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Abstract

We investigate the performance of multi-user multiple-antenna downlink systems in which a base

station (BS) serves multiple users via a shared wireless medium. In order to fully exploit the spatial

diversity while minimizing the passive energy consumed by radio frequency (RF) components, the BS

is equipped with M RF chains and N antennas, where M < N . Upon receiving pilot sequences to

obtain the channel state information (CSI), the BS determines the best subset of M antennas for serving

the users. We propose a joint antenna selection and precoding design (JASPD) algorithm to maximize

the system sum rate subject to a transmit power constraint and quality of service (QoS) requirements.

The JASPD overcomes the non-convexity of the formulated problem via a doubly iterative algorithm,

in which an inner loop successively optimizes the precoding vectors, followed by an outer loop that

tries all valid antenna subsets. Although approaching the (near) global optimality, the JASPD suffers

from a combinatorial complexity, which may limit its application in real-time network operations. To
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overcome this limitation, we propose a learning-based antenna selection and precoding design algorithm

(L-ASPA), which employs a deep neural network (DNN) to establish underlaying relations between the

key system parameters and the selected antennas. The proposed L-ASPD is robust against the number

of users and their locations, BS’s transmit power, as well as the small-scale channel fading. With a

well-trained learning model, it is shown that the L-ASPD significantly outperforms baseline schemes

based on the block diagonalization [5] and a learning-assisted solution for broadcasting systems [29]

and achieves higher effective sum rate than that of the JASPA under limited processing time. In addition,

we observed that the proposed L-ASPD can reduce the computation complexity by 95% while retaining

more than 95% of the optimal performance.

Index Terms

Multiuser, precoding, antenna selection, machine learning, neural networks, successive convex

optimization.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) is an enabling technology to deal with the rapidly

increasing demand for data-hungry applications in current and future mobile networks. By using

a large number of antennas, an MIMO base station is able to send multiple information streams to

multiple users simultaneously with negligible inter-user interference. The advantages of MIMO

systems, under a proper beamforming design, comprise not only high spectral efficiency but also

improved energy efficiency [1]. When the number of antennas in MIMO systems becomes very

large, antenna selection (AS) can be employed to improve the performance in terms of both

hardware cost and technological aspects [2]. This is due to the fact that the radio frequency (RF)

chains are usually much more expensive than antenna elements. More importantly, a proper AS

strategy is capable of not only obtaining full spatial diversity but also considerably minimizing the

RF chains’ energy consumption, hence improving the system energy efficiency [3]. In general, AS

is an NP-hard problem whose optimal solution is only guaranteed via exhaustive search, which

tries all possible antenna combinations. The high complexity of AS may limit its potential in

practice, especially in 5G services which usually have stringent latency and real-time decision

making requirements [4].

Low-complexity solutions have become necessary to make AS practically feasible, especially

for the BS of medium to large number of antennas. A block diagonalization-based algorithm is

proposed in [5] for multiuser MIMO systems, that selects the best antennas to either minimize
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the symbol error rate (SER) upper bound or maximize the minimum capacity. This method

consecutively eliminates one antenna at a time that imposes the most energy in the corre-

sponding orthogonal beamformers. The authors of [6] propose a joint beamforming design and

AS algorithm to minimize the multicasting transmit power. By using group sparsity-promoting

l1,2 norms instead of the l0 norm, the selected antennas and beamformers can be obtained via

an iterative algorithm. The application of l1,2 norms is also employed in massive MIMO for

minimizing the transmit power [7] and in cell-free MIMO downlink setups for joint access point

selection and power allocation [8]. In [9], an AS algorithm based on mirror-prox successive

convex approximation (SCA) is proposed for maximizing the minimum rate in multiple-input

single-output (MISO) broadcasting systems. A similar SCA-based approach is proposed in [10],

[11] for energy efficiency maximization.

Recently, the use of machine learning (ML) in communications systems has attracted much

attention [12]–[24]. The main advantage of ML-aided communications lies in the capability of

establishing underlying relations between system parameters and the desired objective, hence

being able to shift the computation burden in real-time processing to the offline training phase

[25], [26]. The authors of [16] propose a beamforming neural network (BNN) for minimizing the

transmit power of multiuser MISO systems, which employs convolutional neural networks (CNN)

and a supervised-learning method to predict the magnitude and direction of the beamforming

vectors. This method is extended in [17], [18] for unsupervised-learning to maximize the system

weighted sum-rate. In [19], a deep learning-aided transmission strategy is proposed for single-user

MIMO system with limited feed back, which is capable of addressing both pilot-aided training

and channel code selection. The authors of [20] develop a deep learning-based beamforming

design to maximize the spectral efficiency of a single-user millimeter wave (mmWave) MISO

system, which achieves higher spectral efficiency than conventional hybrid beamforming designs.

The application of Q-learning is developed in [21] to overcome the combinatorial-complexity

task of selecting the best channel impulse response in vehicle to infrastructure communications.

A similar Q-learning based method is proposed in [23] to solve the joint design of beamforming,

power control, and interference coordination of cellular networks. In [22], the authors develop

a deep reinforcement learning framework which can autonomously optimize broadcast beams

in MIMO broadcast systems based on users’ measurements. A common data set for training

mmWave MIMO networks is provided in [24] regarding various performance metrics.

Towards the learning-aided physical layer design, the application of ML to AS is a promising
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way to tackle the high-complexity of AS [27]–[30]. A joint design for AS and hybrid beamform-

ers for single-user mmWave MIMO is proposed in [27] based on two serial CNNs, in which one

CNN is used to predict the selected antennas and another CNN is used to estimate the hybrid

beamformers. The authors of [28] propose a multi-class classification approach to tackle the AS

problem in single-user MIMO systems based on two classification methods, namely multiclass k-

nearest neighbors and support vector machine (SVM). In [29], a neural network-based approach

is proposed to reduce the computational complexity of AS for broadcasting. The neural network

(NN) is employed to directly predict the selected antennas that maximize the minimum signal

to noise ratio among the users. The authors of [30] propose a learning-based transmit antenna

selection to improve the security in the wiretap channel. Therein, two learning-based SVM and

naive-Bayes schemes are considered. Although being able to improve the secrecy performance

with a reduced feedback overhead, the setup analyzed in [30] is limited to only a single antenna

selection.

