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Abstract

The amount and variety of data have been increasing drastically for several years. These data are often represented as networks and explored
with approaches arising from network theory. Recent years have witnessed the extension of network exploration approaches to capitalize on
more complex and richer network frameworks. Random walks, for instance, have been extended to explore multilayer networks. However,
current random walk approaches are limited in the combination and heterogeneity of networks they can handle. New analytical and numerical
random walk methods are needed to cope with the increasing diversity and complexity of multilayer networks. We propose here MultiXrank,
a method and associated Python package that enables Random Walk with Restart on any kind of multilayer network. We evaluate MultiXrank
with leave-one-out cross-validation and link prediction, and measure the impact of the addition or removal of network data on prediction
performances. Finally, we measure the sensitivity of MultiXrank to input parameters by in-depth exploration of the parameter space.

Multilayer Network | Random Walk | Data Integration

Introduction

Data amount and variety have soared as never seen before,
offering a unique opportunity to better understand com-

plex systems. Among the different modes of representation
of data, networks appear as particularly successful. Networks
are indeed interesting to refine raw data and extract relevant
features, patterns, and classes. They are exploited for years
to study complex systems, and a wide and powerful range of
tools from graph theory are available for their exploration.
However, the integrated exploration of large multidimensional
datasets remains a major challenge in many scientific fields.
For instance, a comprehensive understanding of biological
systems would require the integrated analysis of dozens of
different datasets produced at different molecular, cellular or
tissular scales. Recently, multilayer networks emerged as essen-
tial players in the analysis of such complex systems. Multilayer
networks allow integrating more than one network in a unified
formalism, in which the different networks are considered as
layers (1). For instance, Duran-Frigola et al. (2) combined
25 different networks of chemical compounds and their rela-
tionships, gathering relationships from chemical structures
to clinical outcomes. This multilayer framework allows an
integrated study of chemical compounds and their biological
activities. Another example is given by the Hetionet project.
The authors collected dozen of heterogeneous networks, i.e
networks with various types of nodes such as genes, drugs or
diseases, to prioritize drugs for repurposing (3).
Several definitions of multilayer networks have been proposed,
based on the (in)homogeneity of the layers and the properties
of the connections between layers (4–6). For instance, multi-
plex networks are multilayer networks composed of different
layers containing the same nodes (called replica nodes) but
different types of edges, and thereby different topologies. Het-

erogeneous networks link networks composed of different types
of nodes thanks to bipartite interactions. Temporal networks
follow the dynamic of a network over time: all the layers have
the same nodes, but each layer represents the interaction state
at a given time (7). We will here consider universal multi-
layer networks, which can be defined as multilayer networks
composed of any number of multiplex (or monoplex) networks
(with edges that can be directed and/or weighted), linked by
bipartite networks (with edges that can be directed and/or
weighted) (Fig. 1). A wide range of methods have been de-
veloped in the recent years to analyze multilayer networks.
For instance, different network metrics have been adapted to
multilayer networks (8), as well as various network clustering
algorithms for community detection (9–11) or random walk
for network exploration (12–15).
Random walks are iterative stochastic processes widely used
to explore network topologies. They can be described as sim-
ulated particles that walk iteratively from one node to one
of its neighbors with some probability (16). The PageRank
algorithm, for instance, is based on a random walk simulating
the behavior of an internet user walking from one page to an-
other thanks to hyper-links. The user can also restart the walk
on any arbitrary page (17). In this particular random walk
strategy, the restart prevents the random walker from being
trapped in dead-ends (18). An interesting alternative strategy
restricts the restart to specific node(s), called the seed(s) (19).
In this strategy, named Random Walk with Restart (RWR) or
Personalized PageRank, the random walk represents a measure
of proximity from all the nodes in the network to the seed(s).
RWR can also be described as a diffusion process, in which
the objective is to determine the steady-state of an initial
probability distribution (20).
RWR are widely used to exploit large-scale networks. In com-
putational biology, for instance, RWR strategies have been
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shown to significantly outperform methods based on local
distance measures for the prioritization of gene-disease asso-
ciations (21). Importantly, different upgrades of the RWR
approach have been implemented during the last decade, in-
cluding its extension to i) heterogeneous networks (12), ii)
multiplex networks (13) and iii) multiplex-heterogeneous net-
works (15). In RWR, the degrees of freedom are summarized
in the Transition rate matrix, and correspond to the available
transitions between the different nodes of the graph. The
extensions of RWR are challenging because the Transition rate
matrices need to be normalized. To the best of our knowl-
edge, this normalization is currently only solved for multilayer
networks composed of two heterogeneous multiplex networks
(15, 22) and the more universal case of N multiplex networks
remains unsolved.
We propose here MultiXrank, a framework composed of a
method and a Python package to execute RWR on universal
multilayer networks. We first introduce the mathematical
bases of this RWR for universal multilayer networks, which
correspond to a generalization of the approach from (12). We
evaluated MultiXrank with leave-one-out cross-validation and
link prediction protocols. These evaluations reveal that more
network data is not always better and highlight the critical
influence of the bipartite networks. We finally present an
in-depth exploration of the parameter space to measure the
stability of the RWR output scores under variations of the
input parameters. The MultiXrank Python package is freely
available at https://github.com/anthbapt/multixrank, with
an optimized implementation allowing its application to large
multilayer networks.

