HOMOGENIZATION OF SOUND-ABSORBING AND HIGH-CONTRAST ACOUSTIC METAMATERIALS IN SUBCRITICAL REGIMES

F. FEPPON1,* H. AMMARI1

1 Department of Mathematics, ETH Zürich, Switzerland.

ABSTRACT. We propose a quantitative effective medium theory for two types of acoustic metamaterials constituted of a large number N of small heterogeneities of characteristic size s, randomly and independently distributed in a bounded domain. We first consider a “sound-absorbing” material, in which the total wave field satisfies a Dirichlet boundary condition on the acoustic obstacles. In the “sub-critical” regime $sN = O(1)$, we obtain that the effective medium is governed by a dissipative Lippmann-Schwinger equation which approximates the total field with a relative mean-square error of order $O(\max((sN)^2 N^{-\frac{7}{3}}, N^{-\frac{2}{3}}))$. We retrieve the critical size $s \sim 1/N$ of the literature at which the effects of the obstacles can be modelled by a “strange term” added to the Helmholtz equation. Second, we consider high-contrast acoustic metamaterials, in which each of the N heterogeneities are packets of K inclusions filled with a material of density much lower than the one of the background medium. As the contrast parameter vanishes, $\delta \to 0$, the effective medium admits K resonant characteristic sizes $(s_i(\delta))_{1 \leq i \leq K}$ and is governed by a Lippmann-Schwinger equation, which is diffusive or dispersive (with negative refractive index) for frequencies ω respectively slightly larger or slightly smaller than the corresponding K resonant frequencies $(\omega_i(\delta))_{1 \leq i \leq K}$. These conclusions are obtained under the condition that (i) the resonance is of monopole type, and (ii) lies in the “subcritical regime” where the contrast parameter is small enough, i.e. $\delta = o(N^{-2})$, while the considered frequency is “not too close” to the resonance, i.e. $N\delta^{\frac{7}{2}} = O(|1 - s/s_i(\delta)|)$.

Our mathematical analysis and the current literature allow us to conjecture that “solidification” phenomena are expected to occur in the “super-critical” regime $N\delta^{\frac{7}{2}} |1 - s/s_i(\delta)|^{-1} \to +\infty$.

Keywords. Non-periodic homogenization, effective medium theory, strange term, subwavelength resonance, high-contrast medium, holomorphic integral operators.

AMS Subject classifications. 35B34, 35P25, 35J05, 35C20, 46T25.

CONTENTS

1. Introduction 2

2. Layer potentials in domains filled with a large number of small inclusions 6
 2.1. Critical sizes 6
 2.2. Rescaling operator and product spaces 8
 2.3. Holomorphic expansions of layer potentials with respect to the size parameter 10
 2.4. Uniform norm estimates in a heterogeneous medium 13

3. Homogenization of a sound-absorbing metamaterial 15
 3.1. The Foldy-Lax approximation for an arbitrary distribution of small obstacles 15
 3.2. Convergence of the Foldy-Lax system to an integral equation 17
 3.3. Effective medium theory for sound absorbing metamaterials up to the critical regime 19

4. Homogenization of a high-contrast acoustic metamaterial 21
 4.1. The Foldy-Lax system for an arbitrary system of many tiny resonators 22
 4.2. Convergence of the Foldy-Lax system to an integral equation 28
 4.3. Effective medium theory for a monopole-type resonant system up to a critical scale 32

Appendix A. Markov inequality and law of large numbers 35
Appendix B. Higher order derivatives of the Helmholtz fundamental solution 36
Appendix C. Resolvent estimates of Schatten operators 36
References 36

* Corresponding author. Email: florian.feppon@sam.math.ethz.ch

The work of F. Feppon was supported by ETH Zürich through the Hermann-Weyl fellowship of the Institute for Mathematical Research (FIM).
1. Introduction

Metamaterials [30, 50, 44, 23] offer promising perspectives in many applications of wave engineering, such as sensing [26, 8], imaging [43, 45, 19], focusing [49, 12], cloaking [6, 47] and guiding [59, 16, 10]. These are structures filled with heterogeneities much smaller than the wavelength, which behave, as the size of the heterogeneities become arbitrarily small, as apparently homogeneous effective media with special properties not found in usual materials. The mathematical and rigorous derivation of effective models for heterogeneous wave systems is of primary importance for the analysis, the understanding, and the numerical simulation of the physics of wave propagation in metamaterials. Various approaches have been proposed in the literature, based on the Foldy-Lax approximation [37, 20, 5], on two-scale expansions [22, 51, 61, 65, 57], or from physical models [42, 54].

In this paper, we propose a quantitative homogenization analysis of two kinds of acoustic structures filling a bounded domain Ω of the three-dimensional space \mathbb{R}^3, based on integral representations and layer potential techniques. We consider a system $D_{N,s}$ constituted of a total of $M = \sum_{i=1}^N K_i$ inclusions which are arranged in N packets $(y_i + s D_i)_{1 \leq i \leq N}$ containing each K_i inclusions:

$$D_{N,s} = \bigcup_{1 \leq i \leq N} (y_i + s D_i)$$

where each resonator B_{ij} with $1 \leq i \leq N$, $1 \leq j \leq K_i$ has a single connected component. Each group of resonators D_i with $1 \leq i \leq N$ is rescaled by a small factor $s > 0$ and is located close to its center $y_i \in \mathbb{R}^3$. The background medium $\mathbb{R}^3 \setminus D_{N,s}$ is a three-dimensional homogeneous medium characterized by its constant bulk modulus $\kappa > 0$ and density $\rho > 0$. An incident wave u_{in} is coming from the far field and generates a scattered wave by encountering the obstacles $D_{N,s}$. The resulting total wave field is denoted by $u_{N,s}$. The setting is illustrated on Figure 1.

![Figure 1](image-url)

Figure 1. Setting of the homogenization problem. An incoming wave u_{in} generates a scattered wave $u_{N,s} - u_{in}$ by encountering a highly contrasted medium $D_{N,s}$ constituted of many small inclusions filling a bounded domain Ω. Each unit packet $D_i = \bigcup_{j=1}^{K_i} B_{ij}$ is rescaled by a small size factor s and translated in the vicinity of the point y_i to form the small acoustic obstacle $y_i + s D_i$. The smallest distance between the centers $(y_i)_{1 \leq i \leq N}$ is denoted by ϵ_N (eqn. (2.1)).

We consider two possible types of acoustic obstacles:

(i) **sound-absorbing** obstacles. In this case, the sound wave is “absorbed” by the obstacles, which corresponds to saying that $u_{N,s}$ is the solution to the Helmholtz equation in $\mathbb{R}^3 \setminus D_{N,s}$, with a Dirichlet boundary condition on $\partial D_{N,s}$:

$$
\begin{align*}
\Delta u_{N,s} + k^2 u_{N,s} &= 0 \text{ in } \mathbb{R}^3 \setminus D_{N,s}, \\
u_{N,s} &= 0 \text{ on } \partial D_{N,s},
\end{align*}
$$

where the last equality is the outgoing Sommerfeld radiation condition for the scattered field;
(ii) high-contrast obstacles. In this configuration, the inclusions of $D_{N,s}$ are filled with a material of different bulk modulus κ_b and density ρ_b. The total field $u_{N,s}$ is then characterized as the solution to the following system of coupled Helmholtz equations:

$$
\begin{cases}
\text{div} \left(\frac{1}{\rho_b} \nabla u_{N,s} \right) + \frac{\omega^2}{\kappa_b} u_{N,s} = 0 \text{ in } D_{N,s}, \\
\text{div} \left(\frac{1}{\rho} \nabla u_{N,s} \right) + \frac{\omega^2}{\kappa} u_{N,s} = 0 \text{ in } \mathbb{R}^3 \setminus D_{N,s},
\end{cases}
$$

(1.2)

where $u|_+ - u|_- = 0$ on $\partial D_{N,s}$, and $\delta := \frac{\rho_b}{\rho}$ is small: $\delta \to 0$. Such kind of system is naturally encountered when considering, for instance, air bubbles in water. The inclusions of $D_{N,s}$ behave as subwavelength “resonators” which significantly affect the acoustic properties of the background medium at subwavelength scales [55, 13].

The goal of this paper is to derive a quantitative effective medium theory for both (1.1) and (1.2) when the size and the contrast of the heterogeneities converge to zero as their number becomes large:

$$s \to 0, \quad N \to +\infty, \quad \delta \to 0. \quad (1.4)$$

We emphasize that in this study, all the physical parameters other than δ, s and N (including the illuminating frequency ω) are fixed and of order $O(1)$.

In order to actually obtain an effective medium, we need to consider some uniformity assumptions on the heterogeneities. We consider the following set of hypotheses in the homogenization steps of our analysis.

H1 The points $(y_i)_{1 \leq i \leq N}$ are distributed randomly and independently according to a three-dimensional probability measure $\rho \, dx$ with density $\rho \in L^\infty(\Omega)$ in a smooth bounded domain $\Omega \subset \mathbb{R}^3$. In particular, $\rho \geq 0$ and $\int_\Omega \rho \, dx = 1$, and the law of large numbers implies the convergence

$$\sum_{i=1}^N \delta y_i \to \rho \, dx \text{ as } N \to +\infty, \quad (1.5)$$

in the sense of distributions.

H2 The packets of resonators are identical and constituted of K single components $(B_i)_{1 \leq i \leq K}$:

$$D_i = D := \bigcup_{l=1}^K B_i, \quad \forall 1 \leq i \leq N.$$

The mathematical homogenization of the systems (1.1) and (1.2) or some variants of them has been the object of several works [63, 27, 52, 64]. In both situations, critical scalings for the parameters s, N and δ arise, at which the qualitative physical behavior of (1.1) and (1.2) change.

The analysis of the acoustic problem (1.1) goes back at least to Rauch and Taylor [63, 62] in the regimes $sN \to 0$ and $sN \to +\infty$, followed by [27] in the regime where sN converges to a constant $\Lambda > 0$. Their results provide the following qualitative convergences for regularly spaced obstacles:

- if $sN \to 0$, the acoustic obstacles are too small and the scattered field converges to zero as $s \to 0$ and $N \to +\infty$, or in other words $u_{N,s}$ converges to the solution u_{in} of the Helmholtz equation (1.1) without the obstacles. The effective medium is transparent and is governed by a homogeneous Helmholtz equation:

$$
\begin{cases}
\Delta u + k^2 u = 0 \text{ in } \mathbb{R}^3, \\
(\partial & \frac{\partial}{\partial |x|} - ik) (u - u_{in}) = O(|x|^{-2}) \text{ as } |x| \to +\infty;
\end{cases}
$$

(1.6)
• if $sN \to \Lambda$ for a positive constant $\Lambda > 0$, then $u_{N,s} \to u$ where u is the solution to the dissipative Helmholtz equation

$$\begin{cases}
\Delta u + k^2 u - \mu_1 \Omega u = 0 \text{ in } \mathbb{R}^3, \\
\left(\frac{\partial}{\partial |x|} - ik \right) (u - u_{in}) = O(|x|^{-2}) \text{ as } |x| \to +\infty,
\end{cases}$$

(1.7)

where $\mu_1 \Omega$ is a positive Radon measure supported in Ω which describes the dissipative effects due to the obstacles.

• If $sN \to +\infty$, then $u_{N,s} \to u$ where u is the solution to the Helmholtz equation with a Dirichlet boundary condition on the whole set Ω:

$$\begin{cases}
\Delta u + k^2 u = 0 \text{ in } \mathbb{R}^3, \\
\left(\frac{\partial}{\partial |x|} - ik \right) (u - u_{in}) = O(|x|^{-2}) \text{ as } |x| \to +\infty.
\end{cases}$$

(1.8)

Physically, the obstacles “solidify” and the effective medium Ω is opaque.

These results are comparable to the arising of the strange term for periodic media at the critical scaling $s \sim \epsilon^3$ in two-scale homogenization of porous media with cell periodicity ϵ [28, 31, 32, 41, 40, 35]. Subsequently, [25, 24] proposed an analysis establishing the convergence of the far field of $u_{N,s}$ (away from the obstacles) to either (1.6), (1.7) or (1.8) for centers $(y_{ij})_{1 \leq i \leq N}$ distributed according to a counting function which plays a role analogous to our distribution ρ. In the critical regime $sN \to \Lambda$, the author identify explicitly the measure to be given by $\mu = \Lambda \text{cap}(D)_p$ where $\text{cap}(D)$ is the capacity of the set of inclusions D (the definition is recalled in (2.18)).

In this paper, we improve these results by proposing a quantitative homogenization analysis without any further assumption than (H1) on the distribution of points, and quantitative error bounds which hold even in the vicinity of the obstacles. For the analysis of (1.1), we restrict ourselves to sizes s lower or equal to the critical size $1/N$:

(H3) There exists a constant $c > 0$ such that the parameters s and N satisfy

$$sN \leq c.$$

(1.9)

Our main result is given in Proposition 3.4, where we establish the following mean-square error bound between the total field $u_{N,s}$ and the solution to (1.7) with $\mu = sN \text{cap}(D)_p$:

$$\mathbb{E}[|u - u_{N,s}|^2_{L^2(B(0,r))} | \mathcal{H}_{N_0}] \leq c_{N_0} sN \max((sN)^2 N^{-\frac{1}{2}}, N^{-\frac{1}{2}}),$$

(1.10)

for a constant $c_{N_0} > 0$ independent of s and N, and a conditional event \mathcal{H}_{N_0} which holds with large probability $P(\mathcal{H}_{N_0}) \to 1$ as $N_0 \to +\infty$. The bound (1.10) holds on any ball $B(0,r)$ with characteristic size $r > 0$ sufficiently large for containing all the obstacles: $\Omega \subseteq B(0,r)$. It also holds even in the regime $sN \to 0$.

The treatment of the high-contrast system (1.2) is more involved due to resonances. A complete analysis shows that the elementary system constituted of K connected resonators $sD = \bigcup_{i=1}^K sB_i$ (which serves as a building block for the metamaterial of (1.2)) admits K “subwavelength” resonant frequencies $(\omega_i(\delta))_{1 \leq i \leq K}$ with positive real parts and negative imaginary parts [13, 7, 9, 34]. These resonances are called “subwavelength” because $\omega_i(\delta) \to 0$ as $\delta \to 0$, while the scattered field is enhanced by a factor $1/|\Im(\omega_i(\delta))|$, which shows that small bubbles can strongly interact with wavelength that are larger by several orders of magnitude.

Importantly, the K resonant frequencies can be predicted by the spectral decomposition of the capacitance matrix $C \equiv (C_{ij})_{1 \leq i,j \leq K}$ associated with the unit set of obstacles $D = \bigcup_{i=1}^K B_i$ (defined in (4.35)). Denoting by $(a_k)_{1 \leq k \leq K}$ and $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_K$ the eigenvectors and eigenvalues of the symmetric generalized eigenvalue problem

$$Ca_j = \lambda_j \mathcal{V} a_j \quad \text{with} \quad \mathcal{V} = \text{diag}(|B_i|)_{1 \leq i \leq N},$$

(1.11)

the leading order asymptotics of the resonant frequencies read

$$\omega_i(\delta) \sim \omega_{M,i} \quad \text{with} \quad \omega_{M,i} := -\frac{\delta^2}{s} \lambda_i^{-\frac{1}{2}} v_i \quad \text{as} \quad \delta \to 0.$$

The system (1.2) has been studied by [20, 5] by using a Foldy-Lax approximation method inspired from [35, 36] in the case where all packets have a single connected component ($K = 1$ and $D_i = D = B_1$ for $1 \leq i \leq N$). The authors consider frequencies ω lying close to but slightly away from the resonance: they more specifically assume

$$1 - \frac{\omega_{M,i}^2}{\omega^2} = \frac{sN}{\Lambda} \delta^h \quad \text{and} \quad sN \to 0,$$

(1.12)
for a real $h \in \mathbb{R}$, and a non-zero constant $\Lambda \in \mathbb{R}\setminus\{0\}$. The authors obtain the following effective behaviors for the medium constituted of N resonators of size s with $N \to +\infty$ and $s \to 0$:

- if $h < 0$, then ω is too far from the resonant frequency and the effective medium is transparent [5]: $u_{N,s} \to u$ where u is the solution to (1.6),
- if $h = 0$, then $u_{N,s}$ converges to the solution u to the Lippmann-Schwinger equation (1.7) with $\mu = \text{Cap}(D)\rho$, where ρ is the distribution satisfying (1.5) in [20], and a counting function in [5]. The main qualitative difference with (1.1) lies in the fact that the effective medium is dissipative when ω is slightly above the resonant frequency $\omega_{M,1}(\Lambda > 0)$, and dispersive when ω is slightly below the resonant frequency $\omega_{M,1}(\Lambda < 0)$;
- $h > 0$ and $\Lambda > 0$, then ω is very close to but slightly larger than $\omega_{M,1}$, and the effective medium becomes opaque [5]. The total wave field $u_{N,s}$ converges to the solution u of the problem (1.8).

The derivation of an effective medium theory for frequencies ω very close but slightly smaller to the resonant frequency $\omega_{M,1}$ ($h > 0$ and $\Lambda < 0$ in (1.12)) remains an open problem; it is expected that the medium becomes highly dispersive.

This paper improves the homogenization analysis of [20, 5] in several aspects. First, we consider no further assumptions than (H1) on the distribution of points, while [20] assumed technical hypotheses which may be difficult to realize in practice (see Remark 2.2). Furthermore, distributing the centers $(y_i)_{1 \leq i \leq N}$ randomly and independently from a probability distribution ρ may also appear more natural to the reader than according to a counting function as in [5].

Second, we generalize these results to the case $K > 1$ where each packet of resonators has several connected components. Our analysis shows that the effective properties of the heterogeneous medium for ω close to one of the resonant frequencies $\omega_{M,i}$ are determined by the asymptotic behavior of $sNQ(s, \delta)$, where $Q(s, \delta)$ is the quantity defined by

$$Q(s, \delta) := \sum_{i=1}^{K} \frac{\lambda_i}{\mu(x_1) - 1} (a_i^T V 1)^2 \text{ with } a_i(\delta) := \frac{\delta^{\frac{1}{2}} N^2}{k_b} \text{ for } 1 \leq i \leq K,$$

where $1 = (1)_{1 \leq i \leq K}$ is the vector of ones. Since our analysis rests on holomorphic expansions of integral operators with respect to the varying size parameter s and not on the frequency ω (which is assumed to be fixed), we consider resonant characteristic sizes $(s_i(\delta))_{1 \leq i \leq K}$ rather than resonant frequencies $(\omega_{M,i})_{1 \leq i \leq K}$ in the definition (1.13), which are related by the formula $\omega/\omega_{M,1} = s/s_i(\delta)$. The following assumption appears then naturally in our analysis.

(H4) s is close to a resonant characteristic size $s_i(\delta)$ with $1 \leq i \leq K$, whose associated eigenmode a_i is not orthogonal to the vector of ones:

$$\exists 1 \leq i \leq K, \quad s \sim s_i(\delta) \text{ with } a_i^T V 1 \neq 0,$$

and there exists a constant $c > 0$ independent of s, δ and N such that

$$sNQ(s, \delta) \leq c.$$

In view of (1.13), assumption (H4) can also be more physically rephrased as

(H4) The contrast parameter is strictly smaller than $O(N^{-2})$:

$$\delta = o(N^{-2}),$$

and there exists a resonant characteristic size $s_i(\delta)$ with $1 \leq i \leq K$ such that $s \sim s_i(\delta)$ with $a_i^T V 1 \neq 0$ at a rate slower than $\delta^{\frac{1}{2}}N$: there exists a constant $c > 0$ such that

$$\exists 1 \leq i \leq K, c\delta^{\frac{1}{2}}N \leq \left| \frac{s}{s_i(\delta)} - 1 \right| \to 0 \text{ as } \delta \to 0.$$

The condition $a_i^T V 1$ of equation (1.14) implies that the resonance of a system of K resonators is of monopole type [34]: the far field generated by a single resonator is proportional to $\Gamma^k(x)$ where Γ^k is the (outgoing) fundamental solution to the Helmholtz equation. Then, (1.15) is a “subcritical regime” in which the characteristic size s remains slightly away from $s_i(\delta)$; this encompasses the cases $\h < 0$ and $h = 0$ in (1.12). Our main result is stated in Proposition 4.8 where we establish the quantitative convergence bound

$$\mathbb{E}[\|u_{N,s} - u\|_{L^2(B(0, r))}^2 \|H_{N_0}\|^2] \leq c_{N_0} sNQ(s, \delta) \max(\delta^{\frac{1}{2}}N, N^{-\frac{1}{2}}),$$

where u is the solution to the Lippmann-Schwinger equation

$$\left\{ \begin{array}{l}
(\Delta + k^2 - sNQ(s, \delta)\rho l_{\Omega})u = 0 \\
\left(\frac{\partial}{\partial |x|} - ik \right)(u - u_{in}) = O(|x|^{-2}) \text{ as } |x| \to +\infty,
\end{array} \right.$$

for a different event H_{N_0} satisfying $\mathbb{P}(H_{N_0}) \to 1$ as $N_0 \to +\infty$.

5
In contrast with [20] where an error bound is established in a region away from the resonators, and with [5] where the analysis concerns only the far field pattern of $u_{N,s}$, our result demonstrates the convergence of the scattered field even in the region Ω filled with resonators. Furthermore, the mean-square bound (1.16) is very natural because $N^{-\frac{1}{2}}$ is the natural rate of convergence coming from the application of the law of large numbers, $\delta^\frac{1}{2}N$ is a quantity occurring in (H4), while the factor $sNQ(s,\delta)$ is precisely the magnitude of the scattered field.

The paper outlines as follows. Section 2 derives holomorphic expansions of the single layer potential and the Neumann-Poincaré operator associated to the domain $D_{N,s}$ with respect to the parameter s. We establish error bounds uniform with respect to the parameters s and N for the truncated holomorphic series, which bring into play the critical quantity sN of (H1), and which are at the basis of our homogenization method for the scattering problems (1.1) and (1.2).

We then derive the effective medium and quantitative approximation bounds for the sound-absorbing material in Section 3, and for the high-contrast metamaterial in Section 4. We follow a similar methodology for both cases: first, we show that the leading order asymptotic of the total field $u_{N,s}$ is determined by the solution of a linear system with N unknown called “Foldy-Lax” approximation. Then, the mean-square convergence theory of [33] allows us to establish the convergence of this linear system to an integral equation. This allows us, in a last step, to read the resulting homogenized equation for $u_{N,s}$ and the corresponding error bounds.

Finally, a few useful technical results arising in the proofs are given in the appendix.

To conclude this introduction, let us mention that the methodology followed in this work is very general and could be used to study other types of metamaterials. Future investigations could concern metascreens as in [11, 5] in which the centers of the resonators are distributed on a surface rather than in a volume, and high-contrast metamaterials exhibiting a resonance which is not of monopole type. The condition (1.14) would not hold and a substantially different analysis is required. A formal study has been proposed in [15] in the case where the resonators are dimers $D = B_1 \cup B_2$ constituted of two identical spheres, which suggests that a double negative metamaterial is obtained as an effective medium.

In the whole paper, $c > 0$ denotes a universal independent constant which can change from line to line, and $(e_i)_{1 \leq i \leq N}$ is the canonical basis of \mathbb{R}^N.

