrete fGn is a discrete-time
process defined as the increment process of the fBm, which
is a self-similar Gaussian process with stationary increments
[30]. The increment process may exhibit long-range depen-
dence, and is commonly used in modeling physical and
biological phenomena [31]-[32]. However, in many fields of
applications such as in physics, neurosciences or network
traffic, multivariate measurements are performed and they
involve salient properties such as short/long-range depen-
dence, fractality and self-similarity [33]. To deal with such
multivariate, fBm has been extended to multivariate frame-
work (MfBm) [23],[34]. MfBm is a Gaussian multivariate
signal whose components are correlated scalar fBm with
different Hurst exponents satisfying three properties, namely
Gaussianity, self-similarity and stationarity of the increments.
Here, self-similarity has to be understood as joint-similar.
Let y(t) = (y1(t), . . . , yP (t))t∈R be a P -dimensional MfBm

having components jointly-similar parametrized by P different
Hurst exponents H = (H1, . . . ,HP ) ∈ [0, 1]P , P scaling
coefficients σi =

√
var(yi(1)) (standard deviation of ith

component at t = 1) and also, by P 2 real correlation
coefficients ρij = corr(yi(1), yj(1)) ∈ [−1, 1] between the
components yi(t) and yj(t) at t = 1 with ρij = ρji allowing
these components to be more or less strongly correlated
(for i, j = 1, . . . , P with j > i) [23]. Each component
(yi(t))t∈R is an univariate fBm. The multivariate process is
also characterized by an antisymmetric matrix whose elements
are ηij and controls the time asymmetry of y(t), ηij = −ηji.
If the process is time-reversible, parameters ηij are all equal
to zero and if the process admits a causal representation, ηij
values are function of ρij , Hi and Hj . Two natural cases are
considered, namely causal MfBm and well-balance MfBm.
As for fBm, MfBm has by definition stationary increments,
and a covariance structure of the increments process. The first
difference of the MBfm process x(t) = ∆y(t) = y(t+1)−y(t)
is a MfGn with correlated components [23]. From covariance
function of y(t), we deduce the covariance of x(t). Structure
of the MfGn defined by the cross-covariance of the increments
of the components yi(t) and yj(t) of y(t) is given by

γij(h) = E[xi(t)xj(t+ h)] (3)

In the sequel, let |h| ≥ 1. For all (i, j) ∈ {1, . . . , P}2, i 6= j,
cross-covariance of xi(t) and xj(t) is given by

γij(h) =
σiσj

2

[
wij(h− 1)− 2wij(h) + wij(h+ 1)

]
(4)

The function wij(h) is defined by [33]

wij(h) =

{[
ρij − ηijsign(h)

]
|h|Hi+Hj if Hi +Hj 6= 1

ρij |h|+ ηijh log |h| if Hi +Hj = 1
(5)

where ηij is given by
1) Causal case:

ηij =

{
−ρij tan

[
π
2 (Hi +Hj)

]
tan
[
π
2 (Hi −Hj)

]
if Hi +Hj 6= 1

ρij
2

π tan(πHi)
if Hi +Hj = 1

(6)
2) Well-balanced case: ηij = 0.

V. SOME PROPERTIES OF MEMD UNDER MFGN

To shed light on the properties of MEMD, its performances
are analyzed under MfGn. The aim is to bring some properties
around the filter bank concept. However, as it has been
stressed in [15] the idea of filter bank structure for multivariate
signals is ambiguous, since the concept of frequency is not
clearly defined for multivariate signals. Thus, we consider the
frequency response for individual channels and we investigate
channel-wise whether the filter bank property is preserved
with correlated channels. We also investigate if this filter bank
structure is dyadic with constant-Q band pass filters or not.
We use the correlogram to analyze the intensity of coupling
between pairs of channels of each sifted IMF and its link to
Hurst component. Finally, we study if the hierarchy of the
sifted IMFs can be exploited to get access to Hurst exponents.
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SIMULATION SET-UP

Extensive simulations are carried out on MfGn processes
generated using the method developed in [33]. We have
generated J = 5000 snapshots of 4-channel fGn (P = 4) with
an identical length of N = 1000 data points, and for different
H values and strengths of link between pairs of channels of
MfGn. Even a complete study has been conducted within
ranges 0.1 ≤ H ≤ 1 and 0 ≤ ρ ≤ 1, only four typical values
of H and ρ, are displayed for the sake of readability. We
limit ourself to causal case (Eq. 6). All the components are
equally correlated with parameter ρij = ρ ∈ {0, 0.2, 0.5, 0.8}.
MfGn has components jointly-similar parametrized by P
Hurst values H ∈ {0.2, 0.4, 0.6, 0.8}. Notations of these
simulations are expressed as follows:
1) x(j)Hp

[n] is the jth simulated pth fGn path of length N where
n ∈ {1, 2, . . . , N}, p ∈ {1, 2, . . . , P} and j ∈ {1, 2, . . . , J}.

