
HAL Id: hal-03372522
https://hal.science/hal-03372522

Submitted on 10 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An FPT Algorithm for the Embeddability of Graphs
into Two-Dimensional Simplicial Complexes

Éric Colin de Verdière, Thomas Magnard

To cite this version:
Éric Colin de Verdière, Thomas Magnard. An FPT Algorithm for the Embeddability of Graphs
into Two-Dimensional Simplicial Complexes. European Symposium on Algorithms, Sep 2021, Lisbon,
Portugal. �10.4230/LIPIcs.ESA.2021.32�. �hal-03372522�

https://hal.science/hal-03372522
https://hal.archives-ouvertes.fr

An FPT Algorithm for the Embeddability of Graphs
into Two-Dimensional Simplicial Complexes
Éric Colin de Verdière #

LIGM, CNRS, Univ Gustave Eiffel, F-77454 Marne-la-Vallée, France

Thomas Magnard #

LIGM, CNRS, Univ Gustave Eiffel, F-77454 Marne-la-Vallée, France

Abstract
We consider the embeddability problem of a graph G into a two-dimensional simplicial complex C:
Given G and C, decide whether G admits a topological embedding into C. The problem is NP-hard,
even in the restricted case where C is homeomorphic to a surface.

It is known that the problem admits an algorithm with running time f(c)nO(c), where n is
the size of the graph G and c is the size of the two-dimensional complex C. In other words, that
algorithm is polynomial when C is fixed, but the degree of the polynomial depends on C. We
prove that the problem is fixed-parameter tractable in the size of the two-dimensional complex, by
providing a deterministic f(c)n3-time algorithm. We also provide a randomized algorithm with
expected running time 2cO(1)

nO(1).
Our approach is to reduce to the case where G has bounded branchwidth via an irrelevant vertex

method, and to apply dynamic programming. We do not rely on any component of the existing
linear-time algorithms for embedding graphs on a fixed surface; the only elaborated tool that we use
is an algorithm to compute grid minors.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Graph algorithms; Mathematics of computing → Graphs and surfaces; Mathematics
of computing → Topology

Keywords and phrases computational topology, embedding, simplicial complex, graph, surface,
fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.32

Related Version Full Version: https://arxiv.org/abs/2107.06236

Funding Partially supported by the ANR projects Min-Max (ANR-19-CE40-0014) and SoS (ANR-
17-CE40-0033).

Acknowledgements We would like to thank Arnaud de Mesmay for useful discussions.

1 Introduction

An embedding of a graph G into a host topological space X is a crossing-free topological
drawing of G into X. The use and computation of graph embeddings is central in the
communities of computational topology, topological graph theory, and graph drawing. A
landmark result is the algorithm of Hopcroft and Tarjan [12], which allows to decide whether a
given graph is planar (has an embedding into the plane) in linear time. Related results include
more planarity testing algorithms [21], algorithms for embedding graphs on surfaces [18, 13]
and for computing book embeddings [17], Hanani-Tutte theorems [24], and the theory of
crossing numbers and planarization [2].

In this paper, we describe algorithms for deciding the embeddability of graphs into
topological spaces that are, in a sense, as general as possible: two-dimensional simplicial
complexes (or 2-complexes for brevity), which are made from vertices, edges, and triangles
glued together. (We remark that every graph is embeddable in R3, so considering higher-
dimensional simplicial complexes is irrelevant.) In a previous article, jointly written with

© Éric Colin de Verdière and Thomas Magnard;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eric.colindeverdiere@u-pem.fr
mailto:thomas.magnard@univ-eiffel.fr
https://doi.org/10.4230/LIPIcs.ESA.2021.32
https://arxiv.org/abs/2107.06236
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 An FPT Algorithm for the Emebddability of Graphs into 2-Complexes

Mohar [6], we proved that, given a graph G and a 2-complex C , one can decide whether
G embeds into C in polynomial time for fixed C ; but the algorithm has running time
f(c) ·nO(c), where n and c are the respective sizes of G and C . Using a very different strategy,
we describe algorithms for this problem, proving that it is fixed-parameter tractable in the
complexity of the input complex:

▶ Theorem 1.1. One can solve the embeddability problem of graphs into 2-dimensional
simplicial complexes in deterministic f(c)n3 time or in expected time 2cO(1)

nO(1), where c is
the number of simplices of the input 2-complex, n is the number of vertices and edges of the
input graph, and f is some computable function of c.

2-complexes are much more general than surfaces, and tools that are suitable for studying
embeddability of graphs on surfaces do not generalize. For example, the set of graphs
embeddable on a given 2-complex is not closed under minor, which makes many tools for
dealing with graphs on surfaces unsuitable for 2-complexes. Moreover, the complexity of some
topological problems increase drastically when we consider 2-complexes instead of surfaces,
e.g., deciding homeomorphism [20], or deciding the contractibility of curves [8, 16, 10]. Some
other topological problems, such as the existence of a drawing a graph with at most k

crossings in the plane or in a surface [14], can be recast as deciding whether the graph embeds
on a certain 2-complex. For more detailed motivations, see [6, Introduction].

Comparison with previous works on surfaces

Since every surface is homeomorphic to a 2-complex, our problem has been largely considered
in the special case where the input 2-complex is (homeomorphic to) a surface. That restricted
problem is NP-hard [26], but several algorithms that are fixed-parameter tractable in the
genus have been given, which we review now.

Mohar [18] has given an algorithm for this purpose that takes linear time in the input graph,
for every fixed surface. This algorithm is very technical and relies on several other articles.
The dependence on the genus is not made explicit, but seems to be doubly exponential [13].

Kawarabayashi et al., in an extended abstract [13], have given a simpler linear-time
algorithm for this problem, but not all details are presented, which makes the approach hard
to check [15, p. 3657, footnote].

General graph minor theory provides an algorithm for the same purpose. The graph
minor theorem by Robertson and Seymour [23] implies that, for every fixed surface S , there
is a finite list of graphs OS such that a graph G can be embedded on S if and only if G

does not contain any graph in OS as a minor. Moreover, there is an algorithm that given
any surface S (specified by its genus and orientability) outputs the list OS [1], and there
is an algorithm to decide whether a graph M is a minor of another graph G running, for
fixed M , in time cubic in the size of G [22][7, Theorem 6.12]. These considerations thus
lead to an algorithm to decide embeddability of a graph on a surface that runs, if the input
surface is fixed, in cubic time in the size of the input graph.