2. LAYER POTENTIALS IN DOMAINS FILLED WITH A LARGE NUMBER OF SMALL INCLUSIONS

This section introduces a number of useful preliminary results and notations which are at the basis of the homogenization procedure of both scattering problems (1.1) and (1.2). We start in Section 2.1 by providing probabilistic estimates of the minimum distance ϵ_N between two centers, and of a critical size ℓ_N arising in the expansions of the layer potentials for arbitrary distributions of points ($y_i, 1 \leq i \leq N$). Section 2.2 introduces a rescaling operator $\mathcal{P}_{N,s}$ mapping $L^2(D_{N,s})$ to the product space $L^2(D_1) \times \cdots \times L^2(D_N)$. This operator enables, in Section 2.3, to write the single layer potential and the Neumann-Poincaré operator on $\partial D_{N,s}$ in terms of an operator holomorphic in the characteristic size s, whose holomorphic series yields complete asymptotic expansions. Finally, Section 2.4 provides uniform estimates of single layer potentials viewed as a complex scalar field in \mathbb{R}^3, from the magnitude of the potential on $\partial D_{N,s}$.

2.1. Critical sizes

In this subsection, we introduce and estimate two parameters ϵ_N and ℓ_N homogeneous to a distance which play important roles in our analysis:

$$
\epsilon_N := \min_{1 \leq i \neq j \leq N} |y_i - y_j|, \quad \ell_N := \left(\sum_{1 \leq i \neq j \leq N} \frac{1}{|y_i - y_j|^2} \right)^{-\frac{1}{2}}.
$$

(2.1)

The random variable ϵ_N is the minimum distance between the centers of the resonators; it would be the size of the unit cell if the resonators would be arranged in a periodic manner as in the classical setting of periodic homogenization [28, 1]. The quantity ℓ_N arises naturally in the asymptotic expansion of the single layer potential $\mathcal{S}_{D_{N,s}}$, associated to the inclusions. As we shall see in Proposition 2.3 below, ℓ_N is a measure of the typical size under which it becomes possible to treat the interactions between different groups of resonators separately from those which takes place between the resonators of a same group. It is also the critical size above which “solidification” of the group of obstacle occurs (if $s \gg \ell_N$), or at which the “strange term” appears in (1.7) (if $s \sim \Lambda \ell_N$ for some constant $\Lambda > 0$).

The purpose of this part is to show that $\epsilon_N = O(N^{-\frac{1}{2}})$ and $\ell_N = O(N^{-1})$ in some probabilistic sense.

Proposition 2.1. For any positive constants $t_0, t_1 > 0$, let $\mathcal{H}^{(0)}_{t_0}$ and $\mathcal{H}^{(1)}_{t_1}$ be the random events

$$
\mathcal{H}^{(0)}_{t_0} := \{ t_0^{-1}N^{-\frac{1}{2}} < \epsilon_N < t_0N^{-\frac{1}{2}} \},
$$

(2.2)
\(\mathcal{H}^{(1)} := \{ t_1^{-1} N^{-1} < \ell_N < t_1 N^{-1} \}. \) (2.3)

Assume \((H1) \). The events \(\mathcal{H}^{(0)} \) and \(\mathcal{H}^{(1)} \) are satisfied with arbitrary large probability for sufficiently large constants \(t_0, t_1 > 0 \). More precisely, for any \(c > 0 \), there exist large enough \(t_0, t_1 > 0 \) such that for any \(N \in \mathbb{N} \),

\[
\mathbb{P}(\mathcal{H}^{(0)}) \geq 1 - c, \\
\mathbb{P}(\mathcal{H}^{(1)} | \mathcal{H}^{(0)}) \geq 1 - c,
\]

where \(\mathbb{P}(A|B) \) denotes the probability of the event \(A \) conditionally to \(B \).

Proof. 1. (2.4) follows from the result recalled in **Proposition A.3** of the appendix.

2. Denote by \(f(y_1, y_2) \) the random variable

\[
f(y_1, y_2) := \frac{1_{|y_i - y_j| > t_0^{-1} N^{-2/3}}}{|y_i - y_j|^2}.
\]

Using an integration in polar coordinates, we find that there exists \(\beta > 0 \) large enough such that \(\mathbb{E}[f(y_1, y_2)] \) satisfies

\[
\beta^{-1} \leq \mathbb{E}[f(y_1, y_2)] \leq \beta.
\] (2.6)

Still with an integration in polar coordinates, we also find

\[
\mathbb{E}[f(y_1, y_2)^2] \leq \beta N^{-2 + \frac{2}{3}} \quad \text{and} \quad \mathbb{E}[f(y_1, y_2)f(y_1, y_3)] \leq \beta.
\]

Then, the version of the law of large numbers of **Proposition A.2** in the appendix implies, up to selecting a potentially larger constant \(\beta > 0 \):

\[
\mathbb{E} \left[\frac{2}{N(N-1)} \sum_{1 \leq i < j \leq N} f(y_i, y_j) - \mathbb{E}[f(y_1, y_2)] \right]^2
\leq \frac{4}{N^2(N-1)^2} \left(\frac{N(N-1)(N-2)}{6} \mathbb{E}[f(y_1, y_2)f(y_1, y_3)] + \frac{N(N-1)}{2} \mathbb{E}[f(y_1, y_2)^2] \right)
\leq \frac{\beta}{2} \left(N^{-1} + N^{-2} N^{\frac{2}{3}} \right) \leq \beta N^{-1}.
\]

By using Markov inequality (**Proposition A.1**), we then find that for any \(\gamma > 0 \),

\[
\mathbb{P} \left(\left| \frac{1}{N(N-1)} \ell_N^2 - \mathbb{E}[f(y_1, y_2)] \right| \geq \gamma \mathbb{E}[f(y_1, y_2)] \mid \mathcal{H}^{(0)} \right) \leq (1 - c)^{-1} \gamma^{-2} \beta^4 N^{-1}.
\]

Consequently, setting \(\gamma_N := h N^{-1/2} \) with \(h \) sufficiently large but independent of \(N \), we find that there exists a constant \(c \) independent of \(N \) such that

\[
\mathbb{P} \left(\left| N^{-2} \ell_N^2 - \mathbb{E}[f(y_1, y_2)] \right| \geq h N^{-\frac{1}{2}} \mid \mathcal{H}^{(0)} \right) \leq 1 - Ch^{-2}.
\]

The result follows from (2.6) because the above inequality states that \(\ell_N = \mathbb{E}[f(y_1, y_2)]^{-1} N^{-1} + O(N^{-\frac{2}{3}}) \).

Remark 2.1. The quantity \(\ell_N \sim 1/N \) is known to be the critical scaling at which an ensemble of regularly spaced scattering obstacles “solidifies” (reflects entirely the sound wave), see [62, 63], or at which the “strange term” appears in two-scale homogenization of porous media [27, 31, 32, 41, 40, 35]. In this article, we show that \(s \sim 1/N \) is also the critical size for obstacles randomly distributed in a volume. An analysis similar to **Proposition 2.1** leads us to expect that for centers randomly distributed on a surface, the critical size is \(s \sim 1/(N [\log N]^{\frac{1}{2}}) \).

Remark 2.2. In the homogenization analysis of [11], the authors assume both \(\min_{1 \leq i \neq j \leq N} |y_i - y_j| \geq c N^{-\frac{1}{4}} \) and the ergodicity condition (1.5), which, in view of (2.3), cannot be achieved by randomly and independently distributed points \((y_i)_{1 \leq i \leq N} \), and hence can be difficult to realize in practice. This difficulty was also pointed out by [39].

Remark 2.3. The consideration of the events \(\mathcal{H}^{(0)} \) and \(\mathcal{H}^{(1)} \) enables one to obtain error bounds without the need for extra hypotheses on the joint distribution of centers \((y_i)_{1 \leq i \leq N} \). This allows to consider conveniently independent random distributions points \((y_i)_{1 \leq i \leq N} \), in contrast with other possible settings considered in [60, 2, 3, 38].

It follows from **Proposition 2.1** that one can choose sufficiently large constants \(t_0, t_1 > 0 \) such that for any fixed \(N \geq 0 \), the inequalities

\[
t_0^{-1} N^{-2/3} < \epsilon_N < t_0 N^{-2/3} \quad \text{and} \quad t_1^{-1} N^{-1} < \ell_N < t_1 N^{-1}
\] (2.7)
are satisfied with large probability (independent of N). Therefore, the reader may think of ϵ_N as $N^{-\frac{2}{3}}$ and of ℓ_N as N^{-1} when (H1) is realized. We keep the reference to ℓ_N and ϵ_N in the fully general setting where no assumption is made on the distribution of points $(y_i)_1 \leq i \leq N$.

Finally, we denote by η_N the ratio between the distance between the centers $\epsilon_N \equiv O(N^{-2/3})$ and the size of the obstacles s. Throughout the paper, we assume the natural condition that η_N is smaller than a small fixed constant $c > 0$, which ensures that the acoustic obstacles do not overlap:

$$\eta_N := \frac{s}{\epsilon_N} < c.$$ \hfill (2.8)

In other words, this condition states that for arbitrary distributions of points, the natural range for the variations of the characteristic size is $s = O(N^{-\frac{2}{3}})$. The condition (2.8) is of course satisfied in the “subcritical” regimes of assumptions (H3) and (H4).

2.2. Rescaling operator and product spaces

We now introduce an operator $P_{N,s}$ which performs a rescaling around each set of inclusions $y_i + sD_i$. The main motivation lies in the fact that the conjugations of the layer potentials by the operator P of the characteristic size is

$$L \equiv O(\epsilon_N).$$

In other words, this condition states that for arbitrary distributions of points, the natural range for the variations of the characteristic size is $s = O(N^{-\frac{2}{3}})$. The condition (2.8) is of course satisfied in the “subcritical” regimes of assumptions (H3) and (H4).

By using a change of variables, we find

$$\text{Proof.} \quad \text{The transformations} \quad (\tau_{y,s})_{1 \leq i \leq N} \quad \text{enable one to replace the analysis on the whole set of tiny inclusions} \quad D_{N,s} = \bigcup_{1 \leq i \leq N} (y_i + sD_i) \quad \text{with one on the product domain} \quad \mathcal{D} := D_1 \times \cdots \times D_N.$$

Denoting by $L^2(\partial D)$ and $H^1(\partial D)$ the product spaces

$$L^2(\partial D) := L^2(\partial D_1) \times \cdots \times L^2(\partial D_N),$$

$$H^1(\partial D) := H^1(\partial D_1) \times \cdots \times H^1(\partial D_N),$$

we introduce the rescaling or pull-back operator

$$P_{N,s} : L^2(\partial D) \quad \rightarrow \quad L^2(\partial D_{N,s})$$

$$(\phi_1, \ldots, \phi_N) \quad \mapsto \quad \phi \text{ with } \phi_{|y_i + s\partial D_i} = \phi_i \circ \tau_{y_i,s}^{-1}.$$

Clearly, the inverse of $P_{N,s}$ is given by $P_{N,s}^{-1} \phi = (\phi_{|y_i + s\partial D_i} \circ \tau_{y_i,s})_{1 \leq i \leq N}$. With a small abuse of notation, we still denote by $P_{N,s}$ the same operator acting from $H^1(\partial D)$ to $H^1(\partial D_{N,s})$.

By introducing appropriate norms on $L^2(\partial D)$ and $H^1(\partial D)$, we make $P_{N,s}$ to be an isometry. The definition of these norms is motivated by the following lemma.

Lemma 2.1. For any $\phi \in L^2(\partial D_{N,s})$ with $D_{N,s} = \bigcup_{i=1}^N (y_i + sD_i)$, it holds

$$||\phi||_{L^2(\partial D_{N,s})} \leq \left(\sum_{i=1}^N ||\phi \circ \tau_{y_i,s}||_{L^2(\partial D_i)}^2 \right)^{\frac{1}{2}},$$

$$||\nabla_{\Gamma} \phi||_{L^2(\partial D_{N,s})} \leq \left(\sum_{i=1}^N ||\nabla_{\Gamma} (\phi \circ \tau_{y_i,s})||_{L^2(\partial D_i)}^2 \right)^{\frac{1}{2}},$$

where ∇_{Γ} is the tangential gradient on $\partial D_{N,s}$.

Proof. By using a change of variables, we find

$$||\phi||_{L^2(\partial D_{N,s})}^2 = \sum_{i=1}^N s^2 \int_{\partial D_i} (\phi \circ \tau_{y_i,s})^2 \, d\sigma,$$

and therefore,

$$||\nabla_{\Gamma} \phi||_{L^2(\partial D_{N,s})}^2 = \sum_{i=1}^N s^2 \int_{\partial D_i} ||(\nabla_{\Gamma} \phi \circ \tau_{y_i,s})|^2 \, d\sigma = \sum_{i=1}^N \int_{\partial D_i} ||(\nabla_{\Gamma} \phi \circ \tau_{y_i,s})|^2 \, d\sigma.$$

\(\square\)
In view of Lemma 2.1, we define the norm on $H^1(\partial D_{N,s})$ as follows:

$$||\phi||_{H^1(\partial D_{N,s})} := ||\phi||_{L^2(\partial D_{N,s})}^2 + s^2 ||\nabla \phi||_{L^2(\partial D_{N,s})}^2.$$

(2.10)

Then it holds conveniently

$$||\phi||_{H^1(\partial D_{N,s})}^2 = s^2 \sum_{i=1}^{N} ||\phi \circ \tau_{\theta_i,s}||_{H^1(\partial D_i)}^2.$$

(11.11)

Endowing $L^2(\partial D)$ and $H^1(\partial D)$ with the norms

$$||(\phi_1, \ldots, \phi_N)||_{L^2(\partial D)} := \left(\sum_{i=1}^{N} ||\phi_i||_{L^2(\partial D_i)}^2 \right)^{1/2}, \quad \text{and} \quad ||(\phi_1, \ldots, \phi_N)||_{H^1(\partial D)} := \left(\sum_{i=1}^{N} ||\phi_i||_{H^1(\partial D_i)}^2 \right)^{1/2},$$

(2.12)

we infer from (2.11) that $P_{N,s}$ is an isometry:

$$||P_{N,s}(\phi_1, \ldots, \phi_N)||_{L^2(\partial D_{N,s})} = ||(\phi_1, \ldots, \phi_N)||_{L^2(\partial D)}, \quad ||P_{N,s}(\phi_1, \ldots, \phi_N)||_{H^1(\partial D_{N,s})} = ||(\phi_1, \ldots, \phi_N)||_{H^1(\partial D)}.$$

We complete this part by stating a few elementary results which enable to estimate the norm of operators on the product domain D. In all what follows, $|||A|||_{V \to H}$ stands for the operator norm of a bounded operator $A : V \to H$ on two given Banach spaces V and H:

$$|||A|||_{V \to H} := \sup_{x \in V} \frac{||Ax||_H}{||x||_V}.$$

When the context is clear, we sometimes omit the subscript and we write $||A||$ for $|||A|||_{V \to H}$.

Proposition 2.2. The norm of an operator $A : L^2(\partial D) \to L^2(\partial D)$ satisfies the following bound:

$$|||A|||_{L^2(\partial D) \to L^2(\partial D)} \leq \max_{1 \leq i \leq N} ||A_{ii}||_{L^2(\partial D_i) \to L^2(\partial D_i)} + \left(\sum_{1 \leq i \neq j \leq N} ||A_{ij}||_{L^2(\partial D_i) \to L^2(\partial D_j)}^2 \right)^{1/2},$$

(2.13)

where $A_{ij} : L^2(\partial D_i) \to L^2(\partial D_j)$ denotes the family of operators satisfying

$$A = \begin{bmatrix} \phi_1 \\ \vdots \\ \phi_N \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{N} A_{ij} \phi_j \end{bmatrix}_{1 \leq i \leq N},$$

(2.14)

i.e. $A_{ij}[\phi] := e_i \cdot A[\phi e_j]$ for any $\phi \in L^2(\partial D_i)$.

Proof. Denoting by $\phi = (\phi_1, \ldots, \phi_N)$, we have by using the triangle inequality:

$$||A[\phi]||_{L^2(\partial D)} \leq ||(A_{ii}[\phi])_{1 \leq i \leq N}||_{L^2(\partial D)} + \left(\sum_{j \neq i} ||A_{ij}[\phi_j]||_{L^2(\partial D)} \right)_{1 \leq i \leq N},$$

(2.15)

Then both these terms can be bounded as follows:

$$||(A_{ii}[\phi_i])_{1 \leq i \leq N}||_{L^2(\partial D)}^2 = s^2 \sum_{i=1}^{N} ||A_{ii}[\phi_i]||_{L^2(\partial D_i)}^2$$

$$\leq s^2 \max_{1 \leq i \leq N} ||A_{ii}||_{L^2(\partial D_i)}^2 \sum_{i=1}^{N} ||\phi_i||_{L^2(\partial D_i)}^2 = \max_{1 \leq i \leq N} ||A_{ii}||^2 \sum_{i=1}^{N} ||\phi_i||_{L^2(\partial D_i)}^2,$$

$$\left(\sum_{j \neq i} ||A_{ij}[\phi_j]||_{L^2(\partial D)}^2 \right)^{1/2} = s^2 \sum_{i=1}^{N} \left(\sum_{j \neq i} ||A_{ij}|| ||\phi_j||_{L^2(\partial D_j)}^2 \right)^{1/2} \leq s^2 \sum_{i=1}^{N} \left(\sum_{j \neq i} ||A_{ij}|| ||\phi_j||_{L^2(\partial D_j)}^2 \right)^{1/2} \leq s^2 \sum_{j=1}^{N} \sum_{j \neq i} ||A_{ij}|| ||\phi_j||_{L^2(\partial D_j)}^2 \leq \sum_{j=1}^{N} ||A_{ij}||^2 ||\phi_j||_{L^2(\partial D_j)}^2.$$

Remark 2.4. Using (2.11), the same inequality holds by changing $L^2(\partial D)$ into $H^1(\partial D)$.

With a small abuse of notation, we identify in the next sections an operator $A_{ij} : L^2(\partial D_i) \to L^2(\partial D_j)$ to its natural extension $\tilde{A}_{ij} : L^2(\partial D) \to L^2(\partial D)$ by 0, i.e. satisfying $(\tilde{A}_{ij}\phi)_i = A_{ij}\phi_j$ and $(\tilde{A}_{ij}\phi)_i = 0$ for $l \neq i$.
2.3. Holomorphic expansions of layer potentials with respect to the size parameter

This part introduces the main results of this section, which are the holomorphic expansions of the single layer potential and the Neumann–Poincaré operator given in Corollary 2.1.

2.3.1. Definitions and notation conventions

In all what follows, we denote by \(\Gamma^k(x) := -\frac{e^{ik|y|}}{4\pi |y|} \) the (outgoing) fundamental solution to the Helmholtz equation with wave number \(k > 0 \), i.e.
\[
(\Delta + k^2)\Gamma^k = \delta_0,
\]
where \(\delta_0 \) is the Dirac distribution. For a smooth bounded open set \(D \subset \mathbb{R}^d \), we denote by \(S^k_D \) and \(K^k_D \) respectively the single layer potential and the adjoint of the Neumann–Poincaré operator on \(\partial D \): for any \(\phi \in L^2(\partial D) \),
\[
S^k_D[\phi](x) := \int_{\partial D} \Gamma^k(x - y)\phi(y) \, d\sigma(y), \quad x \in \mathbb{R}^d, \tag{2.16}
\]
\[
K^k_D[\phi](x) := \int_{\partial D} \nabla_x \Gamma^k(x - y) \cdot n(x)\phi(y) \, d\sigma(y), \quad x \in \partial D, \tag{2.17}
\]
where \(d\sigma \) is the surface measure of \(\partial D \) and \(n \) is its outward normal. We use the notations \(S^k_D \) and \(K^k_D \) for the same operators with \(k \) replaced with \(k_0 \), and we use the short-hand notation \(\Gamma := \Gamma^0 \), \(S_D := S^0_D \) and \(K_D := K^0_D \) for the fundamental solution of the Laplace operator, its associated single layer potential and the adjoint of its Neumann–Poincaré operator. We recall that \(K^k_D \) is a compact operator on \(L^2(\partial D) \) and that \(S^k_D \) is an invertible operator from \(L^2(\partial D) \) to \(H^1(\partial D) \) when \(k^2 \) is not a Dirichlet eigenvalue of \(-\Delta \) on \(D \), whose inverse is denoted by \((S^k_D)^{-1} : H^1(\partial D) \to L^2(\partial D) \), see e.g. [17]. Finally, the harmonic capacity of a set \(D \) is denoted by \(\text{cap}(D) = -\int_{\partial D} S^1_D[1_{\partial D}] \, d\sigma \). \tag{2.18}

For the analysis in the most general setting where \((H1) \) and \((H2) \) are not necessarily satisfied, we consider the following uniform boundedness assumptions on the resonator packets \(D_i \):
(i) the points \((y_i)_{i \in \mathbb{N}} \) belong to a bounded domain \(\Omega \subset \mathbb{R}^3 \):
\[
\sup_{i \neq j} |y_i - y_j| < +\infty; \tag{2.19}
\]
(ii) the number of resonators \(K_i \) per packet \(D_i \) is bounded: \(\sup_{i \in \mathbb{N}} K_i < +\infty \);
(iii) the sets \(D_i \) have uniformly bounded perimeters:
\[
\sup_{i \in \mathbb{N}} |\partial D_i| < +\infty. \tag{2.20}
\]
This implies that they also have bounded diameters: \(\sup_{i \in \mathbb{N}} \text{diam}(D_i) < +\infty \);
(iv) the sets \(D_i \) have a “uniformly bounded capacity” in the following sense:
\[
\sup_{i \in \mathbb{N}} |||S_D|||_{L^2(\partial D_i) \to H^1(\partial D_i)} < +\infty, \quad \sup_{i \in \mathbb{N}} |||(S_D)^{-1}|||_{H^1(\partial D_i) \to L^2(\partial D_i)} < +\infty. \tag{2.21}
\]
These assumptions are naturally fulfilled when considering the assumption \((H2) \) in which all the packets \(D_i \) are identical.

Throughout the paper, we denote for any \(p \in \mathbb{N} \) and \(y = (y_1, y_2, y_3) \in \mathbb{R}^3 \) by \(\nabla^p \Gamma^k(x) \) and by \(y^p \) the \(p \)-th order tensors:
\[
\nabla^p \Gamma^k(x) = \left(\partial_{i_1\ldots i_p}^p \Gamma^k(x) \right)_{1 \leq i_1 \ldots i_p \leq 3}, \quad y^p := (y_{1}y_{2}\ldots y_{p})_{1 \leq i_1\ldots i_p \leq 3},
\]
and we denote by \(\nabla^p \Gamma^k(x) \cdot y^p \) the contraction
\[
\nabla^p \Gamma^k(x) \cdot y^p := \sum_{1 \leq i_1\ldots i_p \leq 3} \partial_{i_1\ldots i_p}^p \Gamma^k(x)y_{i_1}\ldots y_{i_p}.
\]

2.3.2. Holomorphic expansions of the single layer potential and the Neumann-Poincaré operator in the heterogeneous domain

The next proposition provides a full asymptotic expansion of the single layer potential as \(s \to 0 \) with truncation estimates independent of \(s \) and \(N \).