2) c(j)m,Hp
[n] is the pth-dimension of the mth IMF of parameter

Hp sifted by MEMD of the jth simulated P -variate fGn where
m ∈ {1, 2, . . . ,M}. We use standard EMD for comparison,
which is applied channel-wise, and even though the number
of IMFs will not be equal to M , we will restrict our study to
M = 8 P -variate IMFs.

VI. RESULTS

We report simulations on synthetic and real world data to
illustrate the properties and the behavior of MEMD. Conclu-
sions are drawn for different Hurst exponents and correlation
values between pairs of channels of each sifted mode. An
application to EEG data is also presented.

A. MEMD equivalent filter banks

Spectral analysis of a MfGn time series is carried out for
each sifted IMF using an estimate of the PSD given by:

Ŝm,Hp(f) =

N−1∑
τ=−N+1

r̂m,Hp [τ ]w[τ ] exp(−i2πfτ), |f | < 0.5

(7)
where w[τ ] is the Hamming window, and

r̂m,Hp [τ ] =
1

J

J∑
j=1

 1

N

N−|τ |∑
n=1

c
(j)
m,Hp

[n]c
(j)
m,Hp

[n+ |τ |]

 (8)

is the ensemble average over J realizations of the empirical
estimates of the auto-correlation function of IMF c

(j)
m,Hp

[n],
where |τ | ≤ (N−1). Results of this analysis plotted in figures
1 and 2 where PSDs of sifted IMFs are estimated for different
combinations of (ρ,H), and results are means over J Monte
Carlo runs. Graphs plotted in these figures reveal striking prop-
erties. Overlapping of the frequency bands corresponds to the
same-index IMFs, showing the mode alignment. Despite some
leaks observed for more fractured and correlated channels,
scaled-aligned IMFs give well defined sub-band filters. These
results show that leaks do not occur for non-coupled channels,
and suggest that leaks appear for low coupled and more
fractured channels. This set of filters tend to organize in filter
bank structure similar to wavelet decompositions. Regardless

of ρ values, and for both MfGns long-range dependent and
short-range dependent, graphs of figures 1 and 2 reveal that the
behavior of the first IMF contrasts with that of the other IMFs
in the sense that the first IMF presents the characteristics of a
high-pass filter, while IMFs of higher indexes (m ≥ 2) behave
similarly to a band-pass filter. Observe that for H ∈ [0.2, 0.8]
spectra of IMFs for m ∈ {2, 3, . . . , 8}, look quite similar
except the shifts in frequency and scaling in amplitude. Also,
theses figures show that the energy balance between IMFs
reflects quite well the behavior of the theoretical spectrum
(superimposed dashed-dotted curve). As evidenced, decreasing
(increasing) power-law spectrum is observed when H > 0.5
(H < 0.5). For H = 0.5, flat spectrum corresponds to wGn
(Fig. 3). All these results confirm (and is a generalization of)
the findings of Flandrin et al. for EMD [12].

ρ = 0, H = 0.2 ρ = 0, H = 0.4

ρ = 0, H = 0.6 ρ = 0, H = 0.8

ρ = 0.2, H = 0.2 ρ = 0.2, H = 0.4

ρ = 0.2, H = 0.6 ρ = 0.2, H = 0.8

Fig. 1. PSDs of IMFs for H ∈ {0.2, 0.4, 0.6, 0.8} and ρ ∈ {0, 0.2}.

B. Filter bank structure

A salient property of an IMF is that it can be fully
described by its extrema and this can be exploited for different
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ρ = 0.5, H = 0.2 ρ = 0.5, H = 0.4

ρ = 0.5, H = 0.6 ρ = 0.5, H = 0.8

ρ = 0.8, H = 0.2 ρ = 0.8, H = 0.4

ρ = 0.8, H = 0.6 ρ = 0.8, H = 0.8

Fig. 2. PSDs of IMFs for H ∈ {0.2, 0.4, 0.6, 0.8} and ρ ∈ {0.5, 0.8}.