Finally, in the same vein, Kociumaka and Pilipczuk [15] have studied the following more
general problem than the embeddability problem of graphs on surfaces: Given a surface S , a
graph G, and an integer k ≥ 0, is it possible to remove a set U of at most k vertices from G

so that G − U is embeddable on S ? They provide an algorithm that is fixed-parameter
tractable in k and the genus of S , where the dependence on the genus is unspecified. In
particular, as a special case, they decide the embeddability of a graph on a surface; however,
they use one of the previous algorithms [18, 13] as a subroutine. The problem that we study,
the embeddability of graphs on 2-complexes, is independent from the problem studied by
Kociumaka and Pilipczuk, in the sense that there is, a priori, no obvious reduction from one
problem to the other. However, we will reuse some ingredients from that paper.

É. Colin de Verdière and T. Magnard 32:3

Our algorithms, restricted to the case where we want to embed graphs on surfaces, are
not as efficient as the existing algorithms mentioned above. Indeed, the deterministic one
runs in cubic time in the size of the input graph (for a fixed complex); the dependence on
the size of the complex is not made explicit, because the algorithm uses, as a subroutine, an
algorithm to compute grid minors [22]. The second algorithm is randomized, because it uses
an algorithmic version of the excluded grid theorem [3] that uses randomness; for every fixed
surface, it runs in expected time that is a polynomial of fixed (but large) degree in the size
of the input graph. However, our algorithms are independent from the existing algorithms
for embedding graphs on surfaces; the only elaborated tool that we use is an algorithm to
compute grid minors [3, 22].

Overview and structure of the paper

We use a standard strategy in graph algorithms and parameterized complexity (see, e.g.,
the book by Cygan et al. [7, Chapter 7]): we show by dynamic programming that the
problem can be solved efficiently for graphs of bounded branchwidth, and then, using an
irrelevant vertex method, we prove that one can assume without loss of generality that the
input graph G has branchwidth bounded by a polynomial in the size of the input 2-complex.
In the context of surface-embedded graphs, this paradigm has been used in the extended
abstract by Kawarabayashi et al. [13] and in the article by Kociumaka and Pilipczuk [15];
our algorithm takes inspiration from the former, for the idea of the dynamic programming
algorithm, and from the latter, for some arguments in the irrelevant vertex method. However,
handling 2-complexes requires significantly more effort. More precisely, Theorem 1.1 follows
immediately from the following two theorems.

▶ Theorem 1.2 (algorithm for bounded branchwidth). One can solve the embeddability problem
of graphs into two-dimensional simplicial complexes in time (c + w)O(c+w)n, where c is the
number of simplices of the input 2-complex, and where n and w are the number of vertices
and edges and the branchwidth of the input graph, respectively.

▶ Theorem 1.3 (algorithm to reduce branchwidth). Let C be a 2-complex with c simplices,
and G a graph with n vertices and edges. We can correctly report that G is embeddable
on C , or correctly report that G is not embeddable on C , or compute a subgraph H of G, of
branchwidth polynomial in the number of simplices of C , such that G embeds on C if and
only if H does:

in deterministic time f(c) · n3 for some computable function f ,
or in expected polynomial time.

We now present the structure of the paper, indicating which techniques are used. We
also emphasize which components would be simpler if we were just aiming for an algorithm
for embedding graphs on surfaces.

We introduce some standard notions in Section 2.
Then, in Section 3, we show that we can make some simple assumptions on the input,

and present data structures for representing 2-complexes and graphs embedded on them. If
we restrict ourselves to the case where the input 2-complex is homeomorphic to a surface, we
essentially consider combinatorial maps of graphs on surfaces, except that the graphs need
not be cellularly embedded. The case of 2-complexes is largely more involved.

In Section 4, we show that if our input graph G has an embedding into our input 2-
complex C , then there exists an embedding of G on C that is sparse with respect to a
branch decomposition of G. This means that each subgraph of G induced by the leaves

ESA 2021

32:4 An FPT Algorithm for the Emebddability of Graphs into 2-Complexes

of any subtree of the branch decomposition can be separated from the rest of G using a
graph embedded on C , called partitioning graph, of small complexity. We find that this
new structural result, even in the surface case, is interesting and can prove useful in other
contexts. If the target space were a surface, we could assume that G is 3-connected and has
no loop or multiple edges, which would imply (still with some work) that any embedding
of G would be sparse, but again the fact that we consider 2-complexes requires additional
work.

In Section 5, we present the dynamic programming algorithm, which either determines the
existence of an embedding of G on C , or shows that no sparse embedding of G on C exists
(and thus no embedding at all, by the previous paragraph). The idea is to use bottom-up
dynamic programming and to consider all regions of the 2-complex in which the subgraph
of G (induced by a subtree of the branch decomposition) can be embedded. The complexity
depends exponentially on the branchwidth of G.

The previous arguments, most notably in Section 4, implicitly assumed that, if G has
an embedding into C , it has a proper and cellular embedding, in particular, in which the
faces are homeomorphic to disks. In Section 6, we show that we can assume this property.
Essentially, we build all 2-complexes “smaller” than C , such that G embeds on C if and only
if it embeds into (at least) one of these 2-complexes, and moreover if it is the case, it has an
embedding into (at least) one of these 2-complexes that is proper and cellular. If C were
an orientable surface, we would just consider the surfaces of lower genus; but here a more
sophisticated approach is needed.

The above ingredients allow to prove Theorem 1.2 (Section 7).
In Section 8, we show, using an irrelevant vertex method, that we can assume that G has

branchwidth polynomial in the size of C (Theorem 1.3).

2 Preliminaries

2.1 Graphs and branch decompositions

In this paper, graphs may have loops and multiple edges unless noted otherwise. Let G be a
graph; as usual, we denote by V (G) and E(G) the sets of vertices and edges of G.

A (rooted) branch decomposition of G is a rooted tree B in which:
every node has degree either one (it is a leaf) or three (it is an internal node),
the root is a leaf,
each non-root leaf is labelled with an edge of G, and this labelling induces a bijection.

The vertices and edges of B are called nodes and arcs, respectively. Each arc α of B splits
the tree B into two subtrees B1 and B2; if, for i = 1, 2, we denote by Ei the set of labels
appearing in Ti, we see that α naturally induces a partition (E1, E2) of the set of edges of G

(if α is the arc incident to the root, then one part of the partition is empty). The middle
set associated to α is the set of vertices of G which are the endpoints of at least one edge
in E1 and at least one edge in E2. The width of B is the maximum size of a middle set
associated to an arc of B. The branchwidth of G is the minimum width of its (rooted)
branch decompositions.

The usual definition of a branch decomposition is identical, except that the tree is
unrooted, and thus the leaves are in bijection with the edges of G. Our definition turns out
to be more convenient to use in the dynamic program. The difference is cosmetic, as one can
transform one kind of branch decomposition into the other easily while preserving the width.

