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Abstract

One of the major issues in the computational mechanics is to take into account the geo-
metrical complexity. To overcome this difficulty and to avoid the expensive mesh generation,
geometrically unfitted methods, i.e. the numerical methods using the simple computational
meshes that do not fit the boundary of the domain, and/or the internal interfaces, have been
widely developed. In the present work, we investigate the performances of an unfitted method
called φ-FEM that converges optimally and uses classical finite element spaces so that it can
be easily implemented using general FEM libraries. The main idea is to take into account
the geometry thanks to a level set function describing the boundary or the interface. Up to
now, the φ-FEM approach has been proposed, tested and substantiated mathematically only
in some simplest settings: Poisson equation with Dirichlet/Neumann/Robin boundary condi-
tions. Our goal here is to demonstrate its applicability to some more sophisticated governing
equations arising in the computational mechanics. We consider the linear elasticity equations
accompanied by either pure Dirichlet boundary conditions or by the mixed ones (Dirichlet
and Neumann boundary conditios co-existing on parts of the boundary), an interface prob-
lem (linear elasticity with material coefficients abruptly changing over an internal interface),
a model of elastic structures with cracks, and finally the heat equation. In all these settings,
we derive an appropriate variant of φ-FEM and then illustrate it by numerical tests on man-
ufactured solutions. We also compare the accuracy and efficiency of φ-FEM with those of the
standard fitted FEM on the meshes of similar size, revealing the substantial gains that can
be achieved by φ-FEM in both the accuracy and the computational time.

1 Introduction

Taking the geometrical complexity into account is one of the major issues in the computational
mechanics. Although some spectacular advances in mesh generation have been achieved in recent
years, constructing and using the meshes fitting the geometry of, for example, human organs may
still be prohibitively expensive in realistic 3D configurations. Moreover, when the geometry is
changing in time or on iterations of an optimization algorithm, the mesh should be frequently
adapted, either by complete remeshing (expensive) or by moving the nodes (may lead to a degra-
dation of the mesh quality, impacting the accuracy and the stability of computations).

Geometrically unfitted methods, i.e. the numerical methods using the computational meshes
that do not fit the boundary of the domain, and/or the internal interfaces, have been widely
investigated in the computational mechanics for decades. Their variants come under the name of
Immersed Boundary [27] or Fictitious Domain [18] methods. However, these classical approaches
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Figure 1: Left: Meshes and notations for a 2D domain Ω = {φ < 0}; the computational mesh
Th is obtained from a structured background mesh and is represented by both white and yellow
triangles forming the domain Ωh; the yellow triangles constitute the submesh T Γ

h occupying the
domain ΩΓ

h. Right: a more involved example of an active mesh in 3D that can be used in φ-FEM;
a hexahedral mesh covering a brain geometry.

suffer from poor accuracy because of their rudimentary (but easy to implement) treatment of the
boundary conditions, cf. [17]. For example, in the case of the linear elasticity equations, these
methods start by extending the displacement u, from the physical domain Ω to a fictitious domain
(typically a rectangular box) O ⊃ Ω assuming that u still solves the same governing equations
on O as on Ω. This creates an artificial singularity on the boundary of Ω (a jump in the normal
derivative) so that the resulting numerical approximation is, at best,

√
h-accurate in the energy

norm with whatever finite elements (from now on, h denotes the mesh size).
The last two decades have seen the arrival of more accurate geometrically unfitted methods

such as XFEM [28, 22], CutFEM [9, 10, 7, 21] and Shifted Boundary Method (SBM) [26, 3]. We
are citing here only the methods based on the finite element (FE) approach; the list would be much
longer if the methods based on finite differences were included. In the case of XFEM/CutFEM, the
optimal accuracy, i.e. the same convergence rates as those of the standard FEM on a geometrically
fitted mesh, is achieved at the price of a considerable sophistication in the implementation of
boundary conditions. The idea is to introduce the unfitted mesh (known as the active mesh)
starting from the simple background mesh and getting rid of the cells lying entirely outside the
physical domain, as illustrated at Fig. 1. The finite elements are then set up on the active mesh,
the variational formulation is imposed on the physical domain, and an appropriate stabilization
is added. In practice, one should thus compute the integrals on the actual boundary and on the
parts of the active mesh cells cut by the boundary (the cut cells). To this end, one should typically
construct a boundary fitted mesh, now only locally near the boundary and only for the numerical
integration purposes, but the generation of a non trivial mesh is still not completely avoided.

On the other hand, the non trivial integration is completely absent from SBM. This method
introduces again an active mesh as a submesh of the background mesh (unlike CutFEM, the active
mesh here contains only the cells inside Ω) and then imposes the approximate boundary conditions
on the boundary of the active mesh by a Taylor expansion around the actual boundary. The
absence of non-standard numerical integration is an important practical advantage of SBM over
XFEM/CutFEM. We note however that, to the best of our knowledge, SBM is readily available
only for the lowest order FE. Moreover, in the case of Neumann boundary conditions, the original
version of SBM [26] needs an extrapolation of the second derivatives of the solution that makes its
implementation rather tricky. This difficulty can be alleviated if the problem is recast in a mixed
form introducing the secondary variables for the gradient [29].

In this chapter, we present yet another unfitted FE-based method, first introduced in [15, 14]
and baptised φ-FEM to emphasize the prominent role played in it by the level set (LS) function,
traditionally denoted by φ. From now on, we suppose that the physical domain is characterized
by a given LS function:1

Ω = {φ < 0} . (1)

1In some settings presented further, the level set φ will describe an interior interface inside Ω rather than the
geometry of Ω itself.
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Similarly to CutFEM/XFEM/SBM, we suppose that Ω is embedded into a simple background
mesh and we introduce the active computational mesh Th as in CutFEM, cf. Fig. 1. However,
unlike CutFEM, we abandon the variational formulation on Ω. We rather introduce a non-standard
formulation on the extended domain Ωh (slightly larger than Ω) occupied by the active mesh Th.
The general procedure is as follows:

• Extend the governing equations from Ω to Ωh and write down a formal variational formula-
tion on Ωh without taking into account the boundary conditions on ∂Ω.

• Impose the boundary conditions using appropriate ansatz or additional variables, explicitly
involving the level set φ which provides the link to the actual boundary. For instance, the
homogeneous Dirichlet boundary conditions (u = 0 on ∂Ω) can be imposed by the ansatz
u = φw thus reformulating the problem in terms of the new unknown w (modifications for
non-homogeneous conditions, mixed boundary conditions and other settings are introduced
further in the text).

• Add appropriate stabilization, including the ghost penalty [6] as in CutFEM plus a least
square imposition of the governing equation on the mesh cells near the boundary, to guar-
antee coerciveness/stability on the discrete level.

This approach allows us to achieve the optimal accuracy using classical FE spaces of any order and
the usual numerical integration: all the integrals in φ-FEM can be computed by standard quadra-
ture rules on entire mesh cells and on entire boundary facets; no integration on cut cells or on the
actual boundary is needed. This is the principal advantage of φ-FEM over CutFEM/XFEM. More-
over, we can cite the following features of φ-FEM which distinguish it from both CutFEM/XFEM
and SBM:

• FE of any order can be straightforwardly used in φ-FEM. The geometry is naturally taken
into account with the needed optimal accuracy: it suffices to approximate the LS function
φ by piecewise polynomials of the same degree as that used for the primal unknown. This
should be contrasted to CutFEM where a special additional treatment is needed if one uses
FEM of order ≥ 2. Indeed, a piecewise linear representation of the boundary is not sufficient
in this case. One needs either a special implementation of the isoparametric method [23] or
a local correction by Taylor expansions [5]. The extension to higher order FE is not trivial
for SBM either.

• Contrary to SBM, φ-FEM is based on a purely variational formulation so that the existing
standard FEM libraries suffice to implement it. The geometry of the domain comes into the
formulation only through the level set φ. We emphasize that φ is not necessarily the signed
distance to the boundary of Ω. It is sufficient to give to the method any φ satisfying (1)
which is the minimal imaginable geometrical input. This can be contrasted with SBM which
assumes that the distance to the actual boundary in the normal direction is known on all
the boundary facets of the active mesh.

