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Adaptive Hybrid Control for Robust Global
Phase Synchronization of Kuramoto Oscillators

Alessandro Bosso1, Member, IEEE, Ilario A. Azzollini1, Simone Baldi2, Senior Member, IEEE, and
Luca Zaccarian3, Fellow, IEEE

Abstract— A distributed controller is designed for robust
global phase synchronization of a network of uncertain
second-order Kuramoto oscillators with a leader system,
modeled as a nonlinear autonomous exosystem. The phase
angles being elements of the unit circle, we propose an
adaptive hybrid strategy based on a hysteresis mechanism
to obtain global results despite the well-known topological
obstructions. Only an upper bound on the unknown pa-
rameters of the oscillators is required to keep the adaptive
estimates in a compact set. Since the reference signal is
not available to each network node, we design a distributed
observer of the leader exosystem. Leveraging the results
of hybrid systems theory, including reduction theorems,
Lyapunov techniques, and properties of ω-limit sets, we
prove robust global asymptotic stability of the closed-loop
dynamics, despite the presence of an adaptive control law.

Index Terms— Kuramoto oscillators, distributed control,
hybrid control, adaptive control, robustness.

I. INTRODUCTION

SYNCHRONIZATION and coordination phenomena are
ubiquitous in several application domains, including

physics, engineering, biology, and social sciences. Particularly
studied, in this context, are the dynamical behaviors arising
from networks of interacting oscillators. To describe these
behaviors, the Kuramoto model [1] is certainly the most
popular model due to its ability to capture complex nonlinear
phenomena with appealing mathematical simplicity. The study
of power networks [2], [3] or of connectivity patterns in the
human brain [4], [5] are just some examples where Kuramoto
oscillators have been adopted.

In general, synchronization of Kuramoto oscillators may
occur with or without a control input affecting the network.
Concerning the uncontrolled scenario, significant efforts have
been dedicated to studying the impact of couplings (either
the network topology or the intensity of connections) on the
synchronization properties of the trajectories [6]–[12]. In the
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Department of Industrial Engineering, University of Trento, Italy. Email:
zaccarian@laas.fr

controlled scenario, the emphasis is on finding an appropriate
input to achieve synchronization [13]. In this context, the
objective of leader-follower synchronization, also known as
pacemaker-based synchronization [14], becomes particularly
relevant. The typical challenge in achieving leader-follower
synchronization is that the controller of each node should
employ only locally available quantities and variables shared
according to a communication topology.

This work considers a second-order version of the original
first-order Kuramoto model, where each oscillator has its own
inertia [3], [15] and is characterized by a phase angle and
an angular frequency. We remark that further extensions have
been recently proposed, including the third-order Kuramoto
model [16], inspired by the transient behavior of power
networks, or the generalization of the phase state space given
by the Kuramoto model on Stiefel manifolds [17], capable of
including in a unified framework both the classical model and
more complex structures such as the Lohe model [18].

The focus of this work is to achieve global leader-follower
phase synchronization in a network of second-order Kuramoto
oscillators, without precise information of the model parame-
ters. In the following, we review some representative results
in the field, which clarify the motivations for our study.

A. Related works

It has been well recognized in the literature that the non-
Euclidean nature of the state space of a Kuramoto model is the
main obstruction for achieving global asymptotic convergence
to the leader’s phase reference. Several strategies have been
proposed to deal with this obstruction. For example, a natural
approach is to represent the phase of each oscillator as an
element of the unit circle. It follows that the ensemble of the
phase angles is an element of the N -torus [19].

One of the main advantages of employing the unit circle
formalism is that phase synchronization can be reformulated as
the attractivity of a compact set. Although this property is ben-
eficial for control design, the N -torus is a non-Euclidean set,
meaning that synchronization cannot be handled with the same
tools used in linear consensus. In particular, the topological
properties of a non-contractible space (i.e., not diffeomorphic
to any Euclidean space) pose significant obstacles to global
stabilization through continuous feedback. For instance, the
continuous-time algorithms in [19] (and their corresponding
discrete-time versions) lead to multiple equilibria in the state
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space, where only one of them corresponds to the desired
configuration. The same issue is shared by several applications
involving rotations. In the context of rigid body dynamics, only
almost global results can be achieved with continuous laws for
control [20] and observation [21].

In recent years, it has been shown that robust global sta-
bilization can be achieved on non-contractible spaces through
dynamic hybrid (instead of continuous) feedback [22]. Mean-
ingful results have been proposed, e.g., for unit quaternions
[22] through hysteresis-based techniques and for the N -sphere
[23] via synergistic potential functions. Some efforts have also
been dedicated to the unit circle [24]. However, all of the above
solutions have been developed in a single-agent scenario and in
the absence of uncertain dynamics. One of the first attempts to
present hybrid feedback in a multi-agent setting can be found
in [25], for the special case of acyclic communication graphs.

Despite the progress in the field, some additional vital
elements are needed for achieving global leader-follower
synchronization of uncertain Kuramoto oscillators. Since no
specific communication topology is imposed for the network,
while the reference is not assumed to be globally available,
it is necessary to ensure that each node reconstructs the
leader signals. Additionally, the above-cited works have been
developed under the assumption of complete knowledge of the
parameters. The presence of model uncertainties complicates
the asymptotic synchronization goal. Therefore, specific con-
trol solutions are needed to ensure robust asymptotic stability
of the synchronization set.

B. Main contribution of this work
Motivated by the previous overview, we propose here a

distributed scheme that solves the leader-follower problem by
combining three components: (i) a distributed observer, used
to reconstruct the reference in the nodes not directly connected
to the leader; (ii) a hybrid stabilizer used to track the locally
estimated reference and ensure, under parametric uncertainties,
phase synchronization in a global sense; (iii) an adaptive mech-
anism to suitably handle the parametric uncertainties. Besides
the technological interest of the synchronization problem at
stake, for each one of the above components, we provide a
solution of independent interest, whose novelty is highlighted
next.

(i) About the distributed observer, we follow the idea that
the unit circle, used to represent the phase angles, can be
naturally embedded in R2. With this embedding, since the
estimates are designed without being constrained on the unit
circle, consensus techniques for Euclidean spaces can be
employed to achieve global estimation of the leader signals.
As compared with other solutions in the literature that follow
the embedding approach [26], [27], here we allow for more
general structures of the exosystem: in particular, we consider
exosystems admitting a feedback interconnection between the
phase and frequency subsystems, whereas the literature in
this field only handles cascaded interconnections. Exploiting
input-to-state stability (ISS) and small-gain arguments, we
prove global asymptotic reconstruction of the reference for
a fairly general class of exosystems, which is a contribution
of independent interest.

(ii) About the hybrid stabilizers at each node, to ensure
compatibility with the adaptive mechanism, we revisit and
extend the hysteresis-based hybrid solution originally proposed
in [22] to deal with the topological obstructions associated
with the unit circle. In particular, we augment the hybrid
feedback with a first-order filter, so that the stabilizing input
does not change across jumps, a key property for interlac-
ing the hybrid stabilizer with the continuous-time adaptation
commented below. Due to the simplicity of the condition
on the filter time constant under which we prove stability,
this dynamic extension is of independent interest and can be
exploited in future works.

(iii) Finally, about our hybrid adaptation mechanism, we
show that, with an appropriate robust modification of the
adaptive law, it is possible to ensure the existence of a robustly
globally asymptotically stable attractor for the tracking error
system, without requiring any persistency of excitation. This
result, which may sound atypical as compared to standard
results in the adaptive control literature, represents a notable
by-product of this work. Specifically, the powerful characteri-
zation of ω-limit sets of well-posed hybrid systems given in the
hybrid systems formalism [28], together with a simple dead-
zone-based projection mechanism for keeping the parameter
estimates in a compact set, enables proving the existence of
such a compact globally asymptotically stable attractor.

To conclude, we emphasize that the closed-loop asymptotic
stability of the overall control scheme is analyzed through
reduction theorems for hybrid systems. In particular, we prove
that global phase synchronization is well represented as robust
global asymptotic stabilization of a suitable compact set. We
remark that the robustness of asymptotic stability is guaranteed
in this context by the regularity properties of the feedback law
and compactness of the characterized attractor. With respect
to this point, let us comment on the interesting distributed
quaternion synchronization in [27], achieved by combining a
sliding-mode distributed observer and a hybrid stabilizer. In
that work, unfortunately, the presence of static discontinuities
makes it impossible to ensure the robustness properties estab-
lished in this work.

