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ABSTRACT
Supermassive black holes in the centre of galaxies dominate the gravitational potential of their surrounding stellar clusters. In
these dense environments, stars follow nearly Keplerian orbits, which get slowly distorted as a result of the potential fluctuations
generated by the stellar cluster itself. In particular, stars undergo a rapid relaxation of their eccentricities through both resonant
and non-resonant processes. An efficient implementation of the resonant diffusion coefficients allows for detailed and systematic
explorations of the parameter space describing the properties of the stellar cluster. In conjunction with recent observations of
the S-cluster orbiting SgrA∗, this framework can be used to jointly constrain the distribution of the unresolved, old, background
stellar cluster and the characteristics of a putative dark cluster. Specifically, we show how this can be used to estimate the typical
mass and cuspide exponent of intermediate-mass black holes consistent with the relaxed state of the distribution of eccentricities
in the observed S-cluster. This should prove useful in constraining supermassive black hole formation scenarios.

Key words: diffusion – gravitation – galaxies: kinematics and dynamics – galaxies: nuclei.

1 IN T RO D U C T I O N

Galactic nuclei are among the densest stellar systems of the uni-
verse. Recent outstanding observations keep providing us with new
information on these regions. These include detailed census of stellar
populations around SgrA∗ in the centre of the Galaxy (Ghez et al.
2008; Gillessen et al. 2017), the first observation of the relativistic
precession of the star S2 within our own Galactic centre (Gravity
Collaboration 2020); the observation of a cool accretion disc around
SgrA∗ (Murchikova et al. 2019); the first image of the shadow of
M87 (Event Horizon Telescope Collaboration 2019) and mergers
of binary black holes recently detected via gravitational wave
emission (Abbott et al. 2019), that may or may not have occurred in
galactic nuclei. These various successes will soon be complemented
with ever finer resolution around SgrA∗ (Gravity Collaboration
2017), as well as much larger stellar populations permitted by the
planned upgrade on VLTI/GRAVITY (Eisenhauer 2019; Gravity
Collaboration 2021), as well as the upcoming thirty-metre class
telescopes such as TMT (Do et al. 2019) and ELT/MICADO (Davies
et al. 2018; Pott et al. 2018). Such a wealth of observational
information offers new venues to investigate the details of stellar
dynamics around supermassive black holes (BHs), as well as probe
the possible presence of intermediary mass black holes (IMBHs) in
these regions (Portegies Zwart & McMillan 2002).

Indeed, in the crowded region of galactic nuclei, the gravitational
potential remains none the less dominated by the central supermas-
sive BH. Because of the steep gravitational potential that this BH
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induces, galactic nuclei involve a wide range of relaxation processes
and time-scales (Rauch & Tremaine 1996; Hopman & Alexander
2006; Merritt 2013; Alexander 2017). These are: (i) the dynamical
time associated with the fast Keplerian motion imposed by the central
BH (∼16 yr for S2, e.g. Gillessen et al. 2017). On longer time-scales,
one can formally smear out the stars along their stellar orbits so that
they are effectively replaced with massive eccentric wires; (ii) the
in-plane precession time of the Keplerian wires generated by both
the relativistic corrections from the central BH and the stellar mean
potential (∼3 × 104 yr for S2, e.g. Gravity Collaboration 2020);
(iii) the vector resonant relaxation (VRR) time (see e.g. Kocsis &
Tremaine 2015; Fouvry, Bar-Or & Chavanis 2019) during which,
as a result of the non-spherically symmetric stellar fluctuations and
relativistic corrections induced by a spinning BH, stars undergo a
stochastic reshuffling of their orbital orientations (∼1 Myr for S2,
e.g. Kocsis & Tremaine 2011); (iv) the scalar resonant relaxation
(SRR) time (Rauch & Tremaine 1996; Bar-Or & Alexander 2016;
Sridhar & Touma 2016; Bar-Or & Fouvry 2018) during which
resonant torques between the in-plane precessing wires lead to a
diffusion of the wires’ eccentricities (∼10 Myr for S2, e.g. Bar-Or &
Fouvry 2018); (v) the non-resonant relaxation (NR) time (Bahcall &
Wolf 1976; Lightman & Shapiro 1977; Bar-Or, Kupi & Alexander
2013; Vasiliev 2017) during which nearby pairwise scatterings slowly
drive the long-term relaxation of the wires’ semimajor axes, as well
as of their eccentricities (∼1 Gyr for S2, e.g. Kocsis & Tremaine
2011).

The leverage provided by modelling these dynamical processes
with recent observations should allow us to constrain hidden features
of the Galactic centre. Here, we will focus on the relaxation of
stellar eccentricities in galactic nuclei, through processes (iv) and (v).
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4290 K. Tep et al.

Indeed, as emphasized in Gillessen et al. (2017) (see fig. 13 therein),
the S-cluster orbiting SgrA∗ (for a � 5 mpc) has been observed with
a significantly relaxed distribution of eccentricities. Detailed spec-
troscopic observations (Habibi et al. 2017) also provide us with well
constrained main-sequence ages for these same stars. The age of the
young B-stars at a distance of ∼10 mpc from the BH is comparable to
the resonant relaxation time, implying that resonant relaxation may
have played an important role in their dynamical structure (Hopman
& Alexander 2006). Hence, any credible diffusion mechanism has
to be efficient enough to drive a significant eccentricity relaxation
of the S-stars within their lifetime. Equivalently, one may use this
constraint as a dynamical probe to further characterize the properties
of the unresolved old stellar and putative dark cluster, which both
drive the relaxation of the S-stars themselves (see e.g. Generozov &
Madigan 2020). Following Merritt, Gualandris & Mikkola (2009),
Antonini & Merritt (2012), Monte Carlo simulations have similarly
shown that stellar mass BHs can reduce the resonant relaxation time
near the present-day location of the S-stars to ∼10 Myr, which is
of the order of the age of the S-stars (Habibi et al. 2017). This
is the purpose of this paper. We use kinetic theory to constrain
the range of cluster models for SgrA∗ that are compatible with
the observational requirement of having significantly relaxed S-stars
eccentricities.

The paper is organized as follows. In section 2, we briefly review
the two main dynamical processes in galactic nuclei through which
stars can relax in eccentricities. We also detail our (fast) numerical
computations of the associated diffusion coefficients. In section 3, we
place first constraints on the stellar distribution of the unresolved old
(stellar and dark) cluster using these diffusion process in conjunction
with recent observations of the S-cluster. We also present a fiducial
model in which we can vary the number of stars to anticipate what
upcoming instruments will be able to measure. Finally, we discuss
these results and conclude in section 4.

2 LO N G - T E R M R E L A X AT I O N

2.1 Mean-field dynamics

Let us consider a test star orbiting within a galactic nuclei containing
a central supermassive BH of mass M•. Because the potential
is dominated by the central BH, this test star follows a (nearly)
Keplerian orbit that we can describe using orbital elements (Murray
& Dermott 1999) written as (M, ω, �, Jc, J, Jz). In these notations,
the dynamical angles are M the mean anomaly, i.e. the location of
the star along its Keplerian orbit, ω the argument of the pericentre,
and � the longitude of the ascending node. The associated actions
are given by

Jc =
√

GM•a; J = Jc

√
1 − e2; Jz = J cos(I ). (1)

In that expression, Jc is the circular angular momentum, a the orbit’s
semimajor axis and e its eccentricity, J the magnitude of the angular
momentum vector, I its inclination, and Jz its projection along the
z-axis.

The fast Keplerian motion of the star is then described by
Ṁ = νKep, with the Keplerian frequency

νKep(a) =
√

GM•
a3

. (2)

This dynamical time being so short, the traditional approach of
secular dynamics is to smear out the stars along their Keplerian
ellipses (see e.g. Touma, Tremaine & Kazandjian 2009), so that they
formally become massive wires. Following this orbit-average over

M, the conjugate coordinate Jc (and therefore a) is conserved by
adiabatic invariance for the secular dynamics.