Moreover, φ-FEM is designed so that the matrices of the problems on the discrete level are
reasonably conditioned, i.e. their condition numbers are of the same order as those of a standard
fitting FEM on a mesh of comparable size. φ-FEM shares this feature with both CutFEM/XFEM
and SBM.

Up to now, the φ-FEM approach has been proposed, tested and substantiated mathematically
only in some simplest settings: Poisson equation with Dirichlet boundary conditions [15], or with
Neumann/Robin boundary conditions [14]. The goal of the present chapter is to demonstrate
its applicability to some more sophisticated governing equations arising in the computational
mechanics. In section 2, we adapt φ-FEM to the linear elasticity equations accompanied by either
pure Dirichlet boundary conditions, or with mixed conditions (both Dirichlet and Neumann on
parts of the boundary). In Section 3, we consider the interface problem (elasticity with material
coefficients abruptly changing over an internal interface). Section 4 is devoted to the treatment
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of internal cracks. Finally, our method is adapted to the heat equation in Section 5. In all these
settings, we start by deriving an appropriate variant of φ-FEM and then illustrate it by numerical
tests on manufactured solutions. We also compare the accuracy and efficiency of φ-FEM with
those of the standard fitted FEM on the meshes of similar size, revealing the substantial gains
that can be achieved by φ-FEM in both the accuracy and the computational time.

All the codes used in the present work have been implemented thanks to the open libraries
fenics [1] and multiphenics [4]. They are available at the link
https://github.com/michelduprez/phi-FEM-an-efficient-simulation-tool-using-simple-

meshes-for-problems-in-structure-mechanics.git

2 Linear elasticity

In this section, we consider the static linear elasticity for homogeneous and isotropic materials.
The governing equation for the displacement u is thus

divσ(u) + f = 0, (2)

where the stress σ(u) is given by

σ(u) = 2µε(u) + λ(divu)I,

ε(u) = 1
2 (∇u +∇uT ) is the strain tensor, and Lamé parameters λ, µ are defined via the Young

modulus E and the Poisson coefficient ν by

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
. (3)

Equation (2) is posed in a domain Ω, which can be two or three dimensional, and should be
accompanied with Dirichlet and Neumann boundary conditions on Γ = ∂Ω. We assume that Γ is
decomposed into two disjoint parts, Γ = ΓD ∪ ΓN with ΓD 6= ∅, and

u = ug on ΓD, (4)

σ(u)n = g on ΓN , (5)

with the given displacement ug on ΓD and the given force g on ΓN .
Let us first recall the weak formulation of this problem (to be compared with forthcoming

φ-FEM formulations): find the vector field u on Ω s.t. u|ΓD
= ug and∫

Ω

σ(u) : ∇v =

∫
Ω

f · v +

∫
ΓN

g · v, ∀v on Ω such that v|ΓD
= 0. (6)

This is obtained by multiplying the equation by a test function v, integrating over Ω and taking
into account the boundary conditions. Formulation (6) is routinely used to construct conforming
FE methods, which necessitate a mesh that fits the domain Ω in order to approximate the integrals
on Ω and ΓN and to impose u = ug on ΓD.

We now consider the situation where a fitting mesh of Ω is not available. We rather assume
that Ω is inscribed in a box O which is covered by a simple background mesh T Oh . We further
introduce the computational mesh Th (also referred to as the active mesh) by getting rid of cells
lying entirely outside Ω. In practice, Ω is given by the level-set function φ: Ω = {φ < 0}. Usually,
the level set is known only approximately. Accordingly, we assume that we are given a FE function
φh, i.e. a piecewise polynomial function on mesh T Oh , which approximate sufficiently well φ. The
selection of the mesh cells forming the active mesh is done on the basis of φh rather than φ:

Th := {T ∈ T Oh : T ∩ {φh < 0} 6= ∅} . (7)
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The domain occupied by Th is denoted by Ωh, i.e. Ωh = (∪T∈ThT )o. In some of our methods,
we shall also need a submesh of Th, referred to as T Γ

h , consisting of the cells intersected with the
curve (surface) {φh = 0}, approximating Γ:

T Γ
h := {T ∈ T Oh : T ∩ {φh = 0} 6= ∅} . (8)

The domain covered by mesh T Γ
h will be denoted by ΩΓ

h, cf. Fig. 1.
The starting point of all variants of φ-FEM is a variational formulation of problem (2) extended

to Ωh, in which we do not impose any boundary conditions since they are lacking on ∂Ωh. We thus
assume that the right-hand side f is given on the whole Ωh rather than on Ω alone, and suppose
moreover that u can be extended from Ω to Ωh as the solution to the governing equation (2), now
posed on Ωh instead of Ω. In a usual manner, we take then any test function v on Ωh, multiply
the governing equation by v and integrate it over Ωh. This gives the following formulation: find
a vector field u on Ωh such that∫

Ωh

σ(u) : ∇v −
∫
∂Ωh

σ(u)n · v =

∫
Ωh

f · v, ∀v on Ωh (9)

We emphasize that this formulation is fundamentally different from the standard formulation (6).
First of all, no boundary conditions are incorporated in (9) so that we cannot expect it to admit
a unique solution. Furthermore, if we add somehow the boundary conditions on ∂Ω to (9), which
we shall do indeed when constructing our φ-FEM variants, the resulting formulation will still be ill
posed, meaning that its solution (on the continuous level) either does not exist, or is not unique.
However, we shall be able to turn these problems into well defined numerical schemes by adding
an appropriate stabilization on the discrete level.

2.1 Dirichlet conditions

Let us first consider the case of pure Dirichlet conditions: Γ = ΓD. On the continuous level, we
want thus to impose u = ug on Γ = ΓD = {φ = 0} on top of the general formulation (9) of
the problem on Ωh. We consider here 2 options to achieve this: 1) direct Dirichlet φ-FEM, as
proposed in [15], introducing a new unknown w and redefining u through the product φw which
automatically vanishes on Γ; 2) dual Dirichlet φ-FEM, inspired by [14], keeping the original
unknown u and imposing u = ug on Γ with the aid of an auxiliary variable p in a least-square
manner. In more details, our two approaches can be described as follows:

• Direct Dirichlet φ-FEM (on continuous level). Supposing that ug is actually given on
the whole Ωh rather than on Γ alone, we make the ansatz

u = ug + φw, on Ωh (10)

and substitute it into (9). To make the formulation more symmetric we also replace the test
functions v by φz. This yields: find a vector field w on Ωh such that∫

Ωh

σ(φw) : ∇(φz)−
∫
∂Ωh

σ(φw)n · φz =

∫
Ωh

f · φz

−
∫

Ωh

σ(ug) : ∇(φz) +

∫
∂Ωh

σ(ug)n · φz, ∀z on Ωh. (11)

The idea is thus to work with the new unknown w on Ωh, discretize it by FEM starting
from the variational formulation above, and to reconstitute the approximation to u by the
ansatz (10).

• Dual Dirichlet φ-FEM (on continuous level). We now suppose that ug is defined on ΩΓ
h,

cf. (8), rather than on the whole of Ωh. We keep the primal unknown u in (9) and we want
to impose

u = ug + φp, on ΩΓ
h (12)

5



on top of it, with a new auxiliary unknown p on ΩΓ
h. The new variable p lives beside u

inside a variational formulation that combines (9) with (12): find vector fields u on Ωh and
p on ΩΓ

h such that∫
Ωh

σ(u) : ∇v −
∫
∂Ωh

σ(u)n · v + γ

∫
ΩΓ

h

(u− φp) · (v − φq)

=

∫
Ωh

f · v + γ

∫
ΩΓ

h

ug · (v − φq), ∀v on Ωh, q on ΩΓ
h (13)

with a positive parameter γ. Comparing the direct and dual variants, we observe that the
expressions (10) and (12) are of course pretty similar, but their roles are quite different in
the corresponding methods. The variable w replaces u in (11), while p lives alongside u
in (13). The introduction of the additional variable p makes the dual method only slightly
more expensive than the direct one, since this new variable is introduced only on a narrow
strip around Γ. On the other hand, a certain advantage of the dual variant over the direct
one lies in the fact that both φ and ug should be here known only locally around Γ since
they enter into equation (13) only on ΩΓ

h. This can facilitate the construction of φ and ug in
practice. More importantly, it is the dual method that we shall be able to adapt to various,
more and more complicated settings below.