A preliminary version of this study has been published
in [29]. In this paper we improve the work [29] in several
directions. First of all, [29] considers the simplified case of
known parameters of the Kuramoto oscillators. Therefore,
several challenges related to including adaptation laws in a
hybrid setting are addressed and solved here for the first
time. Moreover, [29] only considers a simplified cascaded
exosystem structure as in [26], [27], whereas in this paper
we address nontrivial challenges emerging from feedback
interconnections, involving suitable small-gain approaches not
required in [29]. For example, the results of [29] cannot be
applied to our simulation example of Section VII.

The paper is organized as follows. Sections II and III
are dedicated, respectively, to formulating the model and
presenting a formal statement of the control problem. Then,
Section IV defines the distributed observer and provides a
detailed stability analysis of the estimation error dynamics. On
the other hand, Section V introduces the hybrid controller for
reference tracking, along with a preliminary stability analysis
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in conditions of global knowledge of the reference signal. The
results of the previous sections are collected and exploited
in Section VI, which presents the overall stability analysis
based on reduction theorems. In Section VII, we validate the
theoretical results through some numerical simulations that
confirm the effectiveness of the proposed solution. Finally,
Section VIII concludes the article.

Notation

R and Z are the sets of real and integer numbers, while
R≥0 := [0,∞). The transpose of real-valued vectors and
matrices is denoted by (·)>, while ⊗ is the Kronecker matrix
product. For any positive integer n, In is the identity matrix
of dimension n and 1n ∈ Rn is the vector of all ones.
Given column vectors v and w, the notation (v, w) denotes
the concatenated vector [v> w>]>. Finally, diag(a1, . . . , an)
denotes the block-diagonal matrix with diagonal elements ai,
i ∈ {1, . . . , n}.

1) Graph Theory: An undirected graph of order N is defined
as G := {V, E}, where V := {1, . . . , N} is a finite non-empty
set of nodes and E ⊆ V × V is a set of non-ordered pairs
of nodes, called edges. For each i ∈ V , Ni := {j ∈ V :
(i, j) ∈ E} is the set of neighbors of i. An undirected graph
G is connected if, taken any arbitrary pair of nodes (i, j),
i, j ∈ V , there is a path from i to j. Given a leader node not
included in V , we denote with T ⊆ V the set of target nodes,
i.e., the set of nodes that receive information from the leader.
For an undirected graph G with target nodes T , the adjacency
matrix A = [aij ] ∈ RN×N is defined as aij = aji = 1 if
(i, j) ∈ E , i 6= j, and aij = 0 otherwise; the Laplacian matrix
L = [lij ] ∈ RN×N is defined as lii =

∑
j aij and lij = −aij

if i 6= j, while the target matrix T = [τij ] ∈ RN×N is a
diagonal matrix such that τii = 1 if i ∈ T and τii = 0
otherwise. Finally, the matrix B := L + T is denoted leader-
follower matrix. For an undirected and connected graph G with
T 6= 0 (equivalently, such that T 6= 0), B is positive definite
[30].

2) Hybrid Dynamical Systems: A hybrid dynamical system
can be compactly described as [28]:

H :

{
ẋ ∈ F (x), x ∈ C
x+∈G(x), x ∈ D

(1)

where x ∈ Rn is the state, C ⊂ Rn is the flow set, F :
Rn ⇒ Rn is the flow map, D ⊂ Rn is the jump set, and G :
Rn ⇒ Rn is the jump map. A solution of (1) can either flow
according to the differential inclusion ẋ ∈ F (x) when x ∈ C,
or jump according to the difference inclusion x+ ∈ G(x) when
x ∈ D. We refer to [28], [31] for the main definitions and tools
for the analysis of hybrid systems.

II. MODEL DESCRIPTION

A. Second-Order Kuramoto Network

In this article, we consider a generalization of the celebrated
Kuramoto model [1], based on the swing equations described
in [3]. More specifically, the second-order Kuramoto network

is a system of N nonlinear oscillators, coupled through an
undirected and connected graph G = {V, E}:

θ̇i = ωi, i ∈ V

miω̇i =−diωi + ωni + ui −
∑
j∈Ni

kij sin(θi−θj−ϕij), (2)

where, for each i ∈ V , θi ∈ R and ωi ∈ R are the phase and
the frequency, respectively, ui is the control input, mi > 0 is
the oscillator’s inertia, di > 0 is a damping constant, and ωni
is the oscillator’s natural frequency. In addition, kij = kji > 0
and ϕij = ϕji ∈ [0, 2π) are, respectively, the coupling weight
and the phase shift between oscillators i and j. Suppose that
the graph G, associated with the physical couplings in (2), also
defines the communication topology among the nodes.

Define θ :=
[
θ1 . . . θN

]> ∈ RN and ω :=[
ω1 . . . ωN

]> ∈ RN , then denote by (θ(·), ω(·)) : R≥0 →
R2N a solution of system (2), for some input signals ui(·),
i ∈ V , and with initial conditions (θ(0), ω(0)). We say that
(θ(·), ω(·)) achieves phase synchronization if

lim
t→+∞

θi(t)−θj(t) ∈
{
θ̃ : θ̃= 2kπ, k ∈ Z

}
, ∀i, j ∈ V. (3)

Similarly, the solution (θ(·), ω(·)) is said to achieve frequency
synchronization if

lim
t→+∞

ωi(t)− ωj(t) = 0, ∀i, j ∈ V. (4)

For the network (2), our objective is to design a distributed
strategy that ensures robust global phase synchronization to
a reference trajectory. Namely, our aim is to define feedback
laws for the inputs ui based only on local information and
network communication such that, for any initialization of
system (2), the corresponding solution (θ(·), ω(·)) robustly
achieves phase synchronization and convergence to the refer-
ence. When we refer to robust synchronization, we mean that
(3) is obtained through asymptotic stability of a compact set,
with appropriate robustness to perturbations of the closed-loop
dynamics. A precise definition of this concept is presented in
Section III.

Because we do not assume exact knowledge of the local
parameters mi, di, ωni, kij , and ϕij , we design adaptive
controllers that ensure asymptotic convergence in the presence
of parametric uncertainties. At the same time, it is well
known that the sensitivity of adaptive techniques to non-
parametric (unmodeled) perturbations of the dynamics calls for
a robust design of the adaptive law and some known bounds
of the parametric uncertainty (see, e.g., [32, Chs. 8 and 9]).
Accordingly, we impose the following assumption.

Assumption 1. There exists a scalar ρ > 0, known to each
node i ∈ V , such that:

mi ≤ ρ, di ≤ ρ, |ωni| ≤ ρ, ∀i ∈ V,
kij ≤ ρ, ∀i ∈ V,∀j ∈ Ni,

(5)

where the bound ρ is taken to be the same for all parameters
for simplicity of notation.
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B. Quaternion-Inspired Representation
For control design, we propose to rewrite system (2) in a

more convenient form. Motivated by the equivalence modulo
2π of the phases θi, also reflected in the phase synchronization
condition (3), we choose to represent θi on the unit circle S1 :={[
α β

]> ∈ R2 : α2 + β2 = 1
}

. Recall that the compact set
S1 has Lie group structure that is isomorphic to the group of
planar rotations SO(2) := {R ∈ R2×2 : R>R = I2,det(R) =
1}. In view of such an isomorphism, we define the function
R : S1 → SO(2), which maps any

[
α β

]> ∈ S1 into the
corresponding rotation matrix:

R

([
α
β

])
:=

[
α −β
β α

]
. (6)

Function R(·) is useful to define the group multiplication
between any ξ, ξ̂ ∈ S1 as R(ξ)ξ̂ = R(ξ̂)ξ (note that S1 is
Abelian, i.e., the group operation is commutative), where the
identity element is given by

e :=
[
1 0

]>
. (7)

From the above definitions, we introduce the following repre-
sentation for θi:

ζi :=
[
ηi εi

]>
:=
[
cos(θi/2) sin(θi/2)