Describing the long-term dynamics of stellar orbits in galactic
nuclei amounts then to describing the long-term evolution of the
remaining five coordinates {ω, �, Jc, J, Jz}. On longer time-scales,
the wires undergo some in-plane precession, described by

dω

dt
= νp(a, j ) = νGR(a, j ) + νM(a, j ). (3)

Here, νp(a, j) describes the total precession frequency of the
wire’s pericentre. It is given by the joint contribution from the
relativistic corrections from the central BH, i.e. the Schwarzschild
precession (Merritt 2013), through the term νGR(a, j), as well as from
the mass precession imposed by the mean background stellar cluster,
νM(a, j). Appendix A presents explicit expressions of both of these
frequencies.

As mentioned in introduction, on time-scales longer than the
precession time the Keplerian wires will be subject to three main
relaxation processes, namely the VRR, during which the direction
of the stellar orbital plane, Ĵ = (�, I ), diffuses; the SRR, during
which J, i.e. the eccentricity e, diffuses; and finally, the NR, during
which both (Jc, J) diffuse, i.e. wires undergo changes in both a and
e. Here, we are interested in the process of eccentricity relaxation.
Stellar eccentricities can relax both through SRR and NR, and we
now briefly recall the key properties of these two processes.

2.2 Eccentricity relaxation

We are interested in the dynamics of the S-stars on time-scales of the
order of ∼10 Myr, i.e. their stellar age. Since this age is generically
much shorter than the time-scale for NR, we may assume that the
semimajor axis of each star, a, is conserved. As a consequence,
we keep track of the stars’ eccentricities through the dimensionless
angular momentum

j =
√

1 − e2. (4)

Characterizing the relaxation of the S-stars amounts then to describ-
ing the long-term dynamics of their j.

This diffusion is sourced by the potential fluctuations generated
by the background unresolved cluster. This cluster is expected to be
old, i.e. has been orbiting around SgrA∗ for a time much longer than
the SRR relaxation time. As such, we may assume that it has already
fully relaxed all its orbital elements. We therefore assume that it has a
spherically symmetric distribution of orientations, and, importantly,
follows a thermal distribution of eccentricities.

In that limit, the eccentricities of the test particles, i.e. the
eccentricities of the S-stars, follow a diffusion equation of the
form (Bar-Or & Alexander 2016)

∂P (j, t | a)

∂t
= 1

2

∂

∂j

[
j Djj (a, j )

∂

∂j

(
P (j, t | a)

j

)]
, (5)

where P (j, t | a) describes the probability distribution function
(PDF) of test stars’ eccentricities, j, for a given semimajor axis a, as
a function of time, normalized so that

∫
dj P (j, t | a) = 1. The flux

is conserved because the boundary conditions are such that there is,
by design, no flux that escapes the [0, 1] interval. Indeed, at j = 0, the
flux vanishes because of the j-factor in equation (5), while at j = 1,
the diffusion coefficient Djj goes to 0. We neglect the supermassive
BH’s loss-cone region, which would drive a small exiting flux at
low j. Finally, we also neglect the diffusion in a (hence Daa = 0),
which is minor compared to that in angular momentum j (Bar-Or &
Alexander 2016). Stars diffuse therefore at fixed semimajor axes.
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Resonant relaxation of S-stars 4291

The steady state of equation (5) is given by the thermal solution,
Pth(j | a) = 2j , i.e. the eccentricity PDF also followed by the
background stars. Let us already note that equation (5) can be
rewritten under the more classical Fokker–Planck (FP) form as

∂P (j, t |a)

∂t
= − ∂

∂j
[Dj (a, j ) P (j, t |a)]

+ 1

2

∂2

∂j 2
[Djj (a, j ) P (j, t |a)], (6)

where the first- and second-order diffusion coefficients satisfy the
fluctuation-dissipation relation (Bar-Or & Alexander 2016)

Dj = 1

2j

∂

∂j
[j Djj ]. (7)

The rewriting from equation (6) is useful to perform Monte Carlo
integrations of the stochastic dynamics, as presented in Appendix D.

In equation (5), we introduced the diffusion coefficient in angular
momentum, Djj(a, j), that are the sum of two contributions

Djj (a, j ) = DRR
jj (a, j ) + DNR

jj (a, j ), (8)

where DRR
jj (a, j ) captures the contribution from resonant relaxation

(RR), while DNR
jj (a, j ) is associated with the contribution from NR.

We now detail the content of each of these coefficients.

2.3 Scalar resonant relaxation

A first source of eccentricity relaxation stems from the long-
range resonant couplings between the in-plane precessing wires.
Following Bar-Or & Fouvry (2018) and references therein, the SRR
diffusion coefficients read

DRR
jj (a, j ) = 4πG2

J 2
c

+∞∑
n=1

+∞∑
n′=−∞
n′ �=0

n2

|n′|

×
∫

da′ Ftot(a
′, j ′)

|Ann′ (a, j, a′, j ′)|2
|∂j νp(a′, j ′)| , (9)

where Jc = Jc(a) was defined in equation (1), and j
′

is the implicit
solution of the resonance constraint

νp(a′, j ′) = n

n′ νp(a, j ), (10)

with the in-plane precession frequencies, νp(a, j), already introduced
in equation (3).

In equation (9), we introduced the distribution function (DF),
Ftot(a

′
, j

′
), to describe the background cluster, whose potential

fluctuations are responsible for the long-term diffusion of stellar
eccentricities. It is defined as

Ftot(a, j ) =
∑

i

m2
i Ni(a) fi(j |a), (11)

where the sum over i runs over all the subpopulations of the
background cluster. Each population is characterized by an individual
mass, mi, while Ni(a) is the number of stars per unit semimajor axis
a, and fi(j |a) is the conditional PDF of j for a given a, normalized
so that

∫
djfi(j |a) = 1. In practice, in order to ease the numerical

resolution of the resonance condition (see Appendix A) and the
computation of the NR diffusion coefficients, we assume that each
population follows a power-law distribution in semimajor axes and is
also fully relaxed in eccentricity, i.e. fi(j |a) = 2j , owing to their old
dynamical age. We further detail all our normalization conventions
in Appendix B.

The resonant diffusion coefficients from equation (9) involve
the coupling coefficients |Ann′ |2 that describe the efficiency of the
resonant coupling between two wires. They read

|Ann′
(
a, j, a′, j ′) |2 = 16π2

∑
�

|yn
� |2|yn′

� |2
(2� + 1)3

∣∣K�
nn′

(
a, j, a′, j ′) ∣∣2

,

with the constant coefficients yn
� = Y n

� ( π
2 , π

2 ), where the spherical
harmonics are defined with the convention

∫
dr̂ |Y n

� (̂r)|2 = 1. This
equation involves the pairwise in-plane coupling coefficients K�

nn′
that read

K�
nn′ (a, j, a′, j ′) =

〈
cos(nf ) cos(n′f ′)

Min[r, r ′]�

Max[r, r ′]�+1

〉
�
, (12)

where f is the true anomaly, while 〈 · 〉� stands for the orbit-average
over both radial oscillations. Let us already emphasize that the
coupling coefficients from equation (12) satisfy various symmetry
properties. First, as imposed by |yn

� |2 and |yn′
� |2, these coefficients

are non-zero only when |n|, |n′ | ≤ �, as well as (� − n) and (� −
n

′
) even. In addition, we note that we have |Ann′ |2 = |A±n±n′ |2, i.e.

the strength of the (n, n
′
) coupling is independent of the sign of

the resonance numbers. These are all important features which will
allow us to reduce the required number of evaluations of the coupling
coefficients. Finally, in practice, in equation (12), we truncate the
harmonics up to a given �max.

