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Smooth interfaces of topological systems are known to host massive surface states in addition to the topologi-
cally protected chiral one. We show that in Weyl semimetals these massive states, along with the chiral Fermi arc,
strongly alter the form of the Fermi-arc plasmon. Most saliently, they yield further collective plasmonic modes
that are absent in a conventional interface. The plasmon modes are completely anisotropic as a consequence of
the underlying anisotropy in the surface model and expected to have a clear-cut experimental signature, e.g., in
electron-energy loss spectroscopy.
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I. INTRODUCTION

Weyl semimetals (WSMs) are often considered as a
three-dimensional (3D) version of graphene since their low-
energy k · p Hamiltonian is described by the massless Weyl
equation with linear energy dispersion known as Weyl cones
[1]. WSMs must have an even number of Weyl cones: at least
four for inversion symmetry broken WSM and two for time-
reversal symmetry broken ones. Previous studies have shown
that the bulk dielectric properties such as Friedel oscillations
and (magneto-)plasmons in WSMs [2–6] are different from
those of graphene [7,8] due to the increased dimensional-
ity. For example, the bulk plasmon’s dispersion in WSMs is
gapped and parabolic in momentum while it follows a gapless
square-root dispersion in graphene. The chiral anomaly in
WSMs [9] may be probed by the bulk plasmon [10] whose
dispersion depends on the chirality-resolved chemical poten-
tial. As topological semimetals, WSMs can also host surface
plasmons [11] and surface plasmon polaritons [12,13], as it
was shown using Maxwell’s equations in the bulk with a
topological Chern-Simons θ -term [14]. In particular, in ferro-
magnetic WSMs, due to its gapless spectrum and large Berry
curvature [15,16], electromagnetic waves propagate nonrecip-
rocally, i.e., one direction is preferred.

Localized surface states can also give birth to original sur-
face plasmons. In WSMs, topologically protected Fermi-arc
(FA) states connecting two Weyl cones emerge at the surface
due to the bulk-edge correspondence: The presence of topo-
logically protected edge states is dictated by the topological
invariant of the twisted bulk band structure. The FA states
have been shown to induce a chiral linear FA surface plasmon
with total nonreciprocity [17–23], i.e., it propagates only in
one direction determined by the chirality of the FA dispersion.
Furthermore, a smooth surface of a topological material is
known to host massive states called Volkov-Pankratov (VP)
states [24–29], along with the protected topological chiral
states. These gapped bands can be visualized as pseudo-
Landau levels of the system where the smoothness of the

interface is modeled as a pseudomagnetic field [30]. Though
not protected topologically, their presence may heavily mod-
ify the transport [31] and magneto-optical properties [32,33]
of surfaces of topological materials.

Here we show within a simple single-boundary model and
the random-phase approximations (RPA) how the FA and the
VP states conspire to give rise to new plasmon modes on a
smooth surface of a WSM. We confirm that the FA plasmon
is chiral and exhibits strong anisotropy and a singularity at
zero momentum [17,18,20–23] because the 2D dispersion of
the FA band evolves into an effectively 1D one: The energy
disperses linearly perpendicular to the z direction connecting
two Weyl nodes and remains almost constant along z. A
spectacular consequence of this anisotropy is the finite gap
which the FA plasmon acquires at qz = 0 and that vanishes
for longitudinal wave-vectors qz �= 0. Moreover, a VP intra-
band plasmon appears when the chemical potential is above
the minimum of the first VP band. Somewhat surprisingly,
this plasmon is also nonreciprocal in spite of the ky ↔ −ky

symmetric dispersion of the VP bands. As we show below,
this is due to coupling to the chiral FA state. We also find a
gapped plasmon mode that stems from excitations between
two VP bands of the same band index and that we call VP
interband plasmon.