Fig. 3. PSD of IMFs for H = 0.5 (wGn case).

applications such as frequency analysis [1], image and signals
coding [35],[36], or signals watermarking [37]. Thus, filter
bank structure is quantitatively appreciated by measuring the
frequency content of each IMF using its extrema, and more
precisely its zero-crossings (ZCs). Measuring average number
of ZCs, zHp

[m], of an IMF is a meaningful way of character-
izing its mean frequency, and the way this varies from IMF to
IMF is an indication of hierarchical structure of the equivalent
filter bank [12]. Graphical representation of the logarithm of
zHp

[m] for selected values of ρ and H is plotted in figure 4
where each straight line has a slope less than -0.9 (close to
-1), indicating an almost dyadic decrease across the modes.
These results evidence that whatever ρ and H values, MEMD
acts under MfGn as a filter bank. Up to slight dependences on
ρ and H , we observe that zHp [m] is divided by 2 when going
from IMF to the next one. Theses results are in agreement and
generalize findings reported for wGn [15] and for fGn [19].

1 2 3 4 5 6 7 8

2

4

6

8

m

log2(ZCs)

H = 0.2, ρ = 0.2, slope= −0.91

H = 0.8, ρ = 0.2, slope= −0.98

H = 0.2, ρ = 0.8, slope= −1.10

H = 0.8, ρ = 0.8, slope= −0.94

Fig. 4. Comparison of logarithm of zHp [m] for selected values of ρ and H .

C. Constant-Q band pass filters

As evidenced in figure 4, ZCs zHp [m] is a decreasing
exponential function m, that can be modeled by the relation

zHp [m] ∝ β−mHp
(9)

where scaling factor βHp is the average decrease rate of ZCs,
estimated using least square (LS) fitting of a semi-log diagram
of log2(zHp

[m]) vs m ∈ [1, 8]. Since each straight line has a
slope close to -1 (Fig. 4), thus we get

log2(zHp [m+ 1])− log2(zHp [m])≈−1

log2

(
β
−(m+1)
Hp

β−mHp

)
= log2(β−1Hp

)≈−1⇒ βHp
≈ 2 (10)

The decreased in the number of ZCs as m increases, can be
approximated by the quadratic expression

βHp
≈ 2 + δ1 (Hp − 0.5)− δ2 (Hp − 0.5)

2 (11)
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where δ1 = 0.06 and δ2 = 0.02. Accuracy of this approxi-
mation depends on the way to sift the IMFs and, particularly
on stopping criterion and uniformity of sampling, in the P -
dimensional space, used (Step 1 of Algorithm 1). For EMD,
the decreased in the number of ZCs is given by [38]:

βHp
≈ 2.01 + 0.2 (Hp − 0.5) + 0.12 (Hp − 0.5)

2 (12)

Since zHp [m] is divided by 2 when going from one IMF to
the next one, we can check for a possible self-similarity in
the filter-bank structures (Figs. 1-2). If we restrict ourselves
to the band-pass modes (m = 2 to m = 8), self-similarity is
traduced by the scale relation

Sl,Hp(f) = β
ap(l−m)
Hp

Sm,Hp(β
ap(l−m)
Hp

f) (13)

for some ap and l > m ≥ 2. Thus, PSDs of IMFs, should
collapse onto a single curve when properly renormalized. This
is illustrated in Figs. 5-6, with ap = 2Hp − 1 and βHp

= 2.
Overall, this setting verifies this assumption, as the correspond-
ing renormalization converge to the same template. Regardless
ρ and H values, normalized PSDs collapse onto a single
curve showing self-similarity of the band-pass filters. More
precisely, IMFs of individual channels exhibit self-similar
behavior. However, we note the presence of discrepancies in
low frequency domain for ρ = 0 and for H ≥ 0.4. Overall,
diagrams of figures 5 and 6 support the idea that MEMD acts
as a dyadic filter bank of constant-Q band-pass filters. These
results are in agreement with the findings reported in [12] in
the case of EMD, and with [15] for wGn case (H = 0.5).