]> ∈ S1, (8)

corresponding to a unit quaternion for planar rotations (cf. [22]
for the parameterization adopted for 3D rotations). We refer
to [29] for the relation between (8) and the representation
employed in [33] and [31, Ex. 34]. Using (6) and (8), the
phase dynamics on SO(2) and S1 is obtained as

d

dt
R(ζi) =

1

2
ωiJR(ζi), ζ̇i =

1

2
ωiJζi, i ∈ V, (9)

where J :=
[
0 −1
1 0

]
∈ SO(2). Let TN :=

∏N
i=1 S1 denote

the N -torus. The network dynamics (2) can be conveniently
rewritten on TN × RN as follows:

ζ̇i =
1

2
ωiJζi

miω̇i =− diωi + ωni + ui −
∑
j∈Ni

kijφ(ζi)
>Jφ(ζj)cos(ϕij)

+
∑
j∈Ni

kijφ(ζi)
>φ(ζj) sin(ϕij), i ∈ V,

(10)

where φ : S1 → S1 is defined as

φ(ζi) := R(ζi)ζi =

[
η2i − ε2i
2ηiεi

]
, ζi :=

[
ηi
εi

]
(11)

and corresponds to the double angle formula from ζi :=
[cos(θi/2) sin(θi/2)]> to [cos(θi) sin(θi)]

>. Note that, with
the proposed representation (8), the condition (3) correspond-
ing to phase synchronization coincides with

lim
t→+∞

R(ζi(t))
>ζj(t) ∈ {−e, e}, ∀i, j ∈ V. (12)

Remark 1. In some applications, such as those involving
rotary encoders, θi is provided by sensors that “wrap” the

angles in [0, 2π) (equivalently, in [−π, π)). In this scenario,
if (8) is used to compute ζi from the available sensor mea-
surement, call it θs

i, special care must be taken to ensure
that a continuous trajectory of the vector [cos(θs

i) sin(θs
i)]
>

(uniquely corresponding to any θs
i ∈ [0, 2π)) is mapped

into a continuous trajectory of ζi. More specifically, for any
θs
i ∈ [0, 2π), there are two possible values of ζi, expressed

through the half-angle formula:

ζi ∈ {−ζ∗i , ζ∗i }, ζ∗i :=


√

1+cos(θs
i)

2√
1−cos(θs

i)

2

 . (13)

The same issue arises for unit quaternions. In that context, a
path-lifting mechanism has been proposed in [34] to ensure
that a continuous selection of the two quaternions is obtained
for a “measured” rotation matrix. For simplicity, we avoid
embedding a similar mechanism as [34] by considering ζi
available for measurement. Including the path-lifting mecha-
nism does not affect the results of this paper.

III. PROBLEM STATEMENT

A. Leader Exosystem

Since our objective involves the synchronization of the
network to a reference signal, we consider a formulation of
the tracking problem based on a pacemaker (see, e.g., [14],
[33]). Specifically, the graph G is augmented with an additional
node, named leader system, which delivers to the network
some reference signals. The references are generated through
an autonomous exosystem of the form

ζ̇? =
1

2
c>w?Jζ?

ẇ? = s(ζ?, w?)

 (ζ?, w?) ∈ K? ⊂ S1 × Rn, (14)

where ζ? ∈ S1 is the phase reference, w? ∈ Rn is a state such
that the frequency reference is given by c>w? ∈ R, while
c ∈ Rn is a constant vector and s(·) : S1 × Rn → Rn is
a nonlinear function. Furthermore, K? is a compact set of
admissible initial conditions (ζ?(0), w?(0)).

The feedback structure in (14) suggests that, different from
the solutions using unit quaternions (such as [26], [27]), we
do not restrict the structure of exosystem (14) to a cascade be-
tween the w?-subsystem and the ζ?-subsystem. The following
assumption describes the properties related to (14).

Assumption 2. For system (14), it holds that:

1) the compact set K? is forward invariant;
2) the map s(·) is globally Lipschitz, with Lipschitz con-

stant `s ≥ 0;
3) c and s(·) are known to each node i ∈ V .

The global Lipschitz condition in Assumption 2 is instrumental
in achieving global asymptotic stability, cf. [35]. As we shall
see in Section IV, this Lipschitz continuity property allows
designing the controllers for each node i ∈ V without the
explicit knowledge of the compact set K?, even though the
knowledge of `s is required for tuning the controller gains.
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Fig. 1. Interaction and communication scheme. The same graph will be employed for the numerical example in Section VII.

As a final requirement for our design, we impose a standard
assumption describing the communication topology among the
leader (14) and the network (10).

Assumption 3. System (14) interacts, by communicating the
reference (ζ?, w?), with at least one node of graph G, which
defines both the physical couplings and the communication
topology. More specifically, it holds that T 6= ∅ (equivalently,
T 6= 0).

Remark 2. Since G is undirected and connected, Assumption
3 implies that the leader-follower matrix B := L+T is positive
definite.

Fig. 1 shows a scheme of the interaction and communication
pattern underlying our distributed architecture.

The control problem of this work, stated in the following,
aims at ensuring global asymptotic stability of a compact
set corresponding to phase synchronization as in (12) and
convergence to ζ?, i.e.:

lim
t→+∞

R(ζi(t))
>ζ? ∈ {−e, e}, ∀i ∈ V. (15)

In particular, we seek for a hybrid adaptive controller whose
data satisfy the so-called hybrid basic conditions of [28, As-
sumption 6.5]. As a consequence, global asymptotic stability
of a compact set is equivalent to the existence of a uniform
class KL bound [28, Thm. 7.12]. Following the robustness
results in [28, §7.3], this also implies robust KL asymptotic
stability in the presence of fairly general perturbations of the
dynamics.

Problem 1. Under Assumptions 1, 2, and 3, consider the
following synchronization set to the reference ζ?:

As :=
{

(ζ?, w?), (ζi, ωi), i ∈ V :

R(ζi)
>ζ? ∈ {−e, e}, ωi = c>w?

}
,

(16)

where e is defined in (7), and note that As is compact
because (14) evolves in the compact set K?. Then, design a
distributed adaptive strategy, only based on the local mea-
surements (ζi, ωi) and the information exchange according to
graph G, such that the second-order Kuramoto network (10)
achieves robust global phase synchronization to the reference

ζ?. Namely, the closed-loop dynamics is such that there exists
a robustly globally KL asymptotically stable compact set (in
the sense of [28, Def. 7.18]), whose projection in the plant-
exosystem direction coincides with the compact set As in (16).

B. Control Architecture
Through the parametrization (8), (10), (11), Problem 1

addresses the synchronization goal in (3), (4), in a convenient
scenario wherein the set to be stabilized is compact. Topo-
logical obstructions associated to the non-Euclidean nature of
the phase dynamics make Problem 1 challenging. In fact, the
N -torus is non-contractible, i.e., it is not diffeomorphic to any
Euclidean space, and convergence to (16) requires convergence
to a disconnected set of points. Two main issues arise in this
context.
• If the control laws ui are designed to stabilize only one

of the points of (16), the trajectories in the coordinates θi
display the so-called unwinding phenomenon [34], which
causes unnecessary motion in cases where the system is
initialized close to synchronization.

• If a static discontinuous feedback is employed, it is not
possible to ensure robust KL asymptotic stability because
the closed-loop system does not satisfy the hybrid basic
assumptions. This fact, in practice, translates into chat-
tering and high disturbance sensitivity [22].

In view of these considerations, we employ a hybrid dy-
namic feedback to robustly globally asymptotically stabilize
a compact set comprising As in (16). As discussed in the
introduction, the proposed control strategy is built upon the
interconnection of a distributed observer for exosystem (14),
a hybrid stabilizer for globally tracking the observer estimates,
and an adaptive law to handle parametric uncertainties under
Assumption 1. More specifically, our design is based on the
following steps.
• A distributed observer is designed so that certain local

estimates (ζ̂i, ŵi) of (ζ?, w?) ∈ K? are defined as
elements of R2+n. The ensuing estimation error dynamics
is described by two feedback-interconnected subsystems,
associated with the phase and the frequency estimation
errors, respectively. These subsystems are proven to be
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ISS and then combined through small-gain arguments.
The design and the stability analysis of the observer are
discussed in Section IV.