É. Colin de Verdière and T. Magnard 32:5

2.2 Surfaces
We will assume some familiarity with surface topology; see, e.g., [19, 25, 4] for suitable
introductions under various viewpoints. We recall some basic definitions and properties.
A surface (without boundary) S is a compact, connected Hausdorff topological space
in which every point has an open neighborhood homeomorphic to the open disk. Up to
homeomorphism, every surface S is obtained from a sphere by:

either removing g/2 open disks and attaching a handle (a torus with an open disk removed)
to each resulting boundary component, where g is an even, nonnegative integer called the
(Euler) genus of S ; in this case, S is orientable;
or removing g open disks and attaching a Möbius band to each resulting boundary
component, for a positive number g called the (non-orientable) genus of S ; in this case,
S is non-orientable.

A possibly disconnected surface is a disjoint union of surfaces.
A surface with boundary is obtained from a surface (without boundary) by removing

a finite set of interiors of disjoint closed disks. The boundary of each disk forms a boundary
component of S . The genus of S is defined as the genus of the original surface without
boundary. Equivalently, a surface with boundary is a compact, connected Hausdorff topolog-
ical space in which every point has an open neighborhood homeomorphic to the open disk or
the closed half disk {(x, y) ∈ R2 | y ≥ 0, x2 + y2 < 1}.

2.3 2-complexes
A 2-complex (or two-dimensional simplicial complex) is an abstract simplicial complex of
dimension at most two: a finite set of 0-simplices called vertices, 1-simplices called edges,
and 2-simplices called triangles. Each edge is a pair of vertices, and each triangle is a triple
of vertices; moreover, each subset of size two in a triangle must be an edge.

Each 2-complex C corresponds naturally to a topological space, obtained as follows: Start
with one point per vertex in C ; connect them by segments as indicated by the edges in C ;
similarly, for every triangle in C , create a triangle whose boundary is made of the three edges
contained in that triangle. By abuse of language, we identify C with that topological space.

2.4 Graph embeddings
Each graph has a natural associated topological space (for graphs without loops or multiple
edges, this is a specialization of the definition for 2-complexes). An embedding Γ of a
graph G into a 2-complex C is an injective continuous map from (the topological space
associated to) G to (the topological space associated to) C . A face of Γ is a connected
component of the complement of the image of Γ in C .

3 2-complexes and their data structures

3.1 Some preprocessing
A 3-book is a topological space obtained from three triangles by considering one side
per triangle and identifying these three sides together into a single edge. We say that a
2-complex C contains a 3-book if C contains three distinct triangles that share a common
edge. Because every graph can be embedded into a 3-book [6, Proposition 3.1], we have the
following proposition:

ESA 2021

32:6 An FPT Algorithm for the Emebddability of Graphs into 2-Complexes

Figure 1 On the left: A 2-complex with 5 singular points, numbered from 1 to 5, and 2 isolated
edges (one between 3 and 4 and one between 1 and 2) where, at singular points, the cones are in
green and the corners in yellow. On the right: the corresponding detached surface.

▶ Proposition 3.1. To decide the embeddability of a graph G on a 2-complex C , we can
without loss of generality, after a linear-time preprocessing, assume the following properties
on the input:

C has no 3-book and no connected component that is reduced to a single vertex;
G has no connected component reduced to a single vertex, and at most one connected
component homeomorphic to a segment.

In the rest of this article, without loss of generality, we implicitly assume that C

and G satisfy the properties stated in Proposition 3.1.

3.2 Structure of 2-complexes without 3-book or isolated vertex
Let C be a 2-complex without 3-book or isolated vertex, and let p be a vertex of C .
Following [6, Section 2.2], we describe the possible neighborhoods of p in C . A cone at p

is a cyclic sequence of triangles t1, . . . , tk, t1 (k ≥ 3), all incident to p, such that, for each
i = 1, . . . , k, the triangles ti and ti+1 (where tk+1 = t1) share an edge incident with p, and
any other pair of triangles have only p in common. A corner at p is a sequence of distinct
triangles t1, . . . , tk, all incident to p, such that, for each i = 1, . . . , k − 1, the triangles ti

and ti+1 share an edge incident with p, any other pair of these triangles have only p in
common, and no other triangle in C shares an edge incident with p and belonging to one
of t1, . . . , tk. An isolated segment at p is an edge incident to p but not incident to any
triangle. The cones, corners, and isolated segments at p form the link components at p.

The set of edges and triangles incident with a given vertex p of C are uniquely partitioned
into cones, corners, and isolated segments. We say that p is a regular point if all the
edges and triangles incident to p form a single cone or corner; in that case, p has an open
neighborhood homeomorphic to a disk or a closed half-disk. Otherwise, p is a singular
point. See Figure 1, left, for an illustration.

Detaching a singular point p in C consists of the following operation: replace p with new
vertices, one for each cone, corner, and isolated segment at p. Detaching all singular points
of a 2-complex (without 3-book) yields a disjoint union of (1) isolated segments and (2) a
surface, possibly disconnected, possibly with boundary, called the detached surface (see
Figure 1, right). The trace of the singular points on the detached surface are the marked
points. Conversely, C can be obtained from a surface (possibly disconnected, possibly with
boundary) and a finite set of segments by choosing finitely many subsets of points and
identifying the points in each subset together.

The boundary of C is the closure of the set of points of C that have an open neighborhood
homeomorphic to a closed half-plane. Equivalently, it is the union of the edges of C incident
with a single triangle.

É. Colin de Verdière and T. Magnard 32:7

3.3 Topological data structure for 2-complexes
Any 2-complex C without 3-book or isolated vertex is obtained from the detached surface and
a set of disjoints segments, by identifying finitely many finite subsets of points. It is thus easy
to describe a topological data structure for storing 2-complexes, by storing the topology
of the detached surface and the segments, and recording additionally the identification of
points to obtain the complex. The size of C is the sum of the number of isolated segments,
the number of connected components of the detached surface, the total genus of the detached
surface, the total number of boundary components of the detached surface, and the total
number of marked points of the detached surface (the occurrences of the singular points).
This is, up to a constant factor, the size of the topological data structure indicated above, if
the genus is stored in unary. Any 2-complex described in the usual combinatorial way can
be converted in polynomial time into this representation. Thus, in the rest of this article,
without loss of generality, we implicitly assume that C is given in the form of
the above topological data structure.

Moreover, given two 2-complexes in the form above, deciding whether they are homeomor-
phic essentially amounts to testing whether the corresponding data structures are isomorphic,
which leads to the following lemma (the running time might be improvable, but this suffices
for our purposes):

▶ Lemma 3.2. Given two 2-complexes C and C ′, given in the topological representation
above, of sizes c and c′ respectively, we can decide whether C and C ′ are homeomorphic in
time (c + c′)O(c+c′).