In equation (12), the Min–Max terms stem from the usual
Legendre expansion of the Newtonian interaction potential. The
computation of K�

nn′ is the overall bottleneck of the whole calculation
of the SRR diffusion coefficients which we have to address. A
naive inspection of equation (12) would lead us to believe that its
computational complexity scales like O(K2), with K the number
of sampling points used to discrete both anomalies. Fortunately,
one can take inspiration from multipole methods (see e.g. Fouvry
et al. 2020) to compute them much more efficiently, yielding a
computational complexity scaling like O(K). This is detailed in
Appendix C.

Once the coupling coefficients have been estimated, we rely on
equation (9) to evaluate the diffusion coefficients. This requires in
particular to solve for the resonance condition from equation (10).
For a given wire (a, j) and a given resonance pair (n, n

′
), this

amounts to finding all the wires (a
′
, j

′
) for which the resonance

condition nνp(a, j) = n
′
νp(a

′
, j

′
) is satisfied. We detail in Appendix A

our approach to solve the resonance condition, improving upon the
method from Bar-Or & Fouvry (2018). The performance of the code
is given in Table C1. The corresponding code is publicly available
(see the data distribution policy below).

Fig. 1 gives an example of a computation of the RR diffusion
coefficients for a fixed value of the semimajor axis. In particular,
we recover the drastic damping of the RR diffusion coefficients for
very eccentric orbits. This is due to the divergence of the relativistic
precession frequencies for ever more eccentric wires, which prevents
these wires from resonating with the bulk of the other wires (Merritt
et al. 2011; Bar-Or & Alexander 2016). As can be noted from
Fig. 1, very eccentric wires (j ∼ 0) are then immune to the RR
diffusion, and can only keep diffusing under the effect of the NR
contributions.

2.4 Non-resonant relaxation

A second process through which test stars relax in eccentricities
originates from NR (see §7.4.4 in Binney & Tremaine 2008). In that
case, it is the slow build-up of nearby scatterings that ultimately
drives the diffusion of their orbital parameters.
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4292 K. Tep et al.

Figure 1. Illustration of the RR (full line) and NR (dashed line) diffusion
coefficients. For the a Top-Heavy model (see section 3.1), we vary γ • for a
given value semimajor axis a = 10 mpc and the harmonic cutoff �max = 10.
The diffusion coefficients go to 0 as j → 1 (circular orbits), while the RR ones
get drastically reduced for very eccentric orbits (Merritt et al. 2011; Bar-Or &
Alexander 2016). As such, for small enough j, the NR coefficients dominate
over the RR ones.

In order to evaluate the associated diffusion coefficient, DNR
jj (a, j ),

we used the exact same approach as in Appendix C of Bar-Or
& Alexander (2016). In a nutshell, the calculation proceeds as
follows. (i) At a given phase-space location (r, v), one computes
the local velocity diffusion coefficients, 〈δv〉(r, v) and 〈(δv)2〉(r, v),
see equation (7.83a) in Binney & Tremaine (2008). We note that
here this calculation is greatly simplified by our assumption that
the background cluster is fully relaxed, i.e. the cluster follows an
isotropic DF, Ftot = Ftot(E). (ii) The local diffusion coefficients
are then translated into local diffusion coefficients in energy and
angular momentum, e.g. 〈δE〉(r, v), 〈δJ 〉(r, v). (iii) These local
kicks then accumulate as the star moves along its Keplerian wire.
Following an orbit-average, one obtains therefore the associated
orbit-averaged diffusion coefficients, e.g. 〈�J 〉(a, j ) = ∮

dM
2π

〈δJ 〉.
(iv) Having obtained the first- and second-order diffusion coefficients
within the orbital coordinates (E, J), we can obtain the associated
diffusion coefficients in the (a, j) space through the appropriate
change of variables, in particular 〈(�j )2〉(a, j ) = DNR

jj (a, j ). In
practice, we define the Coulomb logarithm of a family as ln �i =
ln (M•/mi) (see equation (7.84) of Binney & Tremaine 2008). Because
they do not involve any resonance condition, these NR diffusion
coefficients are numerically much less demanding to compute than
the RR ones.

In Fig. 1, we also illustrate these NR diffusion coefficients. In
practice, contrary to the RR ones, the NR diffusion coefficients are
mostly independent of the stars’ eccentricities. Finally, in Fig. 2 we
illustrate the overall dependence of the total diffusion coefficients
from equation (8), i.e. both the RR and NR contributions, in the
whole (a, j) orbital space. In that figure, one can clearly note the
presence of resonance lines associated with RR. One also notes that
the bulk of the currently observed S-stars lie in a region of orbital
space, where the diffusion of eccentricities is dominated by resonant
effects. As a consequence, it is essential to account for these resonant
mechanisms in order to accurately describe the dynamical fate of the
S stars’ eccentricities. One notes finally that the diffusion coefficient
varies significantly as a function of j and stalls dramatically for j →
1. As a result, it takes a much shorter amount of time for initially low
eccentricity orbits to thermalize, or equivalently for a given age, it
requires less massive unresolved perturbers (see also Fig. 3 below).

Figure 2. Illustration of the variation of the total diffusion coefficients,
Djj(a, j), in orbital space (semimajor axis, a and eccentricity, j) for the Top-
Heavy model (see section 3.1). Here are also represented in yellow all the
S-stars (Gillessen et al. 2017), which were used to constrain the properties of
the underlying unresolved stellar cluster. The white region on the left represent
the location in orbital space of the central BH’s loss cone. In the centre of
the figure, resonant couplings in RR create this rugged but accurate aspect,
that can be linked to that of the isocontours of the resonance frequencies, see
Fig. A1.

3 A PPLI CATI ON

Having quantified the two main diffusion processes through which
stars can relax in eccentricities in galactic nuclei, let us use them
as dynamical probes in the context of the recent observation of the
S-stars’ eccentricities within SgrA∗.

3.1 Model’s assumption

For observational data, we use the orbital parameters listed
in Gillessen et al. (2017). Specifically, we use the (a, j) coordinates
for seven of those stars (S1, S2, S4, S6, S8, S9, S12). Indeed, for these
stars, Habibi et al. (2017) provides us also with their main-sequence
ages. These ages are a measure of the total time that the diffusion
equation (5) has had to operate. For simplicity, we assume that on
these time-scales, the NR of the S-stars’ energies did not drive any
significant diffusion, so that the stars’ semimajor axes, a, are kept
fixed. Regarding the initial conditions for the stars’ eccentricities,
we investigate two possible scenarios, either originating from binary
tidal disruptions (Hills 1988; Gould & Quillen 2003; Alexander
2017), i.e. large initial eccentricities, or from an episode of disc
formation (Alexander 2005; Levin 2006; Koposov et al. 2019), i.e.
small initial eccentricities. In practice, we assume that the S-stars
are initialized following a Gaussian distribution centred at j(t = 0)
= 0.2 – with width 0.02 – to mimic the eccentricity distribution of
binary disruptions (Generozov & Madigan 2020), or j(t = 0) = 0.9
to mimic in-situ disc formation. For alternative scenario, see also
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Resonant relaxation of S-stars 4293

Figure 3. Confidence regions for the Top-Heavy model (see section 3.1) using the maximum-likelihood method applied to the observed S-stars, assuming a
large initial eccentricity (j0 = 0.2, the canonical value, left-hand panels), or a small initial eccentricity (j0 = 0.9, right-hand panels). The cyan line corresponds
to m• = 100 M, above which the heavy objects are usually considered as IMBHs. The cusp’s indices and the total enclosed masses are fixed to their fiducial
values (see equation 14), but we let the individual masses, (m�, m•), vary. Confidence levels are inferred from the LR test, see equation (17). The top panels
only used the seven S-stars with known orbital parameters and stellar ages (Habibi et al. 2017), while the bottom ones expanded this observed sample using the
other 30 S-stars (Gillessen et al. 2017), assuming a common age T = 7.1 Myr, i.e. the average age of the constrained seven S-stars. As expected, the smaller j0,
i.e. the more eccentric the stellar initial conditions, the slower the relaxation of the S-stars. Similarly, the larger the observed sample, the tighter the constraints
on the background clusters.