• For each agent i, we implement an adaptive hybrid
mechanism to ensure R(ζi)

>ζ̂i → {−e, e}, ωi → c>ŵi,
for all i ∈ V . The design is first performed assuming
global knowledge of the leader signals (Section V).
Supposing that ωi can be assigned as a virtual input ωvi,
a hysteresis-based controller is used to show global phase
synchronization while ensuring that ωvi is constant across
jumps. Then, a backstepping-based adaptive controller is
designed to guarantee ωi → ωvi. Finally, exploiting the
cascade structure between the estimation error subsystem
and the tracking subsystem, the effectiveness of the over-
all control solution is proven through reduction theorems
(Section VI).

IV. DISTRIBUTED OBSERVER

In order to solve Problem 1, we propose the following
distributed observer:

˙̂
ζi =

1

2
c>ŵiJζ̂i − kζeζi

˙̂wi = s(ζ̂i, ŵi)− kwewi
i ∈ V, (17)

where ζ̂i ∈ R2, ŵi ∈ Rn are the local estimates of (ζ?, w?)
(14) at node i, kζ and kw ∈ R are gains to be designed, while

eζi :=
∑
j∈Ni

aij(ζ̂i − ζ̂j) + τii(ζ̂i − ζ?)

ewi :=
∑
j∈Ni

aij(ŵi − ŵj) + τii(ŵi − w?)
i ∈ V, (18)

are the local estimation errors, in which aij and τii are the
entries of the adjacency matrix A and the target matrix T ,
respectively.

Observer (17) is distributed as it is only driven by locally
available quantities (18). To represent the variables for the
overall network in a compact form, it is convenient to use
the Kronecker product. In particular, define the overall states
ζ̂ := [ζ̂>1 . . . ζ̂>N ]> ∈ R2N and ŵ := [ŵ>1 . . . ŵ>N ]> ∈ RNn,
so that the overall estimation errors are ζ̃ := ζ̂ −1N ⊗ ζ? and
w̃ := ŵ−1N⊗w?. Furthermore, define eζ := [e>ζ1 . . . e

>
ζN

]> ∈
R2N and ew := [e>w1

. . . e>wN ]> ∈ RNn, which from (18) can
be written as [36]:

eζ = (B ⊗ I2)ζ̃, ew = (B ⊗ In)w̃, (19)

where B := L+T is the leader-follower matrix, which satisfies
B = B> > 0 as discussed in Remark 2. In the following,
denote with σ(B) > 0 the smallest singular value of B.

A. Phase Subnetwork
We start by analyzing the (ζ?, ζ̂)-subsystem (referred to as

phase subnetwork) and the phase estimation error ζ̃. From
(14), (17), the phase subnetwork obeys dynamics

ζ̇? =
1

2
c>w?Jζ?

˙̂
ζi =

1

2
c>w?Jζ̂i +

1

2
c>w̃iJζ̂i − kζeζi, i ∈ V.

(20)

For notational convenience, define

Ω̃ := diag(c>w̃1, . . . , c
>w̃N ) = diag((IN ⊗ c>)w̃), (21)

which allows writing the dynamics of ζ̂ in compact form as
follows

˙̂
ζ =

1

2

(
c>w?(IN ⊗ J) + (Ω̃⊗ J)

)
ζ̂ − kζeζ . (22)

As a consequence, the dynamics of the phase estimation error
ζ̃ := ζ̂ − 1N ⊗ ζ? can be computed from (19), (20), and (22)
as:

˙̃
ζ =

(
1

2
c>w?(IN ⊗ J)− kζ(B ⊗ I2) +

1

2
(Ω̃⊗ J)

)
ζ̃

+
1

2
(Ω̃⊗ J)(1N ⊗ ζ?),

(23)

with inputs given by ζ?, w?, and w̃ (through Ω̃ in (21)). The
next proposition provides an ISS characterization for system
(23).

Proposition 1. For any scalar gain kζ > 0, system (23) is
finite-gain exponentially input-to-state stable with respect to
the input w̃, uniformly in the inputs (ζ?, w?). Namely, for any
solution (ζ?(·), w?(·)) of the exosystem (14) and any w̃(·) ∈
L∞, the solutions of (23) satisfy, for all t ≥ 0:

|ζ̃(t)| ≤ max

{
e−

1
2σ(B)kζt|ζ̃(0)|, |c|‖w̃(·)‖∞

σ(B)kζ

}
. (24)

Proof: For any solution (ζ?(·), w?(·)) of the exosystem
(14), system (23) can be regarded as a time-varying system
with input w̃. It is convenient to rewrite the last term of (23)
as

(Ω̃⊗ J)(1N ⊗ ζ?) = Ω̃1N ⊗ Jζ?

= diag((IN ⊗ c>)w̃)1N ⊗ Jζ?

= diag(1N )(IN ⊗ c>)w̃ ⊗ Jζ?

= (IN ⊗ Jζ?c>)︸ ︷︷ ︸
:=Z?

w̃ = Z?w̃,

(25)

where we used the identity ((IN ⊗ c>)w) ⊗ v = (IN ⊗
vc>)w, which holds for any vectors c>, w, v, of compatible
dimensions. Consider the Lyapunov function candidate

Vζ :=
1

2
|ζ̃|2 (26)

whose derivative along the system trajectories results in

V̇ζ = − kζ ζ̃>(B ⊗ I2)ζ̃ +
1

2
ζ̃>Z?w̃

+
1

2
ζ̃>
(
c>w?(IN ⊗ J) + (Ω̃⊗ J)

)
ζ̃,

= − kζ ζ̃>(B ⊗ I2)ζ̃ +
1

2
ζ̃>Z?w̃,

(27)

where we employed the fact that IN ⊗ J and Ω̃⊗ J are skew
symmetric. Since kζ > 0, we obtain

V̇ζ ≤ −σ(B)kζ |ζ̃|2 +
1

2
|Z?||ζ̃||w̃|. (28)
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The following computations yield |Z?| = |c|:
|Z?| = |IN ||Jζ?c>| = |Jζ?c>|

= |Jζ?c>|F =

√
Tr(cζ?>J>Jζ?c>)

=
√

Tr(cc>) = |c|,

(29)

where |Jζ?c>| = |Jζ?c>|F since the rank of Jζ?c> is 1 by
construction. Applying (28) and (29) yields

|ζ̃| ≥ |c|
σ(B)kζ

|w̃| =⇒ V̇ζ ≤ −
σ(B)kζ

2
|ζ̃|2, (30)

which leads to (24) via standard ISS calculations [37, Thm.
10.4.1].

B. Frequency Subnetwork
Starting again from (14), (17), the frequency subnetwork

obeys dynamics

ẇ? = s(ζ?, w?)

˙̂wi = s(ζ̂i, ŵi)− kwewi , i ∈ V.
(31)

We can then write the dynamics of ŵ as
˙̂w = S(ζ̂, ŵ)− kwew, (32)

where

S(ζ̂, ŵ) :=


s(ζ̂1, ŵ1)

...
s(ζ̂N , ŵN )

 . (33)

Therefore, using (19), the dynamics of the frequency estima-
tion error w̃ := ŵ − (1N ⊗ w?) is given by

˙̃w = S(ζ̂, ŵ)− 1N ⊗ s(ζ?, w?)− kw(B ⊗ In)w̃, (34)

which, in view of ζ̂ = ζ̃+1N⊗ζ?, ŵ = w̃+1N⊗w?, is a non-
autonomous system with inputs given by ζ?, w?, and ζ̃. In the
following, we present a result that follows the same structure
as Proposition 1, now applied to the frequency subnetwork.

Proposition 2. For any scalar gain kw > `s/σ(B), system
(34) is finite-gain exponentially input-to-state stable with re-
spect to the input ζ̃, uniformly in the inputs (ζ?, w?). Namely,
for any solution (ζ?(·), w?(·)) of the exosystem (14) and any
ζ̃(·) ∈ L∞, the solutions of system (34) satisfy, for all t ≥ 0:

|w̃(t)| ≤ max

{
e−

1
2 (σ(B)kw−`s)t|w̃(0)|, 2`s‖ζ̃(·)‖∞

σ(B)kw − `s

}
.