D. MEMD-based estimation of Hurst exponent

The filter bank behavior of MEMD suggests to investigate
its potential to get access to Hurst exponents. To this end, the
variance progression across the modes to estimate Hp value
is exploited. Given the self-similar relation (13) of band-pass
IMFs (m ≥ 2), one can deduce how variance should evolve
as a function of m [39]. Assuming that relation (13) holds for
any ap = 2Hp − 1 and l > m ≥ 2, variance, VHp [l], of the
pth-dimensional component of the lth mode is given by

VHp
[l] = var(cl,Hp

[n]) =

∫ 1/2

−1/2
Sl,Hp

(f)df (14)

Inserting relation (13) in (14), for fixed m we get

VHp
[l] = β

ap(l−m)
Hp

∫ 1/2

−1/2
Sm,Hp

(β
(l−m)
Hp

f)df

= β
2(Hp−1)(l−m)
Hp

VHp [m] (15)

For fixed l we get

VHp [m] = β
2(Hp−1)m
Hp

VHp [l]β
−2(Hp−1)l
Hp

(16)

Setting l = 2 in relation (16), we get

VHp
[m] = β

2(Hp−1)m
Hp

VHp
[2]β

4(Hp−1)
Hp︸ ︷︷ ︸

AHp

(17)

which leads to relation

VHp
[m] = AHp

β
2(Hp−1)m
Hp

(18)

where VHp
[2] is estimated using relation (26). As a conse-

quence of self-similar structure of the decomposition, using
relation (13) we derive the relation between the mean periods
of IMFs, T̄Hp

[.], for l > m ≥ 2 as follows

T̄Hp
[l] = β

(l−m)
Hp

T̄Hp
[m] (19)

where the estimated mean period, based on ZCs, is given by

ˆ̄THp
[m] =

Distance between the first and the last ZC
Number of ZCs-1

(20)

Setting l = 2 into relation (19) we get

β
(2−m)
Hp

=
T̄Hp

[2]

T̄Hp [m]
⇒ β

2mHp

Hp
=

(T̄Hp [2])−2Hpβ
4Hp

Hp

(T̄Hp [m])−2Hp
(21)

It follows from relation (18) that

VHp
[m] =

AHp
(T̄Hp

[2])2

β4
Hp

(T̄Hp
[m])−2β

2mHp

Hp
(22)

Inserting β2mHp

Hp
into relation (22) one gets

VHp
[m] = DHp

(T̄Hp
[m])2(Hp−1) (23)

where DHp is given by

DHp
= VHp

[2]β
8(Hp−1)
Hp

(T̄Hp
[2])2(1−2Hp) (24)

The mode variance is exponentially decreasing function of m,
with a decay rate is a linear function of Hp (log-log plot).
Inserting βHp

≈ 2 in (23) and taking the logarithm gives

log2(VHp
[m]) ≈ log2(VHp

[2]) + 2(1−Hp)[log2(T̄Hp
[2])− 4]

+ 2(Hp − 1) log2(T̄Hp
[m]) (25)

An experimental evidence for this behavior (Eq. 25) is reported
in figure 7 for different ρ and H values, where the (energy-
based) empirical variance estimate is given by:

V̂Hp [m] =
1

J

J∑
j=1

[
1

N

N∑
n=1

(c
(j)
m,Hp

[n])2

]
(26)

In this figure, the grouped blue and red dots from the upper
left to the lower right represent the mean energy density
(estimation of the variance) as a function of the spectrum mean
period for IMFs 1 − 7 over J realizations. Solid black line
cutting through the clouds is the weighted linear fit within
IMF indexes range m = 1 to m = 7. For sake of clarity,
all curves have been shifted upwards to avoid overlapping.
As evidence in figure 7, irrespective of intensity of channels
link, the predicted relationship (18) only holds for IMF index
m > 1 (band-pass filters). Furthermore, the model of relation
(25) fits well the data for H > 0.2 with low discrepancies.
A visual examination of these results shows that, the mode-
energy spread is more concentrated in a more uniform clouds,
yielding a better aligned IMF indexes and almost with no
mode mixing effect. Using a logarithm (base 2) linearized
version of relation (18), straight lines can be fitted to curves
corresponding to different pairs of (ρ,H), with slope κHp

that
gives an estimated of H , Hp. Thus, inserting βHp

≈ 2 in
relation (18) and taking the logarithm (base 2) gives

log2(VHp
[m]) ≈ log2(22(Hp−1)m) + log2(AHp

)
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≈ κHp
m+ log2(AHp

) (27)

From relation (27), one can estimate Hp by

Ĥp = 1 +
κHp

2
(28)

An experimental evidence of relation (27) is given in figure 8,
where values of log2(VHp