3.4 Proper and cellular graph embeddings on 2-complexes
Let C be a 2-complex with size c, G a graph, and Γ an embedding of G on C . The
embedding Γ is proper if:

the image of Γ meets the boundary of C only on singular points;
the vertices of Γ cover the singular points of C .

The embedding Γ is cellular if each face of Γ is an open disk plus possibly some part of
the boundary of C . We emphasize that this definition slightly departs from the standard
one. Moreover, we will only consider cellular embeddings that are proper.

We will use a data structure to store possibly non-cellular embeddings of graphs on
surfaces [5, Section 2.2]. Such a data structure is based on the gem representation of cellular
graph embeddings [9, Section 2], but store additional information about the topology of the
faces. It is important to remark that this data structure also allows to recover the topology
of the underlying surface.

Let Γ be a proper graph embedding of a graph G on a 2-complex C (under the assumptions
of Proposition 3.1). Let S be the detached surface of C . Because Γ is proper, it naturally
induces an embedding Γ′, of another graph G′, on S ; some vertices of G located on singular
points of C are duplicated in G′, the vertices of G located in the relative interior of isolated
segments are absent from G′, and the edges of G not in G′ are edges on the isolated segments
of C . Our data structure, called combinatorial map, for storing the graph embedding Γ
and the 2-complex C consists of storing (1) the graph embedding Γ′ on S , as indicated in
the previous paragraph, (2) the isolated segments of C , together with, for each such isolated
segment, an ordered list alternating vertices and edges of Γ (or, instead of an edge, a mark
indicating the absence of such an edge in the region of the isolated segment between the
incident vertices), (3) the identifications of vertices of Γ′ that are needed to recover Γ (and
thus implicitly C).

ESA 2021

32:8 An FPT Algorithm for the Emebddability of Graphs into 2-Complexes

Isomorphisms between combinatorial maps are defined in the obvious way, similar to
the concept of isomorphism between topological data structures: Two combinatorial maps
are isomorphic if there is an isomorphism between the combinatorial maps restricted to the
detached surfaces, isomorphisms between the maps on each isolated segments, and such that
incidences are preserved on the singular points. We can easily test isomorphism between two
combinatorial maps of size k and k′, respectively, in (k + k′)O(k+k′) time.

We will need an algorithm to enumerate all proper embeddings of small graphs on a given
2-complex. This is achieved by a brute-force algorithm:

▶ Lemma 3.3. Let C be a 2-complex of size c and k an integer. We can enumerate the
(c + k)O(c+k) combinatorial maps of graphs with at most k vertices and at most k edges
properly embedded on C in (c + k)O(c+k) time.

4 Partitioning graphs

Let C be a 2-complex and G a graph, which satisfy the properties of Proposition 3.1. In this
section, we lay the structural foundations of the dynamic programming algorithm, described
in the next section (Proposition 5.1). The goal, in this section and the following one, is to
obtain an algorithm that takes as input C and G, and, in time FPT in the size of C and the
branchwidth of G, reports correctly one of the following two statements:

G has no proper cellular embedding on C ,
G has an embedding on C .

This algorithm uses dynamic programming on a rooted branch decomposition of G.
When processing a node of the rooted branch decomposition, it considers embeddings of
the subgraph of G induced by the edges in the leaves of the subtree rooted at that node in
a region of C . This region will be delimited by a partitioning graph embedded on C . Our
dynamic program will roughly guess the partitioning graph at each node of the rooted branch
decomposition. For this purpose, we need that, if G has a proper cellular embedding on C ,
it has such an embedding that is sparse: at each node of the rooted branch decomposition
of G, the partitioning graph corresponding to the embedding of the induced subgraph is
small (its size is upper-bounded by a function of the branchwidth of G and of the size of C).
The goal of this section is to prove that this is indeed the case.

Let (E1, . . . , Ek) be an (ordered) partition of the edge set E(G) of G. (We will only use
the cases k = 2 or k = 3.) The middle set of (E1, . . . , Ek) is the set of vertices of G whose
incident edges belong to at least two sets Ei.

Let Γ be a proper cellular embedding of G on C . Since Γ is cellular, every boundary of C

is incident to at least one vertex of Γ. Let Γ̂ be obtained from Γ by adding edges as follows:
for any pair of vertices u and v of Γ consecutive along a given boundary component of C , we
connect u and v via a new edge that runs along the boundary component. For each (ordered)
partition (E1, . . . , Ek) of the edge set of G, we let Ê1 be the union of E1 and of these new
edges, and Êi = Ei for each i ̸= 1; thus, (Ê1, . . . , Êk) is a partition of the set of edges of Γ̂.

The partitioning graph Π(Γ, E1, . . . , Ek) (or more concisely Π) associated to Γ and
(E1, . . . , Ek) is a graph properly embedded on C (but possibly non-cellularly), with labels
on its faces, defined as follows:

The vertex set of Π is the union of the singular points of C and of (the images under Γ
of) the middle set of E1, . . . , Ek.
The relative interiors of the edges of Π are disjoint from the edges of Γ̂ and from the
isolated segments of C . Let f be a face of Γ̂ (which is homeomorphic to an open disk
plus possibly some points of the boundary of C). Let us describe the edges of Π inside f .

É. Colin de Verdière and T. Magnard 32:9

E1 E2 Π(Γ, E1, E2)

0 0

0 0
1

1

0

2

0

00
0

1
0

0 0

2
2

0

0 0 0
0

00

0

2
1

1

1

Figure 2 Construction of the partitioning graph Π = Π(Γ, E1, E2), for three choices of the
partition (E1, E2) of the same embedding Γ. Only a part of the 2-complex C is shown, with a
boundary at the upper part, and without singular point. Left: The graph embeddings Γ (in thick
lines) and Π (in thin lines). Right: The sole graph Π, together with the labelling of its faces.

If, for some i ∈ {1, . . . , k}, the boundary of f is comprised only of edges of Γ̂ that lie
in a single set Êi, then Π contains no edge inside f . Otherwise, the boundary of f is a
succession of edges of Ê1, Ê2, . . . , Êk. The edges of Π inside f run along the boundary
of f ; for each i ∈ {1, . . . , k}, for each (maximal) group of consecutive edges in Êi along
the boundary of f , we create an edge of Π that runs along this group, with endpoints the
corresponding vertices on the boundary of f (see Figures 2 and 3). These vertices either
are in the middle set of (E1, . . . , Ek), or lie on the boundary of C (and thus on singular
points of C).
It follows from the construction that Γ̂ and Π intersect only at common vertices.
Each face of Π is labelled by an integer in {0, . . . , k} as follows: faces of Π containing
edges in Êi are labelled i, and the other ones are labelled 0. By construction of the
graph Π, each face of Π contains edges from at most one set Êi, so this labelling is well
defined.