(35)

Proof: For any solution (ζ?(·), w?(·)) of the exosystem
(14), system (34) can be regarded as a time-varying system
with input ζ̃. Consider the Lyapunov function candidate

Vw :=
1

2
|w̃|2, (36)

whose derivative along (34) is

V̇w = −kww̃>(B ⊗ In)w̃ + w̃>
(
S(ζ̂, ŵ)− 1N ⊗ s(ζ?, w?)

)
= −kww̃>(B ⊗ In)w̃ +

N∑
i=1

w̃>i

(
s(ζ̂i, ŵi)− s(ζ?, w?)

)
.

(37)

By Assumption 2, it holds that

|s(ζ̂i, ŵi)− s(ζ?, w?)| ≤ `s(|ζ̃i|+ |w̃i|), (38)

therefore we conclude that

V̇w ≤ −σ(B)kw|w̃|2 + `s

N∑
i=1

(
|w̃i|2 + |w̃i||ζ̃i|

)
≤ −

(
σ(B)kw − `s

)
|w̃|2 + `s|w̃||ζ̃|.

(39)

Finally, from (39) we obtain the following ISS characteriza-
tion:

|w̃| ≥ 2`s
σ(B)kw − `s

|ζ̃|=⇒ V̇w≤ −
σ(B)kw − `s

2
|w̃|2, (40)

which proves the finite-gain exponential ISS bound (35)
through [37, Thm. 10.4.1].

C. Overall Observer Analysis
We conclude the section with a stability result for the

feedback interconnection between the phase estimation error
dynamics (23) and the frequency estimation error dynamics
(34).

Theorem 1. For any choice of the scalar gains kζ and kw
such that

kζ > 0, kw > `s/σ(B),

kζσ(B)(kwσ(B)− `s)− 2`s|c| > 0,
(41)

the zero-equilibrium (ζ̃, w̃) = 0 of the overall estimation error
system (23), (34) is globally exponentially stable.

Proof: From Proposition 1, which holds for kζ > 0, and
Proposition 2, valid for kwσ(B) > `s, we obtain that both (23)
and (34) are finite-gain exponentially ISS. Therefore, global
exponential stability is ensured from (24), (35), and [37, Thm.
10.6.1], through the following small-gain condition:

2`s|c|
kζσ(B)(kwσ(B)− `s)

< 1, (42)

which is ensured by (41).

Remark 3. In the special case where exosystem (14) is a
cascade, i.e., s = s(w?), conditions (41) collapse to kζ > 0,
kw > `s/σ(B). Additionally, if s(w?) = Sww

?, where Sw is
a Poisson stable matrix as in [26], [27], [29], (37) becomes
V̇w = −kww̃>(B ⊗ In)w̃, therefore conditions (41) become
kζ > 0, kw > 0.

V. SYNCHRONIZATION WITH GLOBAL KNOWLEDGE OF
THE LEADER SIGNALS

In this section, we design a tracking controller for the
simplified setup where the observer estimation errors are zero.
This approach will be motivated in Section VI by the reduction
arguments of the stability analysis.

Firstly, we compute the local tracking error dynamics.
Define the phase and frequency tracking errors as

ζ̄i :=
[
η̄i ε̄i

]>
:= R(ζi)

>ζ̂i ∈ R2

ω̄i := c>ŵi − ωi ∈ R
i ∈ V. (43)
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In these coordinates, the control objective in Problem 1
corresponds to imposing (ε̄i, ω̄i) → 0, for all i ∈ V . From
(10), (17), and R(ζi)

>J = JR(ζi)
>, we can compute the

phase error dynamics as

˙̄ζi =
d

dt

(
R(ζi)

>
)
ζ̂i +R(ζi)

> ˙̂
ζi

= −R(ζi)
> dR(ζi)

dt
R(ζi)

>ζ̂i +R(ζi)
> ˙̂
ζi

=
1

2
ω̄iJζ̄i − kζR(ζi)

>eζi.

i ∈ V (44)

Similarly, the dynamics of the frequency error ω̄i is computed
from (10), (14), and (17) as

mi ˙̄ωi = ψi − ui −mikwc
>ewi , i ∈ V, (45)

where we defined

ψi := mic
>s(ζ̂i, ŵi) + diωi − ωni

+
∑
j∈Ni

kijφ(ζi)
>Jφ(ζj) cos(ϕij)

−
∑
j∈Ni

kijφ(ζi)
>φ(ζj) sin(ϕij).

(46)

Observe that, with ζ̂i = ζ? and ŵi = w? (i.e., ζ̃ = 0, w̃ = 0,
equivalently, eζ = 0, ew = 0), the quantities in (43) become
ζ̄i = R(ζi)

>ζ? ∈ S1 and ω̄i = c>w?−ωi ∈ R. In view of this
reduction argument, we begin the design by assuming that the
exosystem signals (ζ?, w?) are globally known for feedback.
This scenario corresponds to the requirement T = V , which
will be removed in Section VI.

A. Phase Synchronization
Assume initially that ωi can be arbitrarily assigned by the

feedback controller as a virtual input ωvi. With eζ = 0, the
dynamics (44) thus reduces to

˙̄ζi =
1

2
(c>ŵi − ωvi)Jζ̄i, i ∈ V, (47)

where ωvi is the virtual input that should ensure ε̄i → 0.
We refer to this objective as phase synchronization with the
reference ζ?.

Define Q := {−1, 1} and choose any gain k > 0 and a
hysteresis margin δ ∈ (0, 1). For each i ∈ V , a hysteresis-
based hybrid dynamic controller that achieves global phase
synchronization is given by{

q̇i = 0, (ζ̄i, qi) ∈ Cκ
q+i = −qi, (ζ̄i, qi) ∈ Dκ

ωvi = c>ŵi + kqiε̄i,

i ∈ V (48)

where qi ∈ Q is the controller state and

Cκ := {(ζ̄i, qi) ∈ S1 ×Q : η̄iqi ≥ −δ}
Dκ := {(ζ̄i, qi) ∈ S1 ×Q : η̄iqi ≤ −δ}.

(49)

The closed-loop error dynamics then corresponds to ˙̄ζi = −1

2
kqiε̄iJζ̄i

q̇i = 0,

[
ζ̄i
qi

]
∈ Cκ,

{
ζ̄+i = ζ̄i

q+i = −qi,

[
ζ̄i
qi

]
∈ Dκ,

(50)

which provides an autonomous hybrid dynamics having state
(ζ̄i, qi) = ((η̄i, ε̄i), qi) ∈ S1 × Q and such that qiη̄i = −1 is
not included in the flow set Cκ (because δ < 1). The next
lemma is a straightforward generalization of [22].

Lemma 1. The attractor Aκ := {(ζ, q) ∈ S1 ×Q : ζ = qe}
is uniformly globally asymptotically stable for (50).

Proof: Choose the Lyapunov function

Vκ(ζ̄i, qi) := 2(1− qiη̄i), (51)

which is positive definite and radially unbounded with re-
spect to Aκ. Denoting V̇κ =

〈
∇Vκ, [ ˙̄ζi q̇i]

>
〉

and ∆Vκ =

Vκ(ζ̄+i , q
+
i )− Vκ(ζ̄i, qi), straightforward calculations yield

V̇κ = −kε̄2i < 0, ∀(ζ̄i, qi) ∈ Cκ\Aκ
∆Vκ = 4qiη̄i ≤ −4δ < 0, ∀(ζ̄i, qi) ∈ Dκ,

(52)

implying UGAS from standard hybrid Lyapunov theory.
For a convenient design of the backstepping-based adaptive
controller defined in the next subsection, we propose now
a dynamically extended version of (48) to ensure that ωvi
remains constant across jumps. Specifically, we augment the
controller with a first-order filter of the feedback kqiε̄i:{

q̇i = 0

λ̇i = −h(λi − kqiε̄i)
(ζ̄i, qi, λi) ∈ Cλ{

q+ = −qi
λ+i = λi

(ζ̄i, qi, λi) ∈ Dλ

i ∈ V,

(53)

where h is a positive gain and the sets Cλ, Dλ are defined as
the next generalization of (49):

Cλ :=

{
(ζ̄i, qi, λi) ∈ S1 ×Q× R :

(
η̄i +

λiε̄i
k

)
qi ≥ −δ

}

Dλ :=

{
(ζ̄i, qi, λi) ∈ S1 ×Q× R :

(
η̄i +

λiε̄i
k

)
qi ≤ −δ

}
.