As mentioned above, both variational problems (11) and (13) are derived on a very formal level.
They are not valid in any mathematically rigorous way: we cannot expect to have a meaningful
boundary value problems on a domain Ωh with no boundary conditions on ∂Ωh, while prescribing
some conditions on a curve (surface) Γ which is inside Ωh. However, both formulations can serve
as starting problems to write down FE problems which become well-posed once an appropriate
stabilization is added.

We start by introducing the FE spaces: fix an integer k ≥ 1 and let

Vh :=
{
vh : Ωh → Rd : vh|T ∈ Pk(T )d ∀T ∈ Th, vh continuous on Ωh

}
. (14)

For future reference, we introduce the local version of this space for any submesh Mh of Th and
polynomial degree l ≥ 0

Qlh(Mh) :=
{
qh :Mh → Rd : qh|T ∈ Pl(T )d ∀T ∈Mh, qh continuous on Mh if l ≥ 0

}
. (15)

In particular, we shall need the space Qkh(ΩΓ
h) on the submesh ΩΓ

h in the Dual version of Dirichlet
φ-FEM.

The two variants of φ-FEM introduced above can now be written on the fully discrete level as:

• Direct Dirichlet φ-FEM: find wh ∈ Vh such that∫
Ωh

σ(φhwh) : ∇(φhzh)−
∫
∂Ωh

σ(φhwh)n · φhzh +Gh(φhwh, φhzh) + J lhsh (φhwh, φhzh)

=

∫
Ωh

f · φhzh −
∫

Ωh

σ(ugh) : ∇(φhzh) +

∫
∂Ωh

σ(ugh)n · φhzh,

+ Jrhsh (φhzh), ∀zh ∈ Vh (16)

and set uh = ugh + φhwh. Here φh,u
g
h are FE approximations for φ,ug on the whole Ωh,

and Gh, J
lhs
h , Jrhsh stand for the stabilization terms

Gh(u,v) := σDh
∑
E∈FΓ

h

∫
E

[σ(u)n] · [σ(v)n] , (17)

J lhsh (u,v) := σDh
2
∑
T∈T Γ

h

∫
T

divσ(u) ·divσ(v) , Jrhsh (v) := −σDh2
∑
T∈T Γ

h

∫
T

f ·divσ(v) .

(18)
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The stabilization Gh (17) is known as the ghost penalty. σD in (17) is a positive stabilization
parameter which should be chosen sufficiently big (in a mesh independent manner). FΓ

h

stands for the set of internal facets of mesh Th which are also the facets of T Γ
h (these are the

facets either intersected by Γ, or belonging to the cells intersected by Γ). Stabilization (17)
was first introduced in [6] in the form of penalization of jumps in the normal derivatives of
the FE solution. Here, we prefer to penalize the jumps of internal elastic forces, following
[13], thus controlling appropriate combinations of the derivatives, rather than the normal
derivatives themselves. We emphasize however that the original ghost penalty in [21] also
involved the jumps of higher order derivatives of u (up to the highest order of polynomials
present in the FE formulation), while our variant affects the first order derivatives only.
We can allow ourselves to reduce the order of stabilized derivatives thanks to the presence
of additional stabilization terms J lhsh (18), as first suggested in [15] (a similar idea can
also be found in [16]). The combination of Gh and J lhsh allows us indeed to get rid of
possible spurious oscillations of the approximate solution on “badly cut” cells near Γ and
to guarantee the coerciveness of the bilinear form in our FE formulation. Note that the
terms J lhsh are not consistent by themselves but they are consistently compensated by their
right-hand side counterpart Jrhsh . Indeed, the exact solution satisfies divσ(u) = −f so that
J lhsh (u,v) = Jrhsh (v) if u is the exact solution.

• Dual φ-FEM-Dirichlet: find uh ∈ Vh, ph ∈ Qkh(ΩΓ
h) such that∫

Ωh

σ(uh) : ∇vh −
∫
∂Ωh

σ(uh)n · vh +
γ

h2

∫
ΩΓ

h

(uh −
1

h
φhph) · (vh −

1

h
φhqh)

+Gh(uh,vh) + J lhsh (uh,vh)

=

∫
Ωh

f · vh +
γ

h2

∫
ΩΓ

h

ugh · (vh −
1

h
φhqh) + Jrhsh (vh), ∀vh ∈ Vh, qh ∈ Qkh(ΩΓ

h). (19)

With respect to (13, we have added here the factors 1
h , 1

h2 . They serve to control the
condition numbers, cf. [14]. The stabilizations Gh, J lhsh , Jrhsh are again defined by (17) and
(18).

Figure 2: Circular domain given by (20). Left: active meshes for φ-FEM (with cells from T Γ
h in

yellow). Right: a fitted mesh for the standard FEM.
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Figure 3: Test case with pure Dirichlet conditions. L2 relative errors on the left, H1 relative errors
on the right.
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Test case: Let O be the square (0, 1)2 and T Oh a uniform mesh on O. Let Ω be the circle

centered at the point (0.5, 0.5) of radius
√

2
4 . The level set function φ is thus given by

φ(x, y) = −1

8
+ (x− 0.5)2 + (y − 0.5)2 . (20)

We take the elasticity parameters E = 2 and ν = 0.3, and the scheme parameters γ = σD = 20.0.
We use P2-Lagrange polynomials for both FE spaces Vh and Qh, i.e. we set k = 2 in (14) and
(15). We finally choose a manufactured exact solution

u = uex := (sin(x) exp(y), sin(y) exp(x)) (21)

giving the right hand side f by substitution to (2) and the boundary conditions ug = uex on Γ.
In order to set up both φ-FEM schemes above, we should extend ug from Γ to Ωh (in the case
of the direct method) or to ΩΓ

h (in the case of the dual method). To mimic the realistic situation
where ug is known on Γ only, we prefer not to extend ug by uex everywhere. We rather set

ug = uex(1 + φ), on Ωh or on ΩΓ
h

adding to uex a perturbation which vanishes on the boundary.
The typical active meshes Th and T Γ

h for φ-FEM are illustrated on Fig. 2 (left). Besides the
direct φ-FEM (16) and the dual φ-FEM (19), we shall present the numerical results obtained by
the standard FEM with P2-Lagrange polynomials on fitted meshes for approximately the same
values of h, as illustrated on Fig. 2 (right). The results obtained by both variants of φ-FEM and
by the standard FEM are reported in Figs. 3 and 4.

We first illustrate the numerical convergences order for the relative errors in L2 and H1 norms
at Fig. 3. We observe that both variants of φ-FEM demonstrate indeed the expected optimal
convergence orders: h2 is the H1-seminorm and h3 in the L2-norm, and the direct variant performs
significantly better than the dual one. This can be attributed to a better representation of the
solution near the boundary in the direct variant: indeed it is effectively approximated there by
fourth-order polynomials (P2 for wh times P2 for φh). Moreover, both φ-FEMs, even the dual
one, significantly outperform the standard FEM (the latter is even of a suboptimal order in the
L2-norm). This can be partially attributed to a coarse geometry approximation. Indeed, we use
triangular meshes so that the curved boundary of Ω is actually approximated by a collection of
straight segments, i.e. the boundary facets of the fitted mesh, cf. Fig. 2 (right). The superior
efficiency of φ-FEM with respect to the standard FEM is further confirmed by Fig. 4. We report
there the computing times on different meshes for the 3 methods and set them against the relative
L2 error. These computing times include assembling of the FE matrices and resolution of the
resulting linear systems. For a given relative error, the calculations are always much faster with
φ-FEM than with the standard FEM. The advantage would be even more significant if the mesh
generation times were included, since the construction of active meshes in φ-FEM only involves
choosing a subset of cells according to a simple criterion, and some renumbering of the degrees
of freedom. We do not dispose however of an efficient implementation of cell selection algorithm
at the moment. All our computations are performed using the Python interface for the popular
FEniCS computing platform, and the selection of active cells is done by a simple, non-optimized
Python script.