Results

Random Walk with Restart (RWR).

Let us consider an irreducible and aperiodic Markov chain,
for instance a network composed of a giant component with
undirected edges, G = (V,E), where V is the set of vertices
and E ⊆ (V *V ) is the set of edges. In the case of irreducible
and aperiodic Markov chains, a stationary probability p∗ exists
and satisfies the following properties:

{
p∗(i) > 0 ; ∀i ∈ V∑

i∈V p∗(i) = 1 [1]

We next introduce the probability defining the walk from
one node to another. Let us define x, a particle that explores
the network, xt its position at time t and xt+1 its position at
time t+ 1. Considering two nodes i and j:

P(xt+1 = j | xt = i) =
{ 1

di
if (i, j) ∈ E

0 Otherwise [2]

with di being the degree of the node i. All the normalized
possible transitions can be included in the Transition rate
matrix. This Transition rate matrix, noted M , can be seen
as the matrix of the degrees of freedom of the particle in
the system. It is useful to note that the Transition rate
matrix is equal to the column-normalized Adjacency matrix.
The distribution denoted by pt = (pt(i))i∈V describes the
probability of being in the node i at time t, and the stationary

distribution p∗ is obtained thanks to the homogeneous linear
difference equation [3] (18, 23):

pTt+1 = MpTt [3]

with pTt denoting the transpose of the vector pt. Moreover, we
can introduce a non-homogeneous linear difference equation [4]
(23) to take into account the restart on the seed(s). When the
Transition rate matrix is a Stochastic matrix, the stationary
distribution is reached (18) (Supplementary Note 1.A.1 for
elements of proof of convergence) and this distribution can be
seen as a measure of proximity of all the network nodes with
respect to the seed(s).

pTt+1 = (1− r)MpTt + rpT0 [4]

The distribution p0 corresponds to the initial probability
distribution, where only the seed(s) have non-zero values; r
represents the restart probability.

RWR on Multiplex networks.

The RWR method has been extended to multiplex net-
works, i.e., multilayer networks with a one-to-one mapping
between the (replica) nodes of the different layers (Fig. 1)
(1, 13, 14). Multiplex networks can be represented by Supra-
adjacency matrices, which correspond to a generalization of
the standard Adjacency matrix. In the following, we will use
several multiplex networks, indexed by k. We denoted by Ak
the Supra-adjacency matrix of the multiplex network indexed
by k. The Adjacency matrix of the layer l of the multiplex
network k is denoted by A[l]

k . The element of this adjacency
matrix from node i to node j is defined as (A[l]

k )i,j ≥ 0. The
dimension of the Supra-adjacency matrix Ak of the multiplex
network k is equal to (Lk ∗ nk)*(Lk ∗ nk), with nk the num-
ber of nodes in each layer of the multiplex network k and
Lk the number of layers in the multiplex network k. The
Supra-adjacency matrix Ak is defined as follows:

(Ak)il,jm =
{

(A[l]
k )i,j if l = m
δi,j if l 6= m

[5]

where δ defines the Kronecker delta (i.e., 1 if i equal j and 0
otherwise), and l and m represent the layers of the multiplex
network k. We can also define a multiplex network as a set of
nodes, VAk and a set of edges, EAk :


GAk = (VAk , EAk )
VAk = {vli, i = 1, ..., nk, l = 1, ..., Lk}
EAk = {elli,j , i, j = 1, ..., nk, l = 1, ..., Lk, (A[l]

k )i,j 6= 0}
∪{elmi,i , i = 1, ..., nk, l 6= m}

[6]

Importantly, we need to column-normalize the Supra-
adjacency matrix defined in the equations [5-6] in order to
converge to the steady-state, as defined in (15). This normal-
ization requires including the parameters δk related to the
jumps from one layer to another inside the matrix represen-
tation, as described in (13) (Fig. 2). In the next section, we
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need to index by k all the parameters that are dedicated to
the multiplex network k. The Supra-adjacency matrix repre-
senting the multiplex network k can be written as described
in equation [7]. The matrix Ik represents the Identity matrix
of size nk.

Ak =



(1− δk)A[1]
k

δk
(Lk−1)Ik ... δk

(Lk−1)Ik

δk
(Lk−1)Ik (1− δk)A[2]

k ... δk
(Lk−1)Ik

... ... ... ...

δk
(Lk−1)Ik

δk
(Lk−1)Ik ... (1− δk)A[Lk]

k


[7]

RWR on universal multilayer networks.

We here define a RWR method that can be applied to uni-
versal multilayer networks. Universal multilayer networks are
composed of any combination of multiplex networks, linked by
any combination of bipartite networks (Fig. 1). All network
edges can also be weighted and/or directed. The formalism
for the application of RWR on multiplex networks is described
in the previous section. We will now detail the Bipartite net-
work matrices, and how to combine intra- and inter- multiplex
networks information to obtain the Supra-heterogeneous ad-
jacency matrix. The Supra-heterogeneous adjacency matrix
will embed all the possible transitions in a universal multilayer
network.

Bipartite networks connect heterogeneous nodes.

The Bipartite network matrices contain the transitions
between different types of nodes present in different networks.
If the network α has nα nodes, and the network β has nβ nodes,
the Bipartite network matrix denoted bα,β has a size equal to
nα ∗ nβ . Now, let us define Aα and Aβ , two Supra-adjacency
matrices representing the multiplex networks α and β. The
Bipartite network matrix Bα,β represents the transitions from
the nodes of the multiplex network α to the nodes of the
multiplex network β. The size of the Bipartite network matrix
Bα,β is equal to (Lα ∗ nα)*(Lβ ∗ nβ). The Bipartite network
matrices are composed of (Lα∗Lβ) times the Bipartite network
matrix bα,β (equation [8]). The matrix bα,β is composed of
all the transitions from one layer of the multiplex network α
to one layer of the multiplex network β. We extended the
formalism used in (15) in order to consider more than two
different multiplex networks.

Bα,β =



bα,β bα,β ... bα,β

bα,β bα,β ... bα,β

... ... ...

bα,β bα,β ... bα,β


︸ ︷︷ ︸

Lβ times


Lα times [8]

The representation of the bipartite networks as a set of

nodes VB and a set of edges EB can be written as:
GB = (VB, EB)
VB = {vαk , k = 1, ..., nα} ∪ {vβl , l = 1, ..., nβ}
EB = {eαβk,l k = 1, ..., nα , l = 1, ..., nβ ; (bα,β)k,l 6= 0}

[9]

It is to note that if the bipartite networks are undirected,
bTβ,α = bα,β and BTβ,α = Bα,β .