A. Contributions

In this paper, we investigate the performance of a multiuser MISO downlink system via a

joint design of AS and precoding vectors to improve the system sum rate while guaranteeing

the users’ quality of service (QoS) requirements. Our contributions are as follows:

• First, we develop a joint antenna selection and beamforming design (JASPD) framework to

maximize the effective system sum rate, which accounts for the time overhead spent on both

channel estimation and computational processing, subject to users’ QoS requirements and

limited transmit power budget. The proposed JASPD works in an iterative manner, which

first optimizes the beamforming vectors for a given antenna subset, and then selects the

best antenna subset.

• Second, to tackle the non-convexity in optimizing the beamforming vectors of JASPD, we

propose two iterative optimization algorithms based on semidefinite relaxation (SDR) and

SCA methods. The convergence of the proposed iterative algorithms to at least a local

optimum is theoretically guaranteed.

• Third, we propose a learning-based antenna selection and precoding design (L-ASPD)

algorithm to overcome the high computational complexity of AS, which employs a deep

neural network (DNN) to capture and reveal the relationship between the system parameters

and the selected antennas via an offline training process. More importantly, our leaning
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model is robust against not only the channel fading but also the number of users and their

locations. Compared to existing works, which either study single-user MIMO systems [27],

[28], a single beamformer for broadcasting [29] or a single antenna selection [30], we

consider a more general multi-user system.

• Finally, extensive simulation results show that, under the same limited processing time,

the proposed L-ASPD outperforms the JASPD and significantly outperforms existing AS

schemes on both model-based [5] and ML-aided [29] designs. We observed that the L-

ASPD can achieve more than 95% of the optimal sum rate while reducing more than 95%

of the computational time.

The rest of the paper is organized as follows. Section II presents the system model and key

parameters. Section III develops two iterative optimization algorithms used in the JASPD. Section

IV introduces a ML-aided joint design to accelerate real-time processing. Section V demonstrates

the effectiveness of the proposed algorithms via simulation results. Finally, Section IV concludes

the paper.

Notations: The superscript (.)T , (.)H and Tr(.) stand for the transpose, Hermitian transpose,

and trace operation, respectively.
(
n
k

)
represents the binomial coefficients. |.| and ‖.‖ denote the

cardinality and the l2-norm of a set, respectively.

II. SYSTEM MODEL

We consider a multiuser MISO downlink system operated in time division duplex (TDD)

mode, in which a multi-antenna base station (BS) servers K single-antenna users in the same

frequency resource1, as depicted in Fig. 1. The BS is equipped with M RF chains and N

antennas, where N > M ≥ K. The motivation of having more antennas than the number of RF

chains is that the BS can i) fully exploit spatial diversity gain and ii) minimize the static energy

consumed by hardware components [3], e.g., RF chains and amplifiers. The system operates in

a quasi-static block fading channel in which the channel gains are constant within on block and

independently change from one block to another. Before sending data to the users, the BS needs

to acquire the channel state information (CSI) via pilot-aided channel estimation2 in order to

perform reprocessing, e.g., beamforming and power allocation.

1In practice the whole bandwidth is divided into multiple sub-frequency bands. The proposed scheme is directly applied to

each band.
2The system is assumed to operate above certain SNR levels in which the CSI can be efficiently estimated.
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Base station

multi-user MISO 

Active antennas 

Figure 1. Diagram of multiuser MISO system. A subset of antennas is selected for data transmission.

Fig. 2 illustrates the three phases in one transmission block. Let T and τcsi denote the block

duration and channel estimation time, both expressed in terms of channel use (c.u.), respectively.

The block duration is determined by the system coherence time. Assuming mutually orthogonal

pilot sequences across the users, the channel estimation time is τcsi = K(bN/Mc+1) c.u., where

bxc denotes the largest integer not exceeding x. Unlike most of previous works that ignore the

processing time, we consider the general case in which the processing time takes place in τpro

(c.u.). In practice, the value of τpro largely depends on beamforming techniques and the hardware

capability.

Let hk ∈ C1×N denote the channel vector from the BS’s antennas to user k, including the

pathloss. We assume that full CSIs are available at the BS. Because there are only M < N RF

chains, the BS has to determine an optimal subset of M antennas for sending data to the users.

Let A = {a1, a2, . . . , aM}, am ∈ [N ] , {1, 2, . . . , N}, be a subset of M antennas (out of N ),

and let A be the collection of all possible antenna subsets. By definition, we have |A| = M and

|A| =
(
N
M

)
.

Denote by hk,A ∈ C1×M the channel vector from active antennas in a subset A to user k,

i.e., hk,A = [hk[a1], hk[a2], . . . , hk[aM ]], where am ∈ A and hk[n] is the n-th element of hk.

Before serving the users, the BS first precodes the data to suppress inter-user interference. Let

wk,A ∈ CM×1 be the precoding vector for user k corresponding to the selected antenna subset

A. The received signal at user k is

yk,A = hk,Awk,Axk +
∑

i 6=k
hk,Awi,Axi + nk, (1)

where nk is Gaussian noise with zero mean and variance σ2. The first term in (1) is the desired

signal, and the second term is the inter-user interference.
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Uplink pilot
Uplink pilot

Downlink data transmission
Downlink data transmission

Processing

τ csi τ pro

T

Figure 2. Block diagram of one transmission block.

By considering interference as noise, the effective achievable rate of user k is

Rk(A) =B

(
1− τcsi + τpro

T

)
× log2

(
1 +

|hk,Awk,A|2∑
i 6=k|hk,Awi,A|2 + σ2

)
,∀k, (2)

where B is the shared channel bandwidth and 1 − τcsi+τpro
T

accounts for actual time for data

transmission. The total transmit power3 is
∑K

k=1‖wk,A‖2.