2.2 Mixed boundary conditions

We now consider the much more complicated case of mixed conditions (4)–(5) on the boundary
Γ = ΓN ∪ΓD with ΓD 6= ∅ and ΓN 6= ∅. This setting is challenging for any geometrically unfitted
method since the junction between the Dirichlet and Neummann boundary parts can occur inside
a mesh cell, so that approximating polynomials in this cell should account simultaneously for both
boundary conditions. In [21], it is demonstrated that the linear elasticity with mixed boundary
conditions can be successfully treated by CutFEM. A rigorous mathematical substantiation allow-
ing of the low regularity of the solution is available in [11]. Here, we shall adapt φ-FEM (in the

9



dual form) to the mixed boundary conditions by adopting a “lazy” approach: we choose to do not
impose any boundary conditions on a mesh cell if the Dirichlet/Neumann junction happens to be
inside it.

To set up the geometry of the problem, we recall that the domain Ω is given by the level set
function φ, Ω = {φ < 0}, and assume furthermore that the boundary partition into the Dirichlet
and Neumann parts is governed by a secondary level set ψ,

ΓD = Γ ∩ {ψ < 0}, ΓN = Γ ∩ {ψ > 0} .

Introducing the active meshes Th and T Γ
h as above, cf. (7), (8), and Fig. 1, we want now fur-

ther partition the submesh T Γ
h into two parts: T ΓD

h around ΓD, serving to impose the Dirichlet

boundary conditions, and T ΓN

h around ΓN for the Neumann ones. The natural choice for these is

T ΓD

h := {T ∈ T Γ
h : ψ 6 0 on T} and T ΓN

h := {T ∈ T Γ
h : ψ > 0 on T} . (22)

As before, we denote the domains occupied by meshes Th,T Γ
h ,T ΓD

h ,T ΓN

h by Ωh,ΩΓ
h,ΩΓD

h ,ΩΓN

h re-

spectively. Note that these definitions may leave a small number of cells of T Γ
h out of both T ΓD

h

and T ΓN

h . Indeed, there may be mesh cells, near the junction of Dirichlet and Neumann parts,
where ψ changes sign inside the cell, so that ψ is neither everywhere positive not everywhere
negative on such a cell. This is illustrated at Fig. 8 (left) where the Dirichlet/Neumann junction
is supposed at x = 0.5, i.e. the secondary level set is ψ(x, y) = 0.5 − y, c.f. Fig. 5. The active
mesh cells intersected by Γ on Fig. 8 are either on the Dirichlet side (they form thus T ΓD

h and are

colored in red), or on on the Neumann side (they form thus T ΓN

h and are colored in blue), or in

between (they are then in T Γ
h but not in T ΓD

h or T ΓN

h , and are colored in yellow).
Assuming once more that u, the solution to (2)–(4)–(5), can be extended from Ω to Ωh as

the solution to the same governing equation (2), we introduce a φ-FEM scheme, combining the
Dual φ-FEM Dirichlet approach, as introduced in (13) and (19), with the indirect imposition of
Neumann boundary condition as proposed in [14]. We thus keep u as the primary unknown on
Ωh and recall that it satisfies the variational formulation (9). The Dirichlet boundary condition
affects the solution on ΩΓD

h through the introduction of the auxiliary variable pD there. We thus
adapt (12) from the pure Dirichlet case as

u = ug + φpD, on ΩΓD

h . (23)

We have assumed here that ug is extended from ΓD to ΩΓD

h .

The Neumann boundary condition will affect u on ΩΓN

h through the introduction of two auxil-

iary variables there. We first introduce a tensor-valued variable y on ΩΓN

h setting y = −σ(u). It
remains to impose yn = −g on ΓN . To this end, we note that the outward-looking unit normal
n is given on Γ by n = 1

|∇φ|∇φ so that the Neumann boundary condition is satisfied by setting

y∇φ+g|∇φ| = −pNφ on ΩΓN

h where pN is yet another (vector-valued) auxiliary variable on ΩΓN

h .
This can be summarized as

y + σ(u) = 0, on ΩΓN

h , (24a)

y∇φ+ pφ = −g|∇φ|, on ΩΓN

h . (24b)

Note that the combination of (23) with (24a-b) does not impose the mixed Dirichlet/Neumann
conditions on the whole of Γ since the latter may be not completely covered by ΩΓD

h ∪ ΩΓN

h .
Fortunately, this defect of the formulation on the continuous level can be repaired on the discrete
level by adding the appropriate stabilization to the FE discretization.

To describe the resulting FE scheme, we start by introducing the FE spaces. As before, we
fix an integer k ≥ 1 and keep the space Vh, as defined in (14), for the approximation uh of the
primary variable u. We need also the spaces for the approximation of the auxiliary variables ph,D
and ph,N , respectively Qkh(ΩΓD

h ) and Qk−1
h (ΩΓN

h ) as defined in (15), as well as the space Zh(ΩΓN

h )
to approximate y, where for each submesh Mh of Th, Zh(Mh) is defined by

Zh(Mh) :=
{
zh :Mh → R(d×d) : zh|T ∈ Pk(T )(d×d) ∀T ∈Mh, zh continuous on Mh

}
. (25)
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Now, combining the variational formulation (9) with the (23) and (24a-b) imposed in a least-
squares manner, we get the following scheme: find uh ∈ Vh, ph,D ∈ Qkh(ΩΓD

h ), yh ∈ Zh(ΩΓN

h ) and

ph,N ∈ Qk−1
h (ΩΓN

h ) such that∫
Ωh

σ(uh) : ∇vh −
∫
∂Ωh\∂Ωh,N

σ(uh)n · vh +

∫
∂Ωh,N

yhn · vh

+ γu

∫
Ω

ΓN
h

(yh + σ(uh)) : (zh + σ(vh)) +
γp
h2

∫
Ω

ΓN
h

(
yh∇φh +

1

h
ph,Nφh

)
·
(
zh∇φh +

1

h
qh,Nφh

)
+

γ

h2

∫
Ω

ΓD
h

(uh −
1

h
φhph,D) · (vh −

1

h
φhqh,D) +Gh(uh,vh) + J lhs,Dh (uh,vh) + J lhs,Nh (yh, zh)

=

∫
Ωh

f · vh +
γ

h2

∫
ΩD

h

ugh · (vh −
1

h
φhqh,D)− γp

h2

∫
Ω

ΓN
h

g · |∇φh|(zh · ∇φh +
1

h
qh,Nφh)

+ Jrhs,Dh (vh) + Jrhs,Nh (zh),

∀vh ∈ Vh, qh,D ∈ Qkh(ΩΓD

h ), zh ∈ Zh(ΩΓN

h ), qh,N ∈ Qk−1
h (ΩΓN

h ) . (26)

We have added here the ghost stabilization Gh defined by (17) as in the pure Dirichlet case. The
additional stabilizations terms J lhsh , Jrhsh are now adapted from (18) and separated into the terms
acting on uh on the Dirichlet cells of T Γ

h (and also those not marked), and the terms acting on
yh on the Neumann cells:

J lhs,Dh (u,v) := σDh
2

∑
T∈T Γ

h \T
ΓN
h

∫
T

divσ(u) · divσ(v) ,

Jrhs,Dh (v) := −σDh2
∑

T∈T Γ
h \T

ΓN
h

∫
T

f · divσ(v) ,

J lhs,Nh (y, z) = γdiv

∫
Ω

ΓN
h

div y · div z , Jrhs,Nh (z) = γdiv

∫
Ω

ΓN
h

f · div z. (27)

These stabilizations are consistent with the governing equations divσ(u) = −f , rewritten as
div y = f , using (24a), wherever possible, i.e. on ΩΓN

h . Note that a similar treatment is applied
to the boundary integral terms on ∂Ω in (9). In (26), they are rewritten in terms of y, using (24a)
and (24b), wherever possible. We thus introduce a part of the boundary ∂Ωh, referred to as ∂Ωh,N ,

formed by the boundary facets of Th belonging to the cells in T ΓN

h . We replace σ(uh) by −yh on
∂Ωh,N , while keeping the boundary term as is on the remaining part of the boundary. All this
contributes to the coerciveness of the bilinear form in (26) and good conditioning of the matrix as
can be proven following the ideas of [14]. We emphasize again that neither Dirichlet nor Neumann
boundary conditions are imposed in any way in scheme (26) on the cells in T Γ

h \ (T ΓD

h ∪ T ΓN

h )
(the cells in yellow on Fig. 8). On the other hand, both stabilizations Gh and Jh are active on the
whole T Γ

h , comprising these cells not marked as Dirichlet or Neumann.