Proposition 2.3. The following factorization holds for the single layer potential on \(D_{N,s} \) for any \(N \in \mathbb{N} \) and any distribution of points \((y_i)_{1 \leq i \leq N} \) satisfying (i)-(iv):
\[
S^k_{D_{N,s}} = \mathcal{P}_{N,s} \left(\sum_{p=0}^{+\infty} s^{p+1} \sum_{i=1}^{N} k^p S_{D_i,D} + \sum_{p=0}^{+\infty} s^{p+2} \sum_{1 \leq i \neq j \leq N} \nabla^p \Gamma^k(y_i - y_j) \cdot T^p_{D_i,D_j} \right) \mathcal{P}^{-1}_{N,s}, \tag{2.22}
\]
where \(S_{D_i,p} : L^2(\partial D_i) \to H^1(\partial D_i) \) and \(T^p_{D_i,D_j} : L^2(\partial D_j) \to H^1(\partial D_i) \) are respectively the operators and the \(p \)-th order operator-valued tensors defined by

\[
S_{D_i,p}[\phi](t) := -\frac{i^p}{4\pi p!} \int_{\partial D_i} |t - t'|^{p-1} \phi(t') \, d\sigma(t'), \quad \phi \in L^2(\partial D_i), \ t \in \partial D_i,
\]

\[
T^p_{D_i,D_j}[\phi](t) := \frac{1}{p!} \int_{\partial D_j} (t - t')^p \phi(t') \, d\sigma(t'), \quad \phi \in L^2(\partial D_j), \ t \in \partial D_i.
\]

The series (2.22) converges in operator norm for any \(s \) satisfying (2.8). Furthermore, there exist constants \(c > 0 \) independent of \(s \) and \(N \) such that for any \(p \in \mathbb{N} \):

\[
\left\| P_{N,s} \left(\sum_{i=1}^{N} k^p S_{D_i,p} \right) P_{N,s}^{-1} \right\|_{L^2(\partial D_N,s) \to H^1(\partial D_N,s)} \leq c s^{p+1}, \quad (2.23)
\]

\[
\left\| P_{N,s} \left(\sum_{1 \leq i \neq j \leq N} \nabla^p \Gamma^k(y_i - y_j) \cdot T^p_{D_i,D_j} \right) P_{N,s}^{-1} \right\|_{L^2(\partial D_N,s) \to H^1(\partial D_N,s)}^2 \leq c s(s^{-1}N) \eta_N^p. \quad (2.24)
\]

Proof. Let us denote for \(1 \leq i, j \leq N \) by \(A_{ij} : L^2(\partial D_j) \to H^1(\partial D_i) \) the operators associated to \(P_{N,s}^{-1} S^k_{D_i,p} P_{N,s} \) as in (2.14). We have for \(\phi \in L^2(\partial D_i) \) and \(t \in \partial D_i \):

\[
A_{ii}[\phi](t) = S^k_{y_i+sD_i}[\phi \circ \tau_{y_i,s}^{-1}] \circ \tau_{y_i,s}(t)
\]

\[
= \int_{y_i+sD_i} \Gamma^k(y_i + st - y') \phi \circ \tau_{y_i,s}^{-1}(y') \, d\sigma(y') = s^2 \int_{\partial D_i} \Gamma^k(s(t - t'))(\phi(t')) \, d\sigma(t')
\]

\[
= s k^p S^k_{D_i}[\phi](t).
\]

The first part of the expansion follows by using the identity \(S^k_{D_i}[\phi] = \sum_{p=0}^{+\infty} s^p k^p S_{D_i,p}[\phi] \). For \(i \neq j \), we have instead for \(t \in \partial D_i \) and \(\phi \in L^2(\partial D_j) \):

\[
A_{ij}[\phi](t) = S^k_{y_j+sD_j}[\phi \circ \tau_{y_j,s}^{-1}] \circ \tau_{y_j,s}(t)
\]

\[
= \int_{y_j+sD_j} \Gamma^k(y_j + y_i - y') \phi \circ \tau_{y_j,s}^{-1}(y') \, d\sigma(y') = s^2 \int_{\partial D_j} \Gamma^k(y_i - y_j + s(t - t'))(\phi(t')) \, d\sigma(t')
\]

\[
= s k^p \nabla^p \Gamma^k(y_i - y_j) \cdot \int_{\partial D_j} (t - t')^p \phi(t') \, d\sigma(t'),
\]

from where the second term of the expansion follows. The bound on the operator norm of the diagonal part of \(P_{N,s}^{-1} S^k_{D_i,p} P_{N,s} \) is obtained by recalling that \(P_{N,s} \) is an isometry and by making use of (2.13):

\[
\left\| P_{N,s} \left(\sum_{i=1}^{N} k^p S_{D_i,p} \right) P_{N,s}^{-1} \right\|_{L^2(\partial D_N,s) \to H^1(\partial D_N,s)} \leq \left\| \sum_{i=1}^{N} k^p S_{D_i,p} \right\|_{L^2(\partial D) \to H^1(\partial D)} \leq k^p \max_{1 \leq i \leq N} \left\| S_{D_i,p} \right\|_{L^2(\partial D) \to H^1(\partial D)},
\]

where the triple norm is bounded by assumption for \(p = 0 \) (eqn. (2.21)) and by using (2.20) for \(p \geq 1 \):

\[
k^p \left\| S_{D_i,p} \right\|_{L^2(\partial D) \to H^1(\partial D)} \leq \frac{k^p}{4\pi p!} \left((\text{diam}(\partial D_i))^{\frac{p-1}{2}} + (p-1) \text{diam}(\partial D_i) \right) \left(\text{diam}(\partial D_i) \right)^{\frac{p-2}{2}} \left\| D_i \right\|_2^2 \leq c \eta_N^p,
\]

Similarly using (2.13) and the result of Proposition B.1, we obtain the existence of constants \(c, \beta > 0 \) such that

\[
\left\| P_{N,s} \left(\sum_{1 \leq i \neq j \leq N} \nabla^p \Gamma^k(y_i - y_j) \cdot T^p_{D_i,D_j} \right) P_{N,s}^{-1} \right\|_{L^2(\partial D_N,s) \to H^1(\partial D_N,s)}^2 \leq s^{2p+4} \sum_{1 \leq i \neq j \leq N} \left\| \nabla^p \Gamma^k(y_i - y_j) \right\|_{L^2(\partial D)}^2 \left\| T^p_{D_i,D_j} \right\|_{L^2(\partial D) \to H^1(\partial D)}^2 \leq \beta s^{2p+4} \sum_{1 \leq i \neq j \leq N} \frac{1}{|y_i - y_j|^{2p+2}}
\]

\[
\leq \beta s^{2p+4} \epsilon_N^{-2p-2} \leq c s^2 \mathcal{S}^2 \eta_N^{2p},
\]

where we used the assumption (2.8) on \(\eta_N \). Finally, let us note that the series (2.22) must converge as soon as (2.8) is satisfied because \(S^k_{D_i,p} \) as a function of \(s \) has no poles on \(\mathcal{H} \) and coincides with this series on a non-trivial neighborhood of 0. \(\square \)

Remark 2.5. Formula (2.22) has two terms: the first one features the operators \(S_{D_i,p} \) which are “diagonal” terms describing the interactions occurring between each component \(B_{i,1}, \ldots, B_{i,k} \) of the resonator packet \(D_i \). The second term involves the extra-diagonal operators \(T^p_{D_i,D_j} \) which account for the interactions occurring in between the groups \(D_i \) and \(D_j \) for \(i \neq j \). The estimation (2.24) shows that the diagonal term is of order \(O(s) \).
while the extra-diagonal interactions are of order $O(s\ell_N^{-1})$. The “critical” size ℓ_N corresponds therefore to the characteristic size s under which (when $s \ll \ell_N$) the diagonal interaction is dominant.

In order to study the asymptotic of the resonant problem (1.2), we need a similar holomorphic expansion of the adjoint of the Neumann-Poincaré operator.

Proposition 2.4. The following factorization holds for the adjoint of the Neumann-Poincaré operator on $D_{N,s}$, for any $N \in \mathbb{N}$ and for any distribution of points $(y_i)_{1 \leq i \leq N}$ satisfying (i)-(iv):

$$
\mathcal{K}_{D_{N,s}}^{k_s} = \mathcal{P}_{N,s} \left(\sum_{p=0}^{+\infty} s^p \sum_{i=1}^{N} k^p \mathcal{K}_{D,i}^{*} + \sum_{p=0}^{+\infty} s^{p+2} \sum_{1 \leq i \neq j \leq N} \nabla^{p+1} \Gamma^k(y_i - y_j) \cdot \mathcal{M}_{D_{i},D_{j}}^{p+1} \right) \mathcal{P}_{N,s}^{-1},
$$

(2.26)

where $\mathcal{K}_{D_{i},D_{j}}^{*} : L^2(\partial D_{i}) \to L^2(\partial D_{j})$ and $\mathcal{M}_{D_{i},D_{j}}^{p+1} : L^2(\partial D_{i}) \to L^2(\partial D_{j})$ are respectively the operators and the operator-valued tensors defined by

$$
\mathcal{K}_{D_{i},D_{j}}^{*}[\phi](t) := -\frac{i^p}{4\pi^p} \int_{\partial D_{i}} n(t) \cdot \nabla |t - t'|^{p-1} \phi(t') \, d\sigma(t'), \quad \phi \in L^2(\partial D_{i}),
$$

and

$$
\mathcal{M}_{D_{i},D_{j}}^{p+1}[\phi](t) := \frac{1}{p!} \int_{\partial D_{j}} n(t) \otimes (t - t')^p \phi(t') \, d\sigma(t'), \quad \phi \in L^2(\partial D_{j}),
$$

The series (2.26) converges for any s satisfying the condition (2.8). Furthermore, there exists a constant $c > 0$ independent of s and N such that for any $p \in \mathbb{N},$

$$
\left\| \mathcal{P}_{N,s} \left(\sum_{i=1}^{N} k^p \mathcal{K}_{D,i}^{*} \right) \mathcal{P}_{N,s}^{-1} \right\|_{L^2(\partial D_{N,s}) \to L^2(\partial D_{N,s})} \leq c s^p,
$$

(2.27)

and

$$
\left\| \mathcal{P}_{N,s} \left(\sum_{p=0}^{+\infty} s^{p+2} \sum_{1 \leq i \neq j \leq N} \nabla^{p+1} \Gamma^k(y_i - y_j) \cdot \mathcal{M}_{D_{i},D_{j}}^{p+1} \right) \mathcal{P}_{N,s}^{-1} \right\|_{L^2(\partial D_{N,s}) \to H^1(\partial D_{N,s})} \leq c(s\ell_N^{-1})^2 \eta_N^{p+1}.
$$

(2.28)

\textbf{Proof.} The proof is analogous to that of Proposition 2.3. \qed

Equations (2.26) and (2.30) are rewritten in a more usable manner in the following corollary, where we introduce the operators $\mathcal{S}_{D_{i}}^{k}(s)$ and $\mathcal{K}_{D_{i}}^{k_s}(s)$ holomorphic in the variable s.

Corollary 2.1. The single layer and the Neumann-Poincaré operators can be expressed in terms of holomorphic operators on the cartesian product $\mathcal{D} = D_{1} \times \cdots \times D_{N}$ through the following factorizations:

$$
\mathcal{S}_{D_{N,s}}^{k} = \mathcal{P}_{N,s} \mathcal{S}_{D_{i}}^{k}(s) \mathcal{P}_{N,s}^{-1}, \quad \mathcal{K}_{D_{N,s}}^{k_s} = \mathcal{P}_{N,s} \mathcal{K}_{D_{i}}^{k_s}(s) \mathcal{P}_{N,s}^{-1}.
$$

(2.29)

(i) The operator $\mathcal{S}_{D_{i}}^{k}(s)$ is given by

$$
\mathcal{S}_{D_{i}}^{k}(s) := s \mathcal{S}_{D_{i},0} + s^2 \mathcal{S}_{D_{i},1} + \sum_{p=2}^{+\infty} s^{p+1} \mathcal{S}_{D_{i},p},
$$

(2.30)

where the operators $\mathcal{S}_{D_{i},p}$ are defined by

$$
\mathcal{S}_{D_{i},0} \equiv \mathcal{S}_{D_{i},0}^{k} := \sum_{i=1}^{N} \mathcal{S}_{D_{i},0} \quad \text{and} \quad \mathcal{S}_{D_{i},p}^{k} := \sum_{i=1}^{N} k^p \mathcal{S}_{D_{i},0} + \sum_{1 \leq i \neq j \leq N} \nabla^{p+1} \Gamma^k(y_i - y_j) \cdot \mathcal{S}^{p+1}_{D_{i},D_{j}} \quad \text{for any } p \geq 1.
$$

Moreover, the terms of the series of (2.30) decay geometrically in the operator norm:

$$
\left\| s^p \mathcal{S}_{D_{i},p} \right\|_{L^2(\partial D_{i}) \to H^1(\partial D_{i})} \leq c \begin{cases} 1 & \text{if } p = 0, \\ s t_{N}^p & \text{if } p = 1, \\ s t_{N}^{-1} \eta_N^{p-1} & \text{if } p \geq 2. \end{cases}
$$

(2.31)

(ii) The operator $\mathcal{K}_{D_{i}}^{k_s}(s)$ is given by

$$
\mathcal{K}_{D_{i}}^{k_s}(s) = \mathcal{K}_{D_{i}}^{*} + \sum_{p=2}^{+\infty} s^{p} \mathcal{K}_{D_{i}}^{k_s},
$$

(2.32)

where $\mathcal{K}_{D_{i}}^{*}$ and $\mathcal{K}_{D_{i}}^{k_s}$ are the operators defined by

$$
\mathcal{K}_{D_{i}}^{*} = \sum_{i=1}^{N} \mathcal{K}_{D_{i}}^{*}, \quad \mathcal{K}_{D_{i}}^{k_s} = \sum_{i=1}^{N} k^p \mathcal{K}_{D_{i}}^{*} + \sum_{1 \leq i \neq j \leq N} \nabla^{p+1} \Gamma^k(y_i - y_j) \cdot \mathcal{M}^{p+1}_{D_{i},D_{j}} \quad \text{for any } p \geq 2.
$$

(2.33)

Moreover, the terms of the series of (2.32) decay geometrically in the operator norm:

$$
\left\| s^p \mathcal{K}_{D_{i},p} \right\|_{L^2(\partial D_{i}) \to H^1(\partial D_{i})} \leq c(s t_{N}^{-1})^2 \eta_N^{p-1} \quad \text{for } p \geq 2.
$$

(2.34)
Remark 2.6. We shall use below the following identity
\[
S_{D_{N,s}}^k[\mathcal{P}_{N,s}[\phi]](x) = \sum_{i=1}^N s^2 \int_{\partial D_i} \Gamma^k(x - y_i - st')\phi_i(t') d\sigma(t'), \quad x \in \mathbb{R}^3, \; \phi \equiv (\phi_i)_{1 \leq i \leq N} \in L^2(\partial D), \tag{2.35}
\]
which implies in particular that the operator \(S_{D_{N,s}}^k(s) \) reads explicitly
\[
(S_{D_{N,s}}^k[\phi])(t) = s^2 \sum_{j=1}^N \int_{\partial D_j} \Gamma^k(y_j - y_j + s(t - t'))\phi_j(t') d\sigma(t'), \quad t \in \partial D_i, (\phi_i)_{1 \leq i \leq N} \in L^2(\partial D). \tag{2.36}
\]
We obtain a norm estimate of the inverse of the single layer potential in the subcritical regime \(s = O(\ell_N^{-1}) \) (corresponding to (H3) if (H1) holds).

Corollary 2.2. The following norm estimate holds for the inverse of the single layer potential in the subcritical regime \(s = O(\ell_N^{-1}) \):
\[
|||(S_{D_{N,s}}^k)^{-1}|||_{H^1(\partial D) \to L^2(\partial D)} \leq cs^{-1},
\]
for a constant \(c > 0 \) independent of \(s \) and \(N \).

Proof. From (2.30) and (2.31), the Neumann series
\[
s^{-1} \left[(S_{D_{N}}^k)^{-1} + \sum_{p=2}^{\infty} \sum_{j=1}^N (-1)^{j+1} \sum_{1 \leq i_1 \leq \ldots \leq i_p \leq j} (S_{D_{N}}^k)^{-1} S_{D_{N}}^{k,i_1} (S_{D_{N}}^k)^{-1} \ldots (S_{D_{N}}^k)^{-1} S_{D_{N}}^{k,i_p} (S_{D_{N}}^k)^{-1} \right]
\]
is convergent (and equal to \((S_{D_{N}}^k(s))^{-1}\)) as soon as \(s\ell_N^{-1} = O(1) \) and the condition (2.8) is satisfied with a sufficiently small constant \(c \). This implies \(|||(S_{D_{N}}^k)^{-1}|||_{H^1(\partial D) \to L^2(\partial D)} = O(s^{-1}) \) and the result, recalling that \(\mathcal{P}_{N,s} \) is an isometry. \(\square \)

We complete this part by stating a few useful properties which relate the holomorphic expansions (2.22) and (2.26).

Lemma 2.2. The following identities hold for any \(1 \leq i \leq N, 1 \leq j \leq K_i \) and \(\phi \in L^2(\partial D_i) \):
\[
\begin{align*}
(\text{i}) & \quad K_{D_i,p}^j[\phi] = n \cdot \nabla_x S_{D_i,p}^j[\phi] \quad \text{for any} \ p \geq 1; \\
(\text{ii}) & \quad \int_{\partial B_{i,j}} K_{D_i,p}^j[\phi] d\sigma = \frac{1}{p} \int_{\partial B_{i,j}} \phi \ d\sigma; \\
(\text{iii}) & \quad \int_{\partial B_{i,j}} K_{D_i,p}^j[\phi] d\sigma = -\int_{\partial B_{i,j}} S_{D_i,p-2}[\phi] \ d\sigma \quad \text{for any} \ p \geq 2.
\end{align*}
\]

Moreover, the following identities hold for any \(1 \leq i_1 \neq i_2 \leq N, 1 \leq j_1 \leq K_{i_1}, 1 \leq j_2 \leq K_{i_2} \) and \(\phi \in L^2(\partial D_{i_2}) \) and \(p \geq 0 \):
\[
(\text{iv}) \quad M_{D_{i_1},D_{i_2}}^{p+1}[\phi](t) = n(t) \otimes T_{D_{i_1},D_{i_2}}^p[\phi](t) \quad \text{and}
\]
\[
\int_{\partial B_{i_1,j_1}} M_{D_{i_1},D_{i_2}}^{p+1}[\phi] d\sigma = \int_{B_{i_1,j_1}} \partial T_{D_{i_1},D_{i_2}}^p[\phi] \otimes e_1 \ dx = \int_{B_{i_1,j_1}} I \otimes T_{D_{i_1},D_{i_2}}^{-1}[\phi] \ dx.
\]

In particular,
\[
\int_{\partial B_{i_1,j_1}} M_{D_{i_1},D_{i_2}}^2[\phi] \ d\sigma = 0 \quad \text{and} \quad \int_{\partial B_{i_1,j_1}} M_{D_{i_1},D_{i_2}}^2[\phi] \ d\sigma = \left(\int_{\partial D_{i_2}} \phi \ d\sigma \right) |B_{i_1,j_1}| \quad \text{for any} \ 1 \leq j_1 \leq K_{i_1}.
\]
Proof. The points (i)-(iii) are classical, see e.g. [14, 15]. For the point (iv), we use the identity \(\partial y^p \otimes e_1 = py^{p-1} \otimes I \), which holds in the space of symmetric tensors. \(\square \)

2.4 Uniform norm estimates in a heterogeneous medium

Throughout the paper, we denote by \(r > 0 \) a sufficiently large, fixed positive number such that \(D_{N,s} \subset B(0, r) \) for any \(N \in \mathbb{N} \) and \(s \) satisfying the condition (2.8). The following proposition establishes uniform norm estimates for the single layer potential and its gradient on \(\partial D_{N,s} \) or on bounded subdomains of \(\mathbb{R}^3 \).