Madigan, Levin & Hopman (2009), Perets, Hopman & Alexander
(2007).

Let us also now make key assumptions regarding the background
old stellar cluster. As detailed in Appendix B, we assume that it is
composed of various subpopulations of different individual masses
mi with a total mass Mi(<a0) enclosed within a physical radius a0.

In addition, we also assume that each population follows a thermal
distribution in eccentricity, and infinite power-law distribution in
semimajor axes, that is,

Mi(<a) = Mi(<a0)

(
a

a0

)3−γi

. (13)

MNRAS 506, 4289–4301 (2021)
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4294 K. Tep et al.

We also assume here that throughout their eccentricity diffusion, the
S-stars are treated as test stars. As such, they do not contribute to the
system’s mean potential, and do not interact with one another.

Since we expect the background to be thermal, the RR dynamical
friction vanishes exactly (Bar-Or & Fouvry 2018). Conversely, we
also neglect the NR part of dynamical friction, since energy diffusion
is inefficient in quasi-Keplerian systems on SRR time-scale (Bar-Or
& Alexander 2016).

Assuming a two-family background composed of stars and another
heavy subpopulation (e.g. IMBHs), we then have a total of 7 free
parameters for the available models, namely the power indices (γ �,
γ •), the individual masses (m�, m•), the total enclosed masses (M�(<
a0), M•(< a0)) as well as the initial eccentricity of the S-stars, j0 = j(t
= 0). These models are complemented with the observed constraints
on the seven considered S-stars, namely their main-sequence age, as
well as their observed semimajor axis and eccentricity.

In practice, we started our investigation from the two-family Top-
Heavy model of Generozov & Madigan (2020). Using a0 = 0.1 pc,
the fiducial model contains both stars and IMBHs{

m� = 1 M,

m• = 50 M,

{
M�(< a0) = 7.9 × 103 M,

M•(< a0) = 38 × 103 M,

{
γ� = 1.5,

γ• = 1.8,

(14)

where the star parameters follow Schödel et al. (2017). We note
that such a model is compatible with the current constraints associ-
ated with S2’s pericentre shift (Gravity Collaboration 2020), since
M•(< rS2

apo) + M�(< rS2
apo) � 2500 M.

3.2 Methodology

Having picked a set of initial conditions for the S-stars, and a model
for the background clusters, we are now in a position to compute the
associated diffusion coefficients. In order to determine whether or
not such a model is compatible with the observational constraint of
a significant eccentricity relaxation of the S-stars, we proceeded as
follows.

We first compute the RR and NR diffusion coefficients for the a
of the S-stars considered. The total diffusion coefficients are then
interpolated and we integrate equation (5) forward in time using
finite elements. More precisely, we rely on the so-called method-of-
lines implemented in the MathematicaNDSolve function, which
discretizes the j dimension and integrates the semidiscrete problem
as a system of Cauchy’s ODEs. As the semimajor axes are conserved,
they can be integrated separately. As such, we integrate equation (5)
for each of the seven considered S-stars, for a total time equal to
the age of the star. In order to ensure that the PDF stays normalized
during the integration, it is useful to rewrite equation (5) into

j 2 ∂P

∂t
= j 2

2

∂

∂j

(
Djj

∂P

∂j

)
− 1

2

[
j

∂(DjjP )

∂j

]
+ DjjP

2
, (15)

in order to avoid the 1/j singularities. In practice, we also checked the
sanity of this integration using stochastic Monte Carlo realizations,
see Appendix D. Once these integrations performed, we compare
the reached PDF to the observed data of the S-cluster, determining
whether or not the background model allowed for an efficient enough
relaxation of the S-stars eccentricities.

Let us denote a model with α, i.e. the collection of the seven param-
eters of the background clusters and the S-stars’ initial eccentricities.
We then define a model’s likelihood as

L(α) =
∏

k

P (jk|ak), (16)

where k = 1, ..., 7 go through the seven S-stars mentioned before.
Relying on equation (16), we can then explore the space of parameters
α and compare the various models to one another. To that end, we
use the likelihood ratio (LR) test through

λR(α) = 2 ln

(
Lmax

L(α)

)
∈ [0, +∞[, (17)

When α maximizes the likelihood, it minimizes by definition this
likelihood ratio (as would a χ2 analysis for Gaussian statistics), such
that λR(α) = 0. Then, we can reject a model α with confidence 0 ≤
p ≤ 1, if the corresponding LR, λR(α), lies above a certain (explicit)
value ηp. This is further detailed in Appendix E.

3.3 Results with existing data

As an illustration of the present method, we first consider the Top-
Heavy model from equation (14), and let the individual masses m�

and m• vary, with the natural constraint m• ≥ m� while fixing the
total enclosed masses M•(< a0) and M�(< a0). This is presented in
Fig. 3. In that figure, a model outside of the region of confidence nσ

means that it can be discarded with confidence nσ , as it would not
allow the diffusion process to be fast enough to reach the observed
eccentricity distribution of the S-cluster.

As expected, in Fig. 3 (top left-hand panel), we recover that the
larger the individual masses, the larger the underlying Poisson shot
noise, and therefore the more efficient the diffusion process, the
faster the relaxation of the S-stars. Conversely, Fig. 3 shows that
models with small individual masses cannot explain the current S-
cluster’s angular momentum PDF. As such, a relatively massive set
of background sources orbiting within the S-cluster is required to
trigger a fast enough orbital diffusion of the observed stars over their
lifetime. Using the same data, in Fig. 3 (top right-hand panel), we also
changed the initial eccentricity of the S-stars to j0 = 0.9, to mimic
an episode of disc formation. As already observed in Fig. 2, we note
that the diffusion coefficient is larger at smaller eccentricities, so
that the diffusion proceeds more swiftly, hence enhancing the overall
efficiency of the relaxation of the S-stars.

The global shape of the likelihood contours presented in Fig. 3
clearly illustrates the known dynamical degeneracy in flipping
IMBHs and stars of the same mass, as the efficiency of eccentricity
relaxation is directly connected to the amplitude of the Poisson
fluctuations generated by the background clusters as a whole.
Interestingly, we note that all likelihood landscapes presented in the
top panels present an absolute minimum. This suggests that, having
only diffused a finite time, the observed eccentricity distribution of
the S-stars is not fully thermal.

In order to increase the observed stellar sample, and tighten
the inferred model constraints, we present in the bottom pan-
els of Fig. 3 the same measurement but using 30 additional S-
stars (as in fig. 13 of Gillessen et al. 2017). Their individual ages
was fixed to T = 7.1 Myr, i.e. the average age of the seven S-
stars whose ages have been measured (Habibi et al. 2017). As
expected, we recover that a larger sample of observed stars leads
to narrower contours around the likelihood extremum, making the
presence of second population of massive objects all the more
mandatory. Finally, we also note that since the expanded sam-
ple of 37 stars contains stars with semimajor axes larger than
that of the initial seven S-stars, i.e. stars whose eccentricity re-
laxation is longer, the location of the likelihood maximum gets
displaced to larger masses as one increases the observed stellar
sample.
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3.4 Prospective

Let us now carry out an experiment where we vary the number of
stars for which orbital parameters are available, i.e. a prospective
experiment appropriate for future surveys (Do et al. 2019).