Remark 1: It is observed from (2) that the effective data rate is determined not only by the

precoding vectors wk,A but also by the channel estimation and processing times. In particu-

lar, spending more time on either channel estimation or processing will degrade the effective

transmission rate.

III. OPTIMAL ANTENNA SELECTION AND PRECODING DESIGN

In this section, we develop a joint antenna selection and precoding design to maximize the

system sum rate while satisfying the minimum QoS requirements and limited power budget. The

joint optimization problem can be formulated as follows:

P0 : maximize
A∈A,{wk,A}

∑K

k=1
Rk(A) (3)

s.t. Rk(A) ≥ ηk,∀k,∑K

k=1
‖wk,A‖2 ≤ Ptot,

3The energy consumed by hardware components is excluded since it is constant and does not affect the precoding design.
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where Rk(A) is given in (2), Ptot is the total transmit power budget at BS, and ηk is the QoS

requirement for user k. In problem (3), the first constraint is to satisfy the minimum user QoS

requirement and the second constraint states that the total transmit power should not exceed

the power budget. We note that the problem formulation in (3) can be directly extended to the

weighted sum rate metric for given weight coefficients with the weights are used as parts of the

training input.

In general, problem (3) is a mixed binary non-linear problem where the binary variables of the

activated antennas are strongly coupled with the continuous variables of the precoding vectors.

Because the precoding vectors are designed for a given selected antenna subset, problem P0 can

be reformulated in an iterative form as follows:

maximize
A∈A

P1(A), (4)

where P1(A) is the precoding design problem for the candidate antenna subset A, which is

defined as follows

P1(A) : Max
{wk,A}

B̄
K∑
k=1

log2

(
1 +

|hk,Awk,A|2∑
i 6=k|hk,Awi,A|2 + σ2

)
(5)

s.t. B̄ log2

(
1 +

|hk,Awk,A|2∑
i 6=k|hk,Awi,A|2 + σ2

)
≥ ηk,∀k, (5a)∑K

k=1
‖wk,A‖2 ≤ Ptot, (5b)

where B̄ , B(1− τcsi+τpro
T

) and we have used (2) for Rk(A).

If problem P1(A) can be solved optimally, then the optimal solution of P0 can be obtained

via an exhaustive search in (4), which tries all possible antenna subsets. Unfortunately, solving

problem P1(A) is challenging due to the non-concavity of the objective function and the non-

convexity of the first constraint.

In the following, we propose two solutions based on SDR and SCA methods to tackle the non-

convexity of the beamforming vectors design in Section III-A. We then describe the proposed

JASPD algorithm and analyze its complexity in Section III-B.

A. Near Optimal Beamforming Design for Selected Antennas

In this subsection, we design the beamforming vectors to maximize the system sum rate for

a selected antenna subset. In the following, we propose two methods to solve (5).
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1) Semidefinite Relaxation based Solution: Semidefinite-based formulation is an efficient

method to design the beamforming vectors of wireless systems, which converts quadratic terms

into linear ones by lifting the original variable domain into a higher-dimensional space. We

adopt the semidefinite method to deal with the signal-to-noise-plus-interference-ratio (SINR)

term in both the objective function and the first constraint. Define a new set of variables

Wk = wk,Aw
H
k,A ∈ CM×M , and denote Hk , hHk,Ahk,A. It is straightforward to verify that

|hk,Awl,A|2 = hk,Awl,Aw
H
l,Ah

H
k,A = Tr(HkWl) and ‖wk,A‖2 = Tr(Wk).

By introducing arbitrary positive variables {xk}Kk=1, we can reformulate problem (5) as follows:

maximize
W ,x

B̄

log(2)

∑K

k=1
xk (6)

s.t. log
(

1 +
Tr(HkWk)∑

i 6=kTr(HkWi) + σ2

)
≥ xk,∀k, (6a)

xk ≥
ηk log(2)

B̄
,∀k, (6b)∑K

k=1
Tr(Wk) ≤ Ptot, (6c)

rank(Wk) = 1, ∀k,

where we use short-hand notations W and x for (W1, . . . ,WK) and (x1, . . . , xK), respectively.

The equivalence between (6) and (5) can be verified as the equality holds in (6a) at the

optimum. It is observed that the objective is a linear function and constraints (6b) and (6c)

are convex. Thus, the challenge in solving problem (6) lies in (6a) and the rank-one constraint.

While the latter constraint can be efficiently coped with by using the relaxation method followed

by randomization if needed [32], dealing with the former constraint is more struggling.

In the next step, we introduce slack variables {yk}Kk=1 and reformulate constraint (6a) as

log
(
σ2 +

∑K

i=1
Tr(HkWi)

)
≥ xk + yk, (7)

σ2 +
∑

i 6=k
Tr(HkWi) ≤ eyk . (8)

Because the function log() is concave, constraint (7) is convex. However, since the function

exp(.) is convex, constraint (8) is unbounded. To overcome this difficulty, we employ the inner

approximation method, which uses the first-order approximation of eyk at the right hand side of
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Algorithm 1 ITERATIVE ALGORITHM TO SOLVE (6)
1: Initialize y0, ε, Xold and error.

2: while error > ε do

3: Solve the SDR of (9) by dropping the rank-one constraint to obtain {W?k, x?k, y?k}Kk=1

4: Compute error = B̄
log(2)
|
∑K

k=1 x?k −Xold|

5: Update Xold ← B̄
log(2)

∑K
k=1 x?k; y0k ← y?k,∀k

(8). As a result, the approximated problem of (6) can be formulated as follows:

P2(y0) : maximize
W ,x,y

B̄

log(2)

∑K

k=1
xk (9)

s.t. (6b); (6c); (7); rank(Wk) = 1,∀k,

σ2 +
∑

i 6=k
Tr(HkWi) ≤ ey0k(yk − y0k + 1),∀k, (9a)

where y , {yk}Kk=1 and y0 is any feasible value of y that satisfies constraint (8).