Test case: We are now going to present some numerical results with method (26) highlighting
the optimal convergence of φ-FEM and comparing it with a standard FEM. We use the same
geometry (20), elasticity parameters and the exact solution (21) as for the case of pure Dirichlet
conditions on page 9. We set furthermore the Dirichlet boundary conditions (4) for x > 0.5 and
the Neumann boundary conditions (5) for x < 0.5, c.f. Fig. 5, i.e. we choose the secondary level
set as ψ = 0.5 − x. The data ug and g are computed from the exact solution. In φ-FEM they
should be extended from Γ to appropriate portion of the strip ΩΓ

h. We choose these extensions as{
ug = uex(1 + φ), on ΩΓ

h ∩ {x > 0.5} ,
g = σ(uex) ∇φ‖∇φ‖ + uexφ, on ΩΓ

h ∩ {x < 0.5} .
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Ω ΓDΓN
σn = g u = ug

Figure 5: Test case with mixed boundary conditions: the geometry of Dirichlet and Neumann
boundary parts.

Figure 6: Test case with mixed boundary conditions, meshes resolving the Dirichlet/Neumann
junction. Left: active meshes for φ-FEM, red for T ΓD

h , blue for T ΓN

h . Right: a mesh for standard
FEM, red boundary facets on ΓD, blue boundary facets on ΓN .

12



10−2 10−1

10−8

10−6

10−4

10−2

1
2

1

3

h

re
la

ti
ve

er
ro

r

L2 error φ-FEM

H1 error φ-FEM

L2 error standard FEM

H1 error standard FEM

10−810−710−610−510−410−310−2

10−1

100

L2 relative error

C
om

p
u

ti
n

g
ti

m
e

(s
)

φ-FEM Standard FEM

Figure 7: Test case with mixed boundary conditions, results on meshes as on Fig. 6. Left: L2 and
H1 relative errors under the mesh refinement. Right: computing time vs. the L2 relative error.

Figure 8: Test case with mixed boundary conditions, meshes not resolving the Dirichlet/Neumann
junction. Left: active meshes for φ-FEM, red for T ΓD

h , blue for T ΓN

h , yellow for T Γ
h otherwise

unmarked. Right: a mesh for standard FEM, red boundary facets on ΓD, blue boundary facets
on ΓN , note that some boundary facets contain both Dirichlet and Neumann parts.
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Figure 9: Test case with mixed boundary conditions, results on meshes as on Fig. 8. Left: L2 and
H1 relative errors under the mesh refinement. Right: computing time vs. the L2 relative error.

Again, both expressions are perturbed away from Γ to mimic the real-life situation where the data
are available only on Γ. The stabilization parameters are set to γdiv = γu = γp = 1.0, σ = 0.01
and γ = σD = 20.0.

We start by studying mesh configurations where the Dirichlet-Neumann junction line {x = 0.5}
happens to be covered by the mesh facets both in the background mesh used by φ-FEM, and in the
fitted mesh used by FEM, as illustrated in Fig. 6. All the boundary cells in T Γ

h are marked in this
case either as Dirichlet or as Neumann ones, according to the criterion (22), giving, respectively,
red and blue cells on Fig. 6 (left). There is no ambiguity for the standard FEM fitted meshes: all
the boundary facets are straightforwardly marked either as Dirichlet or as Neumann, cf. Fig. 6
(right) with the same color code as for the unfitted mesh. The results obtained by both φ-FEM
(26) and the standard FEM, using P2-Lagrange polynomials for uh in both cases, are reported
in Fig. 7. On the left, the relative errors are plotted with respect to the mesh step. We observe
again the optimal convergence orders for φ-FEM, while the convergence of the standard FEM is
sub-optimal in the L2-norm. The φ-FEM approach is again systematically more precise in both
norms. On the right side of the same figure, we plot the computing times and notice again that
φ-FEM is less expensive than the standard FEM.

Let us now turn to a less artificial mesh configuration where the Dirichlet/Neumann junction
point can turn up inside a mesh cell of the background mesh, or inside a boundary facet of the
fitted mesh. We study these situations on a series of meshes, as illustrated in Fig. 8. In the case
of the background meshes used for φ-FEM, we ensure in particular that there are no vertical grid
line with the abscissa x = 0.5 so that there are exactly 4 cells cells in T Γ

h that are neither in T ΓD

h

nor in T ΓN

h (yellow cells on the left side of Fig. 8). We recall that scheme (26) does not impose any
boundary conditions on these cells, but retains the stabilization there (in particular, the governing
equation is still re-enforced on these cells in the least squares manner). Note that the fitted FEM
is not straightforward to implement in this case either, since the Dirichlet boundary conditions
cannot be strongly imposed on the boundary facets which turn up only partially on the Dirichlet
side. We bypass this difficulty by treating the Dirichlet conditions by penalization, so that the
”standard” FEM is now defined as: find uh in the Pk FE space (without any restrictions on the
boundary) such that∫

Ω

σ(uh) : ∇vh +
1

ε

∫
ΓD

uh · vh =

∫
Ω

f · vh +

∫
ΓN

g · vh +
1

ε

∫
ΓD

ug · vh (28)
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for all vh in the same FE space as uh, with a small parameter ε > 0.
The mesh refinement study in this case is reported at Fig. 9. Comparing the results with

those of Fig. 7 (obtained on idealized unrealistic meshes without any unmarked cells), we observe
that the behavior of φ-FEM (26) is almost unaffected by the presence (or not) of the unmarked
“yellow” cells, although the convergence curve for the L2 relative error is now slightly less regular.
In particular, the conclusions about the relative merits of φ-FEM and the fitted FEM, now in
version (28), remain unchanged: φ-FEM is more precise on comparable meshes and less expensive
in terms of the computing times for a given error tolerance.

3 Linear elasticity with multiple materials.

We now consider the case of interfaces problems, i.e. partial differential equations with coefficients
jumping across an interface, which can cut the computational mesh in an arbitrary manner. The
simplest meaningful example in the realm of linear elasticity is given by structures consisting of
multiple materials having different elasticity parameters. This situation has already been treated
in XFEM [12, 2, 31, 30], CutFEM [8, 20, 19, 24], and SBM [25] paradigms. We are now going to
demonstrate the applicability of φ-FEM in this context.

Let us assume that the structure occupies a domain Ω and it consists of two materials that
occupy two subdomains Ω1 and Ω2 separated by the interface Γ. To fix the ideas, we further assume
that Ω1 is surrounded by Ω2, so that the interface Γ can actually be described as Γ = ∂Ω1, as
illustrated at Fig. 10. We also assume that the displacement u is given on the external boundary
(these assumptions are not restrictive and the forthcoming method can be easily adapted to
other situations, e.g. with Γ touching ∂Ω or with Neumann boundary conditions on the external
boundary). We then consider the problem for the displacement u on Ω:

−divσ(u) = f , on Ω\Γ ,
u = ug , on ∂Ω ,

[u] = 0 , on Γ ,

[σ(u)n] = 0 , on Γ ,

(29)

where n is the unit normal pointing from Ω1 to Ω2, and the brackets [·] stand for the jump across
Γ. The elasticity parameters are assumed constant on each sub-domain, but different from each
other. The stress tensor is thus given by

σ(u) =

{
σ1(u) = 2µ1ε(u) + λ1(divu)I , on Ω1 ,

σ2(u) = 2µ2ε(u) + λ2(divu)I , on Ω2 ,

with the Lamé parameters λi and µi defined via the formulas (3) with given Ei, νi, i = 1, 2.
Introducing the displacements ui = u|Ωi

, i = 1, 2 on Ω1 and Ω2 separately, problem (29) can be
rewritten as the system of two coupled sub-problems:

− divσi(ui) = f , on Ωi , i = 1, 2,

u2 = ug , on ∂Ω ,

u1 = u2 , on Γ ,

σ1(u1)n = σ2(u2)n , on Γ .