We consider a similar model as the one in equation (14) where
we set m� = 5 M and m• = 20 M. We now wish to probe
how the number of observed stars impacts our constraints on the
determination of the background cluster parameters. To that end, we
take the same seven S-stars as in Fig. 3, and consider their semimajor
axes and main-sequence ages. For each of the seven semimajor
axes, we evolve the PDF from equation (5) from j0 = 0.2 for the
entire star’s observed lifetime. From the resulting PDFs, we draw N
stars for each semimajor axis. In total, we therefore assume that our
observation sample is composed of a total of nobs = 7N stars. This
sample constitutes our mock data, to which we apply the previous
likelihood analysis.

Following this approach, Fig. 4 shows the ability of the method
to constrain the parameters of the IMBH population given a larger
mock sample. While the stellar parameters (m�, γ �) are observables,
we illustrate in that figure how the maximum-likelihood approach
indeed allows us to constrain the parameters of the invisible dark
cluster (m•, γ •), that cannot be directly observed. As (m•, γ •)
are not degenerate with one another, an increase in the number of
measured eccentricities (from N = 1 to N = 100 from top to bottom
panels) narrows the confidence contours around the extremum of the
likelihood, which itself converges to a specific pair (m•, γ •) close to
the fiducial one (green dot).

We further pursue this experiment in Fig. 5, where we investigate
the expected improvements in the inferred constraints as a function
of the number of observed stars, nobs. For a given mock realization,
we compute the uncertainty σm• , defined as the width of the LR
w.r.t. m• at the 3σ height and fixed γ • = 1.8. This is represented in
Fig. 5 as a function of nobs. Since the maximum-likelihood estimator
is asymptotically normal and efficient (see e.g. Wasserman 2004)
it reaches the Cramér–Rao bound in the large nobs limit, so that
σm• (nobs) = σ3/

√
nobs, with σ3 � 220 M. Assuming crudely that

the number of resolved stellar orbits is proportional to the survey’s
bolometric limit, one can directly connect a target accuracy with
the survey’s limiting magnitude. Indeed, the survey’s magnitude
would simply read M = −2.5 log10[(σm•/σ3)−2]. Gaining a factor
two in the accuracy of the mass (i.e. σm• → σm•/2) would require a
survey that is at least �M = −5log10(2) � −1.5 magnitudes fainter.
Undoubtedly, upcoming surveys of SgrA∗’s stellar neighbourhood,
such as GRAVITY+ (Eisenhauer 2019; Gravity Collaboration 2021),
TMT (Do et al. 2019), and ELT/MICADO (Davies et al. 2018;
Pott et al. 2018) are on the verge of putting ever more stringent
dynamical constraints on the unresolved dark cluster. Indeed, the
central stellar cusp around SgrA∗ is strongly confusion-limited for
current observations on 8 m class telescopes with adaptative optics,
limiting in effect the reliable detection and measurement of positions
of stars to K magnitudes ∼16–17.5, i.e. main-sequence B stars. The
combination of MICADO and the ELT will push the effective stellar
detection sensitivity by �5 magnitudes with modest integration
times (Fiorentino et al. 2019).

4 D ISCUSSION AND CONCLUSION

In the spirit of Generozov & Madigan (2020), this paper was an
attempt at using kinetic theory and its dynamical diagnostics to
assess the structure of galactic nuclei. We showed how eccentricity
diffusion in galactic nuclei can be used to place constraints on

Figure 4. Same analysis as in Fig. 3, but applied to mock data, as detailed in
section 3.4, as one varies the parameters, (m•, γ •), of the IMBH population
(keeping the total enclosed mass fixed). The top panel corresponds to mock
data with nobs = 7 stars, while the bottom panel uses nobs = 700 stars. As
expected, increasing the observed sample narrows the confidence contours
around the maximum-likelihood estimator (red dot), which converge towards
the fiducial model (green dot).

the stellar and putative dark clusters present therein. The recent
observations of the (quasi-) thermal distribution of eccentricities of
the S-stars orbiting SgrA∗, in conjunction with updated computations
of the eccentricity diffusion coefficients, can now be leveraged to
this purpose. Investigating a simple two-populations model (see
section 3.1), we showed how the presence of a heavy sub-population,
e.g. IMBHs, is mandatory to source an efficient enough relaxation of
the S-stars’ eccentricities. We jointly showed how only some ranges
of dark cusp’s power-law indices and masses are compatible with that
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Figure 5. Same as in Fig. 4, using the same mock data, but with varying
numbers of observed stars, nobs. The top panel shows the evolution of the
LR at fixed γ • = 1.8, as a function of m•, for various values of nobs. The
vertical green line represents the fiducial parameters model, m• = 20 M.
The horizontal line represents the value of the LR for a 3σ confidence contour.
The bottom panel illustrates the evolution of the accuracy, σm• , of the inferred
IMBH mass as a function of the nobs, and for the 3σ confidence levels. For
the modified TopHeavy model we use, we expect ∼103 stars within 5 and
20 mpc. Of course we do not expect to observe so many stars around SgrA∗,
i.e. the asymptote 1/

√
nobs will not be attained, because of crowding and,

more importantly, because the total number of observed S-stars will be much
smaller than 5000.

same dynamical constraint. As expected, our analysis highlighted
intrinsic dynamical degeneracies in permuting the visible and dark
cluster. Assuming that upcoming experiments will better qualify
the properties of the visible cluster, kinetic theory will allow for
dynamical dark matter experiment to constrain both the typical mass
and geometry of the IMBH cluster.

Finally, a simple fiducial experiment allowed us to quantify the
depth that upcoming surveys should achieve in order to e.g. double
the accuracy on the IMBH’s mass required to match the data. More
generally, this investigation suggests that it will be of interest to lift
some of the degeneracies by increasing the number of measured
stellar ages, better quantify the mass function and shape of the
observed stellar cluster and initial eccentricity distribution, so that
kinematic modelling can further focus on dynamically quantifying
the properties of the dark cluster.

4.1 Perspectives

Let us now discuss some venues for future developments. As
shown in section 3.1, the present investigation relies on various
assumptions, some of which one could hope to partially lift. Our
models for the old stellar and dark cluster remain simplistic, and
it will be worthwhile to investigate possible contributions from

other populations such as a dark-matter dominated components, or
additional populations of IMBHs. Similarly, as already emphasized
in equation (5), we assumed that the background cluster is spherically
symmetric. Yet, Szölgyén & Kocsis (2018) recently showed that in
systems with a large mass spectrum, e.g. containing IMBHs, one
could expect VRR to lead to equilibria distribution where the massive
components follow a strongly anisotropic structure, i.e. aligned
within the same disc. Such a structure could definitely affect the
efficiency of eccentricity relaxation within it. Any additional non-
trivial structures present in that PDF, e.g. non-spherically symmetric
distributions or dearth of stars in orbital space, would also have
to be explained by the present diffusion processes. Similarly, on
scales even closer to the central BH, we would also have to account
for additional relativistic corrections stemming from it, e.g. effects
associated with its spin.

Observations show that 7–10 per cent of the stars may have
originated from an infalling population. These stars display sig-
nificant rotation (Do et al. 2020) and likely populate a disc. The
most direct impact of that disc would be to induce mean-field
torquing on the orbital planes, but it might also impact later on
the eccentricities within the cluster. Recently, Szölgyén, Máthé &
Kocsis (2021) have investigated this effect numerically and found
that the time-scale for the eccentricity decrease is much shorter than
Chandrasekhar’s dynamical friction time-scale. This supports previ-
ous findings by Madigan & Levin (2012) that resonant dynamical
friction, driven by orbit-averaged torques, dominates over ordinary
non-resonant dynamical friction, driven by nearby encounters, and
leads to eccentricity decrease for a corotating disc. From an analytical
perspective, a possible venue would be to revisit the present kinetic
theory, while relying on a Stäckel description of the cluster’s density,
so as to keep it integrable and account for its flattening. This
would clearly be an order of magnitude more complicated than
the path chosen in this paper, as it would increase the dimension
of action space to be considered, as well as require one to use
elliptic coordinates (even the linear-response of flattened systems
has scarcely been investigated in the literature; Robijn 1995).