(54)

We can then replace by λi the term kqiε̄i in the selection of
ωvi of (48), namely we choose:

ωvi = c>ŵi + λi, i ∈ V, (55)

which remains constant across jumps. The closed-loop error
dynamics for each node i, obtained from the interconnection
of (47), (53), and (55), is described by:

˙̄ζi = −1

2
λiJζ̄i

q̇i = 0

λ̇i = −h(λi − kqiε̄i)

 ζ̄iqi
λi

∈ Cλ,

ζ̄+i = ζ̄i

q+i = −qi
λ+i = λi

 ζ̄iqi
λi

∈ Dλ.

(56)

The next result generalizes the argument of Lemma 1.

Proposition 3. For any h > k, the attractor Aλ :=
{(ζ, q, λ) ∈ S1×Q×R : ζ = qe, λ = 0} is uniformly globally
asymptotically stable for the hybrid system (56).
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Proof: Define λ̃i := λi − kqiε̄i, then consider the
Lyapunov function

Vλ(ζ̄i, qi, λi) := 2k2(1− qiη̄i) + λ̃2i . (57)

Note that Vλ is positive definite with respect to Aλ and
radially unbounded relative to S1 × Q × R. Denote V̇λ =〈
∇Vλ, [ ˙̄ζi q̇i λ̇i]

>
〉

. For all (ζ̄i, qi, λi) ∈ Cλ, it holds that

V̇λ = −k2qiλiε̄i + λ̃i(−2hλ̃i + kqiλiη̄i)

= −k3ε̄2i + k2λ̃iε̄i(η̄i − qi)− (2h− kqiη̄i)λ̃2i

≤ −

[
|ε̄i|
|λ̃i|

]> [
k3 −k2
−k2 2h− k

] [
|ε̄i|
|λ̃i|

]
.

(58)

From δ < 1, for any point in Cλ we have that λ̃i = 0 and
ε̄i = 0 implies that (ζ̄i, qi, λi) ∈ A (in particular, the point
with λi = 0 and qi = −η̄i does not belong to Cλ), then
V̇λ < 0, for all (ζ̄i, qi, λi) ∈ Cλ\Aλ, if k3(2h − k) − k4 =
2k3(h−k) > 0, i.e., h > k. On the other hand, denote ∆Vλ =
Vλ(ζ̄+i , q

+
i , λ

+
i ) − Vκ(ζ̄i, qi, λi), then for all (ζ̄i, qi, λi) ∈ Dλ

we have:

∆Vλ = 4k2qiη̄i + (λ̃i + 2kqiε̄i)
2 − λ̃2i

= 4k2qi

(
η̄i +

λiε̄i
k

)
≤ −4k2δ < 0,

(59)

thus concluding UGAS for the attractor Aλ.

B. Global Adaptive Synchronization

Taking advantage of the hybrid system defined in (53), we
propose to achieve global synchronization to the reference ζ?

using an adaptive backstepping controller where, in place of
the feedback ωvi = c>ŵi + λi in (55), we ensure ωi → ωvi
by design of the control input ui.

In place of the frequency tracking error ω̄i in (43), consider
the error variable

zi := c>ŵi + λi − ωi = ω̄i + λi ∈ R, i ∈ V. (60)

We can rewrite the error dynamics (44) and (45) using
variables zi as follows:

˙̄ζi =
1

2
(zi − λi)Jζ̄i − kζR(ζi)

>eζi

miżi = ψi − ui −mi

(
kwc

>ewi + h(λi − kqiε̄i)
) i ∈ V.

(61)

Using (46), the second equation can also be rewritten as
follows

miżi = Ψ>i pi − ui −mikwc
>ewi , i ∈ V, (62)

with regressor Ψi and parameter vector pi ∈ R3+2|Ni| given

by:

Ψi:=



c>s(ζ̂i, ŵi)−h(λi−kqiε̄i)
ωi
1

φ(ζi)
>Jφ(ζj1)

...
φ(ζi)

>Jφ(ζj|Ni|)

φ(ζi)
>φ(ζj1)
...

φ(ζi)
>φ(ζj|Ni|)


, pi:=



mi

di
−ωni

kij1 cos(ϕij1)
...

kijNi cos(ϕij|Ni|)

−kij1 sin(ϕij1)
...

−kijNi sin(ϕij|Ni|)


(63)

where we denoted Ni = {j1, . . . , j|Ni|}. By Assumption 1, it
follows that

|pi|∞ = max{|pi1|, . . . , |pi(3+2|Ni|)|} ≤ ρ. (64)

The control of system (61) is based on the augmentation
of control law (53) with the following adaptive state-input
selections:

ui = Ψ>i p̂i + kzzi
˙̂pi = γΨizi − γν dz(p̂i)

p̂+i = p̂i,

i ∈ V, (65)

where kz , γ, and ν are positive gains, while dz : R3+2|Ni| →
R3+2|Ni| is a decentralized dead-zone function defined as [38,
§3.4]:

dz(ξ) :=


ξ1 − ρsat

(
ξ1
ρ

)
...

ξ3+2|Ni| − ρsat
(
ξ3+2|Ni|

ρ

)
 , (66)

where sat(y) := max{−1,min{1, y}}. Exploiting (64), it can
be verified that, for all pi and all ξ ∈ R3+2|Ni|:

(ξ − pi)> dz(ξ) ≥ 0. (67)

Moreover, there exist positive scalars r and µ such that, for
all pi and all ξ ∈ R3+2|Ni|:

|ξ| ≥ r =⇒ (ξ − pi)> dz(ξ) ≥ µ|ξ|2. (68)

In view of our reduction arguments (eζi = 0 and ewi = 0
in (61)), the closed-loop dynamics obtained from the inter-
connection of (61), (62), (53), and (65), having state xi :=
(ζ̄i, qi, λi, zi, p̂i), is expressed, for each i ∈ V , as follows:

˙̄ζi =
1

2
(zi − λi)Jζ̄i

q̇i = 0

λ̇i = −h(λi − kqiε̄i)
miżi = −kzzi −Ψ>i (p̂i − pi)

˙̂pi = γΨizi − γν dz(p̂i)

xi ∈ Ci,



ζ̄+i = ζ̄i

q+i = −qi
λ+i = λi

z+i = zi

p̂+i = p̂i

xi ∈ Di,

(69)

where Ci := Cλ × R4+2|Ni| and Di := Cz × R4+2|Ni|.
In the following, we focus on the stability properties of the
closed-loop system obtained through the interconnection of
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the exosystem (14) and the local error dynamics (69). For
this interconnection, we are going to show that there exists
a globally asymptotically stable compact attractor wherein
all oscillators are synchronized with the reference ζ?. More
specifically, this compact attractor, named A0, is a set wherein
ζ̄i = qie, zi = 0, for all i ∈ V , and satisfying A0 ⊂ K0, with
K0 compact, defined as:

K0:={(ζ?, w?, x1, . . . , xN )∈K?×
∏
i∈V

(S1×Q×R5+2|Ni|):

ζ̄i = qie, λi = 0, zi = 0, |p̂i| ≤ r, ∀i ∈ V},
(70)

where r > 0 as per (68). In the sequel, we call K0 synchro-
nization set.

Remark 4. The set K0 is compact. Indeed, (ζ?, w?) ∈ K?
is in a compact by assumption, while the only components
of xi := (ζ̄i, qi, λi, zi, p̂i) that are possibly unbounded are λi,
zi, and p̂i. Therefore, from the conditions in (70), compactness
follows immediately.

Remark 5. Since no persistency of excitation is necessarily
satisfied by the regressor Ψi in (63), it might be surprising
that a globally asymptotically stable attractor can be found
with the considered adaptive controller. This result is possible
because we make use of the analysis tools in [28, Chs. 6 and
7] instead of the standard tools for adaptive control (see, e.g.,
[39, §8.3]). In particular, we leverage the result [28, Cor. 7.7],
which states that, under some regularity properties including-
well posedness, the ω-limit set from a compact set of initial
conditions is locally asymptotically stable.