(30)

We suppose that Ω is sufficiently simple-shaped so that a matching mesh Th on Ω is easily
available (again, this assumption is not restrictive; we have seen that a complex-shape domain
Ω can be also treated by φ-FEM). On the contrary, the mesh Th is not supposed to match the
internal interface Γ and we are going to adapt φ-FEM to this situation. The starting point is the
reformulation (30). We are thus going to discretize separately u1 on Ω1 and u2 on Ω2. To this
end, we introduce two active meshes Th,1 and Th,2, sub-meshes of Th, constructed by retaining

15



Ω1

Γ

[σ(u)n] = 0
[u] = 0

Ω2

u = ug

Figure 10: Geometry with the interface Γ: elasticity with multiple materials.

in Th,i the cells of Th having a non-empty intersection with Ωi. In practice, the sub-domains are
defined through a level-set φ:

Ω1 = {φ > 0} ∩ Ω, Ω2 = {φ < 0}, Γ = {φ = 0} ∩ Ω .

The sub-meshes Th,i are defined using a piecewise-polynomial approximation φh of φ, rather than
φ itself:

Th,1 := {T ∈ Th : T ∩ {φh > 0} 6= ∅} and Th,2 := {T ∈ Th : T ∩ {φh < 0} 6= ∅} . (31)

We also introduce the sub-mesh T Γ
h as the intersection Th,1 ∩ Th,2 and denote by Ωh,1, Ωh,2,

ΩΓ
h the domains covered by meshes Th,1, Th,2, T Γ

h respectively. Similarly to the simpler settings
considered above, the unknowns u1 and u2, living physically on Ω1 and Ω2, will be discretized
on larger domains Ωh,1 and Ωh,2, introducing artificial extensions on narrow fictitious strips near
Γ. On the discrete level, the unknowns will be thus redoubled on the joint sub-mesh T Γ

h . Several
auxiliary unknowns will be introduced on ΩΓ

h similar to the case of mixed boundary conditions
above (indeed, we have to discretize both Dirichlet and Neumann conditions on the interface Γ in
the current setting).

We now put the program above into the equations, first on the continuous level. Similarly to
(9), the unknowns ui extended to larger domains Ωih satisfy formally the variational formulations,
cf. the first equation in (30):∫

Ωh,i

σi(ui) : ∇vi −
∫
∂Ωh,i

σi(ui)ni · vi =

∫
Ωh,i

f · vi, ∀vi on Ωhi
s.t.vi = 0 on ∂Ω . (32)

Here, with a slight abuse of notations, ∂Ωh,i denotes the component of the boundary of Ωh,i other
than ∂Ω, and ni denotes the unit normal vector on ∂Ωh,i pointing outside Ωh,i. The boundary
conditions on the external boundary ∂Ω, i.e. the second equation in (30), will be imposed strongly.
The remaining equations in (30), i.e. the interface conditions on Γ, will be imposed by introduction
of auxiliary variables on ΩΓ

h: the vector-valued p (similar to the dual version of φ-FEM for the
Dirichlet boundary conditions above) and matrix-valued y1,y2 (similar to φ-FEM for the Neumann
boundary conditions). This gives, cf. the last two equations in (30):

u1 − u2 + pφ = 0 , on ΩΓ
h, (33)

yi + σi(ui) = 0 , on ΩΓ
h, i = 1, 2, (34)

y1∇φ− y2∇φ = 0 , on ΩΓ
h . (35)
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Equation (35) above extends the last equation in (30) from Γ to ΩΓ
h since the normal on Γ is

colinear with the vector ∇φ there.
We are now going to discretize equations (32)–(35). We fix an integer k ≥ 1 and introduce the

FE spaces for the primary variables ui:

Vh,i :=
{
vh : Ωh,i → Rd : vh|T ∈ Pk(T )d ∀T ∈ Th, vh continuous on Ωh,i ,

and vh = Ihu
g on ∂Ω

}
(36)

with the standard FE interpolation Ih, and their homogeneous counterparts V 0
h,i with the con-

straint vh = 0 on ∂Ω, to be used for the test functions. We recall moreover the spaces Qh(ΩΓ
h)

and Zh(ΩΓ
h) defined respectively by (15) and (25). Combining (32) with (33)–(35) taken in the

least square sense, gives the following scheme:
find uh,1 ∈ Vh,1, uh,2 ∈ Vh,2, ph ∈ Qkh(ΩΓ

h), yh,1,yh,2 ∈ Zh(ΩΓ
h) such that,

2∑
i=1

∫
Ωh,i

σi(uh,i) : ∇vh,i +

2∑
i=1

∫
∂Ωh,i

yh,in · vh

+
γp
h2

∫
ΩΓ

h

(uh,1 − uh,2 +
1

h
phφh) · (vh,1 − vh,2 +

1

h
qhφh)

+ γu

2∑
i=1

∫
ΩΓ

h

(yh,i + σi(uh,i)) : (zh,i + σi(vh,i))

+
γy
h2

∫
ΩΓ

h

(yh,1∇φh − yh,2∇φh) · (zh,1∇φh − zh,2∇φh)

+

2∑
i=1

(
Gh(uh,i,vh,i) + J lhs,Nh (yh,i, zh,i)

)
=

2∑
i=1

∫
Ωh,i

f · vh,i +

2∑
i=1

Jrhs,Nh (zh,i) ,

∀vh,1 ∈ V 0
h,1,vh,2 ∈ V 0

h,2, qh ∈ Qkh(ΩΓ
h), zh,1, zh,2 ∈ Zh(ΩΓ

h) . (37)

Similarly to the previous settings, we have added here the ghost stabilization Gh defined by (17)

and the additional stabilization Jrhs,Nh defined by (27) with ΩΓN

h replaced by ΩΓ
h and imposing

div yi = f on ΩΓ
h in the least squares sense.

Test case: Consider Ω = (0, 1)2 and Ω1, Ω2 defined by the the level-set φ

φ(x, y) = −R2 + (x− 0.5)2 + (y − 0.5)2 ,

with R = 0.3 as illustrated on Fig. 10. We want to solve (29) with the manufactured radial solution

u = uex =

{ 1
E1

(cos(r)− cos(R))(1, 1)T if r < R,
1
E2

(cos(r)− cos(R))(1, 1)T else,
,

where r =
√

(x− 0.5)2 + (y − 0.5)2. Thus

f = −div(σ1((cos(r)− cos(R))(1, 1)T )/E1

and ug = uex.
The material parameters are given by E1 = 7, E2 = 2.28 and ν1 = ν2 = 0.3. The meshes

used for φ-FEM and for the standard FEM are illustrated in Fig. 11. In the latter case, the mesh
should resolve the interface r = R so that the solution uh ∈ Vh is obtained by the straight-forward
scheme

2∑
i=1

∫
Ωh,i

σi(uh) : ∇vh =

∫
Ω

f · vh, ∀ vh ∈ V 0
h , (38)
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Figure 11: Linear elasticity with multiple materials. Left: a mesh used for φ-FEM (ΩΓ
h painted in

yellow); Right: a mesh matching the interface for standard FEM (yellow and white represent the
two materials).
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Figure 12: Test case with multiple materials. Left: H1 and L2 relative error obtained with φ-FEM
and the standard FEM. Right: computing times for φ-FEM and the standard FEM.
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where Vh is the conforming Pk FE space approximating ug on ∂Ω and V 0
h is its homogeneous

analogue. The results obtained with φ-FEM (37) and FEM (38) using P2 piecewise polynomials
(k = 2) are reported in Fig. 12. The conclusions remain the same as in the previous setting:
φ-FEM is more precise on comparable meshes and less expensive in terms of the computing times
for a given error tolerance.