We emphasize that the mass in the S-star cluster is only a small
fraction of the total enclosed mass within 1 arcsec of the central black
hole. As such, it is unlikely that the S cluster itself strongly disturbs
the background stellar distribution. We also assumed here that this
background cluster was thermal (F(j) = 2j) hence fully relaxed. In
that limit, it does not drive any RR dynamical friction (Bar-Or &
Fouvry 2018). Should we lift this assumption, a more accurate mod-
elling would include the coupling between both components of the
cluster as a two-populations model. This would require integrating
the coupled set of kinetic equations in time, rather than relying on
a frozen Fokker–Planck approximation for the diffusion coefficient.
While this might be a worthwhile endeavour for upcoming data sets,
it is clearly beyond the scope of this first investigation.

When modelling the S-stars’ dynamics, we assumed that the
semimajor axes of the stars were fixed throughout the diffusion,
owing to the orbit-average. While accounting for the contributions
from the NR diffusion coefficients in a, it could be interesting to
investigate whether any additional diffusion in a-space would affect
the present constraints. As already noted, the initial conditions of the
S-stars, e.g. very eccentric versus quasi-circular, strongly affect the
efficiency of their eccentricity relaxation (see Fig. 3). In particular,
one can expect that the distribution of the S-stars in semimajor axes
also carries some information on their initial formation mechanism.

Here, we focused our interest on the innermost S-stars
(a � 5 mpc), which are known to have partially relaxed in eccen-
tricity. This allowed us to place constraints on cluster models so
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that admissible clusters have to source an eccentricity diffusion that
is fast enough. One could use a similar approach to investigate the
relaxation of S-stars further out. These outer stars have only very
partially relaxed in eccentricity, so that any admissible cluster model
must source a diffusion that is slow enough for these outer regions
not to have fully relaxed. Leveraging both constraints, one should
be in a position to effectively bracket cluster models, given that
their induced diffusion must be both efficient enough in the inner
regions, and inefficient enough in the outer ones. A same double-
sided investigation could also be carried out in the context of the
VRR of the same S-stars, as it has been observed that the innermost
stars follow a spherically symmetric distribution, while the outer ones
tend to be aligned within a disc (Bartko et al. 2009; Yelda et al. 2014),
i.e. orientation neighbours have not been separated (Giral Martı́nez,
Fouvry & Pichon 2020). Once again, simultaneously accounting for
all these dynamical constraints will allow for better characterizations
of SgrA∗’s dark and visible structures.

Finally, future observations will undoubtedly prove useful in
placing these investigations on firmer grounds. First, the interfer-
ometer GRAVITY is currently tracking in details the trajectory of
S2 (Gravity Collaboration 2020). Any deviations of its orbit from
S2’s expected mean-field trajectory, i.e. the expected Keplerian
dynamics and in-plane precession, will bear imprints from the
fluctuations of the gravitational potential on the scale of S2’s orbit,
that kinetic theory should be able to describe. Similarly, a possible
observation from GRAVITY of stars on scales even smaller than S2
would also carry essential information on SgrA∗’s stellar structure
on smaller scales, i.e. closer to the central BH. On larger scales, one
expects that observations from upcoming thirty-metre telescopes (Do
et al. 2019) will allow for a finer characterization of the S-stars
current distribution, P(a, j, t), a very valuable dynamical information
as shown in section 3.4. In particular, the dependence of P w.r.t. a
is strongly dependent on the formation mechanism of these stars.
Regarding the dependence w.r.t. j, one could in particular hope to
measure the scale, i.e. the a, at which the S-stars diffuse less and
less efficiently towards a thermal distribution of eccentricities, hence
strongly constraining the efficiency of the diffusion mechanisms. We
note that the present maximum-likelihood formalism can naturally
be extended to account for the measurement uncertainties, such as
on stellar ages.

Eventually, this line of investigation should prove useful in
constraining supermassive black hole formation scenarios.

DATA DISTR IBU TION

The data underlying this article is available through reasonable
request to the author. The code is distributed on github at the
following URL: https://github.com/KerwannTEP/JuDOKA.
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APPENDIX A : FREQU ENCIES AND
R E S O NA N C E S

In the vicinity of a supermassive BH, Keplerian wires undergo an
in-plane precession of their pericentres, as described by equation (3).
In that relation, the relativistic precession is given by

νGR(a, j ) = 3
rg

a

1

j 2
νKep(a), (A1)

where we introduced the (fast) Keplerian frequency, νKep(a), in
equation (2), as well as the gravitational radius rg = GM•/c2. In
practice, this precession is said to be prograde as one always has
νGR(a, j) > 0. The gravitational radius allows us to introduce a
maximal eccentricity

jlc(a) = 4

√
rg

a
, (A2)

so that wires with j ≤ jlc(a) are assumed to be within the loss-
cone (Merritt 2013), and, as such, are unavoidably absorbed by the
central BH.

In order to easily compute νM(a, j), the mass precession frequency
imposed by the background stellar cluster, we assume that the stellar
cluster follows an infinite power-law distribution of the form M(<
a) ∝ a3 − γ , where M(< a) stands for the total stellar mass physically
enclosed within the radius a. In that limit, following Appendix A
of Kocsis & Tremaine (2015), the mass precession frequency reads

νM(a, j ) = νM(a) hM(j ), (A3)

where in that expression, the dimensional dependence w.r.t. a is
captured by

νM(a) = νKep(a)
M(< a)

M•
, (A4)

while the dimensionless eccentricity dependence is given by

hM(j ) = j 4−γ

1 − j 2

[
P1−γ (1/j ) − 1

j
P2−γ (1/j )

]
, (A5)

with Pα the Legendre function of order α. In practice, near the edge
j = 1, we note that hM(j) can be advantageously replaced with its
Taylor expansion

hM(j ) � 1

2
(−3 + γ ) − 1

8
(−12 + γ + 4γ 2 − γ 3)(1 − j ), (A6)

to avoid singularities.
Importantly, we note that the function hM(j) is always negative

for γ < 3. Indeed, following equation (A2) of Kocsis & Tremaine
(2015), we can rewrite equation (A5) with the alternative integral
form

hM(j ) = j 2(3−γ )

π
√

1 − j 2

∫ π

0
dψ

cos(ψ)

(1 + e cos(ψ))3−γ
,

= j 2(3−γ )

π
√

1 − j 2

∫ π/2

0
dψ cos(ψ)

×
{

1

(1 + e cos(ψ))3−γ
− 1

(1 − e cos(ψ))3−γ

}
, (A7)

which is explicitly negative for any potential satisfying 3 − γ > 0.
As a consequence, the mass precession is generically retrograde, i.e.
one has νM(a, j) ≤ 0.

Fig. A1 illustrates the behaviour of the total precession frequency,
νp(a, j), as a function of the wire’s underlying orbital parameters.
Lines of constant precession frequencies correspond to the resonant
lines along which the RR diffusion coefficients from equation (9)

Figure A1. Illustration of precession frequencies, |νp(a, j)|, in orbital space
for the model from Fig. 2. The orbital space locations of the seven S-stars
used in our analysis are represented in yellow. For circular orbits and large
semimajor axis, i.e. j → 1 and a � 1 the precession is dominated by the
mass precession and is therefore retrograde (νp < 0), while for low j and low
a, the precession is dominated by the relativistic precession and is therefore
prograde (νp > 0).

must be computed. Note that the precession of very eccentric
orbits is dominated by the diverging relativistic corrections. This
is responsible for the ‘Schwarzschild barrier’ (Merritt et al. 2011;
Bar-Or & Alexander 2016) that explains the drastic reduction of the
RR diffusion coefficients, shown in Fig. 1.