Proposition 2.5. There exists a constant \(c \) independent of \(N, s, \phi, \) and \(\phi \in L^2(\partial D_{N,s}) \) such that
\[
\begin{align*}
(\text{i}) & \quad |||S_{D_{N,s}}^k[\phi]|||_{H^1(\partial D_{N,s})} \leq cs(1 + s\ell_N^{-1})|||\phi|||_{L^2(\partial D_{N,s})}, \\
(\text{ii}) & \quad |||S_{D_{N,s}}^k[\phi]|||_{L^2(B(0,r))} \leq cN s|||\phi|||_{L^2(\partial D_{N,s})}, \\
(\text{iii}) & \quad |||\nabla S_{D_{N,s}}^k[\phi]|||_{L^2(\partial D_{N,s})} \leq cs^{\frac{1}{2}}(1 + s^{\frac{1}{2}}\ell_N^{-1})|||\phi|||_{L^2(\partial D_{N,s})}, \\
(\text{iv}) & \quad |||S_{D_{N,s}}^k[\phi]|||_{L^2(D_{N,s})} \leq c\ell_N^{\frac{1}{4}}(1 + s^{\frac{1}{2}}\ell_N^{-1})|||\phi|||_{L^2(\partial D_{N,s})}, \\
(\text{v}) & \quad |||\nabla S_{D_{N,s}}^k[\phi]|||_{L^2(D_{N,s})} \leq c\ell_N^{\frac{1}{4}}(1 + s^{\frac{1}{2}}\ell_N^{-1})|||\phi|||_{L^2(\partial D_{N,s})}.
\end{align*}
\]
Furthermore, on any bounded open set \(A \) such that \(A \cap D_{N,s} = \emptyset \),
\[
(\text{vi}) \quad |||S_{D_{N,s}}^k[\phi]|||_{L^2(A)} \leq cN s|||\phi|||_{L^2(\partial D_{N,s})},
\]
\[(\text{ii}) \quad ||\nabla S_{D_{N,s}}^2||_{L^2(A)} \leq cN^{\frac{1}{2}}s||\phi||_{L^2(D_{N,s})}.\]

\[\text{Proof.} \quad \text{(i)} \quad \text{This result is a consequence of the inequalities (2.23) and (2.24) of Proposition 2.3.}\]

\[\text{(ii)} \quad \text{We write for } x \in B(0,r) \setminus \partial D_{N,s},\]

\[|S_{D_{N,s}}^k[\phi](x)| = \left| \int_{\partial D_{N,s}} \Gamma^k(x - y)\phi(y) \, d\sigma(y) \right| \leq \left(\int_{\partial D_{N,s}} |\Gamma^k(x - y)|^2 \, d\sigma(y) \right)^{\frac{1}{2}} \left(\int_{\partial D_{N,s}} |\phi(y)|^2 \, d\sigma(y) \right)^{\frac{1}{2}}.\]

Computing the square of this expression and integrating over $B(0,r)$, we find

\[\int_{B(0,r)} |S_{D_{N,s}}^k[\phi]|^2 \, dx \leq ||\phi||_{L^2(\partial D_{N,s})}^2 \int_{B(0,r)} |\Gamma^k(x - y)|^2 \, dx \, d\sigma(y) \]
\[\leq ||\phi||_{L^2(\partial D_{N,s})} \left(\sup_{y \in \mathbb{R}^3} \int_{B(0,r)} |\Gamma^k(x - y')|^2 \, dx \right) \, d\sigma(y) \leq cNs^2||\phi||_{L^2(\partial D_{N,s})}^2,\]

by using (2.20).

\[\text{(iii)} \quad \text{The function } u := S_{D_{N,s}}^k[\phi] \text{ is the solution to the following Helmholtz equation:}\]

\[
\begin{align*}
\Delta u + k^2 u &= 0 \text{ in } \mathbb{R}^3 \setminus \partial D_{N,s}, \\
\left[\frac{\partial u}{\partial n} \right] &= \phi \text{ on } \partial D_{N,s}, \\
\frac{\partial u}{\partial |x|} - iku &= O(|x|^{-1}) \text{ as } |x| \to +\infty,
\end{align*}
\]

(2.38)

where $[\partial u/\partial n]$ is the jump of the normal derivative across $\partial D_{N,s}$. Hence, we can evaluate its gradient on $B(0,r)$ thanks to the following integration by parts:

\[0 = \int_{B(0,r)} (-|\nabla u|^2 + k^2 |u|^2) \, dx + \int_{\partial B(0,r)} \frac{\partial u}{\partial n} \, d\sigma - \int_{\partial D_{N,s}} \left[\frac{\partial u}{\partial n} \right] \, d\sigma.\]

Therefore, we find

\[||\nabla u||_{L^2(B(0,r))}^2 = \int_{B(0,r)} k^2 |u|^2 \, dx - \int_{\partial D_{N,s}} \phi_n \, d\sigma + \int_{\partial B(0,r)} \frac{\partial u}{\partial n} \, d\sigma.\]

(2.39)

We now evaluate the three terms. The first term can be bounded by cNs^2 according to the point (ii). The third term also since the following bounds hold for $y \in \partial B(0,r)$:

\[|u(y)| \leq \int_{\partial D_{N,s}} |\Gamma^k(y - y')\phi(y')| \, d\sigma(y') \leq \int_{\partial D_{N,s}} \sup_{y' \in B(0,r')} |\Gamma^k(y - y')|^2 \, d\sigma(y') \, ||\phi||_{L^2(\partial D_{N,s})} \leq cN^{\frac{1}{2}}s||\phi||_{L^2(\partial D_{N,s})},\]

and

\[|\nabla u(y)| \leq \int_{\partial D_{N,s}} |\nabla \Gamma^k(y - y')\phi(y')| \, d\sigma(y') \leq \int_{\partial D_{N,s}} \sup_{y' \in B(0,r')} |\nabla \Gamma^k(y - y')|^2 \, d\sigma(y') \, ||\phi||_{L^2(\partial D_{N,s})} \]
\[\leq cN^{\frac{3}{2}}s||\phi||_{L^2(\partial D_{N,s})},\]

where $r' > 0$ is a characteristic size such that we have the strict inclusions $D_{N,s} \subset B(0,r') \subset B(0,r)$. Finally, we use point (i) to bound the second term of (2.39):

\[\int_{\partial D_{N,s}} \phi_n \, d\sigma \leq ||\phi||_{L^2(\partial D_{N,s})} ||S_{D_{N,s}}^k[\phi]||_{L^2(\partial D_{N,s})} \leq c(1 + s\ell^{-1}_N)||\phi||_{L^2(\partial D_{N,s})}.\]

(2.40)

Hence, we have obtained $||\nabla S^k[\phi]||_{L^2(B(0,r))} \leq c(1 + sN + s\ell^{-1}_N)||\phi||_{L^2(\partial D_{N,s})}$. The estimate follows because $N = O(\ell^{-1}_N)$ in view of (2.1) and assumption (2.19).
(iv) If \(x \in y_i + sD_i \), we find the following inequalities:

\[
S_{D_{N,s}}^k[\phi](x) = \int_{\partial D_{N,s}} \Gamma^k(x - y) \phi(y) \, d\sigma(y) \leq \sum_{j \neq i} \left(\int_{y_j + s\partial D_j} |\Gamma^k(x - y)|^2 \, d\sigma(y) \right)^{\frac{1}{2}} \left(\int_{y_j + s\partial D_j} |\phi(y)|^2 \, d\sigma(y) \right)^{\frac{1}{2}} + \left(\int_{y_j + s\partial D_j} |\Gamma^k(x - y)| \, d\sigma(y) \right)^{\frac{1}{2}} \left(\int_{y_j + s\partial D_j} |\phi(y)|^2 \, d\sigma(y) \right)^{\frac{1}{2}} \leq c \sum_{j \neq i} S \left| \frac{y_i - y_j}{|y_i - y_j|^2} \right|^2 ||\phi||_{L^2(y_j + s\partial D_j)} + \frac{cs}{2} \left(\int_{y_j + s\partial D_j} |\Gamma^k(x - y)| \, d\sigma(y) \right)^{\frac{1}{2}} \left(\int_{y_j + s\partial D_j} |\phi(y)|^2 \, d\sigma(y) \right)^{\frac{1}{2}} \leq \frac{cs}{2} \left(\sum_{j \neq i} \frac{1}{|y_i - y_j|^2} \right)^{\frac{1}{2}} \left| \int_{y_j + s\partial D_j} |\Gamma^k(x - y)| \, d\sigma(y) \right| \left(\int_{y_j + s\partial D_j} |\phi(y)|^2 \, d\sigma(y) \right)^{\frac{1}{2}} .
\]

Computing the square and integrating over \(D_{N,s} \) yields then

\[
||S_{D_{N,s}}^k[\phi]||^2_{L^2(D_{N,s})} \leq 2cs^3 s^2 \ell_N^{-2} ||\phi||^2_{L^2(D_{N,s})} + 2cs \sup_{1 \leq i \leq N} \sup_{y_i + s\partial D_i} \left| \int_{y_i + s\partial D_i} |\Gamma^k(x - y)| \, dx \right| ||\phi||^2_{L^2(D_{N,s})} \leq 2cs^3 s^2 \ell_N^{-2} ||\phi||^2_{L^2(D_{N,s})} + 2cs^2 \sup_{1 \leq i \leq N} \sup_{\partial D_i} \left| \int_{\partial D_i} \frac{1}{4\pi|x - t|} \, d\sigma(y) \right| ||\phi||^2_{L^2(D_{N,s})} .
\]

The estimate follows by using the assumption (2.20) to bound the second term of the above inequality.

(v) From the jump identities on the normal derivative of the single layer potential, the function \(u = S_{D_{N,s}}^k[\phi] \) solves the following Helmholtz equation in \(D_{N,s} \):

\[
\Delta u + k^2 u = 0 \quad \text{in} \quad D_{N,s},
\]

\[
\frac{\partial u}{\partial n} = -\frac{1}{2} \phi + K^{k + k}_{D_{N,s}}[\phi] \quad \text{on} \quad \partial D_{N,s} .
\]

From the expansion of \(K^{k + k}_{D_{N,s}} \) of Proposition 2.4, we have the inequality \(||K^{k + k}_{D_{N,s}}[\phi]||^2_{L^2(D_{N,s})} \leq c ||\phi||^2_{L^2(D_{N,s})} \). Therefore, using again an integration by parts with the results of the items (i) and (iv), we find

\[
||\nabla u||^2_{L^2(D_{N,s})} = k^2 ||u||^2_{L^2(D_{N,s})} + \int_{\partial D_{N,s}} \frac{\partial u}{\partial n} \, d\sigma \leq cs^3 (1 + s^2 \ell_N^{-2}) ||\phi||^2_{L^2(D_{N,s})} + cs(1 + s \ell_N^{-1}) ||\phi||^2_{L^2(D_{N,s})} .
\]

(vi) The proof of (ii) is unchanged if \(B(0, r) \) is replaced by \(A \).

(vii) In the proof of (iii), the integral on \(\partial D_{N,s} \) is not present in (2.39) if \(B(0, r) \) is replaced with \(A \), yielding an upper bound proportional to \(sN^{\frac{3}{2}} \).

\[\square\]

3. Homogenization of a Sound-Absorbing Metamaterial

In this section, we use the holomorphic expansion (2.30) in order to establish a quantitative effective medium theory for the sound-absorbing material (1.1) in the subcritical regime \(sN = O(1) \). Our analysis relies on the following single layer potential representation of the solution:

\[
u_{N,s} = u_{in} - S_{D_{N,s}}^k[(S_{D_{N,s}}^{-1})[u_{in}]] = u_{in} - S_{D_{N,s}}^k[\Gamma_{N,s}(S_{D_{N,s}}^{-1})[u_{in}]] .
\]

We proceed in two parts. In Section 4.1, we reduce, for arbitrary distributions of centers \(y_i \) \(i \leq i \leq N \), the inversion of the single layer potential \(S_{D_{N,s}}^k \) in (3.1) to the invertibility of an algebraic linear system. Following [25], we call this algebraic system the Foldy-Lax approximation of (3.1) since the coefficients of the solution determine the far field expansion of \(\nu_{N,s} \). Using the theory of [33], we show the convergence of the algebraic system to an effective integral equation in Section 3.2. Then, we derive in Section 3.3 an effective medium theory in the setting where the packets of resonators \((D_i) \) \(i \leq i \leq N \) are identical and in the subcritical regime \(sN = O(1) \) (assumptions (H1) to (H3)). Our main result is given in Proposition 3.4, which states the quantitative convergence of the total field to the solution of a dissipative Lippmann-Schwinger equation.

3.1. The Foldy-Lax approximation for an arbitrary distribution of small obstacles

Formula (3.1) allows to compute asymptotic expansions of \(\nu_{N,s} \) from an asymptotic expansion of \((S_{D_{N,s}}^k)^{-1} \). From (2.31), it is clear that \(sS_{D_{N,s}}^k + s^2 S_{D_{N,s}}^{k,1} \) is the leading order term in the series expansion (2.30) of \(S_{D_{N,s}}^k \). It turns out that this operator has an almost explicit inverse as outlined in the next lemma.
Lemma 3.1. The operator $S^k_{D,0} + sS^k_{D,1} : L^2(\partial D) \to H^1(\partial D)$ is invertible if and only if for any right-hand side $f \equiv (f_i)_{1 \leq i \leq N} \in H^1(\partial D)$, there exists a unique solution $z^N \equiv (z_i^N)_{1 \leq i \leq N}$ to the following N-dimensional linear system:

$$
\left(1 + \frac{iks}{4\pi} \text{cap} (D_i) \right) z_i^N - \text{cap} (D_i) s \sum_{j \neq i} \Gamma^k (y_i - y_j) z_j^N = \int_{\partial D_i} S^1_{D_i} f_i d\sigma, \quad 1 \leq i \leq N. \tag{3.2}
$$

When it is the case, the solution $\phi \equiv (\phi_i)_{1 \leq i \leq N} \in L^2(\partial D)$ to the problem

$$(S^k_{D,0} + sS^k_{D,1})[\phi] = f$$

is explicitly given by the formula

$$
\phi_i = S^1_{D_i} f_i + \left(\frac{iks}{4\pi} z_i^N - s \sum_{j \neq i} \Gamma^k (y_i - y_j) z_j^N\right) S^{-1}_D [1_{\partial D}],
$$

$$
= \left(S^{-1}_{D_i} f_i + \frac{1}{\text{cap} (D_i)} \left(\int_{\partial D_i} S^1_{D_i} f_i d\sigma\right) S^{-1}_D [1_{\partial D}]
ight) - \frac{z_i^N}{\text{cap} (D_i)} S^{-1}_D [1_{\partial D}], \quad 1 \leq i \leq N. \tag{3.4}
$$

Proof. \((3.3)\) can be written as

$$
S^1_{D_i} \phi_i - \frac{iks}{4\pi} \int_{\partial D_i} \phi_i d\sigma 1_{\partial D_i} + s \sum_{j \neq i} \Gamma^k (y_i - y_j) \int_{\partial D_j} \phi_j d\sigma 1_{\partial D_j} = f_i, \quad 1 \leq i \leq N,
$$

which is equivalent to

$$
\phi_i - \frac{iks}{4\pi} \int_{\partial D_i} \phi_i d\sigma S^{-1}_D [1_{\partial D}] + s \sum_{j \neq i} \Gamma^k (y_i - y_j) \int_{\partial D_j} \phi_j d\sigma S^{-1}_D [1_{\partial D}] = S^{-1}_{D_i} f_i. \tag{3.5}
$$

Integrating on ∂D_i and denoting $z_i^N = \int_{\partial D_i} \phi_i d\sigma$, we find that \((3.3)\) admits a solution given by \((3.4)\) if and only if \((3.2)\) is invertible. Then, substituting $\int_{\partial D_i} \phi_i d\sigma$ by z_i^N back in \((3.5)\) yields the formula \((3.4)\). \qed

The invertibility of the linear system \((3.4)\) is not clear for arbitrary distribution of points $(y_i)_{1 \leq i \leq N}$ and packets of obstacles $(D_i)_{1 \leq i \leq N}$. However, we shall obtain it under the randomness assumption on the centers and the uniformity assumption that the packets of resonators are identical and constituted of K single components $(B_j)_{1 \leq j \leq K}$. In the remainder of this section, we therefore assume (H1) and (H2).

In the context of the asymptotic expansion based on the representation \((3.1)\), the right-hand side of \((3.3)\) is given by $f = P^1_{N,s} [u_in]$, whose leading order expansion is given by

$$
P^1_{N,s} [u_in] = (u_in \circ \tau_{y_i, s})_{1 \leq i \leq N}
$$

$$
= (u_in (y_i) 1_{\partial D_i} + O(s)) = (u_in (y_i) 1_{\partial D_i})_{1 \leq i \leq N} + O(||u_in||_{H^1(\partial D)} (2sN^2)). \tag{3.6}
$$

Substituting the leading order term into \((3.2)\) and using (H2) yields the following linear system for the coefficients $(z_i^N)_{1 \leq i \leq N}$:

$$
\left(1 + \frac{iks}{4\pi} \text{cap} (D) \right) z_i^N - \text{cap} (D) s \sum_{1 \leq j \neq i \leq N} \Gamma^k (y_i - y_j) z_j^N = -\text{cap} (D) u_in (y_i), \quad 1 \leq i \leq N. \tag{3.7}
$$

The finite dimensional system \((3.7)\) turns to be exactly the so-called the Foldy-Lax system associated to the scattering problem \((1.1)\); the obstacles $D_{N,s}$ behave as N point sources with intensity $-s z_i^N$ [25, 24], as retrieved in the next proposition.

Proposition 3.1. The following expansion holds for a fixed $x \in \mathbb{R}^3 \setminus \Omega$ away from the resonators:

$$
u_{N,s}(x) - u_in(x) = - \sum_{i=1}^{N} sz_i^N \Gamma (x - y_i) + O(s(sN)), \tag{3.8}
$$

where (z_i^N) is the solution to the algebraic system \((3.7)\).

Proof. First, for $x \in \mathbb{R}^3 \setminus D_{N,s}$ and $\phi \equiv (\phi_i)_{1 \leq i \leq N} \in L^2(\partial D)$, a Taylor expansion in \((2.35)\) yields

$$
S^k_{D_{N,s}} [P_{N,s} [\phi]] (x) = \sum_{i=1}^{N} s^2 \left(\Gamma^k (x - y_i) + O\left(\frac{s}{d(x, \partial D_{N,s})^2} \right) \right) \int_{\partial D_i} \phi_i d\sigma. \tag{3.9}
$$

Let us then consider the function $\phi \in L^2(\partial D)$ given by

$$
\phi = (S^k_{D})^{-1} P^{-1}_{N,s} [u_in] = (S^k_{D})^{-1} [(u_in (y_i) 1_{\partial D_i})_{1 \leq i \leq N}] + O(sN^2)_{L^2(\partial D)}
$$

$$
= \phi_0 - \left(\frac{1}{\text{cap} (D_i)} \int_{\partial D_i} \phi_0 d\sigma \right) 1_{\leq i \leq N} + O(sN^2)_{L^2(\partial D)},
$$
where \((z_i)^N\) is the solution to (3.7) and \(\phi_0\) a function whose coordinates \(\phi_0 \equiv (\phi_0,i)_{1 \leq i \leq N}\) satisfy \(\int_{\partial \Omega} \phi_0, d\sigma = 0\) for \(1 \leq i \leq N\). Using (3.9), we find that the scattered field is given by

\[
u_{N,s}(x) - u_{in}(x) = -S_{D,s}^k [P_{N,s}(S_D^k)^{-1} P_{N,s}^{-1}[u_{in}]](x) = -S_{D,s}^k [P_{N,s}][\phi]
\]

\[
= - \sum_{i=1}^{N} s \left(\Gamma^k (x - y_i) + O(s) \right) z_i^N + O(s(sN)).
\]

The result follows by using the result of Proposition 3.3 belows which states that \((\sum_{i=1}^{N} |z_i^N|^2)^{\frac{1}{2}} \leq O(N^{\frac{1}{2}})\). \(\square\)

Remark 3.1. The Foldy-Lax approximation (3.8) holds even for arbitrary obstacles as soon as the system (3.2) is invertible and well-conditioned. This has been partially obtained in [25][Lemma 2.22] under the natural condition (2.8) and \(\min_{1 \leq i \neq j \leq N} \cos(|y_i - y_j|) > t\) with \(t > 0\), however the proof features a mistake at the end of page 103 of this reference.

3.2. Convergence of the Foldy-Lax system to an integral equation

As \(N \to +\infty\) and under the randomness assumption (H1) of the centers \((y_i)_{1 \leq i \leq N}\), it can be expected that the Foldy-Lax system (3.7) can be approximated by the following Lippmann-Schwinger equation:

\[
\left(1 + \frac{ik_s}{4\pi} \text{cap}(D) \right) z(y) - \text{cap}(D)sN \int_{\Omega} \Gamma^k (y - y') z(y') \rho(y') \, dy' = -\text{cap}(D)u_{in}(y), \quad y \in \Omega,
\]

(3.10)

where the discrete Monte-Carlo sum in (3.7) has been replaced with the expectation with respect to the measure \(\rho \, dx\). The object of this part is to give a precise statement justifying the invertibility of the Foldy-Lax system and its convergence towards (3.10). We rely on the theory of our recent work [33] for this purpose.

To start with, the well-posedness of the Lippmann-Schwinger equation (3.10) is a classical result, see e.g. [29, 48]. It follows from the following statement on the spectrum of the volume potential.

Proposition 3.2. Let us denote by \(V^{k,\rho}\) the volume potential

\[
V^{k,\rho} : L^2(\Omega) \to H^2(\Omega)
\]

\[
z \mapsto \int_{\Omega} \Gamma^k (\cdot - y') z(y') \rho(y') \, dy'.
\]

(i) \(V^{k,\rho} : L^2(\Omega) \to L^2(\Omega)\) is a compact operator, hence its essential spectrum is the set \(\{0\}\);

(ii) the point spectrum of \(V^{k,\rho}\) belongs to the negative complex plane \(\mathbb{C}_- = \{\lambda \in \mathbb{C} \mid \Im(\lambda) < 0\}\):

\(\text{sp}(V^{k,\rho}) \subset \mathbb{C}_- \cup \{0\}\).

Proof. Points (i) is classical, see [53, 56]. For the point (ii), we prove that \(\lambda - V^{k,\rho} : L^2(\Omega) \to L^2(\Omega)\) is invertible if \(\lambda \in \mathbb{C} \setminus \{0\}\) with \(\Im(\lambda) \geq 0\). From the Fredholm alternative, it is sufficient to show that \(\lambda - V^{k,\rho}\) and \(\lambda - S^{k,\rho}\) have a trivial kernel.

Let \(\phi \in L^2(\Omega)\) be an element of this kernel; \(V^{k,\rho}[\phi] = \lambda \phi\). The function \(u := V^{k,\rho}[\phi]\) satisfies

\[
\begin{aligned}
\Delta u + k^2 u &= \rho \phi 1_{\Omega} = \frac{1}{\chi} \rho u 1_{\Omega} \text{ in } \mathbb{R}^3, \\
\partial_n u - iku &= O(|x|^{-2}) \text{ as } |x| \to +\infty.
\end{aligned}
\]

Multiplying by \(\overline{\phi}\) and integrating by parts in the ball \(B(0, R)\) for a sufficiently large \(R\) yields

\[
\int_{B(0, R)} (-|\nabla u|^2 + k^2 |u|^2) \, dx + \int_{\partial B(0, R)} \frac{\partial u}{\partial n} \overline{\phi} \, d\sigma = \int_{\Omega} \phi |u|^2 \, dx.
\]

(3.12)

Taking the imaginary part, we find that the radiated flux at infinity is given by

\[
\Im \left(\int_{\partial B(0, R)} \frac{\partial u}{\partial n} \overline{\phi} \, d\sigma \right) = \Im \left(\frac{1}{\lambda} \right) \int_{\Omega} \rho |u|^2 \, dx.
\]

Since \(\Im(\lambda) \geq 0\), it follows that \(\Im(\frac{1}{\lambda}) \leq 0\) and the above flux is non-positive, which entails \(u = 0\) in \(\mathbb{R}^3 \setminus \Omega\), and then \(u = \lambda \phi = 0\) in \(\mathbb{R}^3\) by the unique continuation principle [48, 29]. \(\square\)

In the remainder of this section, we assume (H3): we consider the setting where the quantity \(sN\) multiplying the compact operator in (3.10) is bounded. We denote by \(A_N^k\) the matrix

\[
A_N^k := N^{-1}(\Gamma^k (y_i - y_j))_{1 \leq i \neq j \leq N}
\]

occurring in the system (3.7), and by \(||| \cdot |||_2\) is the triple norm defined for a matrix \(A\) by

\[
|||A|||_2 := \max_{z = (z_i)_{1 \leq i \leq N}} \frac{|||Az|||_2}{|||z|||_2} \text{ where } |||z|||_2 := (\sum_{1 \leq l \leq N} |z_l|^2)^{\frac{1}{2}}.
\]

17
By using the upper-boundedness with respect to the Frobenius norm and Proposition 2.1, we infer the existence of a constant $c > 0$ independent of N such that
\[|||A_N^k|||_2 \leq c, \quad (3.14) \]
almost surely with respect to the distribution of the points $(y_i)_{i \in \mathbb{N}}$.

The theory of [33] yields the convergence of the linear system (3.7) towards the integral equation (3.10).