[m]) are plotted against m for dif-
ferent values of (ρ,H). Values of empirical variance estimates
are represented by red dotted lines for different H values. The
error bars correspond to the standard deviation calculated over
J realizations. The black thin line is the weighted linear fit
within the IMF indexes range from m = 1 to m = 7. Same
conclusions as in figure 7 can be drawn. In these diagrams,
straight line can be fitted to all curves, regardless of ρ values,
for m > 1 in accordance with relation (18). Values of Ĥp

are calculated using three estimators namely, MEMD, EMD
and discrete wavelet transform (DWT) [40]. The same range
of scales for these three estimators is exploited. For DWT-
estimator, ”Daubechies 4” mother wavelet is used. Due to
the dyadic filter bank structure of EMD and MEMD, IMFs
indexes are equivalent to scales indexes. Performances of these
estimators based on scales/modes m = 2 to m = 8 are
reported in Tables I and II. The ρ value is fixed, and for
all H values, we estimated the expected value, the standard
deviation and the bias of each estimator. Estimates in Table I
show that, for low and high correlated channels, MEMD-based
estimator performs similarly than DWT-based estimator, but
with the lowest standard deviations. MEMD-based estimator
outperforms EMD-based estimator both in terms of estimate
and standard deviation. Overall, whatever ρ values, estimation
model with slope κHp

(Eq. 28) provides the best results for
H > 0.2. Recall that simulations have been carried out over
5000 realizations, thus our conclusion is valid for this range
and of course, all these methods will have a better standard
deviation as the number of realizations increases. Results of
Table II show that MEMD-based estimator achieves the lowest
bias than the two other estimators for all analyzed H values.

TABLE I
EXPECTED VALUES AND STANDARD DEVIATIONS (MEAN ± STD) OF

THREE DIFFERENT ESTIMATORS FOR SELECTED PAIRS (ρ,H) VALUES.
BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Estimators
ρ H DWT EMD MEMD

0

0.2 0.16± 0.103 0.28± 0.083 0.15± 0.068
0.4 0.4± 0.123 0.42± 0.085 0.4± 0.069
0.6 0.6± 0.117 0.61± 0.082 0.6± 0.064
0.8 0.8± 0.117 0.8201± 0.087 0.81± 0.064

0.2

0.2 0.14± 0.165 0.11± 0.112 0.12± 0.105
0.4 0.35± 0.207 0.35± 0.108 0.36± 0.105
0.6 0.62± 0.237 0.58± 0.1 0.6± 0.09
0.8 0.8± 0.231 0.82± 0.102 0.8± 0.093

0.8

0.2 0.13± 0.161 0.13± 0.175 0.14± 0.116
0.4 0.39± 0.208 0.37± 0.12 0.38± 0.110
0.6 0.61± 0.226 0.58± 0.115 0.6± 0.109
0.8 0.8± 0.228 0.81± 0.102 0.8± 0.106

TABLE II
BIAS (bias2) OF THREE DIFFERENT ESTIMATORS FOR SELECTED PAIRS

(ρ,H) VALUES. BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Estimators
ρ H DWT EMD MEMD

0

0.2 0.055 0.015 0.007
0.4 0.053 0.008 0.004
0.6 0.054 0.006 0.004
0.8 0.054 0.007 0.004

0.2

0.2 0.063 0.034 0.017
0.4 0.056 0.024 0.012
0.6 0.059 0.017 0.009
0.8 0.054 0.015 0.008

0.8

0.2 0.059 0.034 0.016
0.4 0.050 0.023 0.012
0.6 0.052 0.026 0.012
0.8 0.052 0.023 0.011

E. Correlograms

To measure the relationship between pair of channels of
each mode, correlogram which a visual representation of the
correlation matrix is used. This matrix allows to analyze
the link between a pair of channels, and this inter-channel
relationship is visualized through a scatter-plot. Thus, all
pairs of channels of the mth IMF are compared using the
inter-channels correlation matrix CorrmH,ρ where each entry
rp,lm = E[cm,p[n]cm,l[n]] is the correlation coefficient between
cm,p and cm,l, m, l ∈ {1, 2, . . . ,M} and p ∈ {1, 2, . . . , P}.
From a practical point of view, rp,lm is estimated by

r̂p,lm =
1

J

J∑
j=1

(
1

N

N∑
n=1

c
(j)
m,Hp

[n]c
(j)
m,Hp

[n]

)
(29)