It is evident that, for a given y0, the objective and constraints of problem (9) are convex

except for the rank one constraint. This suggests to solve (9) by the semi-definite relaxation

(SDR) method [32] which ignores the rank one constraint and can be solved in an efficient

manner by standard solvers, e.g., CVX. Because ey0(y − y0 + 1) ≤ ey,∀y0, the approximated

problem (9) always gives a suboptimal solution of the original problem (6).

It is worth noting that the optimal solution of problem (9) is largely determined by the

parameters y0. Thus, it is crucial to select proper values y0 such that the solution of (9) is

close to the optimal solution of (6). As such, we propose an iterative optimization algorithm

to improve the performance of problem (9), shown in Algorithm 1. The premise behind the

proposed algorithm is to better estimate y0 through iterations.

Proposition 1 (Convergence of Algorithm 1): The sequence of the objective values generated

by Algorithm 1 in solving the SDR of problem P2(y0) is non-decreasing.

The proof of Proposition 1 is shown in Appendix A. Although not guaranteeing the global

optimum of problem (6), Proposition 1 justifies the convergence to at least a local optimum of

the proposed iterative algorithm4.

4The study of the performance gap to the global optimum is left for future work.
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Remark 2 (Initialization of Algorithm 1): The execution of Algorithm 1 requires initial values

y0k,∀k. Therefore, it requires an efficient way to find these initial values before tackling problem

(9). To this end, we start by solving the feasibility problem below:

Find W (10)

s.t.
Tr(HkWk)

2ηk/B̄ − 1
≥
∑

i 6=k
Tr(HkWi) + σ2,∀k,∑K

k=1
Tr(Wk) ≤ Ptot,

which is convex. Then the initial values are computed as y0k = log(
∑

i 6=kTr(HkW
∗
i ) + σ2),∀k,

where W ∗
k is the solution of (10).

Remark 3 (Randomization): The solution in (9) is based on the SDR which sometimes violates

the rank-one constraint. In such cases, Gaussian randomization can be adopted. Details on

Gaussian randomization process are available in [32]. Our simulation results show that more

than 99% of the times Algorithm 1 can output rank-one solutions.

2) Reformulation based on Difference of Convex: The SDR-based reformulation in the previ-

ous subsection leverages the original problem’s non-convexity by working in a higher dimensional

domain, which requires more memory. In this subsection, we solve (5) based on difference-of-

convex (DC) reformulation directly on the original variable domain.

By introducing arbitrary positive variables u , {uk}Kk=1, we can reformulate problem (5) as

follows:

Maximize
w,u

B̄
∑K

k=1
log2(1 + uk) (11)

s.t.
|hk,Awk,A|2∑

i 6=k|hk,Awi,A|2 + σ2
≥ uk,∀k, (11a)

uk ≥ η̄k,∀k, (11b)∑K

k=1
‖wk,A‖2 ≤ Ptot, (11c)

where η̄k , 2ηk/B̄ − 1 and w is a short-hand notation for (w1,A, . . . ,wK,A). The equivalence

between (11) and (5) can be verified since constraint (11a) holds with equality at the optimum.

As the denominator of the left-hand-side of (11a) is positive, it can be rewritten as

|hk,Awk,A|2

uk
≥
∑

i 6=k
|hk,Awi,A|2 + σ2. (12)

An important observation from (12) is that |hk,Awk,A|
2

uk
is a convex function of wk,A and uk

(see Appendix B). Therefore, (12) has a form of the DC representation, which suggests an
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efficient way to solve (11a). In particular, let ŵk,A, ûk be any feasible solution of (11), we can

approximate (12) by using the first order approximation of the left-hand-side of (12), stated as∑
i 6=k

wH
k,AHkwi,A + σ2 ≤

wH
k,A
(
Hk+HT

k

)
ŵk,A

ûk

− uk
ŵH
k,AHkŵk,A

û2
k

+
ŵH
k,A
(
Hk −HT

k

)
ŵk,A

ûk
, (13)

which is obviously convex in wk,A and uk, where Hk = hHk,Ahk,A.

By using (13) as an approximation of (11a), problem (11) can be approximated as

P3(ŵ, û) : Maximize
w,u

B̄
∑K

k=1
log2(1 + uk) (14)

s.t. (11b); (11c); (13).

For given ŵk,A, x̂k, the objective function in (14) is concave and the constraints are convex,

hence it can be solved in an efficient manner by standard solvers, e.g., CVX. Because the right-

hand-side of (13) is always less than or equal to
wH
k,AHkwk,A

uk
, the approximated problem (14)

always gives a suboptimal solution of the original problem (11).

In order to reduce the performance gap between the approximated problem (14) and the

original problem (11), we propose Algorithm 2 which consists of solving a sequence of SCA

problems. The premise behind the proposed algorithm is to better select the parameters ŵk,A, ûk

through iterations.

Algorithm 2 ITERATIVE ALGORITHM TO SOLVE (11)
1: Initialize ŵk,A, ûk, ε, Xold and error.

2: while error > ε do

3: Solve problem P3(ŵk,A, ûk) in (14) to obtain w?
k, u

?
k,∀k

4: Compute error = |B̄
∑K

k=1 log2(1 + u?k)−Xold|

5: Update Xold ← B̄
∑K

k=1 log2(1 + u?k); ŵk,A ← w?
k; ûk ← u?k, ∀k

Remark 4 (Initialization of Algorithm 2): Finding a feasible point is always essential in the

SCA. Intuitively, one can think about the feasibility problem of (5), which is stated as

Maximize
{wk,A}

1 (15)

s.t.
1

η̄k
|hk,Awk,A|2 ≥

∑
i 6=k

|hk,Awi,A|2 + σ2,∀k, (15a)
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∑K

k=1
‖wk,A‖2 ≤ Ptot. (15b)

However, since both sides of (15a) are convex, this constraint is unbounded. Therefore, finding

a feasible point by solving (15) is not efficient. Instead, we adopt (10) as the mean to find

initial values ŵ, û. In particular, from W?k, ∀k, the solution of the convex problem (10), we

obtain the corresponding feasible precoding vectors w?k. Then, we assign ŵk = w?k and ûk =
|hk,Aw?k|2∑

i 6=k|hk,Aw?i|2+σ2 .