II. SMOOTH WSM SURFACE

We consider a smooth interface in the x direction between
a time-reversal breaking WSM and a trivial insulator modeled
by the Hamiltonian valid between 0 � x � � [33–35],

H = v(kxσx + kyσy) +
(

k2
z

2m
− � + 2

�

�
x

)
σz, (1)

where v, m, and � are the Fermi velocity, effective mass,
and the magnitude of the inverted gap, respectively. These
material-related parameters are positive and henceforth we
use h̄ = 1 for notational simplicity. Without the x-dependent
term, this is the simplest model for a time-reversal breaking
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two-node WSM with Weyl nodes at k = η
√

2m�ẑ with op-
posite chirality η = ±1. The spatially varying gap parameter
describes explicitly how the inverted band gap at the center
of Brillouin zone is closed and reopened across the interface
of width � from a WSM (x < 0) to a trivial insulator (x > �).
The smoothness of the surface can be viewed as an effective
chiral pseudomagnetic field BP = −η2�/ev�ŷ that couples
to the two Weyl nodes of opposite chirality with respective
signs. Hamiltonian (1) can be diagonalized by introducing
creation and annihilation operators constructed from linear
combinations of the kx- and the x-dependent terms. Thus,
the effective surface bands are reminiscent of Landau levels
following the dispersion [35,36]

Eλ
n (ky) = λv

√
k2

y + 2n

�2
S

= λ

√
v2k2

y + ne2
0, (2)

for n � 1, where λ = ± is the band index, and the smoothness
of the surface has been encoded in an effective magnetic
length �S = 1/

√
eBP. The VP band gap e0 = √

2v/�S , which
is the separation between the n = 0 and the n = 1 bands
at k = 0, sets the characteristic energy scale of this surface
model. The FA is naturally described by the n = 0 band with

E0(ky) = vky (3)

and breaks the symmetry ky → −ky, its counterpart with op-
posite sign of the dispersion being localized at the other
surface of the WSM that we do not consider here. The FA state
is independent of the surface details such as its smoothness,
i.e., the band dispersion does not depend on �, indicating
its topological nature. However, the n � 1 VP bands depend
strongly on the surface modeling. In the sharp-surface limit
(� → 0), the VP bands rise up in energy and eventually merge
with the bulk states when v

√
2n/�S ∼ �, while only the FA

state survives.
From Eq. (2), we can see that the VP bands are completely

flat in the kz direction until they hybridize with the bulk Weyl
cones, as shown in the inset of Fig. 1. In spite of being em-
bedded in a 2D (ky, kz ) manifold, the VP bands are effectively
1D and thus exhibit van Hove singularities in the density of
states at the band extrema. The underlying 2D nature and
the kz dependence is encoded in the location of the surface
states: Along the interface, they have a Gaussian profile of
a characteristic width �S centered at 〈x〉 = BP(� − k2

z /2m).
This, as shown below, results in nondiagonal overlap matrix
elements for excitations in the kz direction.

III. QUASI-2D RPA

In order to analyze the behavior of surface electrons, con-
sider the noninteracting dynamical polarization

χ
(0)
i, j (q, ω) = 1

V

∑
k

fD[Ei(k)] − fD[Ej (k + q)]

ω + Ei(k) − Ej (k + q) + iδ

× |Fi, j (k, k + q)|2, (4)

where δ = 0+ and the i, j indices are shorthand notations for
both band labels n and λ. In general, the overlap matrix Fi, j

is not diagonal because of the aforementioned kz dependence
of the eigenstates so that χ

(0)
i, j is generally a tensor. However,

FIG. 1. Various particle-hole excitations involving the surface
bands for a fixed transverse momentum. The chiral FA is denoted
by the red line, whereas the massive VP bands are shown in green.
As discussed in the main text, for qz = 0, only n → ±n excitations
are allowed across the Fermi level (dashed line). Inset: Global view
on surface bands connecting two Weyl nodes. Along the transverse
momentum, the quasi-1D surface bands do not disperse.

for qz = 0, the particle-hole excitations are also 1D and Fi, j

becomes diagonal, meaning that only excitations from n to
±n are possible. The RPA dielectric function then retrieves its
usual form

εRPA(qy, ω) = 1 − V2D(qy)χ (0)(qy, ω), (5)

where V2D(qy) = e2/2ε0εr |qy|, and χ (0) is the noninteracting
charge susceptibility, in terms of the environmental dielectric
constant εr [36].