Theorem 2. For any selection of the tuning parameters k > 0,
δ ∈ (0, 1), h > k, kz > 0, γ > 0, and ν > 0, there exists
a compact set A0, contained in the synchronization set K0 of
(70), that is robustly globally KL asymptotically stable in the
sense of [28, Def. 7.18] for the interconnection among (14)
and (69).

Robustness of our stability result follows from compactness
of A0 and well posedness of the considered hybrid dynamics.

Proof: First, we prove that the closed-loop solutions are
bounded and forward complete. The state (ζ?, w?) of the ex-
osystem (14) evolves in the bounded forward invariant set K?,
thus it is bounded. Moreover, qi is bounded by construction.
In the scenario with known leader signals considered in this
section, it holds that ζ̄i := R(ζi)

>ζ̂i = R(ζi)
>ζi ∈ S1, thus

ζ̄i is bounded. Since |kqiε̄i| ≤ k we obtain, for |λi| ≥ k:

d

dt
|λi| = −h

λi
|λi|

(λi − kqiε̄i)

≤ −h(|λi| − k) ≤ 0,

∀i ∈ V (71)

therefore λi is bounded. Boundedness of (zi, p̂i) is established
by using the following Lyapunov function

Vi(zi, p̂i) :=
1

2
miz

2
i +

1

2γ
|p̂i − pi|2, ∀i ∈ V. (72)

Along the closed-loop solutions, we obtain from (69),

V̇i = −kzz2i − ziΨ>i (p̂i − pi) + (p̂i − pi)>
[
Ψizi − ν dz(p̂i)

]
= −kzz2i − ν(p̂i − pi)> dz(p̂i), ∀i ∈ V.

(73)

Therefore, using (68) and the properties of the dead-zone
function, we obtain, for all i ∈ V ,

V̇i ≤ −kzz2i ≤ 0, if |p̂i| ≤ r,
V̇i ≤ −kzz2i − νµ|p̂i|2 < 0, if |p̂i| ≥ r.

(74)

Property (74) shows forward invariance of the sublevel sets
of Vi, i ∈ V , thus (zi, p̂i) is contained in a compact set, for
all i ∈ V . Exploiting boundedness of the components of xi,
i ∈ V , established above, we also conclude by [28, Prop. 6.10]
that solutions are forward complete, thus they are precompact.

From (72)–(74) and using the fact that zi and p̂i do not
change across jumps, we can apply [28, Cor. 8.4] to obtain
that all solutions approach the largest weakly invariant subset
of the set

U := {(ζ?, w?, x1, . . . , xN ) ∈ K?×
∏
i∈V

(S1 ×Q× R5+2|Ni|):

zi = 0, |p̂i| ≤ r, ∀i ∈ V}.
(75)

The closed-loop dynamics restricted to the set U in (75) is
given, for all i ∈ V , by zi = 0, ˙̂pi = 0, and (56). In view of
Proposition 3, the solutions globally approach K0 ⊂ U as per
(70) and (75).

For a set of initial conditions of the form Kε := K0 + εB,
where ε > 0 is arbitrary, it holds that A0 := Ω(Kε) ⊂
K0 ⊂ Int(Kε), where Ω(Kε) denotes the ω-limit set of
Kε. By [28, Cor. 7.7], A0 is asymptotically stable (therefore
Lyapunov stable) with basin of attraction containing Kε. From
the previous arguments, A0 is globally attractive, which,
together with its Lyapunov stability, gives GAS. Since the
hybrid dynamics satisfies the hybrid basic conditions of [28,
Assumption 6.5] and A0 is compact, then GAS of A0 implies
robust global KL asymptotic stability from [28, Thm. 7.21].

As customary in adaptive control, convergence of the estimated
parameters p̂i to the true parameters pi cannot be guaranteed.
This in turn makes it difficult, if at all possible, to give an
explicit representation of the attractor A0. Even without its
explicit representation, the mere existence of A0 is sufficient
to complete the design through reduction theorems in the next
section.

VI. MAIN RESULT

We finally present the complete hybrid observer-based con-
troller for each node i, obtained by combining the distributed
observer (17) and the local hysteresis-based controller (53),
and the local adaptive controller (65). Note that, in this context,
we no longer assume ζ̃ = 0, w̃ = 0 (equivalently, eζ = 0,
ew = 0), thus the dynamics of the tracking errors (ζ̄i, zi) in
(61) is not simplified as in the scenario with known leader
signals. The robustness property established in Theorem 2 is
naturally inherited here due to well posedness of the hybrid
dynamics.

Define the overall state at node i as

χi := (ζ̂i, ŵi, ζ̄i, qi, λi, zi, p̂i︸ ︷︷ ︸
xi

) ∈ Rn+4 ×Q× R5+2|Ni|, (76)
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Theorem 3

Small-Gain

Distributed Observer
Theorem 1

Leader Exosystem

ζ?, w?

Frequency Estimation Error
Proposition 2

w̃

Phase Estimation Error
Proposition 1

ζ̃

Local Tracking Errors
(adaptive)
Theorem 2

xi := (ζ̄i, qi, λi, zi, p̂i), i ∈ V

Local Tracking Errors
(non-adaptive)
Proposition 3

(ζ̄i, qi, λi), i ∈ V
w̃

ζ̃

(ζ?, w?)

(ζ̃i, w̃i), i ∈ V
Reduction Theorem

(ζ?, w?)

Fig. 2. Sketch of the closed-loop error subsystems, with their interconnections and the related stability results.

then the local controllers that solve Problem 1 are given as
follows, for each i ∈ V:

˙̂
ζi =

1

2
c>ŵiJζ̂i − kζeζi

˙̂wi = s(ζ̂i, ŵi)−kwewi
q̇i = 0

λ̇i = −h(λi − kqiε̄i)
˙̂pi = γΨizi − γν dz(p̂i)

χi ∈Cχi,



ζ̂+i = ζ̂i

ŵ+
i = ŵi

q+i = −qi
λ+i = λi

p̂+i = p̂i

χi ∈Dχi,

with: Cχi :=
{
χi ∈ Rn+4 ×Q× R5+2|Ni| :(

η̄i +
λiε̄i
k

)
qi ≥ −δ

}
,

Dχi :=
{
χi ∈ Rn+4 ×Q× R5+2|Ni| :(

η̄i +
λiε̄i
k

)
qi ≤ −δ

}
,

and: ui = Ψ>i p̂i + kzzi,
(77)

where eζi, ewi are given in (19), η̄i, ε̄i are defined in (43),
zi is defined in (60), Ψi is given in (63), dz is given in (66),
while the tuning parameters are the stabilizer gains k, h, kz ,
γ, ν, the observer gains kζ , kw, and the hysteresis margin δ.

The closed-loop system is given by the interconnection
of the second-order Kuramoto network (10), the exosytem
(14), and the local controllers (77). For such system, we
exploit reduction theorems to show that there exists a compact
attractor A that is robustly globally KL asymptotically stable.
As for Theorem 2, we show that A is a subset of a compact
set K that we may call again synchronization set, with a
slight abuse of notation, because its elements enjoy phase
synchronization to the reference ζ?:

K:= {(ζ?, w?, χ1, . . . , χN )∈K?×
∏
i∈V

(Rn+4×Q× R5+2|Ni|):

ζ̂i = ζ?, ŵi =w?, ζ̄i = qie, λi = zi = 0,|p̂i| ≤ r, ∀i ∈ V}.
(78)

Note that the projection of K in the direction of
(ζ?, w?, x1, . . . , xN ) corresponds to K0 in (70).

The main result of this work is given by the following state-
ment, which provides formal guarantees for the effectiveness
of the controllers (77).

Theorem 3. For any selection of the tuning parameters k >
0, δ ∈ (0, 1), h > k, kz > 0, γ > 0, ν > 0 and kζ , kw
satisfying (41), there exists a compact set A, contained in K
of (78), that is robustly globally KL asymptotically stable for
the interconnection among (10), (14), and (77).