This value measures the relationship strength between chan-
nels p and l of mth IMF. Results of inter-channel links of
each mode reported in figures 9,10 and 11 show that for
ρ 6= 0, link between channels is evidenced clearly, therefore
MEMD conserves the inter-channel correlation of the MfGn
process. The new feature is that correlogram falls off with
a decrease depending on both ρ and H parameters when
going away from the main diagonal, indicating the link degree
of interdependence between inter-channels of the IMF. This
observation applies to all IMFs. For all ρ values, MEMD
produced diagonally dominant correlograms for each IMF.
Figure 9 evidences that for uncorrelated channels, regardless
H values, correlograms exhibit more pronounced diagonal
dominance (without leakage), thus indicating that the channels
of the IMFs are also uncorrelated. However, for correlated
channels, this dependence on the Hurst exponent is well
evidenced on figures 10 and 11. These figures highlight
the fact that for channels long-range dependent, coupling
between pairs of channels of each IMF is uniform. As the
link between channels increases, more important the strength
of this uniform coupling between channels of the IMFs is. By
contrast, for channels short-range dependent of the input data,
the coupling between channels of the modes is non-uniform.
This is illustrated by the heterogeneity in terms of intensity
of the off-diagonal elements of the correlograms (increased
leakage), whose values are also related to the strength of link
between pairs of channels. As expected, irrespective of the
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ρ = 0, H = 0.2 ρ = 0, H = 0.4

ρ = 0, H = 0.6 ρ = 0, H = 0.8

ρ = 0.2, H = 0.2 ρ = 0.2, H = 0.4

ρ = 0.2, H = 0.6 ρ = 0.2, H = 0.8

Fig. 5. Normalized PSDs of IMFs for H ∈ {0.2, 0.4, 0.6, 0.8} and ρ ∈
{0, 0.2}. Overlapping of the frequency bands is obtained using (13).

combinations of pairs (ρ,H) the larger correlations values
are along the diagonal. Overall, these results evidence that
for correlated channels, MEMD sifts modes that are also
correlated and the coupling intensity, observed off-diagonal, is
also related to the Hurst exponent value. An increased leakage,
in the correlogram, is observed for more fractured channels.

F. Real world turbulent flow data analysis

Analysis of signals from real world turbulent phenomena
is a challenging issue. Filter bank behavior of MEMD is
illustrated on near-wall pressure signals of hydrofoil’s suction
side undergoing a forced rotational motion while facing incom-
ing flow in cavitation tunnel [41]. Pressure measurements are
carried out using ten piezo-resistive transducers. Wall pressure
signals are expressed in terms of temporal pressure coefficient
Cp(t), where an example of signal shown in figure 12 can
be segmented at least into 5 phases: Laminar flow, Leading

ρ = 0.5, H = 0.2 ρ = 0.5, H = 0.4

ρ = 0.5, H = 0.6 ρ = 0.5, H = 0.8

ρ = 0.8, H = 0.2 ρ = 0.8, H = 0.4

ρ = 0.8, H = 0.6 ρ = 0.8, H = 0.8

Fig. 6. Normalized PSDs of IMFs for H ∈ {0.2, 0.4, 0.6, 0.8} and ρ ∈
{0.5, 0.8}. Overlapping of the frequency bands is obtained using (13).

ρ = 0 ρ = 0.2

ρ = 0.5 ρ = 0.8

Fig. 7. Relationship between log2(VHp [m]) and log2(T̄Hp [m]) for H ∈
{0.2, 0.4, 0.6, 0.8} and ρ ∈ {0, 0.2, 0.5, 0.8}.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 9

ρ = 0 ρ = 0.2

ρ = 0.5 ρ = 0.8

Fig. 8. Relationship between VHp [m] and m indexes for H ∈
{0.2, 0.4, 0.6, 0.8} and ρ ∈ {0, 0.2, 0.5, 0.8}.

ρ = 0 H = 0.2 ρ = 0 H = 0.2 ρ = 0 H = 0.2 ρ = 0 H = 0.2

ρ = 0 H = 0.8 ρ = 0 H = 0.8 ρ = 0 H = 0.8 ρ = 0 H = 0.8

Fig. 9. Correlograms of IMFs for (ρ,H) ∈ {(0, 0.2), (0, 0.8)}.