4 Linear elasticity with cracks

We now want to consider the linear elasticity problem posed on a cracked domain Ω \ Γf with Γf
being a line (a surface) inside Ω:

−divσ(u) = f , on Ω \ Γf ,

u = ug , on ∂Ω ,

σ(u)n = g , on Γf .

(39)

This problem is actually what XFEM was originally designed for, cf. [28]. We are now going to
adapt φ-FEM to it.

In practice, the crack geometry is given by the primary level set φ (to locate the line or surface
of the crack) and the secondary level set ψ (to locate the tip or the front of the crack):

Γf := Ω ∩ {φ = 0} ∩ {ψ < 0} .

To fix the ideas, let us suppose that the line (surface) Γ := {φ = 0} splits Ω into two sub-domains
Ω1 and Ω2, characterized by {φ < 0} and {φ > 0} respectively, as illustrated at Fig. 13. The
interface Γ thus consists of the fracture location Γf and the remaining (fictitious) part Γint:

Γint := Ω ∩ {φ = 0} ∩ {ψ > 0} .

In order to reuse the φ-FEM scheme (37) introduced for the interface problem above, we reformu-
late problem (39) in terms of two separate unknowns ui = u|Ωi

, i = 1, 2:

−divσ(ui) = f , on Ωi ,

ui = ug , on ∂Ω ,

[u] = 0 , on Γint ,

[σ(u)n] = 0 , on Γint ,

σ(u)n = g , on Γf .

(40)

0 1

1

Γint

Γf

Ω1

Ω2

u = ug

Figure 13: Geometry notations to represent the crack. Γint and Γf represents the fictitious
interface and the actual crack respectively.
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We are interested again in a situation where Ω is sufficiently simple-shaped so that a matching
mesh Th on Ω is easily available, but this mesh does not match the internal interface Γ. As in
the preceding section, we are thus going to discretize separately u1 on Ω1 and u2 on Ω2 starting
from the reformulation (40). To this end, we introduce two active sub-meshes Th,1, Th,2 as in (31),
based on the piecewise polynomial approximation φh of φ. We also introduce the interface mesh
T Γ
h = Th,1 ∩ Th,2 , which we further split into two sub-meshes with respect to the secondary level

set ψ, similarly to our treatment of the mixed boundary conditions, cf. (22):

T Γf

h := {T ∈ T Γ
h : ψ 6 0 on T} and T Γint

h := {T ∈ T Γ
h : ψ > 0 on T} .

Note that there may be some cells in T Γ
h that are not marked as either T Γf

h or T Γint

h . This is

illustrated by the mesh example on the right of Fig. 14, where the cells in T Γf

h and T Γint

h are
painted in red and blue respectively, but there remain some cells T Γ

h that are in neither of these
categories. The are painted in yellow on the picture. These are the cells intersected by the line
{ψ = 0}. The crack tip happens to be thus inside one of the yellow cells.

Everything is now set up to adapt the φ-FEM approaches of the two preceding sections to the
equations (40). We choose an integer k ≥ 1 and introduce first the FE spaces Vh,1, Vh,2 together
with their homogeneous counterparts V 0

h,1, V 0
h,2 as in (36) to approximate u1 and u2. These will

be used in the discretization of the variational formulation of the first equation in (40) together
with the boundary conditions on ∂Ω. The remaining equations in (40), i.e. the relations on Γint
and Γf will be treated by the introduction of auxiliary variables on the appropriate parts of ΩΓ

h

(the domain of the mesh T Γ
h ):

• the vector-valued unknown p and the matrix-valued unknowns y1,y2 on ΩΓint

h (the domain

of the mesh T Γint

h ). These will serve to impose the continuity of both the displacement and
the normal force on Γint thorough the equations

u1 − u2 + pφ = 0 , on ΩΓint

h ,

yi = −σ(ui) , on ΩΓint

h ,

y1 · ∇φ− y2 · ∇φ = 0 , on ΩΓint

h ,

which are exactly the same as (33)–(35) with the only exception that they are posed on the
appropriate portion of ΩΓ

h rather than on entire ΩΓ
h. These variables will be discretized in

FE spaces Qkh(ΩΓint

h ) for p and Zh(ΩΓint

h ) for y1,y2, defined by (15) and (25) respectively.

• the vector-valued unknowns pNi and the matrix-valued unknown yNi , i = 1, 2 on Ω
Γf

h (the

domain of the mesh T Γf

h ). These will serve to impose the Neumann boundary conditions on
both sides of Γf thorough the equations

yNi = −σ(ui) , on Ω
Γf

h ,

yNi ∇φ+ pNi φ+ g|∇φ| = 0 , on Ω
Γf

h ,

which are exactly the same as (24a-b) with the only exception that the domain is renamed

to Ω
Γf

h from ΩΓN

h . These variables will be discretized in FE spaces Qk−1
h (Ω

Γf

h ) for pNi and

Zh(Ω
Γf

h ) for yNi , defined again by (15) and (25) respectively.

Note that the combination of equations above does not impose the appropriate interface conditions

on the whole of Γ since the latter may be not completely covered by Ω
Γf

h ∪ΩΓint

h . Fortunately, this
defect of the formulation on the continuous level can be repaired on the discrete level by adding
the appropriate stabilization to the FE discretization, similarly to what we have already seen in
the setting with mixed boundary conditions.
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All this results in the following FE scheme: find uh,1 ∈ Vh,1, uh,2 ∈ Vh,2, ph ∈ Qkh(ΩΓD

h ),

yh,1,yh,2 ∈ Zh(ΩΓN

h ), pNh,1,p
N
h,2 ∈ Q

k−1
h (ΩΓN

h ), yNh,1,y
N
h,2 ∈ Zh(ΩΓN

h ) such that

2∑
i=1

( ∫
Ωh,i

σ(uh,i) : ∇vh,i +

∫
∂Ωh,i,int

yh,in · vh,i +

∫
∂Ωh,i,f

yNh,in · vh,i

−
∫
∂Ωh,i\(∂Ωh,i,int∪∂Ωh,i,f )

σ(uh,i)n · vh,i
)

+
γp
h2

∫
Ω

Γint
h

(uh,1 − uh,2 +
1

h
phφh) · (vh,1 − vh,2 +

1

h
qhφh)

+ γu

2∑
i=1

∫
Ω

Γint
h

(yh,i + σ(uh,i)) : (zh,i + σ(vh,i))

+
γy
h2

∫
Ω

Γint
h

(yh,1∇φh − yh,2∇φh) · (zh,1∇φh − zh,2∇φh)

+ γu,N

2∑
i=1

∫
Ω

Γf
h

(yNh,i + σ(uh,i)) : (zNh,i + σ(vh,i))

+
γp,N
h2

2∑
i=1

∫
Ω

Γf
h

(yNh,i∇φh +
1

h
pNh,iφh) · (zNh,i∇φh +

1

h
qNh,iφh)

+

2∑
i=1

(
Gh (uh,i,vh,i) + J lhs,inth

(
yh,i, zh,i

)
+ J lhs,fh

(
yNh,i, z

N
h,i

))
=

2∑
i=1

∫
Ωh,i

f · vh,i −
γp,N
h2

2∑
i=1

∫
Ω

Γf
h

g|∇φh|(zNh,i∇φh +
1

h
qNh,iφh)

+

2∑
i=1

(
Jrhs,inth (zh,i) + Jrhs,fh

(
zNh,i

))
,

∀vh,1 ∈ V 0
h,1,vh,2 ∈ V 0

h,2, qh ∈ Qkh(ΩΓD

h ), zh,1, zh,2 ∈ Zh, qNh,1, qNh,2 ∈ Qk−1
h (ΩΓN

h ),

zNh,1, z
N

h,2
∈ Zh(ΩΓN

h ) . (41)

As usual, we have added here the ghost stabilization Gh (17) and the additional stabilizations

J lhs,inth , J lhs,fh (accompanied by the their counterparts on the right-hand side for the consistency)

that are copied from the J lhs,Nh in (27) but adjusted to the corresponding sub-meshes:

J lhs,inth (y, z) = γdiv

∫
Ω

Γint
h

div y · div z , J lhs,fh (y, z) = γdiv

∫
Ω

Γf
h

div y · div z .