Henceforth, we fix a rooted branch decomposition B of G, the root of which is denoted
by ρ. Every arc α of B naturally partitions E(G) into two parts E1 and E2, in which E1 is
the part on the same side as ρ; this (ordered) partition is the edge partition associated
to α. Recall that Γ is a proper and cellular embedding of G on C ; we let Π(Γ, α) be
Π(Γ, E1, E2). Similarly, every node ν of B naturally partitions E(G) into three parts E1, E2,
and E3, in which E1 is the part on the same side as ρ; this partition is the edge partition
associated to ν; we let Π(Γ, ν) be Π(Γ, E1, E2, E3).

We say that Γ is sparse (with respect to B) if the following conditions hold, letting c be
the size of C and w the width of B:

ESA 2021

32:10 An FPT Algorithm for the Emebddability of Graphs into 2-Complexes

E1 E2 E3 Π(Γ, E1, E2, E3)

1

0

0

20
0
1

3
0 1

00
0

0
2

Figure 3 The partitioning graph Π = Π(Γ, E1, E2, E3). Left: The graph embeddings Γ (in thick
lines) and Π (in thin lines). Right: The sole graph Π, together with the labelling of its faces.

2

4 5

1

3 6

2

4 5

1

3 6

2

4
5

1

3 6

Figure 4 Left: A vertex with 6 intervals, numbered from 1 to 6. Middle: The cyclic order obtained
by applying the first type of simplification operation on intervals 1 and 2. After the simplification,
the intervals 1 and 3 are merged into a single one, and similarly for the intervals 2 and 6. Right:
The cyclic order obtained by applying the second type of simplification to the configuration on the
left, on pairs of intervals {1, 2} and {4, 5}. After the simplification, the intervals 1, 3, and 5 are
merged, and similarly for the intervals 2, 6, and 4.

For each arc α of B, the graph Π(Γ, α) has at most 74c + 26w edges;
similarly, for each internal node ν of B, the graph Π(Γ, ν) has at most 3(74c + 26w)
edges.

The result of this section is the following.

▶ Proposition 4.1. Let C be a 2-complex and G a graph, which satisfy the properties of
Proposition 3.1. Let B be a rooted branch decomposition of G. Assume that G has a proper
cellular embedding on C . Then it has a proper cellular embedding Γ on C that is sparse (with
respect to B).

4.1 Monogons and bigons
A monogon of a graph Π embedded on a 2-complex C is a face of Π that is an open disk
whose boundary is a single edge of Π (a loop). Similarly, a bigon of Π is a face of Π that is
an open disk whose boundary is the concatenation of two edges of Π (possibly the same edge
appearing twice). The following general lemma on graphs embedded on surfaces without
monogons or bigons will be used.

▶ Lemma 4.2. Let S be a surface of genus g without boundary. Let Π be a graph embedded
on S , not necessarily cellularly. Assume that Π has no monogon or bigon. Then |E(Π)| ≤
max{0, 3g + 3|V (Π)| − 6}.

4.2 Vertex simplifications
The proof of Proposition 4.1 starts with any proper cellular embedding of Γ, and iteratively
changes the cyclic ordering of edges around vertices in a specific way. Let (E1, E2) be an
(ordered) partition of E(G), let v be a vertex of G, and let C be a link component at v (if

É. Colin de Verdière and T. Magnard 32:11

the image of v under Γ is a singular point, there may be several such link components). We
restrict our attention to the edges of Γ̂ incident to v and belonging to C, in cyclic order
around v. For i = 1, 2, an interval (at v, relatively to (Ê1, Ê2)) is a maximal contiguous
subsequence of edges in this cyclic ordering that all belong to Êi; the interval is labelled i.
Simplifying v (with respect to (E1, E2)) means changing the cyclic ordering of the edges
of Γ̂ incident to v in C by one of the two following operations (Figure 4):
1. either exchanging two consecutive intervals in that ordering, in a way that the ordering

of the edges in each interval is preserved; this operation is allowed only if v is incident to
at least four intervals;

2. or performing the previous operation twice, on two disjoint pairs of consecutive intervals
in that ordering; this is allowed only if v is incident to at least six intervals.

We will rely on the following lemma.

▶ Lemma 4.3. Let Γ be a proper cellular embedding of G on C , and let (E1, E2) be an
(ordered) partition of E(G). Let Γ′ be another proper cellular embedding of G, obtained
from Γ by simplifying one or two vertices with respect to (E1, E2), while keeping the other
cyclic orderings unchanged. Then:
1. |E(Π(Γ′, E1, E2))| < |E(Π(Γ, E1, E2))|;
2. for each (ordered) partition (Ẽ1, Ẽ2) of E(G) such that ˆ̃Ei ⊆ Êj for some i, j ∈ {1, 2},

we have |E(Π(Γ′, Ẽ1, Ẽ2))| ≤ |E(Π(Γ, Ẽ1, Ẽ2))|.

Proof. The proof is based on the following easy but key observations (the second one will
be reused later):

A simplification of v strictly decreases the number of intervals at v;
the number of half-edges of Π(Γ, E1, E2) at v in the link component C equals twice the
number of intervals associated to (Ê1, Ê2) at v in C.

The first point of the lemma immediately follows. For the second point, let us consider, in
the cyclic ordering around v in C, a maximal contiguous sequence of edges in ˆ̃Ei. Since
ˆ̃Ei ⊆ Êj , when simplifying with respect to (E1, E2), this sequence is still contiguous in the
new embedding Γ′. It follows that the number of intervals associated to (ˆ̃E1, ˆ̃E2) does not
increase when replacing Γ with Γ′. ◀

4.3 Rearranging Γ with respect to an edge partition
We can now prove the following lemma:

▶ Lemma 4.4. Let Γ be a proper cellular embedding of G on C , and let (E1, E2) be an
(ordered) partition of E(G). There exists a proper cellular embedding Γ′ of G such that:

|E(Π(Γ′, E1, E2))| ≤ 74c + 26w, where w is the size of the middle set of (E1, E2);
for each (ordered) partition (Ẽ1, Ẽ2) of E(G) such that ˆ̃Ei ⊆ Êj for some i, j ∈ {1, 2},
we have |E(Π(Γ′, Ẽ1, Ẽ2))| ≤ |E(Π(Γ, Ẽ1, Ẽ2))|.

Sketch of proof. Let Π := Π(Γ, E1, E2). We assume that Π has “many monogons or bigons”
and show that there is another cellular embedding Γ′ of G such that:

|E(Π(Γ′, E1, E2))| < |E(Π(Γ, E1, E2))|;
for each (ordered) partition (Ẽ1, Ẽ2) of E(G) such that ˆ̃Ei ⊆ Êj for some i, j ∈ {1, 2},
we have |E(Π(Γ′, Ẽ1, Ẽ2))| ≤ |E(Π(Γ, Ẽ1, Ẽ2))|.