Proposition 3.3. Assume (H1) to (H3). There exists an event \mathcal{H}_{N_0} which holds with probability $\mathbb{P}(\mathcal{H}_{N_0}) \to 1$ as $N_0 \to +\infty$ such that, conditionnally to \mathcal{H}_{N_0} and with a constant $c > 0$ independent of s and N:

(i) the linear system (3.7) is invertible for $N \geq N_0$, and well-conditionned:
\[\left|\left|\left(1 + \frac{i k s}{4\pi} \operatorname{cap}(D)\right) I - s N \operatorname{cap}(D) A_N^k\right)^{-1}\right|_2 \leq c; \quad (3.15) \]

(ii) the operator $S_{D,0} + s S_{D,1}^k$ is invertible for $N \geq N_0$, and its inverse satisfies
\[||| S_{D,0}^k + s S_{D,1}^k |||_{H^1(\partial D) \to L^2(\partial D)} \leq c. \quad (3.16) \]
Consequently, the inverse of S_{D}^k admits the following asymptotic expansion:
\[(S_{D}^k)^{-1} = s^{-1}(S_{D,0} + s S_{D,1}^k)^{-1} + O(s^{-1}(s N_0)^{-1} \eta N); \]

(iii) the solution (z^N_i) to the linear system (3.7) can be approximated by the solution z to the Lippmann-Schwinger equation (3.10) in the following mean-square senses:

(a) $\mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} |z_i^N - z(y_i)|^2 |\mathcal{H}_{N_0}\right] \leq c N^{-\frac{2}{3}} s N \|u_{in}\|_{L^2(\Omega)}$;

(b) $\mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} |z_i^N - z(y_i)|^2 |\mathcal{H}_{N_0}\right] \leq c N^{-\frac{2}{3}} s N \|u_{in}\|_{L^2(\Omega)}$, $\forall N \geq N_0$, $\forall y \in D$.

Proof. (i) Let ω be the open subset
\[\omega := \left\{ \lambda \in \mathbb{C} \mid \Re(\lambda) > \frac{1}{c \operatorname{cap}(D)} \right\}, \]
where c is the constant of (H3) such that $s N \leq c$. Since $0 \notin \omega$, ω contains only a finite number of eigenvalues of V^k with negative imaginary part. Therefore, up to selecting a larger constant c, we can assume that ω is a subset of the resolvent set of V^k: $\omega \subset \mathbb{C}\setminus \mathfrak{sp}(V^k)$. According to Proposition 2.8 of [33], there exists an event \mathcal{H}_{N_0} satisfying $\mathbb{P}(\mathcal{H}_{N_0}) \to 1$ as $N_0 \to +\infty$ such that ω is also contained in the resolvent set of the matrix A_N^k for $N \geq N_0$. Denote by $\lambda_{N,s}$ the quantity
\[\lambda_{N,s} := \frac{1 + \frac{i k s}{4\pi} \operatorname{cap}(D)}{s N \operatorname{cap}(D)} \]
Since $\lambda_{N,s} \in \omega$, the matrix $\lambda_{N,s} I - A_N^k$ is invertible for $N \geq N_0$, which is equivalent to the invertibility of (3.7). Furthermore, since ω is included in the resolvent set of A_N^k, the distance of $1/(s N \operatorname{cap}(D))$ to the spectrum of A_N^k is bounded from below:
\[d \left(\frac{1}{s N \operatorname{cap}(D)}, \mathfrak{sp}(A_N^k) \right) \geq c', \]
for a constant $c' > 0$ independent of s and N. By using the inequality of Proposition C.1 in the appendix, this implies the existence of a constant $c'' > 0$ such that
\[\left|\left|\left(\lambda_{N,s} I - A_N^k\right)^{-1}\right|_2 \right| \leq c'' \]
from where (3.15) follows easily.

(ii) The invertibility of $S_{D,0} + s S_{D,1}^k$ and the conditioning is obtained from Lemma 3.1 and the formula (3.4).

The expansion for the inverse follows from computing the Neumann series of (2.30) with the estimates of (2.31).

(iii) These bounds follow from the previous points and by applying respectively the Corollary 3.2 and the Proposition 3.6 of [33].
3.3. Effective medium theory for sound absorbing metamatetials up to the critical regime

In this final subsection, we use the result of Proposition 3.3 to obtain that the solution \(u_{N,s} \) to (1.1), represented by (3.1), can be approximated by \(u_{N,s}(x) \approx -\text{cap}(D)z(x) \) where \(z \) is the solution to the integral equation (3.10). From there, an additional few steps yield the following homogenization theorem.

Proposition 3.4. Assume (H1) to (H3) and denote by \(u \) the solution to the Lippmann-Schwinger equation

\[
\begin{align*}
\Delta u + (k^2 - sN\text{cap}(D)\rho_\Omega)u &= 0 \quad \text{in } \mathbb{R}^3, \\
\left(\frac{\partial}{\partial |x|} - ik\right)(u - u_{in}) &= O(|x|^{-2}) \quad \text{as } |x| \to +\infty.
\end{align*}
\] (3.17)

There exists an event \(\mathcal{H}_N \), which holds with large probability \(\mathbb{P}(\mathcal{H}_N) \to 1 \) as \(N \to +\infty \) such that when \(\mathcal{H}_N \) is realized, the function \(u \) is an approximation of the solution field \(u_{N,s} \) to (1.1) with the following error estimates:

(i) on any ball \(B(0,r) \) containing the obstacles, \(\Omega \subset B(0,r) \), there exists a constant \(c > 0 \) independent of \(s \) and \(N \) such that for any \(N \geq N_0 \):

\[
\mathbb{E}[\|u_{N,s} - u||_{L^2(B(0,r))}|\mathcal{H}_N] \leq csN \max((sN)^{2N^{-\frac{1}{4}}, N^{-\frac{1}{4}}});
\] (3.18)

(ii) on any bounded open subset \(\Lambda \subset \mathbb{R}^3 \setminus \Omega \) away from the obstacles, there exists a constant \(c > 0 \) independent of \(s \) and \(N \) such that for any \(N \geq N_0 \):

\[
\mathbb{E}[\|\nabla u_{N,s} - \nabla u||_{L^2(\Lambda)}^2|\mathcal{H}_N] \leq csN \max((sN)^{2N^{-\frac{1}{4}}, N^{-\frac{1}{4}}}).
\] (3.19)

The relative error is of order \(O(\max((sN)^{2N^{-\frac{1}{4}}, N^{-\frac{1}{4}}})) \) because the scattered fields \(u_{N,s} - u_{in} \) and \(u - u_{in} \) are of order \(O(sN) \).

Remark 3.2. It can be shown by adapting the arguments below that the effective medium is not changed at first order if the resonators are rotated according to a rotation field \(y \to R(y) \), but we keep this setting for simplicity.

Remark 3.3. The convergence rate \(\max((sN)^{2N^{-\frac{1}{4}}, N^{-\frac{1}{4}}}) \) is a competition of two terms: \(N^{-\frac{1}{4}} \) is a natural rate associated to the convergence of Monte-Carlo estimators, while \((sN)^{2N^{-\frac{1}{4}}} = (sN)s^{-1} \) brings into play the ratio \(\eta_N \equiv s/\epsilon_N \) between the size of a resonator and the minimum distance between the centers \((y_i)_{1 \leq i \leq N} \).

The proof uses the representation formula (3.1). We assume that the highly probable events \(\mathcal{H}_N^{(1)} \) and \(\mathcal{H}_N \) are realized. First, the conditioning bound (3.16) enables to compute the asymptotic expansion of the inverse of the single layer potential: the expansion (2.30) can be rewritten as

\[
S_D^k = s(S_{D,0} + sS_{D,1}^k) \left(1 + (S_{D,0} + sS_{D,1})^{-1}\sum_{p=2}^{+\infty} s^p S_{D,p}^k\right) = s(S_{D,0} + sS_{D,1}^k)(1 + O(s\epsilon_N^{-1}\eta_N)),
\]

where \(s\epsilon_N^{-1} \) is bounded under the event \(\mathcal{H}_N^{(1)} \). Using a Neumann-Series, we infer

\[
(S_D^k)^{-1} = s^{-1}(S_{D,0} + sS_{D,1}^{-1})^{-1}(1 + O(s\epsilon_N^{-1}\eta_N)) = s^{-1}(S_{D,0} + sS_{D,1}^{-1})^{-1} + O(s^{-1}\epsilon_N^{-1}\eta_N).
\]

Inserting now (3.6) in this expansion, we obtain

\[
(S_D^k)^{-1}P_{N,s}[u_{in}] = (S_D^k)^{-1}[(u_{in}(y_1)1_{\partial D})_{1 \leq i \leq N}] + O(sN^2)_{L^2(\partial D)} = s^{-1}(S_{D,0} + sS_{D,1}^{-1})^{-1}[(u_{in}(y_1)1_{\partial D})_{1 \leq i \leq N}] + O(s^{-1}s\epsilon_N^{-1}\eta_N sN^2)_{L^2(\partial D)} + O(sN^2)_{L^2(\partial D)}.
\]

Using the expression (3.4) of the inverse \(S_{D,0} + sS_{D,1}^{-1} \), we arrive at

\[
(S_D^k)^{-1}P_{N,s}[u_{in}] = s^{-1}\left(u_{in}(y)S_D^{-1}[1_{\partial D}] - \frac{\text{cap}(D)}{\text{cap}(\Omega)}u_{in}(y_1)S_D^{-1}[1_{\partial D}] - \frac{sN}{\text{cap}(D)}S_D^{-1}[1_{\partial D}]\right)_{1 \leq i \leq N}
\]

\[
+ O(\max(s\epsilon_N^{-1}\eta_N, s^{-1}sN^2))_{1 \leq i \leq N}.
\]

\[
= -s^{-1}\left(\frac{sN}{\text{cap}(D)}S_D^{-1}[1_{\partial D}]\right)_{1 \leq i \leq N} + O(\max(s\epsilon_N^{-1}\eta_N, s^{-1}sN^2))_{1 \leq i \leq N}.
\]

\[
= -s^{-1}\left(\frac{sN}{\text{cap}(D)}S_D^{-1}[1_{\partial D}]\right)_{1 \leq i \leq N} + O(\max(s\epsilon_N^{-1}\eta_N, s^{-1}sN^2))_{1 \leq i \leq N}.
\]
Using the bound (ii) of Proposition 2.5, the fact that \(\mathcal{P}_{N,s} \) is an isometry, and formula (2.35), we obtain the following approximation on the ball \(B(0,r) \) containing the obstacles:

\[
\begin{align*}
 u_{N,s} &= u_{in} - S_{D,N,s}^k [\mathcal{P}_{N,s}(S^k_D)^{-1} \mathcal{P}_{N,s}^{-1}[u_{in}]] \\
 &= u_{in} + \frac{1}{\text{cap}(D)} \sum_{i=1}^N s_i^2 \int_{\partial D} \Gamma^k_i(y) \mu_i(t) \, d\sigma(t) + O(\max(s\ell_{N}^k \eta_N, s) s N L^2(B(0,r))) \\
 &= u_{in} + \frac{1}{\text{cap}(D)} \int_{\partial D} \left(\frac{1 + s \eta_N}{\text{cap}(D)} z^N \cdot u_{in} \right) \, S^{-1}_{D,N,s} \mathcal{P}_{N,s}^{-1}[u_{in}]
 + O(\max(s\ell_{N}^k \eta_N, s) s N L^2(B(0,r))).
\end{align*}
\]

(3.20)

Note that in virtue of the points (vi) and (vii) of Proposition 2.5, the same estimate is also valid by replacing the norm of \(L^2(B(0,r)) \) with the one of \(H^1(A) \) for \(A \) any bounded open set outside the obstacles \((A \subset \mathbb{R}^3 \setminus \Omega) \). Taking the limit \(s \to 0 \) and \(N \to +\infty \) in the above expression, we expect the convergence

\[
 u_{N,s} \simeq u_{in} + \frac{1}{\text{cap}(D)} \left(\int_{\partial D} S^{-1}_{D,N,s} \mathcal{P}_{N,s}^{-1}[u_{in}] \right) \simeq - \frac{1}{\text{cap}(D)} z \quad \text{as} \quad s \to 0 \quad \text{and} \quad N \to +\infty,
\]

(3.21)

which would imply the result of Proposition 3.4 because \(-z/\text{cap}(D) \) is (up to an error of order \(O(s) \)) the solution to (3.17). This asymptotic behavior is justified by the next three technical lemmas. The first one is an improvement of the point (iii)b) of Proposition 3.3.

Lemma 3.2. For any \(r > 0 \), there exists a constant \(c > 0 \) independent of \(N \) and \(s \) such that

\[
 \mathbb{E} \left[\left| z^N - z \right|_{L^2(B(0,r))}^2 \right] \leq c s N N^{-\frac{1}{2}}.
\]

(3.22)

For any bounded open set \(A \subset \mathbb{R}^3 \setminus \Omega \) which does not contain the obstacles, it also holds

\[
 \mathbb{E} \left[\left| \nabla z^N - \nabla z \right|_{L^2(A)}^2 \right] \leq c s N N^{-\frac{1}{2}}.
\]

(3.23)

Proof. Let \(r_N \) be the discrepancy

\[
 r_N(y) := \frac{\text{cap}(D) s N}{1 + s \eta_N} \left(\int_{\partial D} \Gamma^k(y) \left(\sum_{i=1}^N \Gamma^k(y - y_i) z(y_i) - \int_{\partial D} \Gamma^k(y - y') z(y') \rho(y') \, dy' \right) \right).
\]

By the law of large number and using the fact that \(\Gamma^k \in L^2(B(0,r)) \) and \(\nabla \Gamma^k \in L^2(A) \), we have the estimates

\[
 \mathbb{E} \left[\left| r_N \right|_{L^2(B(0,r))}^2 \right] \leq c s N N^{-\frac{1}{2}}, \quad \mathbb{E} \left[\left| \nabla r_N \right|_{L^2(A)}^2 \right] \leq c s N N^{-\frac{1}{2}}.
\]

(3.24)

Then, subtracting (3.7) from (3.10) yields

\[
 z^N(y) - z(y) = \frac{\text{cap}(D) s N}{1 + s \eta_N} \left(\int_{\partial D} \Gamma^k(y) \left(\sum_{i=1}^N \Gamma^k(y - y_i) z(y_i) \right) \right) + r_N(y).
\]

Hence, (3.24) and the point (iii)a) of Proposition 3.3 imply the bound

\[
 \mathbb{E} \left[\left| z^N - z \right|_{L^2(B(0,r))}^2 \right] \leq c s N \left(\int_{\partial D} \left\| \Gamma^k \right\|_{L^2(B(0,r))} \right) \left\| r_N \right\|_{L^2(A)}^2 \leq 2 c s N N^{-\frac{1}{2}},
\]

from where (3.22) follows. The result of (3.23) is obtained similarly. \(\square \)

We then need uniform estimates of convolution integrals of the form \(\int_{\partial D} v(-st) \phi(t) \, d\sigma(t) \), which occur in (3.20).

Lemma 3.3. Let \(A \subset A' \subset \mathbb{R}^3 \) be bounded open subsets such that

\[
 A - st := \{ x - st \mid x \in A \} \subset A'
\]

(3.25)

for any \(t \in \partial D \) and \(s \) sufficiently small. The following uniform bound holds for any \(\phi \in L^2(\partial D) \) and \(v \in L^2(A') \):

\[
 \left\| \int_{\partial D} v(-st) \phi(t) \, d\sigma(t) \right\|_{L^2(A)} \leq |\partial D| \left\| v \right\|_{L^2(A')} \left\| \phi \right\|_{L^2(\partial D)}.
\]

(3.26)

Proof. This is a direct consequence of the Cauchy-Schwartz inequality:

\[
 \int_A \left| \int_{\partial D} v(x-st) \phi(t) \, d\sigma(t) \right|^2 \, dx \leq \int_{\partial D} \left\| v \right\|_{L^2(A-st)}^2 \left\| \phi \right\|_{L^2(\partial D)} \leq |\partial D| \left\| v \right\|_{L^2(A')} \left\| \phi \right\|_{L^2(\partial D)}.
\]

\(\square \)

Our third lemma establishes the convergence of \(\int_{\partial D} v(-st) \phi(t) \, d\sigma(t) \) to the function \(\left(\int_{\partial D} \phi \, d\sigma \right) v \) as \(s \to 0 \).
Lemma 3.4. Let $A \subset A' \subset \mathbb{R}^3$ be bounded open subsets satisfying (3.26). The following convergence holds for any $v \in H^1(A')$:

$$\left\| \int_{\partial D} v(\cdot - st)\phi(t) \, d\sigma(t) - \left(\int_{\partial D} \phi \, d\sigma \right) v \right\|_{L^2(A')} \leq cs\|\nabla v\|_{L^2(A')}.$$ \hspace{1cm} (3.27)

Proof. The following inequality holds for any $x \in A$,

$$\left| \int_{\partial D} (v(x - st) - v(x))\phi(t) \, d\sigma(t) \right|^2 = \left| \int_{\partial D} \int_{0}^{s} \nabla v(x - ut) \cdot \phi(t) \, du \, d\sigma(t) \right|^2 \leq \int_{\partial D} \left(\int_{0}^{s} \nabla v(x - ut) \cdot t \, du \right)^2 \, d\sigma(t) \left\| \phi \right\|_{L^2(\partial D)}^2 \leq \int_{\partial D} \int_{0}^{s} |\nabla v(x - ut)|^2 \, du(s|t|^2) \, d\sigma(t) \left\| \phi \right\|_{L^2(\partial D)}^2.
$$

Integrating on A, we therefore obtain

$$\left\| \int_{\partial D} v(\cdot - st)\phi(t) \, d\sigma(t) - \left(\int_{\partial D} \phi \, d\sigma \right) v \right\|_{L^2(A')}^2 \leq \sup_{t \in \partial D, 0 \leq u \leq s} \|\nabla v\|_{L^2(\partial D)}^2 \left(\int_{\partial D} |t|^2 \, d\sigma(t) \right) \left\| \phi \right\|_{L^2(\partial D)}^2.
$$

The result follows because the supremum can be bounded by $\|\nabla v\|_{L^2(A')}^2$. \hfill \Box

Proof of Proposition 3.4. We start by proving the convergence (3.21). Consider $0 < r < r'$ such that $\Omega \subset B(0,r) \subset B(0,r')$ and using (3.22) and (3.26) with $A = B(0,r)$, $A' = B(0,r')$, $v \equiv z - z_N$, we can write the asymptotic expansion

$$\int_{\partial D} z^{N}(\cdot - st)S_{\partial D}^{-1}1_{\partial D}(t) \, d\sigma(t) = \int_{\partial D} z(\cdot - st)S_{\partial D}^{-1}1_{\partial D}(t) \, d\sigma(t) + O(sNN^{-\frac{1}{2}})\|\nabla v\|^2_{L^2(\partial D)}.
$$

Then, the result of Lemma 3.4 yields

$$\int_{\partial D} \left(\frac{1 + \frac{ik}{2} \text{cap}(D)}{\text{cap}(D)} - u_{\eta}(\cdot - st) \right) S_{\partial D}^{-1}1_{\partial D}(t) \, d\sigma(t) = -\text{cap}(D) \frac{1 + \frac{ik}{2} \text{cap}(D)}{\text{cap}(D)} z = -\text{cap}(D)u_{\eta} + O_{L^2(B(0,r'))}(s). \hspace{1cm} (3.28)
$$

Coming back to (3.20) and remembering that $\eta_N = se^{-1} = O(sN^{\frac{1}{2}})$, we obtain the following asymptotic expansion for $u_{\eta,s}$:

$$u_{\eta,s} = \frac{-1}{\text{cap}(D)} z + O(max(sNSN^{-\frac{1}{2}}, N^{-\frac{1}{2}}, N^{-1})sN)\|\nabla v\|^2_{L^2(\partial D)} \hspace{1cm} (3.29)
$$

Finally, it remains to observe that

$$-\frac{z}{\text{cap}(D)} = u + O_{L^2(B(0,r'))}(s),
$$

where u is the solution to the exterior problem (3.17). The convergence estimate (3.18) follows. The same proof applies by replacing $B(0,r)$ with a subset $A \subset \mathbb{R}^3 \setminus \Omega$ and $\nabla u_{\eta,s}$ instead of $u_{\eta,s}$, yielding the convergence estimate (3.23). \hfill \Box

Remark 3.4. The above arguments cannot be easily adapted to treat the “supercritical” regime $sN \rightarrow +\infty$ due to several deep mathematical reasons. First, one cannot expect a better estimate than (3.16) for the inverse of $S_D^1 + sS_D^0$. Then the geometric series associated to the inverse of (2.30) would feature remainder terms of order $O(\eta_N^2)$ which are of order $O(1)$ when $s \sim \kappa \epsilon_N$ even for a small constant κ.

4. Homogenization of a High-Contrast Acoustic Metamaterial

In this section, we consider the scattering problem (1.2) in the high-contrast medium. We apply the same method as in the previous sections to show the convergence to an effective medium and to obtain quantitative convergence estimates. The main difference with the previous section lies in the need to account for resonances.

Our analysis is again divided into three parts. In Section 4.1, we reduce the scattering problem (1.2) to an integral equation of the form

$$A(s, \delta)[\Phi] = F, \hspace{1cm} (4.1)
$$

where A is an integral operator holomorphic in s and δ over $L^2(\partial D) \times L^2(\partial D)$. Following the analysis of our previous work [34], we reduce (4.1) to a M dimensional linear system

$$A(s, \delta)x = F, \hspace{1cm} (4.2)$$

which is singular at exactly $2M$ complex resonant values of the characteristic size s. We call the system (2.31) the Foldy-Lax approximation of (1.2) because the solution \mathbf{x} determines the far field expansion of $u_{N,s}$ similarly as in the Proposition 4.3 for the dissipative medium of (1.1).

In Section 4.2, we assume (H1), (H2) and (H4) and we show that the solution \mathbf{x}^N of the algebraic system (4.2) can be approximated in terms of the solution of a limit integral equation. Finally, these results are used to establish in Section 4.3 a quantitative effective medium theory and the error bound (1.16).

4.1. The Foldy-Lax system for an arbitrary system of many tiny resonators

Following [13, 12], the solution $u_{N,s}$ of (1.2) can be represented as

$$u_{N,s}(x) = \begin{cases} S_{D_{N,s}}^{k_0}[\varphi](x) & \text{if } x \in D_{N,s}, \\ u_{in}(x) + S_{D_{N,s}}^{k_0}[\psi](x) & \text{if } x \in \mathbb{R}^3 \setminus D_{N,s}, \end{cases} \tag{4.3}$$

where the functions $(\varphi, \psi) \in L^2(\partial D_{N,s}) \times L^2(\partial D_{N,s})$ solve the system of integral equation

$$\begin{cases} S_{D_{N,s}}^{k_0}[\varphi] - S_{D_{N,s}}^{k_0}[\psi] = u_{in}, \\ \left(-\frac{1}{2}I + k^{k_0}_{D_{N,s}} \right)[\varphi] - \delta \left(\frac{1}{2}I + \mathcal{K}^{k_0}_{D_{N,s}} \right)[\psi] = \delta \frac{\partial u_{in}}{\partial n}. \end{cases} \tag{4.4}$$

Using the factorization (2.29), we can rewrite (4.4) as an equation for $(\mathcal{P}_{N,s}^{-1}[\varphi], \mathcal{P}_{N,s}^{-1}[\psi]) \in L^2(\partial D) \times L^2(\partial D)$ in terms of the holomorphic operators $S^{k_0}_D(s), S^{k^*_0}_D(s), \mathcal{K}^{k^*_0, *}_D(s)$ and $k^{k^*_0, *}_D(s)$:

$$A(s, \delta) \begin{bmatrix} \mathcal{P}_{N,s}^{-1}[\varphi] \\ \mathcal{P}_{N,s}^{-1}[\psi] \end{bmatrix} = \begin{bmatrix} \mathcal{P}_{N,s}[u_{in}] \\ \mathcal{P}_{N,s}[\delta \frac{\partial u_{in}}{\partial n}] \end{bmatrix}, \tag{4.5}$$

where the operator $A(s, \delta)$ is given by

$$A(s, \delta) = \begin{bmatrix} S^{k_0}_D(s) & -S^{k_0}_D(s) \\ -\frac{1}{2}I + k^{k^*_0, *}_D(s) & -\delta \left(\frac{1}{2}I + \mathcal{K}^{k^*_0, *}_D(s) \right) \end{bmatrix}. \tag{4.6}$$

Equation (4.6) has the exact same structure than the resonance problem studied for resonators with fixed size in [34], where the parameter s plays here the role of the subwavelength frequency ω considered in [34], and where the operators act on the cartesian product space $L^2(\partial D)$ (defined in Section 2.2) with $D = \partial D_1 \times \partial D_2 \times \ldots \partial D_N$. The same analysis would yield $M = \sum_{i=1}^{N} K_i$ pairs of complex resonant sizes $s_i^k(\delta)$ of order $O(\delta^2)$, defined as the poles of $A(s, \delta)^{-1}$ or equivalently the values of s for which $A(s, \delta)$ has a non-trivial kernel. In what follows, we follow the steps of [34] to analyze the invertibility of (4.6).