B. JASPD Algorithm and Complexity Analysis

Once the precoding vectors have been optimized for each antenna subset, i.e., problem (5) is

solved, we can tackle the original optimization problem (3) via Algorithm 3.

The proposed JASPD algorithm consists of two loops: the outer loop tries all valid antenna

subsets, and the inner loop optimizes the precoding vectors iteratively. While the complexity

of the inner loop is relatively reasonable since (the SDR of) problem (9) (or problem (14))

is convex [36], the outer iteration’s complexity increases combinatorially with the number of

antennas. In fact, the JASPD has to examine all
(
N
M

)
candidates for the selected antennas. As

an example, for N = 20,M = 8, there are 125970 possible antenna subsets to be went through,

each of which imposes an inner loop in Algorithm 1 or Algorithm 2. Although guaranteeing

the maximal achievable rate, the proposed JASPD suffers an exponential complexity due to the

selection process. Its high computation time may limit its applicability in practice and degrade

the effective rate (see (2)). In the next section, we propose a low-complexity joint design to

overcome the computation burden of the antenna selection process.

IV. ACCELERATING THE OPTIMIZATION: A DEEP LEARNING-BASED APPROACH

In this section, we exploit recent advances in machine learning to overcome the major high-

complexity limitation of selection process by proposing a learning-based antenna selection and

precoding design algorithm (L-ASPD). The premise behind the proposed L-ASPD is to exploit

machine-learning based predictions to help the optimal algorithm to tackle the most difficult and

time-consuming part in the optimization. In particular, the L-ASPD will first predict potential

subsets of antennas, which will be much smaller than
(
N
M

)
.

We deploy DNN as the learning model to establish underlaying relations between the system

parameters (inputs) and the selected antenna subset. The DNN consists of three main parts: one
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Algorithm 3 EXHAUSTIVE SEARCH BASED JOINT ANTENNA SELECTION AND PRECODING

DESIGN
Inputs: H , Ptot, {ηk}Kk=1. Outputs: Copt,Aopt,Wopt

1: Construct the super group A = {A | A ⊂ [N ], |A| = M}

2: Initialize Copt = 0

3: for i = 1 : |A| do

4: A = A[i]

5: Apply Algorithm 1 or Algorithm 2 on the current antenna subset A to obtain the optimal

Xold(A) and W?(A)

6: If Copt < Xold(A)

7: Copt ← Xold(A); Aopt ← A; Wopt = W?(A).

Input Output
Hidden layers

Figure 3. Illustration of a DNN with three hidden layers.

input layer, one output layer and hidden layers, as depicted in Fig. 3. Based on the labeled data,

the DNN will optimize the learning parameters in order to minimize the prediction error, e.g.,

cost function. The L-ASPD is implemented via 3 steps: i) offline training data generation, ii)

building the learning model, and iii) real-time prediction.
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A. Training Data Generation

Since the communication between the BS and the users is specified by the channel gains,

the transmit power budget and noise power, they are essential for the learning model. Let H =

[hH1 , . . . ,h
H
K ]H ∈ CK×N denote the channel coefficients from the BS’s antennas to all users. Since

the number of users can be arbitrary between 1 and M (the number of RF chains), the channel

matrix H is first zero-padded to obtain the standard size H̄ = [HH ,0N×(M−K)]
H ∈ CM×N .

Because the NN accepts only real-value inputs, the original complex representation of the channel

matrix is invalid. One can stack the real and imaginary parts of H̄ and use them as the training

input to the NN [29]. However, we observe that such method is not efficient to our problem

because it does not directly capture inter-user interference - the major limiting factor in multiuser

systems. As the inter-user interference is determined by the cross-product of the channel vectors

of two users, we choose x = Ptot
σ2 abs(vec(H̄H̄H

)) ∈ RM2×1 as the training input. It is worth

noting that the training input x is robust against the number of users and pathloss, as well as

the BS’s transmit power. Last but not least, x should be normalized before being fed to the NN,

i.e., x = x
max(x)

.

Once the input sample is given, we need to define the output, which is the selected antenna

combination that provides the maximum objective function in (3). For each training input x, we

define an output vector b ∈ {0, 1}(
N
M)×1 that consists of all possible antenna subsets. b[n] = 1 if

the n-th subset is selected, otherwise b[n] = 0. Because we are interested in selecting only one

subset, we have ‖b‖0 = 1. In order to compute b, for each channel realization H (corresponding

to x), we run the proposed JASPD algorithm to find the best antenna subset A? and then assign

the output element b[n?] = 1 corresponding to A?. Denote by NS the number of samples

used to train the learning model. The total training input is aggregated in the input matrix

X = [x1,x2, . . . ,xNS ], where xt is the t-th input sample. Similarly, the training output matrix

is B = [b1, . . . , bNS ], where bt is the t-th output sample corresponding to the input sample xt.

The steps for generating the training samples are listed in Table I. We note that JASPD algorithm

considered in Table I is used for generating training samples and is executed off-line. Once the

NN is well-trained, it is used for only the selected antenna subsets in the real-time prediction

phase.
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Table I

STEPS TO GENERATE TRAINING SAMPLES FOR L-ASPD

1. For t = 1 : NS

2. Generate a random number of users K between [1,M ].

3. Generate random locations of these K users between 50 and

300m from the BS. Calculate the pathloss.

4. Generate a channel matrix H ∈ CK×N , including

the pathloss.