When qz �= 0, the overlap matrix element Fi, j (k, k + q)
is more involved. However, in the long-wavelength limit,
the off-diagonal term Fi, j is proportional to q

|ni−n j |
z [36]

so that the n → ±n excitations still remain the leading con-
tributions to the charge susceptibility. Nevertheless, due to
the complicated form of the off-diagonal terms, we cannot
factorize the Coulomb interaction operator [36] even in the
long-wavelength limit when several VP bands are present.
We therefore consider only the chiral FA and the n = ±1 VP
bands (three-band model), where [36]

χ (0)(q, ω) =
∑
i, j

χ
(0)
i, j (q, ω), (6)

and χ
(0)
i, j are the contributions by the excitation

(ni, λi ) → (n j, λ j ). Accordingly, we can generalize (qy, ω) in
Eq. (5) to (q, ω).

IV. PLASMONS

We summarize our results for qz = 0 in Fig. 2 and for
qz�S = 0.2 in Fig. 3, where we numerically calculate the pro-
file of −Im(χ (0)) in the (qy > 0, ω > 0) plane, for different
values of the chemical potential μ and a given disorder am-
plitude δ = 0.001e0. Indeed, the imaginary part of χ (0) bears
important information about possible electronic excitations
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(a) (b)

(c) (d)

FIG. 2. Profile of the imaginary part of the noninteracting dy-
namical polarization −Im(χ (0) ) in the (qy, ω) phase space at μ =
0.01e0, 0.90e0, 1.01e0, and 1.30e0 for qz = 0, v = 1 eV.Å, � = 10 Å,
� = 1 eV, and k0 = 10 Å−1. The zeros of the real part of εRPA (red
dashed lines) indicate the plasmon modes.

and therefore damping of the plasmon modes, indicated by
the red dashed lines (zeros of the real part of εRPA). The
plasmon modes are only long lived and undamped in the black
regions where Im(χ (0) ) = 0. Within the above-mentioned
three-band model, one obtains three particle-hole continua,
with −Im(χ (0) ) �= 0, corresponding to the transitions shown
in Fig. 1. The FA particle-hole continuum extends linearly in
the (qy > 0, ω > 0) plane. A second particle-hole spectrum is

delimited from below by ω >
√

4e2
0 + v2q2

y due to interband

excitations involving the VP conduction and valence bands
n = ±1, respectively. However, it vanishes at small momenta
because the eigenstates associated with the VP conduction and
valence bands are orthogonal at q = 0.

As we increase μ above the VP conduction band [see
Figs. 2(c), 2(d), 3(c) and 3(d)], the poles of the FA excita-
tions remain unchanged because of the linear FA dispersion,

(a) (b)

(c) (d)

FIG. 3. Same as Fig. 2 except for qz�S = 0.2. The zeros of the
real part of εRPA (red dashed lines) indicate the plasmon modes

whereas that of the interband particle-hole continua gets heav-
ily modified due to Pauli blocking at the conduction band
minima. At low frequencies, intraband excitations of the n =
+1 VP band induce a third particle-hole continuum. With
μ > e0 just above the conduction band minimum, the VP
band is approximately parabolic, and its quasi-1D character
is apparent in the form of the particle-hole intraband spectrum
with its typical exclusion dome for q�S < 2kF with kF defined

as μ =
√

v2k2
F + e2

0.
In the qz = 0 limit, two plasmon modes are present for

μ < e0 as we can see in Figs. 2(a) and 2(b). The first one
is the linearly dispersing FA plasmon with a gap at qy =
0, in agreement with theoretical approaches using classi-
cal electrodynamics [17], hydrodynamic description [22], or
quantum-mechanical calculations [18,20,21,23]. From the ze-
ros of the real part of the equation εRPA(qy, ω) = 0, we find
the FA-plasmon dispersion