By using a Schur complement, the integral equation (4.5) can be rewritten as the following system of two equations for $(\mathcal{P}_{N,s}^{-1}[\varphi], \mathcal{P}_{N,s}^{-1}[\psi])$:

$$\begin{cases} \mathcal{P}_{N,s}^{-1}[\varphi] = (S^{k_0}_D)^{-1}S^{k_0}_D \mathcal{P}_{N,s}^{-1}[\varphi] - (S^{k_0}_D)^{-1} \mathcal{P}_{N,s}^{-1}[u_{in}], \\ \mathcal{P}_{N,s}^{-1}[\psi] = \delta \mathcal{P}_{N,s}^{-1} \left[\frac{\partial u_{in}}{\partial n} \right] - \delta \left(\frac{1}{2}I + k^{k^*_0, *}_D \right)(S^{k_0}_D)^{-1} \mathcal{P}_{N,s}^{-1}[u_{in}]. \end{cases} \tag{4.7}$$

Therefore, the invertibility of $A(s, \delta)$ is equivalent to that of the operator

$$\mathcal{L}(s, \delta) := -\frac{1}{2}I + k^{k^*_0, *}_D(s) - \delta \left(\frac{1}{2}I + k^{k^*_0, *}_D(s) \right)(S^{k_0}_D(s))^{-1}S^{k_0}_D(s). \tag{4.8}$$

Using the asymptotic expansions (2.30) and (2.32), $\mathcal{L}(s, \delta)$ can be rewritten as

$$\mathcal{L}(s, \delta) = -\frac{1}{2}I + k^{k^*_0, *}_D(s) + s^2 B_1(s) + \delta B_2(s) \tag{4.9}$$

where $B_1(s)$ and $B_2(s)$ are the holomorphic and compact operators defined by

$$s^2 B_1(s) := \sum_{p=2}^{+\infty} s^p \mathcal{K}^{k^*_0, *}_{D,p}, \quad B_2(s) := -\left(\frac{1}{2}I + k^{k^*_0, *}_D(s) \right)(S^{k_0}_D(s))^{-1}S^{k_0}_D(s). \tag{4.9}$$

For the derivation of quantitative error bounds for the homogenization of (1.2) in the regime $s \to 0$ and $N \to +\infty$, it is important to derive estimates uniform in s and N. Anticipating the analysis of Section 4.3 which considers the subregime of (H4) whereby sN is smaller than the deviation to the resonance, we assume in the remainder of this section that

$$sN \to 0 \text{ as } s \to 0 \text{ and } N \to +\infty. \tag{4.10}$$
This implies by using the Cauchy-Schwarz inequality and the definition (2.12) of the norm:

\[
\text{cap}(D)^{-1} \phi(y) - sN \int_{\Omega} \rho(y') \Gamma^k(y - y') \phi(y') \, dy' = 0,
\]
i.e. when \(sN \) is close to \(1/(\text{cap}(D)\mu) \) for \(\mu \) an eigenvalue of the volume potential \(\mathcal{V}_{\delta} \).

Under the assumption (4.10), we have the following operator norm estimates for \(B_1(s) \) and \(B_2(s) \).

Lemma 4.1. The following norm estimates hold for the operators \(s^2 B_1(s) \) and \(\delta B_2(s) \) independently of \(s \) and \(N \):

\[
|||s^2 B_1(s)|||_{L^2(\partial D) \to L^2(\partial D)} = O(s\ell^{-1}_N), \quad |||\delta B_2(s)|||_{L^2(\partial D) \to L^2(\partial D)} = O(\delta).
\] (4.11)

Furthermore, there exists a constant \(c > 0 \) independent of \(s \) and \(N \) such that the following inequality holds for any \(\phi \in L^2(\partial D) \):

\[
s \left(\sum_{1 \leq i_1 \leq N} \left(\int_{\partial B_{1,i_1}} \left((s^2 B_1(s) + \delta B_2(s))[\phi] \right)_{i_1} \, d\sigma \right)^2 \right)^{\frac{1}{2}} \leq c(s^2 + \delta) |||\phi|||_{L^2(\partial D)}.
\] (4.12)

Proof. The estimate (4.11) results from (2.31) and (2.34). Let us prove (4.12). Since \(|||B_2(s)||| = O(1) \), it is clear from the Cauchy-Schwarz inequality and the definition (2.12) of the \(L^2(\partial D) \) norm that it is sufficient to prove only the bound on the term involving \(B_1(s) \). We have, due to Lemma 2.2 for a given \(1 \leq i_1 \leq N \) and \(1 \leq j_1 \leq K_1 \):

\[
\left| \int_{\partial B_{1,i_1}} s^2 (B_1(s)[\phi])_{i_1} \, d\sigma \right| = \left| \sum_{p=2}^{+\infty} \sum_{1 \leq i_2 \neq i_1 \leq N} \left| \int_{\partial B_{1,i_1}} \sum_{p=2}^{+\infty} \sum_{1 \leq i_2 \neq i_1 \leq N} s^p \left(\nabla^p \Gamma^k \right) (y_i - y_{i_2}) \, d\sigma \right|^2 \right| \leq s^2 c |||\phi|||_{L^2(\partial D_{i_1})} + c \sum_{p=2}^{+\infty} \sum_{1 \leq i_2 \neq i_1 \leq N} s^p \left(\nabla^p \Gamma^k \right) (y_i - y_{i_2}) \, d\sigma
\] (4.13)

where we used Proposition B.1 at the last line. Then observe that

\[
\left| \sum_{1 \leq i_2 \neq i_1 \leq N} \sum_{p=1}^{+\infty} s^p \left| \frac{1}{y_{i_2} - y_{i_2}} \right| |||\phi|||_{L^2(\partial D_{i_2})} \right| \leq c \sum_{p=1}^{+\infty} \sum_{1 \leq i_2 \neq i_1 \leq N} \frac{s^p}{\left| y_{i_1} - y_{i_2} \right|^2} \left| \frac{1}{y_{i_1} - y_{i_2}} \right| \left| \phi \right|_{L^2(\partial D_{i_2})} \leq c s^3 \left(\sum_{1 \leq i_2 \neq i_1 \leq N} \frac{1}{\left| y_{i_1} - y_{i_2} \right|^2} \right) |||\phi|||_{L^2(\partial D)}.
\] (4.14)

This implies by using the Cauchy-Schwarz inequality and the definition (2.12) of the norm:

\[
s^2 \left(\sum_{1 \leq i_1 \leq N} \left(\int_{\partial B_{1,i_1}} (s^2 B_1(s)[\phi])_{i_1} \, d\sigma \right)^2 \right) \leq c s^4 |||\phi|||_{L^2(\partial D)}^2 + c s^2 s^4 \ell^{-2}_N |||\phi|||_{L^2(\partial D)}^2
\]

\[
\leq c s^4 (1 + (s\ell^{-1}_N)^2).
\]

The result follows because \(s\ell^{-1}_N \) is bounded by the assumption (4.10). \(\square \)

The next step is to characterize the kernel of \(-\frac{(1/2)}{I} + K^\ast_D\), which is the zero-th order part of \(\mathcal{L}(s, \delta) \) in (4.8).
Lemma 4.2. The kernel of the operator $-\frac{1}{2}I + K_D^* \sigma$ is of dimension $M = \sum_{i=1}^{N} K_i$ and is given by
\[\text{Ker} \left(-\frac{1}{2}I + K_D^* \right) = \text{span}(\psi_{ij})_{1 \leq j \leq K_i} \times \cdots \times \text{span}(\psi_{ij'})_{1 \leq j' \leq K_N}, \]
where for any $1 \leq i \leq N$, the functions $(\psi_{ij})_{1 \leq j \leq K_i}$ form a basis of Ker(K_D^*) and are defined by:
\[\psi_{ij} := (S_i)_{ij}^{-1} |_{\partial D_i}, \quad 1 \leq j \leq K_i. \]

The range of the operator $-\frac{1}{2}I + K_D^* \sigma$ is the space of functions $\phi = (\phi_i)_{1 \leq i \leq N}$ with zero averages on the group of resonators D_i:
\[\text{Ran} \left(-\frac{1}{2}I + K_D^* \right) = L_0^2(\partial D) := L_0^2(\partial D_1) \times \cdots \times L_0^2(\partial D_N), \]
where $L_0^2(\partial D_i) = \{ \phi \in \partial D_i \mid \int_{\partial D_i} \phi \, d\sigma = 0 \}$. It is of codimension M. Furthermore, we have the direct sum decomposition
\[L_0^2(\partial D) = \text{Ker} \left(-\frac{1}{2}I + K_D^* \right) \oplus L_0^2(\partial D), \]
and $-\frac{1}{2}I + K_D^* \sigma$ is invertible as an operator $L_0^2(\partial D) \rightarrow L_0^2(\partial D)$.

In order to compute the inverse of the operator $\mathcal{L}(s, \delta)$ of (4.8) we introduce a constant finite range operator \mathcal{H} such that $-\frac{1}{2}I + K_D^* \sigma + \mathcal{H}$ is invertible. In what follows, we denote by $(C_i)_{1 \leq i \leq N}$ the capacitance matrices associated to each group of resonators $D_i = \cup_{1 \leq i \leq K_i} B_{ij}$, which are defined by the following identity:
\[C_{ij} = -\int_{\partial B_{ij}} \psi_{ij} \, d\sigma, \quad 1 \leq i \leq N, 1 \leq j, l \leq K_i. \tag{4.15} \]
We recall that C_i is a symmetric positive definite matrix for $1 \leq i \leq N$ (see e.g. [34][Section 2] for a list of properties of the capacitance matrix). In order to define the operator \mathcal{H}, we introduce the basis of functions $(\phi_{ij}^*)_{1 \leq j \leq K_i}$ of Ker($-\frac{1}{2}I + K_D^* \sigma$) which satisfy the property
\[\int_{\partial B_{ij}} \phi_{ij}^* \, d\sigma = \delta_{jl} \text{ for any } 1 \leq l \leq K_i. \tag{4.16} \]
These functions are explicitly given by
\[\phi_{ij}^* := -\sum_{l=1}^{K_i} (C_i^{-1})_{jl} \psi_{il}^*, \quad \text{for any } 1 \leq i \leq N, 1 \leq j \leq K_i. \tag{4.17} \]
Each function ϕ_{ij}^* of the above definition belongs to $L_0^2(\partial D_i)$ for any $1 \leq j \leq K_i$. Then, in what follows and with a slight abuse of notation, we still denote by $\phi_{ij}^* \equiv (0, \ldots, 0, \phi_{ij}^*, 0, \ldots, 0) \in L_0^2(D)$ the function with N coordinates whose coordinate i is given by (4.17) and which is zero on the other coordinates.

Definition 4.1. We denote by $\mathcal{H} : L^2(\partial D) \rightarrow L^2(\partial D)$ the finite range projection operator satisfying $\text{Ran}(\mathcal{H}) = \text{Ker}(-\frac{1}{2}I + K_D^* \sigma)$ and $\text{Ker}(\mathcal{H}) = L_0^2(\partial D)$. The operator \mathcal{H} reads explicitly
\[\mathcal{H}[\phi] = \left(\sum_{j=1}^{K_i} \int_{\partial B_{ij}} \phi_{ij} \, d\sigma \right) \phi_{ij}^* \text{ for } 1 \leq i \leq N \quad \text{with } \phi \equiv (\phi_i)_{1 \leq i \leq N} \in L_0^2(\partial D). \]

Proposition 4.1. The operator $\mathcal{L}(s, \delta)$ defined in (4.8) can be decomposed as
\[\mathcal{L}(s, \delta) = \mathcal{L}_0 - \mathcal{H} + s^2 \mathcal{B}_1(s) + \delta \mathcal{B}_2(s), \tag{4.18} \]
where $\mathcal{L}_0 := -\frac{1}{2}I + K_D^* \sigma$ and \mathcal{H} is an invertible Fredholm operator. The inverse of \mathcal{L}_0 reads explicitly
\[\mathcal{L}_0^{-1}[\phi] = \left(-\frac{1}{2}I + K_D^* \sigma \right)^{-1} [\phi - \mathcal{H}[\phi]] + \mathcal{H}[\phi], \]
where $(-\frac{1}{2}I + K_D^* \sigma)^{-1}$ is the inverse of the operator $L_0^2(\partial D) \rightarrow L_0^2(\partial D)$. Furthermore, the following properties hold true:
- $\mathcal{H}[\phi_{ij}] = \mathcal{L}_0[\phi_{ij}^*] = \phi_{ij}^*$ for any $1 \leq i \leq N$ and $1 \leq j \leq K_i$.
- $\int_{\partial B_{ij}} (\mathcal{L}_0^{-1}[\phi])_i \, d\sigma = \int_{\partial B_{ij}} \phi_i \, d\sigma \text{ for any } \phi \equiv (\phi_i)_{1 \leq i \leq N} \in L_0^2(\partial D), 1 \leq i \leq N \text{ and } 1 \leq j \leq K_i$.
- $\phi = (\phi - \mathcal{H}[\phi]) + \mathcal{H}[\phi]$ is the direct sum decomposition of ϕ on $L_0^2(\partial D) \oplus \text{Ker}(-\frac{1}{2}I + K_D^* \sigma)$.

The decomposition (4.18) reads
\[\mathcal{L}(s, \delta) = \mathcal{G}(s, \delta) - \mathcal{H}, \tag{4.19} \]
where $\mathcal{G}(s, \delta)$ is the operator
\[\mathcal{G}(s, \delta) = \mathcal{L}_0 + s^2 \mathcal{B}_1(s) + \delta \mathcal{B}_2(s). \]
Since \mathcal{L}_0 is invertible, $\mathcal{G}(s, \delta)$ is a holomorphic Fredholm operator whose inverse can easily be computed thanks to a Neumann series.
Lemma 4.3. The operator $G(s, \delta)$ is invertible for sufficiently small s and δ and it holds

$$G(s, \delta)^{-1} = \mathcal{L}_0^{-1} - \mathcal{C}(s, \delta),$$

where $\mathcal{C}(s, \delta)$ is the compact operator of order $O(s\epsilon_N^{-1}\eta_N + \delta)$ defined by the following Neumann series:

$$\mathcal{C}(s, \delta) = \sum_{p=1}^{+\infty} (-1)^{p+1} \mathcal{L}_0^{-1} ((s^2B_1(s) + \delta B_2(s))\mathcal{L}_0^{-1})^p.$$

The decomposition (4.19) “invertible+finite range” enables to reduce the problem (4.5) to the inversion of a finite dimensional holomorphic $M \times M$ matrix $A(s, \delta)$.

Proposition 4.2. The operator $A(s, \delta)$ is invertible if and only if the $M \times M$ matrix

$$A(s, \delta) \equiv (A(s, \delta)_{ij}, 1 \leq i, j \leq K_i),$$

defined by

$$A(s, \delta)_{ij} := \int_{\partial B_{ij}} \left(\mathcal{C}(s, \delta)[\phi^*_{ij}] \right)_{ij} \, d\sigma, \quad 1 \leq i, j \leq K_i,$$

is invertible. When it is the case, the solution $(\mathcal{P}^{-1}_{N,s}[\varphi], \mathcal{P}^{-1}_{N,s}[\psi])$ to (4.4) reads

$$\begin{cases}
\mathcal{P}^{-1}_{N,s}[\varphi] = \sum_{1 \leq i \leq N, 1 \leq j \leq K_i} x^{N}_{ij} G^{-1}(s, \delta) [\phi^*_{ij}] + G^{-1}(s, \delta)[f], \\
\mathcal{P}^{-1}_{N,s}[\psi] = \sum_{1 \leq i \leq N, 1 \leq j \leq K_i} x^{N}_{ij} (S^b_D)^{-1} S^b_D G^{-1}(s, \delta) [\phi^*_{ij}] + (S^b_D)^{-1} S^b_D G^{-1}(s, \delta)[f] - (S^b_D)^{-1} \mathcal{P}^{-1}_{N,s}[u_{in}],
\end{cases} \tag{4.20}$$

where $f \in L^2(\partial D)$ is the function

$$f := \delta \mathcal{P}^{-1}_{N,s} \left[\frac{\partial u_{in}}{\partial n} \right] - \delta \left(\frac{1}{2} I + K^b_D \right) (S^b_D)^{-1} \mathcal{P}^{-1}_{N,s} [u_{in}], \tag{4.21}$$

and where the coefficients $x^N := (x^N_{ij})_{1 \leq i \leq N, 1 \leq j \leq K_i}$ are solving the finite dimensional problem

$$A(s, \delta)x^N = F \text{ with } F := \left(\int_{\partial B_{ij}} (G^{-1}(s, \delta)[f])_{ij} \, d\sigma \right)_{1 \leq i \leq N, 1 \leq j \leq K_i}. \tag{4.22}$$

Proof. The proof is identical to the one of Proposition 2.4 in [34].

The next result justifies that (4.22) can be called the “Foldy-Lax” approximation of the high-contrast system (1.2).

Proposition 4.3. The following point-wise expansion holds for any $x \in \mathbb{R}^3 \setminus \Omega$:

$$u_{N,s}(x) - u_{in}(x) = \sum_{i=1}^{N} \left(\sum_{1 \leq j \leq K_i} x^N_{ij} \right) \Gamma^k(x - y_i) + O(s),$$

which shows that $D_{N,s}$ behaves outside the medium as a system of point-source scatterers located at the points $(y_i)_{1 \leq i \leq N}$ with intensities $(-s^2 \sum_{1 \leq j \leq K_i} x^N_{ij})_{1 \leq i \leq N}$.

Proof. We proceed as in the proof of Proposition 3.1. A Taylor expansion yields:

$$u_{N,s}(x) - u_{in}(x) = S^b_D \mathcal{P}^{-1}_{N,s} \left[\mathcal{P}^{-1}_{N,s}[\psi] \right] = \sum_{1 \leq i \leq N} s^2 \int_{\partial D_i} \Gamma^k(x - y_i) - st(\mathcal{P}^{-1}_{N,s}[\psi])_{i} d\sigma(t) \tag{4.23}$$

Then (4.20) and the analysis below reveals that

$$\int_{\partial D_i} (\mathcal{P}^{-1}_{N,s}[\psi])_{i} d\sigma = \sum_{1 \leq j \leq K_i} x^N_{ij} (1 + O(sN)) + O(s^{-1}).$$

The result is obtained by inserting this expansion into (4.23).
In the next proposition, we compute the asymptotic of $A(s, \delta)$ at the order $O(\eta_N(s^2 + \delta))$. For a $M \times M$ matrix $A \equiv (A_{i_1j_1, i_2j_2})_{1 \leq i_1, i_2 \leq N}$, we denote by $\|A\|_2$ the triple norm defined by

$$
\|A\|_2 = \max_{z \in \mathbb{C}^{K_1 \times K_2}} \frac{\|Az\|_2}{\|z\|_2}, \quad \text{where } \|z\|_2 := \sum_{1 \leq i_1 \leq N} \sum_{1 \leq j_1 \leq K_1} |z_{i_1j_1}|^2.
$$

(4.24)

We write in a block-wise sense $A = \sum_{i=1}^N A_i i + \sum_{i \neq i} A_{i, i \neq i} A_{i, i \neq i}^{*}$ with $A_{i, i \neq i} \in \mathbb{C}^{K_1 \times K_2}$ to mean that $A_{i, i \neq i} = (A_{i, i \neq i})_{1 \leq j_1 \leq K_1}, 1 \leq j_2 \leq K_2$ for any $1 \leq i_1, i_2 \leq N$ and $1 \leq j_1 \leq K_1$ and $1 \leq j_2 \leq K_2$.

Proposition 4.4. The following asymptotic holds true for small s and δ:

$$
A(s, \delta) = \sum_{1 \leq i \leq N} \left(s^2 k_i^2 V_i C_i^{-1} - \delta I_{K_1 \times K_1} \right)
- \sum_{i \neq i} \left(s^3 k_i^2 \Gamma_i \left(y_{i_1} - y_{i_2} \right) V_i 1_{K_1}^T 1_{K_2} + \delta s \left(\Gamma_i \left(y_{i_1} - y_{i_2} \right) - \Gamma_i \left(y_{i_1} - y_{i_2} \right) \right) C_i 1_{K_1} 1_{K_2}^T \right)
+ O((s^2 + \delta)(s\ell_N^{-1} \eta_N + \delta)),
$$

(4.25)

where C_i is the $K_1 \times K_1$ capacitance matrix defined by (4.15) and

$$
V_i = \text{diag}(|B_i|)_{1 \leq i \leq K_1}, \quad I_{K_1 \times K_1} = (\delta_{m,n})_{1 \leq m, n \leq K_1}, \quad 1_{K_i} = (1)_{1 \leq i \leq K_i}, \text{ for any } 1 \leq i \leq N,
$$

(4.26)

and where the $O((s^2 + \delta)(s\ell_N^{-1} \eta_N + \delta))$ remainder is estimated with the norm (4.24).