Intuitively, if Π has many monogons attached to a single vertex, or many bigons glued
together, we can change the embedding Γ in a way that leads to vertex simplifications. By
repeatedly iterating this argument, and up to replacing Γ with Γ′, this implies that we can
assume without loss of generality that Π has “not too many monogons or bigons”. Lemma 4.2
then implies that Π has at most 74c + 26w edges, which concludes. ◀

ESA 2021

32:12 An FPT Algorithm for the Emebddability of Graphs into 2-Complexes

4.4 Proof of Proposition 4.1
Proof of Proposition 4.1. Let B be a rooted branch decomposition of G, and let Γ be
a proper cellular embedding of G on C . We consider each arc α of the rooted branch
decomposition in turn, in an arbitrary order. For each such arc, we modify Γ by applying
Lemma 4.4. We first claim that after these iterations, for each arc α of B, we have
|E(Π(Γ, α))| ≤ 74c + 26w.

Immediately after applying the above procedure to an arc α̃ of B, corresponding to the
(ordered) partition (Ẽ1, Ẽ2) of E(G), we have |E(Π(Γ, Ẽ1, Ẽ2))| ≤ 74c + 26w. We now prove
that subsequent applications of Lemma 4.4 to other arcs of the rooted branch decomposition
do not increase this number of edges. Indeed, let α be another arc, corresponding to the
(ordered) partition (E1, E2) of E(G), to which we apply Lemma 4.4. The arc α partitions
the nodes of the tree B into two sets N1 and N2, and similarly α̃ partitions the nodes of the
tree B into two sets Ñ1 and Ñ2. Because B is a tree, we have Ñi ⊆ Nj for some i, j ∈ {1, 2}.
This implies that ˆ̃Ei ⊆ Êj for some i, j ∈ {1, 2}; so the second item of Lemma 4.4 implies
that the number of edges of Π(Γ, Ẽ1, Ẽ2) does not increase when processing arc α. This
proves the claim.

Finally, there remains to prove that, for each internal node ν of B, the graph Π(Γ, ν) has
at most 3(74c + 26w) edges. This follows relatively easily from the above claim. ◀

5 Dynamic programming algorithm

The result of this section is the following proposition.

▶ Proposition 5.1. Let C be a 2-complex and G a graph, which satisfy the properties of
Proposition 3.1. Let c be the size of C and n the number of vertices and edges of G. Let B

be a rooted branch decomposition of G of width w. In (c + w)O(c+w)n time, one can report
one of the following statements, which is true:

G has no sparse proper cellular embedding into C ;
G has an embedding into C .

(Proposition 4.1 implies that we can remove the adjective “sparse” in the above proposi-
tion.)

5.1 Bounding graphs
Let B be a rooted branch decomposition of G of width w. Recall (see Section 2.1) that the
root ρ of B is a leaf associated to no edge of G. Our algorithm will use dynamic programming
in the rooted branch decomposition. For each arc α of B, let Gα be the subgraph of G

induced by the edges of G corresponding to the leaves of the subtree of B rooted at α. The
general idea is that we compute all possible relevant embeddings of Gα in subregions of C .
Such subregions will be delimited by a graph embedded on C of small complexity. For the
dynamic program to work, we also need to keep track of the location of the vertices in the
middle set of α. More precisely, a bounding graph for Gα is a proper labelled graph
embedding Π on C (but possibly non-cellular), such that:

some vertices of Π are labelled; these labels are exactly the vertices of the middle set
associated with α, and each label appears exactly once;
each unlabelled vertex of Π is mapped to a singular point of C ;
each face of Π is labelled 0, 1, or 2;

É. Colin de Verdière and T. Magnard 32:13

Gα has an embedding Γα that respects Π: each vertex of Π labelled v is mapped,
under Π, to the image of v in Γα; moreover, the relative interior of each edge of Γα lies in
the interior of a face of Π labelled 2.

A bounding graph for Gα is sparse if it has at most 74c + 26w edges. Remark that, if Γ
is a sparse proper cellular embedding of G on C (as defined in Section 4), then Π(Γ, α) is a
sparse bounding graph for the restriction of Γ to Gα.

Henceforth, we regard two (labelled) properly embedded graphs as equal if and only if their
(labelled) combinatorial maps are isomorphic. A list Lα of sparse bounding graphs for Gα is
exhaustive if the following condition holds: If G has a sparse proper cellular embedding
on C , then for each such embedding Γ, the (combinatorial map of the) graph Π(Γ, α) is
in Lα.

The induction step for the dynamic programming algorithm is the following.

▶ Proposition 5.2. Let ν be a non-root node of B and α be the arc of B incident to ν that
is the closest to the root ρ. Assume that, for each arc β ≠ α of B incident to ν, we are given
an exhaustive list of sparse bounding graphs for Gβ. Then we can, in (c + w)O(c+w) time,
compute an exhaustive list of (c + w)O(c+w) sparse bounding graphs for Gα.

Assuming Proposition 5.2, the proof of which is deferred to the next subsection, it is easy
to prove Proposition 5.1:

Proof of Proposition 5.1, assuming Proposition 5.2. We apply the algorithm of Proposi-
tion 5.2 in a bottom-up manner in the rooted branch decomposition B. Let α be the arc
of B incident with the root node ρ. We end up with an exhaustive list of sparse bounding
graphs for Gα = G. By definition of a bounding graph, if this list is non-empty, then G has
an embedding on C . On the other hand, by definition of an exhaustive list, if this list is
empty, then G has no sparse proper cellular embedding on C .

There are O(n) recursive calls, each of which takes (c + w)O(c+w) time. ◀

5.2 The induction step: Proof of Proposition 5.2
Proof of Proposition 5.2. First case. Let us first assume that ν is a (non-root) leaf of B;
thus, Gα is a single edge uv. Using Lemma 3.3, we compute all the labelled combinatorial
maps of sparse bounding graphs for Gα. This is clearly an exhaustive list. Indeed, assume
that G has a sparse proper cellular embedding Γ on C ; by sparsity, Π(Γ, α) has at most
74c + 26w edges; thus, one of the labelled combinatorial maps computed will be equal to
that of Π(Γ, α).