ω ≈ sgn(qy)
k0e2

4π2ε0εr
+

⎛
⎝1 + 2kF√

k2
F + 2

�2
S

δnF ,1

⎞
⎠vqy, (7)

where 2k0 = 2
√

2m� is the separation between two Weyl
nodes in the bulk, ε0 is the vacuum, and εr is the relative
permittivity, while nF is the integer part of the ratio between
μ and e0. Let us first focus on the case where nF = 0. For
positive ω, the FA plasmon is allowed to propagate only in
the direction of positive qy, due to the chirality of the FA. For
the usual 2D electron gas or graphene, recall that their plas-
mon dispersion is square root due to the Coulomb potential
being 2D. In spite of the the quasi-1D nature of the FA, the
Coulomb potential remains 2D here, and one might naively
expect a square-root plasmon dispersion. Surprisingly, this is
not the case, and one finds a linear gapped plasmon mode
thanks to its chiral nature. In spite of its simplicity, Eq. (7)
accurately describes the mode found numerically in Figs. 2(a)
and 2(b), even when the n = ±1 VP states are retained in the
calculation. We emphasize that the experimentally measurable
FA plasmon gap,

γ = k0e2

4π2ε0εr
, (8)

yields direct information about the separation 2k0 of the bulk
Weyl nodes.

VP intraband excitations significantly modify the disper-
sion of the FA plasmon when nF = 1. The dispersion of FA
plasmon at large qy remains almost linear with the same veloc-
ity v. At small qy, although the gap sticks to the same value γ

in Eq. (8), the FA plasmon acquires an enhanced velocity that
can be further boosted by increasing the chemical potential as
shown in Figs. 2(c) and 2(d). However, the change of velocity
for finite qy, as seen in Fig. 2, is not captured by Eq. (7).

Since the bands are effectively 1D, the particle-hole con-
tinua are independent of qz if the coupling between FA and
VP bands is omitted, as shown in Fig. 3. It is indeed legitimate
to neglect this coupling in the long-wavelength limit where
it scales as ∼(qz�S )2. However, the plasmon dispersion gets
strongly modified for qy < qz due to the qz dependence of
the Coulomb interaction. Neglecting a small hybridization
between the VP bands and the FA [36], the FA-plasmon gap

155103-3



LU, MUKHERJEE, AND GOERBIG PHYSICAL REVIEW B 104, 155103 (2021)

at small momenta becomes

γ ′ ≈ γ
qy√

q2
y + q2

z

. (9)

When qz = 0, Eqs. (9) and (8) coincide, and the FA
plasmon is gapped as shown earlier. However when qz �= 0,
the gap vanishes at qy = 0 as a consequence of the strong
anisotropy of the FA state, which is only quasi-1D but em-
bedded in a 2D manifold. When qy � qz, the FA plasmon
disperses again linearly with slope v. This is further validated
by our numerical calculations (see Fig. 3): The FA plasmon
gap vanishes when q = qzẑ. This singular behavior of the gap
at q = 0 is also reported in Refs. [17,18,20–23].

The second plasmon mode in Figs. 2(a) and 2(b) is the
VP interband plasmon, which stems mostly from the n = ±1
interband excitations. It is also gapped and starts at a finite
momentum for the same orthogonality reason that makes the
spectral weight of the particle-hole continuum vanishingly
small at qy ∼ 0, which makes sustained plasmonic oscillations
impossible. The interband VP plasmon mode lies in the VP
interband particle-hole region and is thus Landau-damped.
However, since the amplitude of −Im(χ (0) ) drops at high
energy, this plasmon may be visible as an additional bump in
Electron Energy Loss Spectroscopy (EELS), as we show later.

It is interesting to point out that the spectrum in Fig. 2(b),
where μ = 0.9e0, is exactly the same as that of Fig. 2(a),
where the chemical potential is very close to the charge neu-
trality point. Indeed the interband excitations between the VP
bands are unchanged as long as the chemical potential remains
between the two VP bands.

A third plasmon mode emerges when μ > e0 [see
Figs. 2(c), 2(d) 3(c), and 3(d)]. Interestingly, this mode ex-
ists in a region delimited by the particle-hole continua of
the FA and the VP conduction bands. It starts at small but
finite momentum and its energy disperses along with the
upper boundary of the intraband continuum and eventually
gets merged in it at larger momentum. One may naively think
that this VP intraband plasmon originates only from intraband
transitions and has a square-root dispersion at small momenta
[36]. However, our numerical calculations invalidate this pic-
ture, and one needs to take into account the other particle-hole
continua, namely, the linear one associated with the FA, which
prohibits such a square-root dependence of an undamped plas-
mon. Moreover, remote VP interband excitations do not only
modify εr in the low-energy modes because of the diverging
density of states when the chemical potential crosses a VP
conduction band. This significantly modifies the dynamical
screening and, as shown in Fig. 2, the VP intraband plasmon
acquires positive energy only at nonzero finite momentum and
disperses linearly with a velocity smaller than v. Increasing
μ from 1.01 to 1.3e0, the exclusion dome at low frequencies
becomes wider. The available phase space for the VP intra-
band plasmon between the FA and the VP intraband continua
reduces even further, making this plasmon less visible at larger
values of μ.