Output sample generation

5. Run JASPD algorithm to find the best antenna subset.

6. Compute the binary output vector bt with only a single

non-zero element corresponding to the selected subset.

Input sample generation

5. Zero-padding: H̄ = [HH ,0N×(M−K)]
H .

6. Calculate xt = Ptot
σ2 abs(vec(H̄HH̄)); xt = xt

max(xt)
.

7. Endfor

B. Building the Learning Model

When the training data is available, it will be used to train the NN with the learning parameter

Θ. For an L-layer NN, we have Θ = [θ1, . . . ,θL], where θl ∈ RNl×1, 1 ≤ l ≤ L, is the

learning parameters in the l-th layer, and Nl is the number of nodes in the l-th layer. As the

most popular and efficient candidate for classification problems, we employ a sigmoid-family

tansig(z) = 2(1 + e−2z)−1 − 1 as the activation function for the hidden layers and the soft-

max as the activation function for the output layer. The learning phase can be done via the

minimization of prediction error

∆(Θ) =
1

NS

‖ − Tr(BT log(fΘ(X))) (16)

−Tr(B̄T log(1− fΘ(X))) ‖2 +
λ

2NS

∑L

l=1
‖ θl ‖2,

where λ is the regulation parameter, B̄ = 1 −B, and fΘ(X) is the prediction of the output

layer.

C. Real-time Prediction

When the NN has been well trained, it is ready to provide real-time and highly accurate pre-

dictions. From the current channel coefficient matrix H , we construct x = Ptot
σ2 abs(vec(H̄HH̄)),
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Algorithm 4 Proposed L-ASPD Algorithm
Inputs: Θ, H , Ptot, {ηk}Kk=1. Outputs: Copt,Aopt,wopt

1: Construct x = Ptot
σ2 abs(vec(HHH))2; xnorm = x

max(x)

2: Apply xnorm to the learned model Θ to predict KS

3: Initialize Copt = 0

4: for A ∈ KS

5: Apply Algorithm 1 or 2 on the current subset A to

6: obtain the optimal Xold(A) and w?,A

7: if Copt < Xold(A)

8: Copt = Xold(A); Aopt ← A; wopt ← w?,A.

where H̄ = [HH ,0N×(M−K)]
H , which is then normalized to obtain xnorm = x

max(x)
. Then xnorm

is used as the input of the trained NN to output the prediction vector b̂. It is worth noting

that the NN does not provide absolute prediction, e.g., 0 or 1, but probabilistic uncertainties,

e.g., −1 ≤ b̂[n] ≤ 1, ∀n. In general, the larger an element in b̂ is, the higher chance this

element is the best antenna subset. Consequently, the subset An? corresponding to the largest

output prediction, i.e., n? = arg maxn b̂[n], can be selected. However, the prediction is not always

precise. Therefore, in order to improve the performance of L-ASPD, instead of choosing only one

best candidate, we select KS subsets, denoted by KS , corresponding to the KS largest elements

in b̂. Then, we apply the precoding design (Algorithm 1 or 2) on these KS subsets. Intuitively,

larger values of KS will increase the chance for the L-ASPD to select the best antenna subset at

an expense of more computation complexity. The steps of the L-ASPD are listed in Algorithm 4.

Compared with the JASPD, the L-ASPD significantly reduces the computational time since it

tries only KS promising candidates instead of
(
N
M

)
. Consequently, the L-ASPD is expected to

achieve higher effective sum rate than that of the JASPD, especially when KS �
(
N
M

)
.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed algorithms via simulation results.

The users are uniformly distributed in an area between 50 and 300 meters from the centered-BS.

We employ the WINNER II line-of-sight pathloss model [33], which results in that the pathloss

is uniformly distributed between −59.4 dB and −74.6 dB. All wireless channels are subject to

Rayleigh fading. The channel bandwidth B = 1 MHz and the noise spectral density is -140
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dBm/Hz. We adopt the LTE specifications [34] that one c.u. lasts in one symbol duration and

is equal to 66.7 µs, and one block duration is spanned over 200 c.u.. The BS is assumed to

spend 0.2 c.u. to solve one convex optimization problem [36]. As a result, it takes 0.2KS c.u.

to execute the proposed L-ASPD, where KS is the number of predicted subsets. We employ an

NN with two hidden layers to train the learning model for the L-ASPD, each layer consists of

100 nodes5. SVM can also be employed for its fast training phase, however, results in poorer

performance compared to NN. This is because SVM results in hyperplanes to discriminate the

data whereas the NN can discriminate data using more elaborate functions. The NN is trained

using the scaled conjugate gradient method. Other simulation parameters are listed in Table II.

Table II

SIMULATION PARAMETERS

Parameters Value

Cell radius 300 m

BS’s transmit power 1 W - 5W

Number of RF chains M 4

Number of antennas N Varies

Number of users K Varies between 1 and M

QoS ηk = η,∀k 2 Mbps

Training method Scaled conjugate gradient

Activation function (hidden layers) tansig

Activation function (output layer) soft− max

Loss function Cross-entropy

A. Convergence of the Proposed Optimization Algorithms

We first evaluate the convergence performance of the proposed iterative Algorithm 1 and 2

presented in Section III. The results are obtained from 200 random realizations of channel fading

coefficients and users’ locations. For each realization, we run both Algorithm 1 and 2 until they

converge. Fig. 4a compares the sum-rate obtained by the two proposed algorithms as a function

of the iteration number. It is clearly shown that both algorithms converge quickly after less than

10 iterations, which demonstrates the effectiveness of the proposed iterative algorithms.

5We heuristically try a different number of hidden layers and find out that a NN with two hidden layers is sufficient for our

problem
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Figure 4. Performance comparison of the proposed Algorithm 1 and 2, Ptot = 37 dBm and K = 4. Both algorithms converge

in less than 10 iterations.