Universal multilayer networks unify the representation of heteroge-
neous multiplex networks.

We previously defined the Supra-adjacency matrices of
each multiplex network and the Bipartite network matri-
ces connecting the different multiplex networks. We now
introduce the Supra-heterogeneous adjacency matrix, de-
noted by S. This matrix, defined in equation [10], collects
the N Supra-adjacency matrices representing each multi-
plex network, A1,A2, ...,AN , and the N ∗ (N − 1) Bipar-
tite network matrices connecting each multiplex network,
B1,2, B1,3, ..., B1,N , B2,1, ..., BN,N−1.

S =


A1 B1,2 ... B1,N

B2,1 A2 ... B2,N

... ... ... ...

BN,1 BN,2 ... AN

 [10]

We can also define the Supra-heterogeneous adjacency ma-
trix as a set of nodes and edges:



GS = (VS , ES)

VS =
N⋃
k=1
{vαkk,i , i = 1, ..., nk, αk = 1, ..., Lk}

ES =
N⋃
k=1

({eαk,αki,j , i, j = 1, ..., nk, (A[αk]
k )i,j 6= 0}

∪{eαk,βki,i , i = 1, ..., nk, αk 6= βk , αk, βk = 1, ..., Lk})

∪
N⋃

k,l=1;k 6=l
{eαk,αli,j , i = 1, ..., nk, j = 1, ..., nl, (Bk,l)i,j 6= 0}

[11]

The normalization of the Supra-heterogeneous adjacency matrix
ensures the convergence of the RWR to the steady-state.

The most complex issue is the normalization of the Supra-
heterogeneous adjacency matrix into a Transition rate matrix
that can be used in equation [4]. The normalization allows
obtaining a Stochastic matrix that guarantees the convergence
of the RWR to the steady-state (18)(see elements of proof in
Supplementary Note 1.A.1). It is important to note that we
have chosen a column normalization. The resulting normalized
matrix, denoted by Ŝ is defined in equation [12]. We gener-
alized the formalism of Li and Patra (12) established for two
heterogeneous monoplex networks (Supplementary Note 1.D).
This generalization to universal multilayer networks is done
thanks to the intra- and inter- multiplex network normaliza-
tions defined in equations [13-14], with α ∈ [[1, N ]], β ∈ [[1, N ]].
In addition, ciα is the number of bipartite networks in which
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the node iα appears as source of the multiplex network α
denoted by Mα.

Ŝ =


Ŝ11 Ŝ12 ... Ŝ1N

Ŝ21 Ŝ22 ... Ŝ2N

... ... ... ...

ŜN2 ŜN2 ... ŜNN

 [12]

In equation [13], Ŝαα defines the transition probabilities
inside a given multiplex network. In the case of a multiplex
network, if a node has no bipartite interactions with nodes
from another multiplex networks, we can use the standard
normalization. If bipartite interactions exist, then the normal-
ization takes into account the probability that the walker can
stay in the multiplex network (1−

∑ciα
β=1 λαβ). In equation [14],

Ŝαβ defines the transition probability between two different
multiplex networks. There are here three possibilities. If the
node has no bipartite interactions, the transition probability
is equal to zero. If the node has bipartite interactions, the
transition probability is equal to the standard normalization
weighted by the jump probability (λαβ). Finally, if the node
exists only in the bipartite network, the normalization corre-
sponds to the standard normalization weighted by a modified
jump probability. This normalization takes into account all
the bipartite interactions of the considered node.