The boundary integrals are rewritten in terms of yi,y
N
i wherever possible. We have here denoted

by ∂Ωh,i the part of the boundary of Ωh,i other than ∂Ω and introduced ∂Ωh,i,int as the part of

∂Ωh,i formed by the boundary facets of Th,i belonging to the cells in T Γint

h . The same for ∂Ωh,i,f .

Test case: Let Ω = (0, 1)2 and the interface Γ be given by the level set

φ(x, y) = y − 1

4
sin(2πx)− 1

2
.

We choose the crack tip to be at x = 0.5 so that

Γint := {φ = 0} ∩ {x < 0.5} and Γf := {φ = 0} ∩ {x > 0.5} .

This is the setting represented at Fig. 13.
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Figure 14: Test case with a crack, meshes used for φ-FEM. Left: a mesh resolving the crack tip;

the cells in T Γint

h in blue; the cells in T Γf

h in red. Right: a mesh not resolving the crack tip; in

addition to blue and red cells, there are yellow cells not belonging to T Γint

h or T Γf

h .
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Figure 15: Test case with a crack, H1 and L2 relative errors. Left: on meshes resolving the crack
tip. Right: on meshes not resolving the crack tip.
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We use the φ-FEM (41) to solve (39) with the manufactured solution

u = uex = (sin(x)× exp(y), sin(y)× exp(x))T

which gives f , g, and ug by substitution. The force on the crack g should be extended to a vicinity
of Γf and we implement it by

g = σ(uex)
∇φ
‖∇φ‖

+ φuex .

We choose γu = γp = γdiv = γu,N = γp,N = γdiv,N = 1.0, σp = 1.0 and σD = 20.0.
We have conducted two series of numerical experiments using φ-FEM (41) with P2 Lagrange

polynomials (k = 2) on families of meshes presented at Fig. 14, either resolving the crack tip (the
mesh on the left) or not (the mesh on the right). The results are reported on Fig. 15. We see that
φ-FEM converges optimally, giving very similar results on both types of meshes.

5 Heat equation

We finally demonstrate the applicability of the φ-FEM approach to time-dependent problems.
We take the example of the heat equation with Dirichlet boundary conditions: given a bounded
domain Ω ∈ Rd, the initial conditions u0 on Ω, and the final time T > 0, find the scalar field
u = u(x, t) such that  ut −∆u = f in Ω× (0, T ),

u = 0 on Γ× (0, T ),
u(., 0) = u0 in Ω.

(42)

We are interested again in the situation where a fitting mesh of Ω is not available. We rather
assume that Ω is inscribed in a box O which is covered by a simple background mesh T Oh , and
introduce the active mesh Th as in (7). We then follow the Direct Dirichlet φ-FEM approach (11),
(16) with the following modifications:

• We introduce the uniform partition of the time interval I = [0, T ] into time steps of length
∆t by the nodes ti = i∆t. We discretize then (42) in time using implicit Euler scheme. On
the continuous level this is formally written as: find un (the approximation to u at time tn)
in the form un = φwn successively for n = 1, 2, . . . solving

φwn − φwn−1

∆t
−∆(φwn) = fn (43)

where fn(·) = f(tn, ·).

• We extend (43) to Ωh, integrate by parts on Ωh, and discretize the resulting variational
formulation using a FE space and adding appropriate stabilizations.

The φ-FEM for (42) reads thus as: find wnh ∈ Vh for n = 1, 2, . . . with Vh defined by (14) such
that∫

Ωh

φhw
n
h

∆t
φhvh +

∫
Ωh

∇(φhw
n
h) · ∇(φhvh)−

∫
∂Ωh

∂

∂n
(φhw

n
h)φhvh

+ σDh
∑
E∈FΓ

h

∫
E

[∂n(φhw
n
h)] · [∂n(φhvh)]− σh2

∑
T∈T Γ

h

∫
T

(
φhw

n
h

∆t
−∆(φhw

n
h)

)
∆(φhvh)

=

∫
Ωh

(
φhw

n−1
h

∆t
+ fn

)
φhvh − σh2

∑
T∈T Γ

h

∫
T

(
φhw

n−1
h

∆t
+ fn

)
∆(φhvh). (44)

We have added here the ghost stabilisation, similar to (17) but in simpler scalar setting, and
additional stabilization inspired by (18). The idea for the latter is to take the governing equation
in the strong form, which is now (43), and to impose it in a least squares manner cell by cell.
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Figure 16: Test case for the heat equation; ∆t = h. Left: L∞(0, T ;L2(Ω)) relative errors. Right:
L2(0, T ;H1(Ω)) relative errors.
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Figure 17: Test case for the heat equation; ∆t = 10h2. Left: L∞(0, T ;L2(Ω)) relative errors.
Right: L2(0, T ;H1(Ω)) relative errors.
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Test case: We consider again the geometry of Ω and of the surrounding box O as in our first
test case on page 9. In particular, the level set is given by (20) so that Ω is the circle centered at
(0.5, 0.5). Examples of meshes used both by φ-FEM and by the standard FEM are given in Fig. 2.
We want to solve (42) with the manufactured solution

u = uex = exp(x) sin(2πy) sin(t)

and extrapolated boundary conditions

ug = uex(1 + φ).

We are going to compare the convergence of the φ-FEM (44) with that of the standard FEM
using P1 Lagrange polynomials in space and the implicit Euler scheme in time in both cases. The
φ-FEM stabilization parameter is taken as σ = 20. The results are reported in Figs. 16 and 17, for
∆t = h and ∆t = 10h2, respectively. Once again, φ-FEM converges faster than standard FEM. In
the test considered here, the predominant source of error seems to be in the time discretization.
In particular, we observe only O(h) convergence in the L2-norm in space in the regime ∆t = h
on Fig. 16. A cleaner 2nd order in time should be possible to achieve using the BDF2 marching
scheme, but this remains out of the scope of the present paper.

6 Conclusions and perspectives

φ-FEM is a relative newcomer to the field of unfitted FE methods. Up to now, it was only
applied to scalar 2nd order elliptic equations with pure Dirichlet or pure Neumann/Robin boundary
conditions in [15, 14]. The purpose of the present contribution is to demonstrate its applicability
to more sophisticated settings including the linear elasticity with mixed boundary conditions
and material properties jumping across the internal interfaces, elasticity with cracks, and the
heat transfer. In all the cases considered here, the numerical tests confirm the optimal accuracy
on manufactured smooth solutions. φ-FEM is easily implementable in standard FEM packages
(we have chosen FEniCS for the numerical illustration in this chapter). In particular, φ-FEM
uses classical finite element spaces and avoids the mesh generation and any non-trivial numerical
integration.

Interestingly, our methods systematically outperform the standard FEM on comparable meshes.
This can be attributed to a better representation of the boundary and of the solution near the
boundary, as opposed to the approximation of the domain by a polyhedron/polygon in stan-
dard FEM. We recall that the computing times, reported in some of our tests with φ-FEM and
favourably compared with those of the standard FEM, only include assembling of the matrices
and the resolution of the linear systems. It would be interesting to add the mesh generation time
to the comparison, which should be even more in favour of φ-FEM (when efficiently implemented).

Admittedly, the test cases presented in this contribution do not comprise all the complexity
of the real-life problems. We have restricted ourselves to simple geometries in 2D only. Even
more importantly, we have tested the methods only on smooth solutions, which is not supposed
to happen in practice in problems with cracks, for example. Taking accurately into account the
singularity at the crack tip remains an important challenge for the future φ-FEM developments. A
relatively easily implementable approach would be to combine φ-FEM with a local mesh refinement
by quadtree/octree structures near the crack tip (front). We emphasize that such a refinement
should be necessary only in the vicinity of the front, since the discontinuous solution along the
crack should be efficiently approximated by φ-FEM on a reasonably coarse unfitted mesh.

The mathematical analysis of the schemes presented in this paper is in progress. We also plan
to adapt φ-FEM to fluid-structure simulations starting by the creeping flow around of a Newtonian
fluid (Stokes equations) in the presence of rigid particles.
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