In order to provide insights on the computation performance of the proposed algorithms,

we show in Fig 4b the sum-rate versus the simulation time. Both algorithms are carried out

by SeDuMi solver integrated in Matlab 2017b, running on a personal laptop with the Intel

i7-6820HQ CPU and 8GB RAM. It is observed that Algorithm 2 executes slightly faster than

Algorithm 1, however, achieves a smaller sum-rate. The performance gain brought by Algorithm 1

results from the fact that it uses more memory than Algorithm 2, as shown in Table III. Due to

superior performance, we will employ the proposed Algorithm 1 in the remaining comparisons.

Table III

NUMBER OF VARIABLES REQUIRED BY ALGORITHM 1 AND 2 FOR DIFFERENT SETUPS FOR N = 8.

M 2 3 4 5

Algorithm 1 267 400 533 666

Algorithm 2 55 94 141 196

B. Performance-complexity Trade-off of the L-ASPD

In this subsection, we examine the efficiency of the proposed L-ASPD via a performance-

complexity gain trade-off. By confining the search space of the prediction output, i.e., KS - the

number of potential antenna subsets, we can manage the complexity of L-ASPD since it will
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work only on KS candidates. The complexity gain of L-ASPD is defined as the relative time

saving compared to the exhaustive search that tries every antenna subsets, calculated as:

θ(KS) =
τ(
(
N
M

)
−KS)

τ
(
N
M

) = 1− KS(
N
M

) , (17)

where τ is the computational time spent on the optimization of the precoding vectors for a

selected antenna subset. The performance gain is defined as the ratio between the sum rate

obtained by L-ASPD divided by the optimal sum rate which is achieved by searching all possible

antenna subsets.

Fig. 5 plots the performance-complexity tradeoff of the proposed L-ASPD with M = 4 RF

chains and N = 8 total number of antennas. It is observed that the L-ASPD retains more

than 96% of the optimal sum rate (which is obtained by exhaustive search) while saving more

than 95% complexity. Even when spending only 2% the computational time, the L-ASPD still

achieves 86% the optimal performance, which confirms the effectiveness of the proposed L-

ASPD algorithm. Compared with the heuristic solution, the L-ASPD further reduces more than

13% the computational time at the 95% performance gain target.

Fig. 6 plots the relative performance in the real-time prediction of L-ASPD versus the number

of training samples. The relative performance is measured as the ratio of the L-ASPD’s sum

rate divided by the one obtained by the JASPD. Each training sample is generated randomly

and captures the randomness in both channel small-scale fading and user location. In general,

having more training samples results in better prediction accuracy since the L-ASPD learns more

about the intrinsic relation between the selected antennas and the input features. It is shown that

2×105 training samples are sufficient for the L-ASPD to achieve more than 94% of the optimal

performance.

C. Online Performance Comparison

This subsection demonstrates the effectiveness of the proposed L-ASPD algorithm via per-

formance comparisons with existing solutions in difference scenarios. The first baseline scheme

is proposed in [5], which employs block diagonalization to consecutively eliminate antennas

that incur the largest transmit power cost. The second baseline is introduced in [29], which

is a learning-assisted antenna selection for multicasting. In addition, a Heuristic search is also

presented, which also applies the proposed beamforming design but it searches for the antenna
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Figure 5. Performance-complexity tradeoff of the proposed L-ASPD. M = 4, N = 8.
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Figure 6. Learning (relative) performance versus the number of training samples. M = 4, N = 8.

subset heuristically. We note that comparison with [27], [28], [30] is not applicable because [27],

[28] consider a single-user system and [30] selects only a single antenna.

Fig. 7 shows the achievable sum rate as a function of KS - the most promising subsets predicted

by the proposed L-ASPD algorithm. In order to reveal the benefit of proposed beamforming

design in Algorithm 1, we also show a curve, which applies a zero-forcing based power control

[35] on the antenna subsets predicted by Algorithm 4. This curve is named as Proposed - Zero
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Figure 7. Sum rate performance of the proposed algorithms versus the number of predicted subsets KS . Ptot = 33 dBm,

M = 4 and N = 8.

Forcing in the figures. It is shown that the proposed L-ASPD significantly surpasses all schemes

for all observed KS values. In general, having more predicted subsets KS results in a larger

sum rate, which is in line with results in Fig. 5. In particular, by searching over the most five

promising subsets, the proposed L-ASPD achieves 1 Mbps and 2 Mbps higher than schemes

in [29] and [5], respectively. We note that the sum rate of the scheme in [5] is independent

from KS since it predicts the best antenna subset. Similarly, the performance curve of [29] has

a step-shape because it uses the active antennas as the prediction outputs, hence it is only able

to confine the original search space to
(
M+n
M

)
subsets, with 0 ≤ n ≤ N −M .

Fig. 8 plots the sum rate as a function of the transmit power. The effectiveness of the proposed

learning-based method is shown via the largest sum rate achieved by the L-JAPD compared to

other schemes. On average, the L-JAPD algorithm produces 1.5 Mbps and 2 Mbps more than the

solution in [29] and heuristic scheme, respectively, proving that the NN has been well trained.

Compared to the solution in [5], the L-ASPD achieves a relative sum rate gain of 5 Mbps

and 2 Mbps at the transmit power equal to 30 dBm and 33 dBm, respectively. One interesting

observation is that the Zero-forcing scheme and the solution in [5] approach the L-ASPD’s

performance when the total transmit power budget increases. This is because for large Ptot,

the BS has sufficient power budget to fully mitigate inter-user interference. For small Ptot, the
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Figure 8. Sume rate performance of the proposed algorithms versus the total transmit power Ptot. KS = 7 and N = 8 available

antennas.

6 7 8 9 10

Number of available antennas

7

8

9

10

11

12

13

14

S
um

 r
at

e 
(M

bp
s)

Proposed L-ASPD
Proposed JASPD
Reference [5]
Reference [29]
Heuristic

Figure 9. Effective sum rate comparison for various number of total antennas N . Ptot = 30 dBm, M = 4,KS = 10.

system resource becomes scarce, therefore completely eliminating inter-user interference is far

from the optimum, which is shown in a big gap between the L-ASPD and these two schemes.