In order to compute the resonant diffusion coefficients from equa-
tion (9), we must solve the resonance condition from equation (10).
For a given wire (a, j), and a given resonance pair (n, n

′
), this involves

characterizing all the wires (a
′
, j

′
) such that n

′
νp(a

′
, j

′
) = nνp(a, j),

i.e. identifying the appropriate level lines in Fig. A1. In Fig. A2, we
illustrate the contributions from the various resonance pairs (n, n

′
) to

the total RR diffusion coefficients.
Let us briefly detail our implementation for the search of the

resonant lines. Here, the key remark is to note that, following equa-
tions (A1) and (A5), one always has dνp/dj < 0. As a consequence, for
a given value of a

′
, it is straightforward to determine whether or not

there exists a j
′
, with jlc(a

′
) ≤ j

′ ≤ 1, and n
′
νp(a

′
, j

′
) = nνp(a, j). Using

this approach, we may then identify a domain a′
min ≤ a′ ≤ a′

max,
within which the resonance condition can be satisfied, by solving
appropriately the resonance conditions along the critical lines j =
jlc(a) as well as j = 1. At this stage, we also enforce that 16 rg ≤ a′

min
(see equation A2) as well as a′

max ≤ rh, with rh the considered
influence radius (e.g. rh = 2pc for SgrA∗), to ensure that we limit
ourselves only to meaningful resonant regions of orbital space.

Once the range [a′
min, a

′
max] has been determined, to emphasize

the system’s partial scale-invariance, we sample this domain of
semimajor axis linearly in log -space, using Kres = 100 points.
Finally, for a given value a

′
such that a′

min ≤ a′ ≤ a′
max, the associated

resonant value j
′
is directly obtained by bisection. For models with γ
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Figure A2. Illustration of the contribution to the RR diffusion coefficients of
the different resonances (n, n

′
), for a given value semimajor axis a = 10 mpc

and the cutoff �max = 10, for the model from equation (14). The RR
coefficients are typically dominated by (n, n

′
) = (1, 1) (for small and large

j) and (n, n
′
) = (1, −1) (for intermediate j). For intermediate eccentricities,

higher order resonances also contribute.

< 1.5, it can happen that a�→νp(a, j) is not monotonic anymore for
j close to 1 (circular orbit), leading to the possible appearance of a
second range of semimajor axes over which the resonance condition
is satisfied. When this is the case, we accordingly sample this domain
using the same method.

APP ENDIX B: STELLAR CUSPS AROUND
S G R A ∗

For the sake of simplicity, we assume that all the background
populations follow infinite power-law distributions, which eases the
resolution of the resonance condition (see Appendix A).

Let us first specify our conventions for the normalizations of their
respective DFs. A given background population is characterized by
four numbers, namely γ , the slope of the power-law profile, m, the
individual mass of the stars, a0, a given radius of reference, and M(<
a0), the total stellar mass physically within the radius a0. The number
of stars per unit semimajor axis a is then given by

N (a) = (3 − γ )
N0

a0

(
a

a0

)2−γ

. (B1)

In that expression, we introduced N0 = g(γ )N(< a0) with

g(γ ) = 2−γ
√

π
�(1 + γ )

�(γ − 1
2 )

, (B2)

where N(< a0) = M(< a0)/m is the number of stars physically within
a radius a0. This number should not be confused with N0 that is the
number of stars with a semimajor axis smaller than a0.

In addition, we also assume that each background population is
thermally relaxed, so that, as in equation (11), we have

f (j |a) = 2j, (B3)

which is the equilibrium solution of equation (5). When one accounts
for the fact no wires can survive within the loss-cone, this thermal
PDF gets truncated, and becomes

f (j |a) = 2j

1 − j 2
lc(a)

, (B4)

where the limit eccentricity, jlc(a), is defined in equation (A2).

APPENDI X C : C OUPLI NG C OEFFI CI ENTS

Let us now detail how one can efficiently compute the coupling
coefficients K�

nn′ (a, j, a′, j ′) from equation (12). When written
explicitly, they read

K�
nn′ =

∫ 2π

0

dM

2π

dM ′

2π
cos(nf ) cos(n′f ′)

Min[r, r ′]�

Max[r, r ′]�+1
, (C1)

where M and M
′
stand for the mean anomalies of both orbits, and we

shortened the notation K�
nn′ = K�

nn′ (a, j, a′, j ′).
First, we note that the function r �→r(M) is an even function, so that

we can reduce the range of both angular integrals to [0, π ]. Moreover,
in order not to have to invert Kepler’s equation of motion, it is more
convenient to perform these integrals w.r.t. the true anomalies f and f

′
.

In particular, the radius r is directly obtained from f through (Murray
& Dermott 1999)

r = a(1 − e2)

1 + e cos(f )
, (C2)

with the associated Jacobian

dM

df
= r2

a2

1√
1 − e2

. (C3)

Following these modifications, we can rewrite equation (C1) as

K�
nn′ =

∫ π

0

df

π

df ′

π

dM

df

dM ′

df ′

× cos(nf ) cos(n′f ′)
Min[r, r ′]�

Max[r, r ′]�+1
. (C4)

At this stage, a naive approach would be to discretize each inte-
gral into K discrete steps, and replace them with Riemann sums,
accounting for a total complexity in O(K2). Fortunately, dealing
appropriately with the ratio of Min and Max, equation (C4) can be
computed inO(K) operations, as these integrals are almost separable.

First, we sample uniformly the integration intervals from equa-
tion (C4) using K nodes. Specifically, we sample the true anomaly
with

fk = �f

(
k − 1

2

)
, with 1 ≤ k ≤ K, (C5)

where we introduced the step distance �f = π /K. Here, following
the midpoint-rule, each sampling location is offset by a factor 1

2 . This
ensures that the 2π -periodic integrand is sampled uniformly, which
allows for fast convergence of the result (Trefethen & Weideman
2014). Following this discretization, equation (C4) becomes

K�
nn′ = 1

K2

∑
i,j

gi g′
j

Min[ri , r
′
j ]�

Max[ri , r
′
j ]�+1

, (C6)

where we introduced the function g(r) = cos(nf ) dM/df , as well as
the shorthand notations gi = g(ri) and g′

j = g(r ′
j ). One can now use

the particular structure of equation (C6) to drastically accelerate its
evaluation. To do so, we order the set of radii {ri , r

′
j } by increasing

order. We note that this can be done in O(K) steps, provided that the
two sets {ri} and {r ′

j } are already ordered, so that it only remains to
merge the two lists.