Ŝαα(iα, jα) =



Aα(iα,jα)
nα∑
kα=1

Aα(iα,kα)
if ∀β :

nβ∑
kβ=1

Bα,β(iα, kβ) = 0

(1−
ciα∑
β=1

λαβ)∗Aα(iα,jα)

nα∑
kα=1

Aα(iα,kα)
Otherwise

[13]

Ŝαβ(iα, jβ) =



λαβBα,β(iα,jβ)
nβ∑
kβ=1

Bα,β(iα,kβ)

if
nβ∑
kβ=1

Bα,β(iα, kβ) 6= 0

λαβ
c∑

β=1

λαβ

c∑
iα=1

Bα,β(iα,jβ)

c∑
iα=1

nβ∑
kβ=1

Bα,β(iα,kβ)

if iα not in Mα

0 Otherwise
[14]

The normalization allows including the parameters λαβ
to jump between the multiplex networks (Fig. 2). In other
words, these parameters weight the jumps from one multiplex
network α to another multiplex network β, if the bipartite
interaction exists. Moreover, the standard probability condi-
tion of normalization imposes that

∑N

α=1 λαβ = 1, ∀β, where
N represents the number of multiplex networks. Finally, the
RWR equation on universal multilayer networks is defined as:

pTt+1 = (1− r)ŜpTt + rpT0 . [15]

RWR initial probability distribution in universal multilayer networks.

The initial probability distribution p0 from equation [15],
which contains the probabilities to restart on the seed(s), can
be written in its general form as follows:

pT0 =

 η1v̄1
0

η2v̄2
0

...
ηN v̄N0

 [16]

where ηk is the probability to restart in one of the layers
of the multiplex network k, and v̄k0 is the initial probability
distribution of the multiplex network k. The size of v̄k0 is
equal to (Lk ∗ nk), where Lk is the number of layers in the
multiplex network k and nk is the number of nodes in the
multiplex network k. We constraint the parameter η with the
standard condition of normalization of the probability that
imposes

∑N

k=1 ηk = 1. We defined another parameter, τ , to
take into account the probability of restarting in the different
layers of a given multiplex network. This parameter includes
τkj , where k corresponds to the index of the multiplex network,
and j to the index of the layer of the multiplex network k
(Fig. 2). In other words, τkj corresponds to the probability to
restart in the jth layer of the multiplex network k. Finally, v̄k0
is defined as follows: v̄k0 = [τk1vk0 , τk2vk0 , ..., τkLkvk0 ]T , with vk0
being a vector with 1/ωk in the position(s) of seed(s) and zeros
elsewhere, and ωk being the number of seeds in the multiplex
network k. The standard condition of normalization of the
probability gives the constraint:

∑Lk
j=1 τkj = 1, ∀ k.

Numerical implementation: MultiXrank.

Our RWR on universal multilayer networks is implemented
as a Python package called MultiXrank (Supplementary Note
2). MultiXrank has an optimized implementation. Default
parameters allow exploring homogeneously the multilayer net-
work (Supplementary Note 1.B). The running time of the
package depends on the number of edges of the multilayer
network (complexity analyses in Supplementary Note 2.A).
The package is available on GitHub github/MultiXrank, and
can be installed with standard pip installation command:
pypi/MultiXrank.

Evaluations.

We evaluated the performances of MultiXrank using two
different multilayer networks. The first one is a large biological
multilayer network composed of two multiplex networks and
one monoplex network. It contains a gene multiplex network
gathering gene physical and functional relationships, a drug
multiplex network containing drug clinical and chemical rela-
tionships, and a disease monoplex network representing disease
phenotypic similarities. Each monoplex/multiplex network
is connected to the others thanks to bipartite networks con-
taining gene-disease, drug-gene, and drug-disease interactions
(Supplementary Note 3.B). The second multilayer network is
composed of three multiplex networks. It contains a French air-
ports multiplex network, a British airports multiplex network,
and a German airports multiplex network. In each multiplex
network, the nodes represent the airports of each country and
the edges represent the national flight connections between
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these airports for three different airline companies. The three
multiplex networks are linked with bipartite networks corre-
sponding to transnational flight connections (Supplementary
Note 3.A).