In such high-load scenarios, employing the proposed design is highly beneficial.

Fig. 9 presents the effective sum rate for different total antennas numbers N . For a fair
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comparison, the total transmit power is kept constant at 30 dBm and the total overhead of channel

estimation and computation is taken into account. For the former, it takes 8 c.u. to obtain the CSI

when the total antenna number is 6, 7, 8, and takes 12 c.u. when the number of antennas is 9 and

10. Consider the latter, the L-ASPD algorithm only searches over 10 most promising candidates,

while the JASPD tries all
(
N
M

)
antenna subsets. In general, having more antennas results in higher

effective sum rate of all schemes, which confirms the benefit of antenna selection. Interestingly,

the proposed L-ASPD algorithm achieves the best performance and surpasses the exhaustive

search scheme, especially for large N , which is in contrast to common understanding that the

exhaustive search achieves the best performance. This is because we take the computation time

into account in the comparison, as shown in (2). As a result, the exhaustive search scheme spends

too much time in searching for the best subset, particularly with large N , resulting in smaller

effective rates. As an example for N = 10, the exhaustive search scheme requires a computation

time which is 21 times more than that of the L-ASPD.

VI. CONCLUSIONS

We studied the joint design for antenna selection and precoding vectors in multi-user multi-

antenna systems to fully exploit the spatial diversity. We first proposed a (near) optimal joint an-

tenna selection and precoding algorithm to maximize the system sum rate, subjected to the users’

QoS and limited transmit power. The proposed joint design successively optimizes the precoding

vectors via two proposed iterative optimization algorithms based on the semidefinite relaxation

and successive convex approximation methods. In order to further improve the optimization

efficiency, we then developed the machine learning-based solution to provide appropriate and

time-stringent antenna predictions. The proposed learning-based algorithm is robust against the

number of users and their locations, the BS’s transmit power, as well as the channel fading. We

showed via simulation results that the proposed learning-based solution significantly surpasses

existing selection schemes and outperforms the exhaustive search-based solution.

Based on the outcome of this work, several research directions can be considered. The first

problem is how to improve the training phase efficiency, which is especially important when the

number of available antennas is very large. In such a case, a low-complexity precoding design,

e.g., zero-forcing, can be used to quickly obtain sufficient training samples. The second problem

lies in dealing with the network dynamics, which requires the learning model to frequently and
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timely adapted. Transfer leaning and reinforcement learning are promising solutions in this case

to avoid retraining the whole network.

APPENDIX A

PROOF OF PROPOSITION 1

Denote
(
W

(t)
? ,x

(t)
? ,y

(t)
?

)
as the optimal solution of P2(y

(t)
0 ) at iteration t. We will show

that if y(t)
?k < y

(t)
0k ,∀k, then by using y

(t+1)
0k = y

(t)
?k in the (t + 1)-th iteration, we will have∑

k x
(t+1)
?k >

∑
k x

(t)
?k , where {x(t+1)

?k }Kk=1 is the solution at iteration t+ 1. Indeed, by choosing a

relatively large initial value y(1)
0 , we always have y(1)

?k < y
(1)
0k ,∀k.

Denote f(y; a) = ea(y − a + 1) as the first order approximation of the ey function at a.

At iteration t + 1, we have y
(t+1)
0k = y

(t)
?k ,∀k. Therefore, f(y; y

(t)
?k ) is used in the right-hand

side of constraint (9a) at the (t + 1)-th iteration. Consider a candidate (y
(t+1)
1 , . . . , y

(t+1)
K ) for

any y
(t+1)
k ∈ (ŷk, y

(t)
?k ), where ŷk = y

(t)
?k − 1 + ey

(t)
0k−y

(t)
?k (y

(t)
?k − y

(t)
0k + 1). Because function exp()

is convex and y
(t+1)
k < y

(t)
?k , then we have f(y

(t+1)
k ; y

(t)
?k ) > f(y

(t)
?k ; y

(t)
0k ),∀k. Therefore, there

exits W (t+1)
k and x

(t+1)
k > x

(t)
?k which satisfies constraints (7) and (9a). Consider a new set

{W (t+1)
k , x

(t+1)
k , y

(t+1)
k }Kk=1. This set satisfies all the constraints of problem P2(y

(t)
? ), and therefore

is a feasible solution of the optimization problem. As the result, the optimal objective at iteration

(t + 1), B̄
log(2)

∑
k x

(t+1)
?k , must satisfy B̄

log(2)

∑
k x

(t+1)
?k ≥ B̄

log(2)

∑
k x

(t+1)
k > B̄

log(2)

∑
k x

(t)
?k , which

completes the proof of Proposition 1.

APPENDIX B

CONVEXITY OF FUNCTION xTAx
y

To prove the convexity of F (x, y) = xTAx
y

for any positive semi-definite matrix A, we need
to show that the Hessian matrix of F (x, y) is positive semidefinite. Indeed, the Hessian matrix
of F (x, y) is

HF =

 A+AT

y − (A+AT )x
y2

−xT (A+AT )
y2

2xTAx
y3

 .
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For arbitrary vector c = [aT b]T , where a ∈ RN×1, consider a function

cTHF c =
aT (A+AT )a

y
− a

T (A+AT )xb

y2

− x
T (A+AT )ab

y2
+

2xTAxb2

y3

(∗)
=
aT(A+AT )a

y
−2a

T (A+AT )xb

y2
+
xT (A+AT )xb2

y3

=
aT Ãa− 2aT Ãx̃+ x̃T Ãx̃

y
, (18)

where Ã , AT + A, x̃ , xb/y and (∗) results from the fact that A is symmetric and

aT Ãx̃ = x̃T Ãa. It is obvious that the RHS of (18) is always non-negative for y > 0 and

positive semi-definite matrix Ã, which concludes the positive semi-definite of the Hessian matrix

of F (x, y).
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