ρ = 0.5 H = 0.2 ρ = 0.5 H = 0.2 ρ = 0.5 H = 0.2 ρ = 0.5 H = 0.2

ρ = 0.5 H = 0.8 ρ = 0.5 H = 0.8 ρ = 0.5 H = 0.8 ρ = 0.5 H = 0.8

Fig. 10. Correlograms of IMFs for (ρ,H) ∈ {(0.5, 0.2), (0.5, 0.8)}.

edge (LE) separation bubble and transition, turbulent flow,
net increasing fluctuations before LE, and separated flow.
These phases of the foil show the non-stationarity, randomness
and also the complexity of the turbulent flow data. MEMD
and EMD (channel-wise) are applied to 10-channels Cp(t)
signal and the average number of ZCs is calculated for all
channels (Figs. 13). As expected EMD failed to effectively
align scales from different IMF channels, and this is clearly
seen by the dispersion of the dashed blue lines in figure 13(b).
While for MEMD, there is the nearly perfect modes alignment
(Fig. 13(a)), showing the interdependence between multiple
channels of the analyzed pressure signals, as in MfGn process.
The calculated slopes of the lines suggest a self-similarity
hidden beneath the signal. A LS fitting of the ZCs has been
used to estimate the H value (Ĥ) of the data. For MEMD,
the slope of the fit line suggests that Ĥ = 0.95 (DWT
gives Ĥ = 0.98). This H value, close to 1, brings out
the long-range-dependent nature of the turbulent flow data.
PSDs of the sifted modes, by EMD and MEMD shown in
figure 14 highlight the fact that the filter bank structure holds
for turbulent flow data, and this is more evident for MEMD
where the overlapping of the frequency bands associated with
the different channels is more prominent compared to EMD.
To evaluate the estimation of H value, plotted power spectra
of IMFs are superimposed to theoretical PSDs (dashed black
line) for H = 0.95 (Fig. 14). We can observe an almost
perfect alignment between the theoretical line and the real
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ρ = 0.8 H = 0.2 ρ = 0.8 H = 0.2 ρ = 0.8 H = 0.2 ρ = 0.8 H = 0.2

ρ = 0.8 H = 0.8 ρ = 0.8 H = 0.8 ρ = 0.8 H = 0.8 ρ = 0.8 H = 0.8

Fig. 11. Correlograms of IMFs for (ρ,H) ∈ {(0.8, 0.2), (0.8, 0.8)}.

data. By transformation (13), we get a very good overlapping
of the PSDs which, overall, collapse into a single curve with
renormalization. For EMD, PSDs do not present a clear band-
pass filters, and this can be seen from the overlapping spectrum
in figure 14(b2). We report in figure 15 spectra of IMFs sifted
by MEMD with theoretical slopes of pressure spectrum (blue
lines). Overall, different power law behaviors are observed
over all the frequencies. The estimated slopes, indicated by
red lines, are reported in Table III. Using modes selection,
we get results very close to the theoretical values reported in
[42]. The estimated slope of -2.7 is close to the Kolmogorov’s
spectral slope -7/3 for pressure fluctuations. Band-pass IMFs
(m = 2 to 10) are used for modes selection. Because first
IMF (high-pass filter) contains most unwanted very high
frequency perturbations, thus it is omitted, and the last IMFs
contain unwanted low frequency information. It obvious to
see the advantages of using MEMD for the analysis of such
signals due its modes alignment ability. MEMD has ability to
align common frequency modes across multiple channels in
same index IMFs and thus, makes IMF-by-IMF comparisons
feasible. For example, by examination of the figure 15, we
can associate a ”physical phenomenon” to each set of IMFs
(which can vary from one to many IMFs). For example, we
can associate to the 4th and 5th IMFs the slope − 7

3 , while the
IMFs 6− 8 represent the slope −1.

Fig. 12. Pressure signal from transducer #2 and the associated typical flow.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4

6

8

10

12

14

m

log2(ZCs)

mean
LS fit

(a)

1 2 3 4 5 6 7 8 9 10 11 12

5

10

15

m

log2(ZCs)

mean
LS fit

(b)

Fig. 13. Logarithm of zHp [m] versus m. Dashed blue lines represents
zHp [m] for each channel. Dashed line with red dotes represents the average
number of ZCs over all ten channels, and the thick solid black line is the
corresponding LS linear fitting for (a) MEMD (b) EMD applied channel-wise.

TABLE III
SLOPES OF THE LINES FOR THE PRESSURE SIGNAL SPECTRUM.

Theoretical [42] 2 −1 −7/3 −6
Measured 2.7 −1.3 −2.7 −5
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Fig. 14. PSDs of IMFs for MEMD (a1) and EMD (b1). Overlapping of the
frequency bands in (a2) and (b2) is obtained using (13) for MEMD and using
βH ≈ 2 for EMD [12].