V. NONRECIPROCITY

To show what one can see in experiments, we plot in Fig. 4
electron loss function −�[1/εRPA], measurable by EELS, in

(a) (b)

FIG. 4. Electron loss function at μ = 1.01e0 for qy�S ∈
[−2.0, 2.0]: Left for qz = 0 and right for qz�S = 0.2. Yellow dashed
lines show the symmetric VP intraband plasmon in the absence of
the FA state. Three plasmon modes are all nonreciprocal and visible.

(qy, ω > 0) plane with intensity indicated by the colorbar.
One of the intriguing properties of the FA plasmon is its
nonreciprocity, reflecting the chiral nature of the FA state.
Therefore, we should also study −�[1/εRPA] for (qy < 0, ω >

0). The result for ω < 0 can be found easily by reversing
simultaneously the sign of ω and q in known results. As shown
in Fig. 4 where μ = 1.01e0, the FA plasmon is completely
absent when qy < 0 as well as the corresponding particle-hole
continuum. Being nonreciprocal, FA plasmon only propa-
gates in one direction with fixed velocity, highly desirable
for applications. Strikingly, also the VP intraband plasmon
is nonreciprocal even if it involves the ky ↔ −ky symmetric
n = ± VP bands [see Eq. (2)]: It has a different dispersion for
qy < 0, which can be calculated analytically there

ω ≈ sgn(−qy)v

⎛
⎝|qy| + 2kF√

k2
F + 2n

�2
S

√
q2

y + q2
z

⎞
⎠. (10)

Contrary to qy > 0, it starts from the origin of (qy, ω) and
disperses with a velocity larger than v which can be enhanced
further by increasing μ. This nonreciprocity is a consequence
of the hybridization with the FA mode and particle-hole con-
tinuum, which is in close vicinity of the intraband VP plasmon
for qy > 0 but further well separated in energy for qy < 0 [36].
The chirality of the FA modes thus induces a nonreciprocity
in the other excitations due to their mutual coupling. This can
also be seen in the VP interband plasmon, where the starting
point moves to higher energies and larger momenta. As an-
ticipated above, the VP interband plasmon is submerged amid
particle-hole continuum but nevertheless visible on EELS.

VI. DISCUSSION

We have investigated the effect of surface smoothness on
the charge oscillation spectrum of a WSM surface. Within
RPA calculations, we observe the emergence of two collective
modes stabilized by the inter- and intra-VP band excita-
tions, in addition to the FA plasmon. The plasmons exhibit
anisotropy and nonreciprocity inherited from the underlying
surface model. Our findings could be verified experimentally,
e.g., in EELS, which in addition to a proof of these plasmons
could probe the chirality of the FA. Furthermore, the plasmon
gap in Eq. (8) gives us a direct experimental measure of the
separation between the Weyl nodes. Notice that we do not aim
to present a complete theory of surface plasmons in WSM, but
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we have concentrated here on the role of the surface smooth-
ness and the resulting VP bands. While the qualitative features
of the different plasmons are robust to other effects, e.g., varia-
tions of the surface potential beyond the linear approximation,
further studies are required to investigate these effects. As an
example, one may invoke the curvature of the FA, which is
expected to enhance its density of states [35] and thus the
gap (8). Finally, one may invoke anisotropies of the bulk Weyl
cones, e.g., and anisotropic Fermi velocity or tilts. Notice that
they only affect the FA if these anisotropies are different in
the two cones, the FA being tangential to the cones. However,
the third (intra-VP) plasmon loses its qy ↔ −qy symmetry, as

it has been shown in 2D tilted and anisotropic Dirac materials
[37–40].
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