Proof. Let us consider an arbitrary complex vector $z = (z_{i_1j_2})_{1 \leq i_1 \leq N, 1 \leq j_2 \leq N}$ and $\varphi_z := \sum_{1 \leq i_1 \leq N} z_{i_1j_2} \phi_{i_1j_2}^*$. The norm of φ_z satisfies

$$
\|\varphi_z\|_{L^2(\partial D)} = \left\| \sum_{1 \leq i_1 \leq N, 1 \leq j_2 \leq N} z_{i_1j_2} \phi_{i_1j_2}^* \right\|_{L^2(\partial D)} = s \left(\sum_{1 \leq i_1 \leq N} \sum_{1 \leq j_2 \leq K_2} z_{i_1j_2} \phi_{i_1j_2}^* \right)^{\frac{1}{2}}
\leq s \sup_{1 \leq i_1 \leq N} \left(\sum_{1 \leq j_2 \leq K_2} \|\phi_{i_1j_2}^*\|_{L^2(\partial D)} \right) \|z\|_2
\leq cs \|z\|_2.
$$

(4.27)

Then, by using (4.12), we have

$$
A(s, \delta)_{i_1j_1, i_2j_2} = \int_{\partial B_{i_1j_1}} (C(s, \delta)[\phi_{i_2j_2}^*])_{i_1} \, d\sigma
= \int_{\partial B_{i_1j_1}} \left(\mathcal{L}^{-1}_0 (s^2 B_1(s) + \delta B_2(s)) [\phi_{i_2j_2}^*]_{i_1} \right) \, d\sigma + R(s, \delta)_{i_1j_1, i_2j_2}
$$

(4.28)

where the remainder $R(s, \delta)$ satisfies

$$
\|\|R(s, \delta)\|\|_2 = O((s^2 + \delta)(s\ell_N^{-1} + \delta)).
$$

(4.29)

Indeed, we have by using (4.12):

$$
\|R(s, \delta)\|_2 \leq \sum_{1 \leq i_1 \leq N} \left| \int_{\partial B_{i_1j_1}} ((s^2 B_1(s) + \delta B_2(s)) \mathcal{R}(s, \delta)[\phi_{i_2j_2}]_{i_1}) \, d\sigma \right|^2 \leq cs^{-1}(s^2 + \delta)\|\mathcal{R}(s, \delta)\|_{L^2(\partial D)} \|\phi_z\|_{L^2(\partial D)}
$$

where $\mathcal{R}(s, \delta)$ is an operator satisfying $\|\mathcal{R}(s, \delta)\|_{L^2(\partial D) \to L^2(\partial D)} = O(s\ell_N^{-1} \eta_N + \delta)$. The estimate (4.29) follows from (4.27). We then compute each term $B_2(s)$ in (4.28). Repeating the arguments of Lemma 4.1 and using
Lemma 2.2, we find that:

\[
\int_{\partial B_{i_{i_2}}} s^2(B_1(s)[\phi^*_{i_2j_2}])_i \, d\sigma \\
= s^2 k_i^2 \int_{\partial B_{i_{i_2}}} K^*_{D_{i_1,2}}[\phi^*_{i_2j_2}] \, d\sigma \delta_{i_1i_2} + s^3 \nabla \Gamma^k_i(y_{i_1} - y_{i_2}) \int_{\partial B_{i_{i_1}}} M^1_{D_{i_1,1}}[\phi^*_{i_2j_2}] \, d\sigma \delta_{i_1\neq i_2} + O(s^2(s\ell_N^{-1})\eta_N)
\]

\[
= -s^2 k_i^2 \int_{\partial B_{i_{i_1}}} S_{D_{i_1}}[\phi^*_{i_2j_2}] \, d\sigma \delta_{i_1i_2} - s^3 k_i^2 \Gamma^k_i(y_{i_1} - y_{i_2})B_{i_{i_1}j_{i_2}}1_{i_1\neq i_2} + O(s^2(s\ell_N^{-1})\eta_N)
\]

\[
= s^2 k_i^2 [B_{i_{i_1}j_{i_2}}((C_{i_1})^{-1})_{i_{i_1}j_{i_2}} - s^3 k_i^2 \Gamma^k_i(y_{i_1} - y_{i_2})B_{i_{i_1}j_{i_2}}1_{i_1\neq i_2} + O(s^2(s\ell_N^{-1})\eta_N)),
\]

where the quantity \(O(s^2(s\ell_N^{-1})\eta_N)\) is estimated here and in the next lines with the \(||| \cdot |||_2\) norm as in (4.29). Using the hypothesis (4.10), the term \(\delta B_2(s)\) is then developed as follows:

\[
\delta B_2(s) = -\delta \left(\frac{1}{2} + K^*_D \right) (S_{D,0}^{-1})^{-1} S_{D,0}^{-1}
\]

\[
= -\delta \left(\frac{1}{2} + K^*_D \right) (S_{D,0}^{-1} - sS_{D,0}^{-1}S_{D,1}^{-1}S_{D,0}^{-1})(S_{D,0}^{-1} + sS_{D,1}^{-1} + O(s\ell_N^{-1})\eta_N)
\]

\[
= -\delta \left(\frac{1}{2} + K^*_D \right) + \delta s \left(\frac{1}{2} + K^*_D \right) (S_{D,0}^{-1} - S_{D,0}^{-1}S_{D,1}^{-1}S_{D,0}^{-1} - sS_{D,1}^{-1} + O(s\ell_N^{-1})\eta_N),
\]

We then use the identity \(S_{D,1}^{-1}[\phi^*_{i_2j_2}] = -i/4\pi \delta_{i_{i_1}j_{i_2}}\), which implies

\[
\int_{\partial B_{i_{i_1}}} S_{D,1}^{-1}S_{D,1}^{-1}[\phi^*_{i_2j_2}] \, d\sigma = -\frac{i}{4\pi} \sum_{l=1}^{K_{i_1}} (C_{i_1})_{j_{i_1}l} I_{i_{i_1}j_{i_1}l}
\]

Hence if \(i_1 = i_2\):

\[
\int_{\partial B_{i_{i_1}}} \delta(B_2(s)\phi^*_{i_2j_2})_i \, d\sigma = -\delta \int_{\partial B_{i_{i_1}}} \left(\frac{1}{2} + K^*_D \right) (\phi^*_{i_2j_2} - s(k - k_i)S_{D,1}^{-1}[\phi^*_{i_2j_2}] \, d\sigma \right) = \delta \delta_{i_1j_{i_1}} + O(s\ell_N^{-1})\eta_N \delta,
\]

and if \(i_1 \neq i_2\):

\[
\int_{\partial B_{i_{i_1}}} \delta(B_2(s)\phi^*_{i_2j_2})_i \, d\sigma
\]

\[
= \delta(s\Gamma^k_i(y_{i_1} - y_{i_2}) - \Gamma^k_i(y_{i_1} - y_{i_2})) \int_{\partial B_{i_{i_1}}} \left(\frac{1}{2} + K^*_D \right) S_{D,1}^{-1}T_{D,0}^{0}(\phi^*_{i_2j_2}) \, d\sigma + O(s\ell_N^{-1})\eta_N \delta,
\]

\[
= -\delta s\Gamma^k_i(y_{i_1} - y_{i_2}) - \Gamma^k_i(y_{i_1} - y_{i_2})) \sum_{l=1}^{K_{i_1}} (C_{i_1})_{j_{i_1}l} + O(s\ell_N^{-1})\eta_N \delta.
\]

Therefore we then find finally

\[
C(s,\delta)_1i_{i_1}j_{i_2} = (s^2 k_i^2 [B_{i_{i_1}j_{i_2}}((C_{i_1})^{-1})_{i_{i_1}j_{i_2}} - \delta \delta_{i_1j_{i_2}}) \delta_{i_1i_2} - \delta s\Gamma^k_i(y_{i_1} - y_{i_2}) - \Gamma^k_i(y_{i_1} - y_{i_2}) \sum_{l=1}^{K_{i_1}} (C_{i_1})_{j_{i_1}l}) 1_{i_{i_1}i_2} + O((s^2 + \delta)(s\ell_N^{-1} + \delta))
\]

which is the result to obtain.

Remark 4.2. The nonlinear eigenvalue problem \(A(s,\delta)\mathbf{r} = 0\) is substantially different from the one characterizing scattering resonances in the non-dilute regime of [18, 34] featuring a single packet of resonators, because the matrix (4.25) takes into account the interactions \(\Gamma^k_i(y_{i_1} - y_{i_2})\) which are of order \(O((s^2 + \delta)s\ell_N^{-1})\). As we see below in Remark 4.6, this predicts that a shift in the scattering resonance may be observed due to the interactions.

Remark 4.3. It seems complicated to analyze the \(KN\) characteristic values of the full operator \(A(s,\delta)\) of (4.22), i.e. the exact values of \(s\) such that \(A(s,\delta)\mathbf{r}\) has a non-trivial solution, from where an explicit analysis could be inferred as in our previous work [34]. Indeed, \(A(s,\delta)\) is a non-Hermitian perturbation in \(\delta\) of the operator
Proposition 4.5. The right-hand side \(f \equiv (f_i)_{1 \leq i \leq N} \) of (4.21) admits the following asymptotic expansion:

\[
F = -s^{-1} \delta \left(u_{in}(y_i) + s \sum_{j \neq i} \Gamma^k(y_i - y_j) \text{cap}(D_j) u_{in}(y_j) \right) \sum_{l=1}^{K_i} \psi^*_l \bigg|_{1 \leq i \leq N} \\
\quad + O(\delta s^{-1} \max(sN_N^{-1}, N, s) N_s^2) \| \|D\| \|_{L^2(\partial D)},
\]

where the relative error is of order \(O(\max(sN_N^{-1}, N, s)) \). Then the right-hand side \(F \equiv (F_i)_{1 \leq i \leq N} \) of (4.22) reads:

\[
F = -s^{-1} \delta \left(u_{in}(y_i) + s \sum_{j \neq i} \Gamma^k(y_i - y_j) \text{cap}(D_j) u_{in}(y_j) \right) \left(C_i 1_{K_i} \right)_j \bigg|_{1 \leq i \leq N} \\
\quad + O(\delta s^{-1} \max(sN_N^{-1}, N, s) N_s^2) \| \|D\| \|_{L^2(\partial D)}.
\]
We denote by \((a_k)_{1 \leq k \leq K}\) and \(0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_K\) the eigenvectors and eigenvalues of the symmetric eigenvalue problem
\[
Ca_j = \lambda_jVa_j,
\] (4.36)
and by \((s_i(\delta))_{1 \leq i \leq K}\) the \(K\) "resonant" values
\[
s_i(\delta) := \delta^\frac{i}{2} \sqrt{\frac{k}{\delta}}, \quad 1 \leq i \leq K,
\] (4.37)
such that the matrix \(s^2k^2V^{-1} - \delta I_{K \times K}\) is not invertible when \(s = s_i(\delta)\). Finally, as anticipated in the introduction, we introduce the quantities \(Q(s, \delta)\) and \(Q(s, \delta)\) defined by
\[
Q(s, \delta) := \sum_{i=1}^{K} \frac{\lambda_i}{s_i(\delta)} (a_i^T V) 1 V a_i, \quad Q(s, \delta) := 1^T Q(s, \delta) = \sum_{i=1}^{K} \frac{\lambda_i}{s_i(\delta)} (a_i^T V)^2.
\]
The values \(s_i(\delta)\) correspond to the leading order of the resonant characteristic sizes \(s\) at which the scattering operator \(A(s, \delta)\) is not invertible. The quantity \(Q(s, \delta)\) appears naturally in the analysis and is a measure of the inverse of the deviation from \(s\) to a resonant characteristic size \(s_i(\delta)\) when \(a_i^T V 1 \neq 0\).

For convenience, we denote by
\[
x_i^N = (x_i^N)_{1 \leq i \leq K} \in \mathbb{C}^K, \quad 1 \leq i \leq N,
\]
the \(N \times K\) components of the solution \(x = (x_i^N)_{1 \leq i \leq N} \leq 1 \leq N\) to (4.22). The purpose of this part is to show that the algebraic solution \(x^N\) can be approximated by
\[
x_i^N \simeq w(y_i) \frac{V a_i}{1^T V a_i}, \quad 1 \leq i \leq N,
\]
where \(w\) is the solution to an integral equation (given in (4.46) hereafter). This convergence is established in Proposition 4.7 below.

Neglecting error terms, the finite dimensional problem (4.22) can be rewritten as the following approximate \(N\)-dimensional linear systems for the \(K\)-dimensional vectors \((x_i^N)_{1 \leq i \leq N}\):
\[
\begin{align*}
(s^2k^2V^{-1} - \delta I_{K \times K})x_i^N &= \sum_{1 \leq j \neq i \leq N} (s^2k^2 \Gamma_k(y_i - y_j)V 11^T + \delta s(\Gamma_k(y_i - y_j) - \Gamma_k(y_i - y_j))C 1 1^T) x_j^N \\
&= \delta^{-1} s^{-1} \left(u_{in}(y_i) + s \sum_{1 \leq j \neq i \leq N} \Gamma_k(y_i - y_j) \text{cap } (D) u_{in}(y_j) \right) C 1, \quad 1 \leq i \leq N,
\end{align*}
\] (4.38)
where we have denoted \(1 = 1_K\) since the context is clear. Eqn. (4.38) can be reduced to a linear system of \(N\) equations after some following algebraic manipulations.

Lemma 4.4. Assume that \(s\) is not equal to any of the resonant scalings \(s_i(\delta)\) for \(1 \leq i \leq N\). Let us denote by \(b^N(y_i)\) the quantity
\[
b_i^N(y_i) := u_{in}(y_i) + \text{cap } (D) \sum_{1 \leq j \neq i \leq N} \Gamma_k(y_i - y_j) u_{in}(y_j), \quad 1 \leq i \leq N.
\] (4.39)
The linear system (4.38) admits a solution if and only if the linear system
\[
z_i^N - sQ(s, \delta) \sum_{1 \leq j \neq i \leq N} \Gamma_k(y_i - y_j) z_j^N = \text{cap } (D) \sum_{1 \leq j \neq i \leq N} \Gamma_k(y_i - y_j) z_j^N = \delta^{-1} s^{-1} Q(s, \delta) b^N(y_i), \quad 1 \leq i \leq N
\] (4.40)
has a solution. When it is the case, the solution \((z_i^N)\) to (4.38) is given by
\[
z_i^N = s \left(\sum_{1 \leq j \neq i \leq N} \Gamma_k(y_i - y_j) z_j^N \right) Q(s, \delta) + s \left(\sum_{1 \leq j \neq i \leq N} \Gamma_k(y_i - y_j) z_j^N \right) C 1 + s^{-1} b^N(y_i) Q(s, \delta), \quad 1 \leq i \leq N,
\] (4.41)
and we have further \(z_i^N = 1^T x_i^N\) for \(1 \leq i \leq N\).

Proof. (4.38) can be rewritten as
\[
(s^2k^2V^{-1} - \delta I_{K \times K})x_i^N - \delta s \sum_{1 \leq j \neq i \leq N} \Gamma_k(y_i - y_j) z_j^N C 1 - s \sum_{1 \leq j \neq i \leq N} \Gamma_k(y_i - y_j) z_j^N (s^2k^2V^{-1} - \delta I_{K \times K}) C 1
\]
\[= \delta^{-1} s^{-1} b^N(y_i) C 1. \] (4.42)
For \(s \neq s_i(\delta) \) with \(1 \leq i \leq K \), this equation is equivalent to
\[
x_i^N - s \sum_{1 \leq j \neq i \leq N} \Gamma^k(y_i - y_j)z_j^N C_1 - \delta s \sum_{1 \leq j \neq i \leq N} \Gamma^k(y_i - y_j)z_j^N (s^2k_0^2VC^{-1} - \delta I_{K \times K})^{-1}C_1 = \delta s^{-1}b^N(y_i)(s^2k_0^2VC^{-1} - \delta I_{K \times K})^{-1}C_1.
\]
(4.43)

Since
\[
(s^2k_0^2VC^{-1} - \delta I_{K \times K})^{-1}C_1 = \sum_{i=1}^{K} \frac{\lambda_i}{s^2k_0^2\lambda_i - \delta}(1^T V a_i) V a_i = \sum_{i=1}^{K} \frac{\lambda_i\delta^{-1}}{s_i(\delta)^2 - 1}(1^T V a_i) V a_i = Q(s,\delta),
\]
we obtain the linear system (4.40) for the coefficients \((z_i^N)_{1 \leq i \leq N}\) after taking the inner product of (4.43) with the vector \(1\). Then (4.43) implies that \(x_i^N\) is given by the formula (4.41).

In the non-resonant setting of Section 3, the analogous algebraic system (3.7) was obtained with \(sNQ(s,\delta)\) instead of \(sN\). In what follows, we therefore assume (H4) which is the natural subcritical regime associated to (1.2): the characteristic size \(s\) converges to one of the resonant values \(s_i(\delta)\), \(1^T V a_i \neq 0\) and \(sNQ(s,\delta)\) remains bounded.

Remark 4.4. If \(s \to s_i(\delta) \) while \(1^T V a_i = 0\), the analysis becomes substantially different because \(Q(s,\delta)\) remains bounded, and the natural subcritical regime becomes \(sN = O(1)\). Due to a Perron-Frobenius type theorem for the capacitance matrix [34], this cannot happen for the first resonant value \(s_j(\delta)\). However, \(1^T V a_i = 0\) can happen in presence of strong symmetries of the packet of resonators \(D\), for instance if \(D\) is a dimer constituted of two symmetrical spheres. Then a different analysis must be performed to capture the right effective medium on a Foldy-Lax approximation.

Since (H4) implies \(sQ(s,\delta)N = O(1)\) and \(sN = o(1)\), equation (4.40) is a perturbed version of the following linear system
\[
w_i^N - sQ(s,\delta) \sum_{1 \leq j \neq i \leq N} \Gamma^k(y_i - y_j)w_j^N = s^{-1}Q(s,\delta)u_{in}(y_i), \quad 1 \leq i \leq N.
\]
(4.44)

Reasoning as in Section 3.3, we obtain the following approximation theorem.

Proposition 4.6. Assume (H1), (H2) and (H4). There exists an event \(\mathcal{H}_{N_0}\) which holds with probability \(P(\mathcal{H}_{N_0}) \to 1\) as \(N_0 \to +\infty\) such that, when \(\mathcal{H}_{N_0}\) is realized:

(i) the linear system (4.44) is invertible for \(N \geq N_0\) and
\[
\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} |w_i^N - w_i(y_i)|^2 |\mathcal{H}_{N_0}\right] \leq c(N^{-\frac{1}{2}}sQ(s,\delta)N^{-1}Q(s,\delta),
\]
where \(w\) is the solution to the Lippmann-Schwinger equation
\[
w - sNQ(s,\delta) \int_{\Omega} \Gamma^k(\cdot - y)w(y)\rho(y) dy = s^{-1}Q(s,\delta)u_{in}.
\]
(4.46)

We also have the convergence of the Nyström interpolant
\[
w^N(y) := s^{-1}Q(s,\delta)u_{in}(y) + sQ(s,\delta) \sum_{i=1}^{N} \Gamma^k(y - y_j)w_j^N, \quad y \in \mathbb{R}^3,
\]
(4.47)
in the following mean-square sense:
\[
\mathbb{E}[||w^N - w||^2_{L^2(\Omega)} |\mathcal{H}_{N_0}] \leq c(N^{-\frac{1}{2}}sNQ(s,\delta)s^{-1}Q(s,\delta);
\]
(ii) the matrix associated to the linear system (4.44) is well-conditioned: there exists a constant \(c > 0\) independent of \(s, \delta\) and \(N\) such that
\[
|||I - sNQ(s,\delta)A_k^N|||_2 \leq c,
\]
(4.48)

where \(A_k^N\) is the matrix defined in (3.13).

Using a standard perturbation argument, we obtain the following result for the solution \((z_i^N)\) to (4.40).

Corollary 4.1. Assume (H1), (H2) and (H4). The solution \(z^N = (z_i^N)_{1 \leq i \leq N}\) to the linear system (4.40) can be approximated by \(w^N\) up to a relative error of order \(O(sN)\):
\[
\left(\frac{1}{N} \sum_{1 \leq i \leq N} |z_i^N - w_i^N|^2\right)^{\frac{1}{2}} \leq csN^{-1}Q(s,\delta).
\]
(4.49)
Consequently, \(z^N \) can also be approximated by the solution \(w \) to the Lippmann-Schwinger equation (4.46):

\[
\mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} |z_i^N - w(y_i)|^2 \right] \leq c \max(N^{-\frac{3}{2}} sNQ(s, \delta), sN) s^{-1} Q(s, \delta).
\]

(4.50)

Remark 4.5. We could technically write explicitly the asymptotic satisfied by \((z_i^N)_{1 \leq i \leq N}\) by using a Neumann series, or to state an approximation theorem similar to Proposition 4.6 by considering the continuous limit equation to (4.40):

\[
z = sNQ(s, \delta) \int_{\Omega} \Gamma^k(\cdot - y)z(y)\rho(y) \, dy - sNcap(D) \int_{\Omega} \Gamma^k(\cdot - y)z(y)\rho(y) \, dy = s^{-1} Q(s, \delta) b^N(y).
\]

However, we restrict our analysis to the approximation provided by the simplest model (4.46) for the sake of simplicity.

We infer an approximation formula for the solution \(x^N \) to the discrete problem (4.22).