Second case. Let us now assume that ν is an internal node of B. As above, let α be the
arc of B incident to ν that is the closest to the root ρ. Let β and γ be the arcs different
from α incident to ν. Let Lβ and Lγ be exhaustive lists of bounding graphs for Gβ and Gγ ,
respectively. Intuitively, every pair of bounding graphs in Lβ and Lγ that are compatible,
in the sense that the regions labelled 2 in each of these two graphs are disjoint, will lead
to a bounding graph in Lα. This is the motivating idea to our approach. More precisely,
we will enumerate labelled combinatorial maps Π, each of which can be “restricted” to
two compatible graphs, which are possible bounding graphs for Gβ and Gγ . If these two
restrictions lie in Lα and Lβ , this leads to a graph that is added to Lα.

We first introduce some terminology. Let Π be a graph properly embedded on C (possibly
non-cellularly), with faces labelled 0, 1, 2, or 3, and with labels on some vertices. Let i, j, k

be integers such that {i, j, k} = {1, 2, 3}. We will define a graph embedding Πi,j obtained

ESA 2021

32:14 An FPT Algorithm for the Emebddability of Graphs into 2-Complexes

from Π by somehow “merging” faces i and j. First, for an illustration, refer back to Figures 2
and 3: If Π is the graph embedding depicted on the right of Figure 3, then the configurations
shown on the right of Figure 2 correspond, from top to bottom, to Π2,3, Π1,3, and (Π1,2)−

(the latter being the graph Π1,2 in which each face label 3 is replaced by a 2).
Formally, Πi,j is defined as follows. First, let us replace all face labels j by i. Now, for

each face f of Π that is homeomorphic to a disk and labelled 0, we do the following. The
boundary of f is made of edges of Π; for the sake of the discussion, let us temporarily label
each such edge by the label of the face on the other side of f . If all edges on the boundary
of f all labelled i, then we remove all these edges, and f becomes part of a larger face
labelled i. Otherwise, for each maximal subsequence e1, . . . , eℓ of edges along the boundary
of f that are all labelled i, we remove each of e1, . . . , eℓ, and replace them with an edge
inside f from the source of e1 to the target of eℓ. Finally, we remove all isolated vertices
that do not coincide with a singular point of C , and all vertices in the relative interior of an
isolated segment that are incident to two faces with the same label.

For any labelled combinatorial map Π, we denote by Π− the same map where each label 3
on a face is replaced by a 2. The easy but key properties of this construction are the following:

(i) Assume that Π1,3 is a bounding graph for Gβ and (Π1,2)− is a bounding graph for Gγ .
Then Π2,3 is a bounding graph for Gα.

(ii) The node ν naturally partitions the edge set of G into three parts, which we denote by
E1 (on the side of α), E2 (on the side of β), and E3 (on the side of γ). Assume that G

has a sparse proper cellular embedding Γ on C and that Π = Π(Γ, E1, E2, E3). Then:

Π(Γ, α) = Π(Γ, E1, E2 ∪ E3) = Π2,3;

Π(Γ, β) = Π(Γ, E1 ∪ E3, E2) = Π1,3;

Π(Γ, γ) = Π(Γ, E1 ∪ E2, E3) = (Π1,2)−.

Property (ii) is, again, illustrated by Figures 2 and 3: If (E1, E2, E3) is the edge partition
depicted on Figure 3, then the edge partitions depicted on Figure 2, left, are, respectively,
(E1, E2∪E3), (E1∪E3, E2), and (E1∪E2, E3). As shown above, the corresponding partitioning
graphs are respectively Π2,3, Π1,3, and Π−

1,2.
If Π is the graph embedding depicted on the right of Figure 3, then the configurations

shown on the right of Figure 2 correspond, from top to bottom, to Π2,3, Π1,3, and (Π1,2)−

(the latter being the graph Π1,2 in which each face label 2 is replaced by a 2).
We compute our exhaustive list Lα of sparse bounding graphs for Gα as follows. Initially,

let this list be empty. Using Lemma 3.3, we enumerate all combinatorial maps Π of graphs
with at most c + 3w vertices and 3(74c + 26w) edges properly embedded on C (possibly
non-cellularly), with faces labelled 0, 1, 2, or 3, and such that the labels appearing on the
vertices are exactly the vertices of the middle set of α, β, or γ (and each label appears exactly
once). This takes (c + w)O(c+w) time. Whenever Π1,3 ∈ Lβ and (Π1,2)− ∈ Lγ , we add Π2,3
to Lα. Finally, we eliminate duplicates by testing pairwise isomorphism between the labelled
combinatorial maps in Lα, and remove the graphs that are not sparse or contain vertices
that bear a label not in the middle set of α.

Lα contains only sparse bounding graphs for Gα, by (i) above. Moreover, let Γ be a sparse
proper cellular graph embedding of G on C . By sparsity, one of the graphs Π enumerated in
the previous paragraph is Π(Γ, ν). By definition of Lβ and Lγ , we have that Π(Γ, β) ∈ Lβ

and Π(Γ, γ) ∈ Lγ , so by (ii) above, Π(Γ, α) ∈ Lα, which implies that Lα is exhaustive. ◀

É. Colin de Verdière and T. Magnard 32:15

6 Reduction to proper cellular embeddings

▶ Proposition 6.1. Let C be a 2-complex with at most c simplices, and G a graph with at
most n vertices and edges and branchwidth at most w. Assume that G and C satisfy the
properties of Proposition 3.1. In cO(c) + O(cn) time, one can compute a graph G′, and cO(c)

2-complexes Ci, such that:
1. each Ci and G′ satisfy the properties of Proposition 3.1;
2. G′ has at most 5cn vertices and 5cn edges, and branchwidth at most w;
3. each Ci has size at most c;
4. if, for some i, G′ embeds into Ci, then G embeds into C ;
5. if G embeds into C , then for some i, G′ has a proper cellular embedding into Ci.

Sketch of proof. Roughly but not exactly, G′ is obtained from G by dissolving every degree-
two vertex of G and then subdividing edges Θ(c) times, and the complexes Ci are all the
2-complexes “smaller” than C , obtained by detaching the singular points of C in all possible
ways, removing parts of the isolated segments of C in all possible ways, and simplifying the
topology of the detached surface in all possible ways. It is clear that, if G′ embeds into one
of these complexes, then G embeds into C . Conversely, if G embeds into C , then, by the
subdivision process above, G′ has a proper embedding into C , and the only problem is that
the faces of G′ may fail to be disks. However, by modifying C using the appropriate choice
of operations above, these faces are transformed into disks. ◀

7 Algorithm for bounded branchwidth: Proof of Theorem 1.2

Proof of Theorem 1.2. The proof of this theorem follows directly from the previous proposi-
tions. After the preprocessing step (Proposition 3.1), combining Propositions 4.1 and 5.1 give
an algorithm that takes as input G and C and reports one of the following true statements:
(i) G has no proper cellular embedding on C ; (ii) G has an embedding on C . So, we apply
this algorithm to the graph G′ and each 2-complex Ci obtained from Proposition 6.1. If
for at least one of these instances, the outcome is (ii), then G has an embedding into C .
Otherwise, G has no embedding into C . ◀

8 Reduction to bounded branchwidth: Proof of Theorem 1.3

Sketch of proof of Theorem 1.3. This is based on an irrelevant method. We assume that
G has large branchwidth. An important fact that we will use is that, if G is embeddable
on C , it has genus O(c).