Fig. 15. Pressure signal spectrum.

VII. DETECTION OF ALPHA RHYTHM IN EEG

Alpha waves are rhythmic EEG waves occurring at fre-
quency between 8 and 13 Hz, and their detection is a useful in-
dicator of subject’s level of stress, concentration or relaxation.
MEMD may be an interesting tool to detect such waves using
EEG signals which are usually multichannel noisy signals with
1/f property. In this experiment, the aim is to detect when
a subject closes his eyes and enters a relaxing mode. This
mode usually triggers alpha waves, with frequency ranging
from 8 to 13 Hz, and they are most dominant in the occipital
region. Signals recorded on three sensors (O1, Oz and O2),
usually placed on the occipital area are used (Fig. 16). Two
recordings, one with ”eyes opened” and the other with ”eyes
closed”. The associated signals and their averaged PSD are
shown in figures 17(a)-(b). It is expected to have a peak in
the band 8-13 Hz for the black signal (the closed eye signal),
due to the Alpha rhythm that appears when the subject closes
his eyes. However this is not the case due to dominance of
low frequency noise. EEG signal is decomposed using MEMD
followed by a filtering (partial reconstruction by excluding the
first two modes) and a detrending (removing the residual).
Averaged PSD of processed signal reported in figure 17(c),
shows the presence of the peak located near the 10 Hz for

Fig. 16. Occipital scalp electrode locations using the 10-20 IS. The sensors
are from the channels O1, Oz and O2.

signal with ”closed eyes”. As expected from the behavior
analysis of MEMD under MfGn, this application confirms
that MEMD operates on multivariate data which exhibit 1/f
property. Combined with a modes filtering-detrending strategy,
this illustration shows that MEMD has the ability to enhance
the detection of frequency of interest such that of Alpha waves.

VIII. CONCLUSION

The aim of this work is to better understanding the way
MEMD decomposes MfGn, filling somehow non-existing
theoretical framework and the application of an appealing
technique to real-world situations. We reported results show-
ing the interest of direct processing of MfGn with MEMD
and applications to real turbulent flow data and EEG data.
Behavior analysis under MfGn and conclusions drawn are
based on extensive simulations with different Hurst exponents
and degrees of correlation between pairs of components of
this process. Reported findings evidence that MEMD acts as
filter bank, on each channel, on both MfGn and real world
turbulent flow data. This equivalent filter bank structure is
dyadic with constant-Q band-pass filters. For simulated MfGn
processes, this filter banks behavior is achieved whatever ρ and
H values. Regardless of ρ values, and for both MfGns long-
range dependent and short-range dependent, first IMF presents
the characteristics of a high-pass filter, while IMFs of higher
indexes behave similarly to a band-pass filter. Findings of our
work generalize those reported in [15],[18],[20],[19] where
behavior was limited to fGn with uncorrelated channels. The
study reveals that for correlated channels, MEMD generates
modes also with correlated channels, and intensity of interde-
pendence between these channels depends on both ρ and H
values of channels of input signal. Intensity of this link needs
to be further refined in order to highlight in which proportion
the influence of each parameter. The new estimator of Hurst
exponent based on MEMD has been illustrated on simulated
fGn paths and real data, and the obtained results compared to
those based on EMD and DWT based estimators. MEMD-
estimator performs similarly than DWT estimator but with
the lowest standard deviations. Estimated Hurst exponent of
real turbulent flow data brings out their long-range-dependent
nature. Finally, different power law behaviors are observed on
spectra of the modes, and particularly Kolmogorov’s spectral
slope, showing the potential of MEMD as an exploratory tool
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Fig. 17. Average Welch PSD (a) of noisy EEG signals at O1, Oz and O2,
across 5 trials (b). Average Welch PSD of EEG signals at O1, Oz and O2,
across 5 trials after detrending and filtering. The peak around 10 Hz refers to
the alpha wave (c).

for real data. As future work, we plan to extend the present
study to the case of less regular models involving a mixture
of broadband and narrowband contributions. Estimate Ĥp is
closely related to slope κHp

which in turn is calculated by the
setting βHp

= 2. Values of βHp
can be refined to get better

results of Ĥp. Accuracy of βHp
, or that of quadratic relation

(Eq. 11) are slightly dependent on the way multivariate IMFs
are actually sifted, and particularly on the choice of stopping
criterion and uniformity sampling used in Algorithm 1. Further
studies are necessary to make this point more precise, and for
confirming the obtained estimation results.
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