Proposition 4.7. Assume \((H1), (H2)\) and \((H4)\) and the event \(\mathcal{H}_{N_0} \) to be realized. The linear system (4.22) is invertible and the solution \(x^N \) admits the following asymptotic expansion:

\[
x_i^N = w_i^N Q(s, \delta) + O(sN(s^{-1}Q(s, \delta)N^\frac{1}{2}))) \| \|_2
\]

\[
= w_i^N V a_i - 117 V a_i + O(Q(s, \delta)^{-1}(s^{-1}Q(s, \delta)N^\frac{1}{2}))) \| \|_2.
\]

Proof. Denote by \(\hat{A}(s, \delta) \) the matrix of the linear system (4.38). Recall that due to (2.7) and the inequality (2.13), the matrices \(A_N^k = N^{-1}(\Gamma^k(y_i - y_j))_{1 \leq i \neq j \leq N}, A_N^s = N^{-1}(\Gamma^k(y_i - y_j))_{1 \leq i \neq j \leq N} \) have bounded norm with large probability:

\[
\|A_N^k\|_2 \leq c, \quad \|A_N^s\|_2 \leq c.
\]

From the formula (4.41) and the norm estimate result (4.48), we infer that the conditioning of the matrix \(\hat{A}(s, \delta) \) satisfies

\[
\|\hat{A}(s, \delta)^{-1}\|_2 \leq c \delta^{-1} Q(s, \delta).
\]

By left-multiplying (4.22) with \(\hat{A}(s, \delta)^{-1} \) and using (4.25) (recall from (2.7) that \(\ell_N^{-1} = O(N) \) with large probability), we obtain

\[
(1 + O(Q(s, \delta)(sN\eta_N + \delta)))x^N = \hat{A}(s, \delta)^{-1} F,
\]

which implies, since \(\delta = o(sN\eta_N) \) and by using a Neumann series:

\[
x^N = \hat{A}(s, \delta)^{-1} F + O(s^{-1}Q(s, \delta)N^\frac{1}{2}(sNQ(s, \delta)\eta_N))) \| \|_2.
\]

Finally, recall from (4.34) that

\[
F = \delta s^{-1} b^N(y_i)C1 + O(\delta s^{-1} \max(sN\eta_N, s)N^\frac{1}{2})) \| \|_2,
\]

and that the quantity \(\hat{A}(s, \delta)^{-1}(\delta s^{-1} b^N(y_i)C1) \) is exactly given by the formula (4.41). Furthermore, the vector \((b^N(y_i))_{1 \leq i \leq N}\) of (4.39) can be approximated by

\[
(b^N(y_i))_{1 \leq i \leq N} = (u^N(y_i))_{1 \leq i \leq N} + O(sN^\frac{1}{2}))) \| \|_2.
\]

Then, (4.49) enables to substitute \(z^N \) with the vector \(w^N = (w_i^N)_{1 \leq i \leq N} \) up to an error of order \(sN \). All in all, we obtain

\[
x_i^N = sNA_N^k w_i^N Q(s, \delta) + s^{-1} u_i^N(y_i)Q(s^\delta) + O(max(sN, sNQ(s, \delta)\eta_N) s^{-1}Q(s, \delta)N^\frac{1}{2}) \| \|_2
\]

\[
= w_i^N Q(s, \delta) + O(max(sN, sNQ(s, \delta)\eta_N) s^{-1}Q(s, \delta)N^\frac{1}{2}) \| \|_2,
\]

where we have used the characterization (4.44) at the last line. The result follows from

\[
\frac{Q(s, \delta)}{Q(s, \delta)} = \frac{V a_i}{117 V a_i} + O(Q(s, \delta)^{-1}),
\]

and by noticing that \(sN = O(Q(s, \delta)^{-1}) \) and \(sNQ(s, \delta)\eta_N = sNQ(s, \delta) sN^{-\frac{1}{2}} = o(sN) = o(Q(s, \delta)^{-1}). \)

Remark 4.6. We can infer an important physical consequence from the limit equation (4.46) which models the leading order effects of the interactions between the acoustic obstacles. It allows to formally derive the leading order effective damping and effective shifts of the resonant characteristic size \(s_i(\delta) \) from the effective equation (4.46). Let us consider a complex characteristic size \(s_{eff,i}(\delta) \in C \) such that

\[
\phi=sNQ(s, \delta)^{-1}V \rho[\phi] = 0
\]
has a non-trivial solution $\phi \in L^2(\Omega)$ for $s = s_{\text{eff}, i}(\delta)$. This is possible if $s_{\text{eff}, i}(\delta) N Q(s_{\text{eff}, i}(\delta), \delta) = \frac{1}{\mu}$, for μ being a (complex) eigenvalue of the volume potential \mathcal{V}. To the leading order, we obtain

$$
\lambda_i (1^T V a_i)^2 s_{\text{eff}, i}(\delta) N \simeq \frac{1}{\mu} \left(\frac{s_{\text{eff}, i}(\delta)}{s_i(\delta)} - 1 \right),
$$

which yields an effective resonant characteristic size

$$s_{\text{eff}, i}(\delta) \simeq s_i(\delta) \left(1 + \frac{\mu}{2} \lambda_i (1^T V a_i)^2 s_i(\delta) N \right).$$

If one considers a material with fixed scaling characteristic size s (as in [20]), and one is interested in effective resonant frequencies $\omega_{\text{eff}, i}(\delta)$, inverting the relation

$$s \simeq \delta^\frac{1}{2} \lambda_i^\frac{1}{2} \frac{v_{h}}{\omega_{\text{eff}, i}(\delta)} \left(1 + \frac{\mu}{2} \lambda_i (1^T V a_i)^2 \delta^\frac{1}{2} \lambda_i^\frac{1}{2} \frac{v_{h}}{\omega_{\text{eff}, i}(\delta) N} \right),$$

yields the effective resonant frequency

$$\omega_{\text{eff}, i}(\delta) \simeq \frac{\delta^\frac{1}{2} \lambda_i^\frac{1}{2} v_{h}}{s} \left(1 + \frac{\mu}{2} \lambda_i (1^T V a_i)^2 \delta^\frac{1}{2} \lambda_i^\frac{1}{2} \frac{v_{h}}{\omega_{\text{eff}, i}(\delta) N} \right) \simeq \frac{\delta^\frac{1}{2} \lambda_i^\frac{1}{2} v_{h}}{s} + \frac{\mu}{2} \lambda_i^\frac{1}{2} v_{h} (1^T V a_i)^2 N \delta^\frac{1}{2}.$$

This analysis predicts that the multiple scattering interactions induce a damping and an effective shift of the Minnaert resonance by a factor of order $s N = O(N \delta^\frac{1}{2})$ (respectively the real and imaginary parts). This is significantly different from the situation with a single system of K resonators of size s, where the leading order correction for the Minnaert resonance is of order $O(\delta^\frac{1}{2} / s)$ (corresponding to a factor δ), and the damping is of order $O(\delta / s)$ (corresponding to a factor $\delta^\frac{1}{2}$) (see [20, 34]). This particularly emphasizes that interactions between the N groups of K resonators generate attenuation effects which cannot be predicted by the leading order corrections of a single system of K resonators.

We note that this discussion could be correlated to the study of [61], where the authors also come to the conclusions, by resorting to a different modelling, that an acoustic bubble within an array has a much larger radiative damping than a single bubble.

4.3 Effective medium theory for a monopole-type resonant system up to a critical scale

This third and final subsection is dedicated to the proof of the following homogenization theorem.

Proposition 4.8. Assume (H1), (H2) and (H4). Let u be the solution to the following Lippmann-Schwinger equation:

$$
\begin{cases}
(\Delta + k^2 - sNQ(s, \delta) \rho 1_{\Omega}) u = 0, \\
\left(\frac{\partial}{\partial |x|} - i k \right) (u - u_{\text{in}}) = O(|x|^{-2}) \text{ as } |x| \to +\infty.
\end{cases}
$$

(4.51)

There exists an event \mathcal{H}_{N_0} which holds with large probability $\mathbb{P}(\mathcal{H}_{N_0}) \to 1$ as $N_0 \to +\infty$ such that when \mathcal{H}_{N_0} is realized, the function u is an approximation of the solution field $u_{N,s}$ to (1.2) with the following error estimates:

(i) on any ball $B(0, r)$ such that $\Omega \subset B(0, r)$, there exists a constant $c > 0$ independent of s, N and δ such that for any $N \geq N_0$:

$$E[|u_{N,s} - u|_{L^2(B(0, r))}^2 \mathcal{H}_{N_0}] \frac{s}{2} \leq c s N Q(s, \delta) \max(\delta^\frac{1}{2} s N, N^{-\frac{1}{2}});$$

(ii) on any bounded open subset $A \subset \mathbb{R}^{3} \setminus \partial \Omega$ away from the resonators, there exists a constant $c > 0$ independent of s, N and δ such that for any $N \geq N_0$:

$$E[\|
abla u_{N,s} - \nabla u\|_{L^2(A)}^2 \mathcal{H}_{N_0}] \frac{s}{2} \leq c s N Q(s, \delta) \max(\delta^\frac{1}{2} s N, N^{-\frac{1}{2}}).$$

We can conclude several important results from (4.51):

(i) in the (strictly) subcritical regime $s N Q(s, \delta) \to 0$, i.e.

$$\frac{\delta^\frac{1}{2} s N}{s_i(\delta)} \to 0 \text{ as } \delta \to 0, N \to 0 \text{ and } \frac{s}{s_i(\delta)} \to 1,$$

the effective medium is transparent at first order, and we have the convergence $u \to u_{\text{in}}$ in $L^2(B(0, r))$;

(ii) in the critical regime, i.e. $s N Q(s, \delta) \sim \Lambda$ for some constant $\Lambda \in \mathbb{R}$ or

$$\frac{\delta^\frac{1}{2} s N}{s_i(\delta)} \to \Lambda' \text{ as } \delta \to 0, N \to +\infty \text{ and } \frac{s}{s_i(\delta)} \to 1.$$
Lemma 4.5. We have the following asymptotic expansions with the norm of $L^2(\partial D)$ defined in (2.12):

(i) $G^{-1}(s, \delta) = \mathcal{L}_0^{-1} + O(sN\eta_N)_{L^2(\partial D)} \to L^2(\partial D)$,

(ii) $G^{-1}(s, \delta)[f] = O(\delta N^{\frac{1}{2}})_{L^2(\partial D)}$,

(iii) $(S^b_0)^{-1}S_{D}^b G^{-1}(s, \delta) = \mathcal{L}_0^{-1} + O(sN)_{L^2(\partial D)} \to L^2(\partial D)$,

(iv) $(S^b_0)^{-1}S_{D}^b G^{-1}(s, \delta)[f] = O(\delta N^2)_{L^2(\partial D)}$,

(v) $(S^b_0)^{-1}P_{N,s}^{-1}[u_{in}] = (s^{-1}u_{in}(y_i)\psi^*)_{1 \leq i \leq N} + O(s^{-1}Ns^\frac{1}{2})_{L^2(\partial D)} = O(N^2)_{L^2(\partial D)}$.

Proof. (i) is a consequence of Lemma 4.3.

(ii) This identity comes from $\|f\|_{L^2(\partial D)} = O(\delta N^{\frac{1}{2}})$, see Proposition 4.5.

(iii) $(S^b_0)^{-1}S_{D}^b G^{-1}(s, \delta) = (1 + O(sN))(\mathcal{L}_0^{-1} + O(sN\eta_N)) = \mathcal{L}_0^{-1} + O(sN)$.

(iv) is obtained identically as (ii).

(v) $(S^b_0)^{-1}P_{N,s}^{-1}[u_{in}] = s^{-1}(S_{D}^b 0 + O(sN))[(u_{in}(y_i)_{1 \partial D} + O(ssN^\frac{1}{2})_{L^2(\partial D)}]

\quad = s^{-1}(u_{in}(y_i)\psi^*)_{1 \leq i \leq N} + O(s^{-1}Ns^\frac{1}{2})_{L^2(\partial D)} + O(s^{-1}ssN^\frac{1}{2})_{L^2(\partial D)}$.

Consequently, we obtain the following approximations for the solution $(P_{N,s}^{-1}[\varphi], P_{N,s}^{-1}[\psi])$ of (4.20).

Lemma 4.6. The following asymptotic formulas hold for the solution $(P_{N,s}^{-1}[\varphi], P_{N,s}^{-1}[\psi])$ of (4.5):

\[P_{N,s}^{-1}[\varphi] = \sum_{1 \leq i, j \leq K} w_{ij} e_{ij}^T Q(s, \delta) \varphi^*_{ij} + O((sN)Q(s, \delta)N^\frac{1}{2})_{L^2(\partial D)}, \]

\[P_{N,s}^{-1}[\psi] = \sum_{1 \leq i, j \leq K} w_{ij} e_{ij}^T Q(s, \delta) \psi^*_{ij} + O((sN)Q(s, \delta)N^\frac{1}{2})_{L^2(\partial D)}, \]

where $(e_{ij})_{1 \leq i, j \leq K}$ stands for the canonical basis of \mathbb{R}^K and $O(sN)$ is the relative error.

Proof. First, the result of Proposition 4.7 yields

\[\sum_{1 \leq i, j \leq K} x_{ij}^N \phi^*_{ij} = \sum_{1 \leq i, j \leq K} \left(w_{ij} e_{ij}^T Q(s, \delta) \frac{Q(s, \delta)}{Q(s, \delta)} + O(sNs^{-1}Q(s, \delta)N^\frac{1}{2})_{|| \cdot ||_2} \right) \phi^*_{ij} \]

\[= \sum_{1 \leq i, j \leq K} w_{ij} e_{ij}^T Q(s, \delta) \psi^*_{ij} + O((sN)Q(s, \delta)N^\frac{1}{2})_{L^2(\partial D)}. \]

Consequently, by using (i) and (ii) of Lemma 4.5, we obtain

\[P_{N,s}^{-1}[\varphi] = \sum_{1 \leq i, j \leq K} w_{ij} e_{ij}^T Q(s, \delta) \varphi^*_{ij} + O(sN\eta_N Q(s, \delta)N^\frac{1}{2})_{L^2(\partial D)} + O(sNQ(s, \delta)N^\frac{1}{2})_{L^2(\partial D)} + O(\delta N^\frac{1}{2}) \]

\[= \sum_{1 \leq i, j \leq K} w_{ij} e_{ij}^T Q(s, \delta) \psi^*_{ij} + O(Q(s, \delta)^{-1}Q(s, \delta)N^\frac{1}{2})_{L^2(\partial D)}. \]
Similarly, we find

\[P_{N,s}^{-1}[\psi] = (S_D^{\delta})^{-1} S_D^{sN} \sum_{1 \leq i \leq N} x_{ij}^N \phi_i^* + (s^{-1} u_{\text{in}}(y_i) \phi_i^*)_{1 \leq i \leq N} + O(\delta N\frac{1}{2}) + O(s^{-1} sN sN^\frac{1}{2})_{L^2(\partial D)} \]

\[= \sum_{1 \leq i \leq N} w_i N \int_0^1 \frac{e_t^T Q(s, \delta)}{Q(s, \delta)} \phi_i^* + O(sN sN^{-1} Q(s, \delta) N^2)_{L^2(\partial D)} + O(sN Q(s, \delta) N^2)_{L^2(\partial D)} + O(N^2)_{L^2(\partial D)}, \]

from where the result follows.

We infer the following approximations for the potentials \(S_{D_{N,s}}^{[\varphi]} \) and \(S_{D_{N,s}}^{[\psi]} \).

Proposition 4.9. The following asymptotic expansions hold on \(D_{N,s} \), on the ball \(B(0, r) \) containing the inclusions, and on any open set \(A \subset \mathbb{R}^3 \setminus B(0, r) \) outside the inclusions:

\[S_{D_{N,s}}^{[\varphi]} = \sum_{1 \leq i \leq N} s w_i N \int_0^1 \frac{e_t^T Q(s, \delta)}{Q(s, \delta)} S_D^{sN} \phi_i^* + O(sN Q(s, \delta) sN^2)_{L^2(D_{N,s})} = O \left((Q(s, \delta) s^2 N^2)_{L^2(D_{N,s})} \right), \]

\[S_{D_{N,s}}^{[\psi]} = \sum_{1 \leq i \leq N} s w_i N \int_0^1 \frac{e_t^T Q(s, \delta)}{Q(s, \delta)} S_D^{sN} \phi_i^* + O(sN Q(s, \delta) sN)_{L^2(B(0, r))}, \]

\[\nabla S_{D_{N,s}}^{[\psi]} = \sum_{1 \leq i \leq N} s w_i N \int_0^1 \frac{e_t^T Q(s, \delta)}{Q(s, \delta)} \nabla S_D^{sN} \phi_i^* + O(sN Q(s, \delta) sN)_{L^2(A)}, \]

where \(sN \) is the relative error.

Proof. These estimates are obtained by applying the bounds of Proposition 2.5 and by using the identity

\[S_{Y_{s+D}}^{[\psi]} = s S_D^{[\psi]} \circ \tau_{Y_{s+D}}^{-1}. \]

Proof of Proposition 4.8. From the previous estimates (4.54) and (4.55), we obtain the following asymptotic expansion for \(u_{N,s} \) in the ball \(B(0, r) \):

\[u_{N,s} = u_{\text{in}} + s w_i N \int_0^1 \frac{e_t^T Q(s, \delta)}{Q(s, \delta)} f_{\text{in}}(\cdot - y_i - st) \phi_i^*(t) d\sigma(t) + O((sN) Q(s, \delta) sN)_{L^2(B(0, r))} \]

\[= u_{\text{in}} + s w_i N \int_0^1 \frac{e_t^T Q(s, \delta)}{Q(s, \delta)} f_{\text{in}}(\cdot - st) \phi_i^*(t) d\sigma(t) + O((sN) Q(s, \delta) sN)_{L^2(B(0, r))}, \]

where \(w_i N \) is the Nyström interpolant. Using the same methodology as in Section 3.3, we read the following convergences:

\[u_{N,s} = u_{\text{in}} + \sum_{1 \leq i \leq K} e_t^T Q(s, \delta) \int_0^1 \left(\frac{s}{Q(s, \delta)} w(\cdot - st) - u_{\text{in}}(\cdot - st) \right) \phi_i^*(t) d\sigma(t) + O((sN) Q(s, \delta) \max(sN, N^{-\frac{1}{2}}) \| \|_{L^2(B(0, r))})^{\frac{1}{2}} \]

\[= u_{\text{in}} + \sum_{1 \leq i \leq K} e_t^T Q(s, \delta) \left(\frac{s}{Q(s, \delta)} w - u_{\text{in}} \right) + O((sN) Q(s, \delta) \max(sN, N^{-\frac{1}{2}}) \| \|_{L^2(B(0, r))})^{\frac{1}{2}} + O((sN) Q(s, \delta) \max(sN, N^{-\frac{1}{2}}) \| \|_{L^2(B(0, r))})^{\frac{1}{2}} \]

The result follows because \(s/Q(s, \delta) w \) is the solution to (4.51).

Remark 4.7. When the packet of obstacles \(D \) is constituted of a single resonator \(D \equiv B (K = 1) \), we have (see [13, 34]):

\[\lambda_1 = \frac{\text{cap}(D)}{|D|}, \quad \alpha = |D|^{-\frac{1}{2}}, \quad V = |D|. \]
Therefore,
\[Q(s, \delta) = \frac{\lambda_i}{s^2} = \frac{(V_1\mathbf{1})^2}{\text{cap}(D) s^2} = \text{cap}(D) \frac{\delta^2}{s}, \]
with \(\omega_M := \frac{\text{cap}(D) \delta^2}{s} \), and the effective equation reads, as \(\omega \to \omega_M \) in the subcritical regime (H4):
\[
\begin{pmatrix}
\Delta + k^2 - \frac{sN}{\omega^2} \text{cap}(D)\rho_1 \end{pmatrix} u = 0
\]
\[
(\partial_x - ik) u = O(|x|^{-2}) \text{ as } |x| \to +\infty.
\]
We retrieve therefore the result of the seminal paper \([20]\).

APPENDIX A. MARKOV INEQUALITY AND LAW OF LARGE NUMBERS

We used the following result in Proposition 2.1.

Proposition A.1. Let \(X \) be a square integrable real random variable \(\mathbb{E}[X^2] < +\infty \) and \(a \in \mathbb{R} \). The following Markov inequality holds:
\[
\mathbb{P}(|X|^2 \geq |a|^2) \leq \frac{\mathbb{E}[X^2]}{|a|^2}.
\]

Proposition A.2. Let \((y_i)_{i \in \mathbb{N}} \) be a sequence of independent real random variables and \(f : \mathbb{R}^p \to \mathbb{R} \) be a square integrable function:
\[
\mathbb{E}[f(y_1, \ldots, y_P)^2] < +\infty.
\]
Let \(S \) denote the set of pair of increasing indices \((i_1, \ldots, i_p), (j_1, \ldots, j_p)\) with at least one element in common:
\[
S := \left\{ (i_1, \ldots, i_p), (j_1, \ldots, j_p) \in \mathbb{N}^p \times \mathbb{N}^p \mid \begin{array}{l}
1 \leq i_1 < \cdots < i_p \leq N, \\
1 \leq j_1 < \cdots < j_p \leq N
\end{array}, \exists 1 \leq k, l \leq p \text{ such that } i_k = j_l \right\}.
\]

The following law of large numbers holds: for \(N \) sufficiently large,
\[
\mathbb{E} \left[\frac{p!(N-p)!}{N!} \sum_{i_1 < i_2 < \cdots < i_p} f(y_1, \ldots, y_P) - \mathbb{E}[f(y_1, \ldots, y_P)] \right]^2 \leq 2pN^{-\frac{1}{2}} \mathbb{E}[f(y_1, \ldots, y_P) - \mathbb{E}[f(y_1, \ldots, y_P)]^2].
\]
(A.1)

Proof. The number of elements of \(S \) is
\[
|S| = \left(\frac{N!}{(N-p)!} \right)^2 - \frac{N!}{p!(N-p)!} \frac{(N-p)!}{(N-2p)!} = \left(\frac{N!}{(N-p)!} \right)^2 \left(1 - \frac{(N-p)!}{N!(N-2p)!} \right) = \left(\frac{N!}{(N-p)!} \right)^2 \left(\frac{p^2}{N^2} + O \left(\frac{1}{N^2} \right) \right).
(A.2)
\]
Then by independence, we have
\[
\mathbb{E} \left[\frac{p!(N-p)!}{N!} \sum_{i_1 < i_2 < \cdots < i_p} f(y_1, \ldots, y_P) - \mathbb{E}[f(y_1, \ldots, y_P)] \right]^2
= \left(\frac{p!(N-p)!}{N!} \right)^2 \sum_{1 \leq i_1 < \cdots < i_p \leq N} \mathbb{E}[(f(y_1, \ldots, y_P) - \mathbb{E}[f(y_1, \ldots, y_P)])(f(y_1, \ldots, y_P) - \mathbb{E}[f(y_1, \ldots, y_P)])]
\leq \left(\frac{p!(N-p)!}{N!} \right)^2 \left| S \right| \mathbb{E}[f(y_1, \ldots, y_P)^2] - \mathbb{E}[f(y_1, \ldots, y_P)]^2
\leq \frac{4p^2}{N} \mathbb{E}[(f(y_1, \ldots, y_P) - \mathbb{E}[f(y_1, \ldots, y_P)])^2].
\]
where we used the Cauchy-Schwartz inequality at the fourth line and (A.2) for N sufficiently large at the last line.

\[\square \]

Remark A.1. The second inequality in (A.1) yields more precise estimates than the second one.

Finally we recall the limit of the probability distribution of the minimum distance between independently distributed random points.

Proposition B.3 ([46, 58]). Let $(y_i)_{i \in \mathbb{N}}$ be independent random points distributed according to a probability measure $\rho \, d\mu$ with support of dimension d (e.g. $d\mu = dx$ if $d = 3$, $d\mu = d\sigma$ if $d = 2$, $d\mu = d\ell$ if $d = 1$). Assume that ρ is square integrable. Then

\[
P \left(\min_{1 \leq i \neq j \leq N} |y_i - y_j| < t N^{-\frac{d}{2}} \right) \to 1 - \exp \left(-\frac{1}{2} t^d c_d \int \rho^2 \, d\mu \right),
\]

where $c_d = \pi^{d/2} \Gamma(1 + d/2)$ is the volume of the d-dimensional unit ball. As a consequence, for any $c > 0$, there exists $t > 0$ such that for any $N \in \mathbb{N}$,

\[
P(t^{-1} N^{-2/d} \leq \min_{1 \leq i \neq j \leq N} |y_i - y_j| \leq t N^{-2/d}) > 1 - c.
\]

APPENDIX B. HIGHER ORDER DERIVATIVES OF THE HELMHOLTZ FUNDAMENTAL SOLUTION

We recall the following result which was used in Proposition 2.3.

Proposition B.1 ([34], Lemma 5.1). There exists a constant $c > 0$ independent of k such that for any $p \in \mathbb{N}$,

\[
\forall x \in \mathbb{R}^3, \quad \nabla^{\alpha+1} |k(x)| \leq c |k| x^{-1} (|x|^{-p} + k^p).
\]

APPENDIX C. RESOLVENT ESTIMATES OF SCHATTEN OPERATORS

The proof of Proposition 3.3 is based on the following result from Bandtlow [21] which bounds the norm of A^{-1} for an operator A.

Proposition C.1. Let A be a Hilbert-Schmidt operator. For any $\lambda \in \rho(A)$, the following inequality holds:

\[
\left\| (\lambda - A)^{-1} \right\|_2 \leq \frac{1}{d(\lambda, \sigma(A))} \exp \left(\frac{1}{2} \left(\frac{\text{Tr}(A^* A)}{d(\lambda, \sigma(A))^2} + 1 \right) \right),
\]

where $d(\lambda, \sigma(A))$ is the distance of λ to the spectrum of A:

\[
d(\lambda, \sigma(A)) := \inf_{\mu \in \sigma(A)} |\lambda - \mu|.
\]

Proof. See Theorem 4.1 in [21]. \[\square \]

REFERENCES