Following this sorting, we can now construct the array wj which,
for 1 ≤ j ≤ K, is defined as

wj = Card
{
i ∈ {1, .., K}|ri ≤ r ′

j }, (C7)
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Figure C1. Illustration of the relative errors in the computations of K�
nn′

(in brown) and dK�
nn′/dj (in orange) using the multipole approach from

equation (C8), as a function of the number of nodes K. We approximated the
real value by that obtained for K = 2000. The plotted regions represent the
errors within the 16 and the 84 percentiles. The use of a mid-point rule allows
for a fast convergence, though the regularity of the integrand does not allow
for an exponential one. Errors are found to scale like K ∝ 1/K2.5 for K�

nn′ and
K ∝ 1/K1.5 for dK�

nn′/dj . In practice, we use K = 100 to compute K�
nn′ , with

a relative error smaller than 1 per cent.

with the boundary terms w0 = 0 and wK + 1 = K. The double sum
from equation (C6) can then be rewritten as

K�
nn′ = 1

K2

K∑
j=1

g′
j [Pj + Qj ]. (C8)

In that expression, we introduced the reduced sums Pj and Qj that
read

Pj =
wj∑
i=1

gi

r�
i

r ′�+1
j

; Qj =
K∑

i=wj +1

gi

r ′�
j

r�+1
i

. (C9)

The key property here is note that the sum Pj (resp. Qj) can
be computed in O(K) through an increasing (resp. decreasing)
recurrence. In order to highlight this property, we define the partial
sums

δPj =
wj∑

i=wj−1+1

gi

r�
i

r ′�+1
j

; δQj =
wj+1∑

i=wj +1

gi

r ′�
j

r�+1
i

. (C10)

The sums P and Q then satisfy the recurrence relations

P1 = δP1; Pj+1 =
[

r ′
j

r ′
j+1

]�+1

Pj + δPj+1,

QK = δQK ; Qj−1 =
[

r ′
j−1

r ′
j

]�

Qj + δQj−1. (C11)

Hence, given these two recurrence relations, equation (C8) can be
computed in O(K) operations. Moreover, we note that the geometric
prefactors appearing in equation (C11) are positive and always
smaller than 1, which helps ensuring the numerical stability of these
recurrences. In order to illustrate the quality of this discretization
scheme, we present in Fig. C1 the behaviour of the relative error
in the computation of K�

nn′ as a function of K. The relative errors
appears to scale like 1/K2.5. From this observation, we can infer that
K = 100 is enough to obtain a 1 per cent relative error for any orbital
parameter.

Following equation (7), we note that the computation of the first-
order diffusion coefficient ultimately also requires the computation
of dK�

nn′/dj . It is straightforward to extend the previous recurrence

Table C1. Computation time of DRR
jj (a, j ) for a = 10 mpc, j = 0.6 and for

the same Top-Heavy model as in Fig. 2. Fixing �max = 10, we observe a
linear complexity w.r.t. K (second line), while fixing K = 100, we observe
a complexity in (�max)2.3 w.r.t. �max.

K 20 40 60 80 100 150 200 250
Time (s) 0.51 0.72 0.96 1.13 1.30 1.89 2.44 2.96

�max 6 8 10 12 14 16 18 20
Time (s) 0.38 0.76 1.35 2.12 2.93 4.16 5.54 7.72

relations to compute such a derivative. In Fig. C1, we also illustrate
the typical relative error in the computation of dK�

nn′/dj . In particular,
we note that this gradient introduces discontinuities in the integrand,
which reduces the convergence speed of the method to an inverse
power law proportional to 1/K1.5.

With such an approach, we expect that computing the diffusion
coefficient DRR

jj should have a complexity linear w.r.t. K, as recovered
in Table C1. Finally, the complexity of the computation of DRR

j w.r.t.
�max follows a power law roughly proportionnal (�max)2.3. Such a
scaling is primarily due to the growth of the number of resonance
pairs (n, n

′
) as �max increases.

APPENDI X D : SI MULATI NG STO CHASTI C
DY NA MIC S

One approach to simulate the relaxation of the test stars’ eccentricities
is to rely on Monte Carlo realizations of the underlying diffusion
equation. This is more easily done starting from the traditional form
of the FP equation, as given by equation (6), which involves the
first- and second-order diffusion coefficients. We used this alternative
approach to check the validity of our direct numerical integration of
the diffusion equation (5).

Following Risken (1989), one can mimic the dynamics of a given
test star through the stochastic Langevin equation

�j = Dj �t + √
Djj �t ξ (t). (D1)

In that expression, �t is our chosen (fixed) time-step, and ξ (t) follows
a normal distribution of unit variance, uncorrelated in time. Once one
can simulate one realization of the stochastic dynamics, we may use
a large sample of test particles to recover the time evolution of their
smooth underlying PDF. In Fig. D1, we illustrate some examples of
random walks in eccentricities. To ensure that the random walks do

Figure D1. Illustration of stochastic random walks in eccentricities as driven
by equation (D1) with a time-step �t = 0.1 kyr. Here, the test particles all
have a = 10 mpc, are initialized with j = 0.6, and evolve within the same
background model as in Fig. 2.
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Figure D2. Comparison between the direct integration of the diffusion
equation (5) (full lines) and its stochastic realization through equation (D1)
(dashed lines), as a function of time, and using the same initial conditions as
in Fig. D1. For the stochastic evolution, we considered a total of N = 106

test particles, evolved with the time-step �t = 0.1 kyr. Both approaches are
found to be in very good agreement, and ultimately relax, as expected, to the
thermal distribution.

not wander off the range j ∈ [0, 1], we introduced a reflective barrier
at j = 0, 1.

Let us note that the stochastic walks from Fig. D1 do not describe
any physically realistic random walks on their own, but only in
an average sense. Indeed, here we have supposed that the ξ (t) are
uncorrelated in time, whereas they are correlated (at least on the
fluctuations’ coherence time) in a real physical process. However,
their average over realization accurately describes the evolution of
the corresponding FP equation (6).

Consequently, in Fig. D2, we use N = 106 test particles to recover
the PDF at various times and compare it with that obtained from the
direct integration of the diffusion equation (5) presented in the main
text. The two methods yield the same result which provides us with
validation. Furthermore, both methods also ultimately asymptote to
the full relaxation towards the thermal PDF, Pth(j|a) = 2j.

APP ENDIX E: LIKELIHOOD AND LR TES T

Likelihoods measure the goodness of fit of a statistical model to a
data sample. Its extremum, if it exists, is associated with models
that extremize the probability of drawing the observational sample
at hand. Given a a product of K joint continuous PDFs, Pα(j |ak),

depending on a parameter α, and a set of i.i.d. random sampling data
{ji, k}, we define the likelihood of a model as

L(α; {ji,k}) =
K∏

k=1

N∏
i=1

Pα(ji,k|ak). (E1)

This allows us to define the likelihood ratio as

λα,N = 2 ln

[Lmax({ji,k})
L(α; {ji,k})

]
,

where Lmax corresponds to the maximum likelihood within the range
of explored parameters. The LR, λα,N , is then a random variable, that
takes its values in [0, +∞[, and depends on the model’s parameters,
α.

This LR test allows us to compare models with one another, and
discard those which are too unlikely. Indeed, given a model α, λα,N

must fall close to 0 for the corresponding model to drive efficiently
the eccentricity relaxation of the S-stars. Given a confidence level 0
≤ p ≤ 1, we can define from it a confidence interval [0, ηp] within
which λα,N must fall for the model to be accepted. Here, we choose
ηp so that the probability P obeys

P(0 ≤ λα,N ≤ ηp) = p. (E2)

While we do not know the exact distribution of λα,N , owing to Wilks’
theorem (Wilks 1938), λα,N converges to the χ2 distribution as K ×
N → +∞, and ηp obeys

ηp = 2
[
erf−1(p)

]2
. (E3)

In terms of the usual σ -levels of confidence, since the Gaus-
sian probability of being in the interval [ − nσ , nσ ] is
p(nσ ) = erf(n/

√
2), then the corresponding threshold ηp(nσ ) simply

becomes ηp(nσ ) = 2[erf−1erf(n/
√

2)]2 = n2.
In practice, to validate our calculations, we also tried another non-

parametric statistical estimator, namely the Kolmogorov–Smirnov
distance. This led to the same conclusions. In the main text,
we focused on the the maximum-likelihood estimator, because it
converges asymptotically to a normal distribution and is asymptoti-
cally efficient (Wasserman 2004), leading to the 1/

√
nobs behaviour

observed in Fig. 5.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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