Proof: We begin by highlighting the cascade-structure of
the closed-loop error dynamics. As shown in Section IV, the
distributed observer dynamics is collected in the estimation
error subsystems (23) and (34). We can establish a cascade
interconnection between the system (23), (34), (14), with
output (ζ?, w?, ζ̃, w̃), and the tracking error dynamics (69).
We highlight that whenever (ζ̃, w̃) = 0 the closed-loop system
is described by the dynamics with known leader signals (14),
(69). The overall interconnection of these subsystems is shown
in Fig. 2.

Asymptotic stability of the attractor A is proven through
reduction theorems. By Theorem 1, we showed that the closed
(but not compact) attractor

Â:={(ζ?, w?, χ1, . . . , χN )∈ K?×
∏
i∈V

(Rn+4 ×Q× R5+2|Ni|):

ζ̂i = ζ?, ŵi = w?,∀i ∈ V},

corresponding to the scenario with known leader signals,
is UGAS. On the set Â, we recover the dynamics (69),
thus by Theorem 2 there exists an attractor A ⊂ K that
is UGAS relative to Â. By [40, Cor 4.8], A is uniformly
asymptotically stable for the overall closed-loop system, with
basin of attraction given by all the initial conditions generating
bounded solutions.

We conclude the proof by showing that all solutions of the
closed-loop system are bounded, which then implies UGAS
and then robust global KL asymptotic stability from [28, Thm.
7.21]. First note that the state (ζ?, w?) of the exosystem (14)
evolves in the bounded forward invariant set K?, thus it is
bounded. Similarly, qi is bounded by construction. Due to
Theorem 1, (ζ̃, w̃) converge to zero, therefore (ζ̂i, ŵi) are
bounded for all i ∈ V . It remains to show that ζ̄i, λi, zi, and
p̂i are bounded, for all i ∈ V . Concerning ζ̄i, recall that ζ̄i :=
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R(ζi)
>ζ̂i, where ζi ∈ S1, therefore ζ̄i is bounded because

|ζ̄i| ≤ |ζ̂i|. Since ζ̄i is bounded, so is kqiε̄i. Indicate with k̄i
the upper bound of kqiε̄i, for a given set of initial conditions,
and boundedness of λi is proven by parallel derivations to (71).
To analyze (zi, p̂i), as in the proof of Theorem 2, consider the
Lyapunov function

Vi(zi, p̂i) :=
1

2
miz

2
i +

1

2γ
|p̂i − pi|2, i ∈ V. (79)

From (67) and (68), respectively for each i ∈ V , similar steps
to those in (73), (74) yield:

V̇i = −kzz2i − ν(p̂i − pi)> dz(p̂i)−mikwzic
>ewi

≤ −kz
2
z2i +

1

2kz
|mikwc

>ewi |2,

|p̂i| ≥ r =⇒ V̇i ≤ −
kz
2
z2i − νµ|p̂i|2 +

1

2kz
|mikwc

>ewi |2.
(80)

These two bounds provide, respectively,

|zi| >
mikw|c|
kz

|ewi | =⇒ V̇i(zi, p̂i) < 0,

|p̂i| > max

{
r,
mikw|c|√

2kzνµ
|ewi |

}
=⇒ V̇i(zi, p̂i) < 0.

(81)

The two implications above prove that neither zi nor p̂i can
grow unbounded because ew = (B ⊗ In)w̃ is bounded.
Therefore, we conclude global boundedness of solutions.

VII. NUMERICAL EXAMPLE

For the numerical analysis, we consider a Kuramoto model
composed of six oscillators, whose parameters and initial
conditions are reported in Tab. I. In particular, the graph of the
network is depicted in Fig. 1, where the coupling parameters
have been assigned as k12 = 0.5, k13 = 3, k14 = 1, k16 = 1.5,
k34 = 2, k45 = 2.5, k56 = 2, ϕ12 = π/2, ϕ13 = π/3,
ϕ14 = π/4, ϕ16 = π/3, ϕ34 = π/5, ϕ45 = π/4, ϕ56 = π/2.
We suppose to have a rough knowledge of the parameter
bounds by letting ρ = 25 in (5). It follows that Assumptions
1 and 3 hold. The leader exosystem (14) has been chosen as

d

dt

[
ζ?1
ζ?2

]
=

1

2
(w?1 + w?3)J

[
ζ?1
ζ?2

]
d

dt

w?1w?2
w?3

 =

 0
w?3

−w?2 +
(
1− 1

2 |w
?
3 |
)

tanh(w?3) + 3
2ζ
?
2

 , (82)

with initial conditions ζ?(0) = [1 0]> and w?(0) = [2 0 0]>.
For completeness, we briefly prove that Assumption 2 is
satisfied. The existence of K? is guaranteed by proving bound-
edness of solutions of (82). Note that (ζ?1 , ζ

?
2 , w

?
1) are bounded

by construction. On the other hand, boundedness of (w?2 , w
?
3)

is proven by direct application of [41, Thm. 2]. We remark that,
from the chosen initial conditions, the solution converges to a
periodic orbit as depicted in Figs. 3, 4. It can be easily shown
that s(ζ̂?, w?) is globally Lipschitz, since the derivative of
the nonlinear term is bounded for all w?3 . From the numerical
evaluation of the differential of s over the values of (ζ?, w?),
we established a Lipschitz constant `s = 2.129.
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Fig. 3. Response of exosystem (82) initialized in ζ?(0) = [1 0]>,
w?(0) = [2 0 0]>.
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Fig. 4. Response of exosystem (82) (in blue) and corresponding
asymptotic behavior (in violet).

The Kuramoto model has been implemented according to
(2), with the angles θi wrapped between −2π and 2π in order
to ensure boundedness of the simulation variables. Then, for
the computation of the feedback laws, the variables ζi have
been computed according to (8). The tuning parameters have
been selected as kζ = 50, kw = 50, δ = 0.5, k = 1, kz = 5,
h = 2, γ = 1, ν = 1. Note that (41) is verified since σ(B) =
0.1136. The initial conditions for controller (77) have been
randomly chosen, where in particular the logic variables qi
have been initialized in the set Q := {−1, 1}.

In Figs. 5, 6 we report the results of a simulation run. Fig. 5
shows the behavior of the distributed observer, which rapidly
converges to the exosystem signals. On the other hand, Fig. 6
depicts the tracking performance. In Fig. 6-(e), we also report
the evolution of p̂1, showing that the parameters of the adaptive
controllers converge to constant values. Finally, we employ
wrapped angles to depict the phase tracking performance in
Figs. 6-(f), 6-(g). In particular, we define

ϑ? := 2atan2 (ζ?2 , ζ
?
1 ) ,

ϑi := mod (θi + π, 2π)− π, i ∈ V,
(83)

where ϑ? is the angular reference corresponding to ζ?, while
ϑi is θi wrapped in the interval [−π, π).

VIII. CONCLUSIONS

We introduced an adaptive hybrid control strategy for the
robust global phase synchronization of second-order Kuramoto
oscillators. The objective of phase synchronization was cast
into a leader-follower tracking problem, where the leader
system is modeled as an autonomous nonlinear exosystem.
Under fairly mild assumptions on the network topology and
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TABLE I
PARAMETERS AND INITIAL CONDITIONS OF THE OSCILLATORS

mi di ωni θi(0) ωi(0)

oscillator #1 1.1 0.1 5 −π 2
oscillator #2 1.3 0.15 10 π 0.5
oscillator #3 1.2 0.2 15 π/2 1
oscillator #4 1.6 0.21 20 −π/2 0.3
oscillator #5 1.4 0.18 8 π/3 1.5
oscillator #6 1.5 0.13 18 −π/3 0.8
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Fig. 5. Closed-loop simulation results. (a): distributed observer phase
estimation (reference in blue); (b): distributed observer frequency esti-
mation (reference in blue).

the exosystem dynamics, we proved that our design, which
comprises a distributed observer and an adaptive hybrid sta-
bilizer, ensures robust global stability of a compact synchro-
nization set. In particular, robust adaptive stabilization was
ensured without requiring persistency of excitation conditions.
Future efforts will be dedicated to relaxing the information
requirements (e.g., by removing the frequency measurements)
and the connectivity properties of the network. Furthermore,
it will be worth generalizing the approach to a broader class
of nonlinear oscillators.
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