A wall of size k × k is a subgraph of the (k × k)-grid obtained by removing alternately
the vertical edges of even (resp. odd) x-coordinate in each even (resp. odd) line, and then
the degree-one vertices.

We first use any algorithm to approximate the treewidth of G, e.g., Fomin et al. [11,
Theorem 1.1]: In polynomial time, we either compute a branch decomposition of small
width of G, in which case we are done, or correctly report that the treewidth is large. In
the latter case, the result by Chekuri and Chuzhoy [3] implies that there is a large grid
minor, which we can compute in randomized polynomial time using the same article, or in
deterministic f(k) · n2 time, where f is some computable function and k is the size of the
grid [22, Algorithm 4.4]. We have thus computed a subdivision of a large wall.

We then partition this wall into Ω(c) smaller subwalls W1, . . . , Wm, where m = Ω(c),
each bounded by a cycle γi. We then show that we can assume that there are (intuitively)
not too many connections, in G, between two different walls Wi, Wj that avoid the cycles γi

ESA 2021

32:16 An FPT Algorithm for the Emebddability of Graphs into 2-Complexes

and γj ; otherwise, by computing these connections, we exhibit a subgraph of G of genus
Ω(c), and deduce that G is not embeddable on C . Finally, we compute a cycle γ of G, such
that one connected component of G − γ is planar and contains a subdivision of a smaller,
but still large, wall.

We then show, borrowing some ingredients to Kociumaka and Pilipczuk [15, Section 5],
that the central vertex of this wall is irrelevant, in the sense that its removal does not affect
the embeddability or non-embeddability of the graph into C . Intuitively, v is surrounded
by Ω(c) concentric cycles in the wall; if G − v is embedded in C , then two concentric cycles
must bound an annulus. The planar part inside the inner cycle can be embedded close to
the boundary of the annulus that corresponds to this inner cycle.

Iterating the whole procedure, we obtain a graph of branchwidth polynomial in the
size of C . ◀

References
1 Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In Proceedings

of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 641–650,
2008.

2 Christoph Buchheim, Markus Chimani, Carsten Gutwenger, Michael Jünger, and Petra Mutzel.
Crossings and planarization. In Roberto Tamassia, editor, Handbook of graph drawing and
visualization. Chapman and Hall, 2006.

3 Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem. Journal
of the ACM, 63(5):Article 40, 2016.

4 Éric Colin de Verdière. Computational topology of graphs on surfaces. In Jacob E. Goodman,
Joseph O’Rourke, and Csaba Toth, editors, Handbook of Discrete and Computational Geometry,
chapter 23. CRC Press LLC, third edition, 2018.

5 Éric Colin de Verdière and Arnaud de Mesmay. Testing graph isotopy on surfaces. Discrete &
Computational Geometry, 51(1):171–206, 2014.

6 Éric Colin de Verdière, Thomas Magnard, and Bojan Mohar. Embedding graphs into two-
dimensional simplicial complexes. In Proceedings of the 34th International Symposium on
Computational Geometry (SOCG), pages 27:1–27:14, 2018.

7 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer-Verlag,
2015.

8 Tamal K. Dey and Sumanta Guha. Transforming curves on surfaces. Journal of Computer
and System Sciences, 58:297–325, 1999.

9 David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 599–608, 2003.

10 Jeff Erickson and Kim Whittlesey. Transforming curves on surfaces redux. In Proceedings of
the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1646–1655,
2013.

11 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michał Pilipczuk, and Marcin Wrochna.
Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
ACM Transactions on Algorithms, 14(3):Article 34, 2018.

12 John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM, 21(4):549–
568, 1974.

13 Ken-ichi Kawarabayashi, Bojan Mohar, and Bruce Reed. A simpler linear time algorithm for
embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width.
In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 771–780, 2008.

É. Colin de Verdière and T. Magnard 32:17

14 Ken-ichi Kawarabayashi and Bruce Reed. Computing crossing number in linear time. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pages
382–390, 2007.

15 Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus.
Algorithmica, 81:3655–3691, 2019.

16 Francis Lazarus and Julien Rivaud. On the homotopy test on surfaces. In Proceedings of the
53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 440–449,
2012.

17 Seth M. Malitz. Genus g graphs have pagenumber O(√g). Journal of Algorithms, 17:85–109,
1994.

18 Bojan Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM
Journal on Discrete Mathematics, 12(1):6–26, 1999.

19 Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, 2001.

20 Colm Ó Dúnlaing, Colum Watt, and David Wilkins. Homeomorphism of 2-complexes is
equivalent to graph isomorphism. International Journal of Computational Geometry &
Applications, 10:453–476, 2000.

21 Maurizio Patrignani. Planarity testing and embedding. In Roberto Tamassia, editor, Handbook
of graph drawing and visualization. Chapman and Hall, 2006.

22 Neil Robertson and Paul D Seymour. Graph minors. XIII. The disjoint paths problem. Journal
of combinatorial theory, Series B, 63(1):65–110, 1995.

23 Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92:325–357, 2004.

24 Marcus Schaefer. Toward a theory of planarity: Hanani–Tutte and planarity variants. Journal
of Graph Algorithms and Applications, 17(4):367–440, 2013.

25 John Stillwell. Classical topology and combinatorial group theory. Springer-Verlag, New York,
second edition, 1993.

26 Carsten Thomassen. The graph genus problem is NP-complete. Journal of Algorithms,
10(4):568–576, 1989.

ESA 2021

	1 Introduction
	2 Preliminaries
	2.1 Graphs and branch decompositions
	2.2 Surfaces
	2.3 2-complexes
	2.4 Graph embeddings

	3 2-complexes and their data structures
	3.1 Some preprocessing
	3.2 Structure of 2-complexes without 3-book or isolated vertex
	3.3 Topological data structure for 2-complexes
	3.4 Proper and cellular graph embeddings on 2-complexes

	4 Partitioning graphs
	4.1 Monogons and bigons
	4.2 Vertex simplifications
	4.3 Rearranging Gamma with respect to an edge partition
	4.4 Proof of Proposition 4.1

	5 Dynamic programming algorithm
	5.1 Bounding graphs
	5.2 The induction step: Proof of Proposition 5.2

	6 Reduction to proper cellular embeddings
	7 Algorithm for bounded branchwidth: Proof of Theorem 1.2
	8 Reduction to bounded branchwidth: Proof of Theorem 1.3