We designed a Leave-One-Out Cross-Validation (LOOCV)
protocol inspired by F.Mordelet and J.P.Vert (24) and
A.Valdeolivas et al. (15). In this protocol, we systematically
leave-out some known associations and assess the reconstruc-
tion of this left-out data using the data remaining in the
network (Supplementary Note 4.A and Fig. S9). In the case
of the biological multilayer network,we systematically left-out
known gene-disease associations. More specifically, for each
disease associated with at least two genes, each gene is remove
one-by-one and considered as the left-out gene. The remaining
gene(s) associated with the same disease are used as seed(s).
When the disease network is considered in the evaluation, the
disease node is used as seed together with the gene node(s).
The RWR algorithm is then applied, and all the network nodes
are scored according to their proximity to the seed(s). The
rank of the gene node that was left-out in the ongoing run is
recorded. The perfect ranking for the left-out gene is 1; the
closer the rank is to 1, the better the prediction. The gene
left-out process is repeated iteratively for all the genes. Finally,
the Cumulative Distribution Function (CDF) of the ranks of
the left-out genes is plotted (Fig. 3). The CDF displays the
ratio of left-out genes that are ranked by the RWR within
the top-K ranked gene nodes. The CDFs are used to evaluate
and compare the performance of the RWR applied to differ-
ent combinations of biological networks: the protein-protein
interactions (PPI) network alone, the gene multiplex network,
the multilayer network composed of the gene multiplex and
the disease monoplex networks, and the multilayer network
composed of the gene and drug multiplex networks and the
disease monoplex network (Fig. 3a).

We observed that considering multiple sources of network
data is always better than considering the PPI alone. In
addition, considering multilayer information is better than
considering only the gene multiplex network. However, the
increased performances in the LOOCV seem to arise only from
the gene multiplex network with the disease monoplex network
(and associated gene-disease bipartite network). Indeed, the
addition of the drug multiplex network (and associated drug-
gene and drug-disease bipartite networks) to the multilayer
system does not increase the performances (Fig. 3a).

We repeated the same LOOCV protocol for the airports
multilayer network, in which the left-out nodes are French
airport nodes associated with a given British airport node.
Here, the behavior is different, as adding the third multi-
plex network containing German airports connections (and
associated French-German and British-German bipartite net-
works) increases the performances of the RWR to predict the
associations between French and British airports (Fig. 3b).

To better understand these different behaviors, we exam-
ined in detail the amount of common nodes (called overlaps)
existing between the nodes of the different bipartite networks.
We observed that only 23% of the genes from the gene-disease
bipartite network are present in the drug-gene bipartite net-
work. Similarly, only 5% of the diseases from the gene-disease
bipartite network are present in the disease-drug bipartite net-
work (Fig. S10). Given these low overlaps, the drug multiplex
network might not contribute significantly to connecting gene

and disease nodes during the random walks. This might ex-
plain why adding the drug multiplex network does not improve
the performances of the LOOCV. Contrarily, the bipartite net-
works of the airport multilayer network displays high overlaps
(Fig. S10). These high overlaps might explain why the addi-
tion of the third multiplex network in this case increases the
predictive power (Fig. 3b).

To validate the proposed central role of bipartite networks
in the RWR performances, we artificially increased the con-
nectivity of the gene-drug and disease-drug bipartite networks
before applying the same LOOCV protocol. To this goal, we
added artificial transit drug nodes linking existing gene-disease
associations (strategy described in Supplementary Note 4C
and Fig. S12). We observed that these artificially added
transit nodes increased drastically the performances of the
LOOCV (Fig. 3c). The same phenomenon is observed for
the airports multilayer network (Fig. 3d). In addition, we
checked if random perturbations in these artificially enhanced
bipartite networks would decrease the performances of the
LOOCV. To do so, we progressively randomized the edges in
the bipartite networks with artificially increased connectivity,
until obtaining completely random bipartite networks. We
observed that the progressive randomization of the bipartite
networks continuously decreases the predictive power of the
RWR up to obtaining the same performances as with only
two multiplex networks (Fig. S13.A for the airport multilayer
networks and S13.B for the biological multilayer networks).

Finally, we repeated all these evaluations using a standard
Link Prediction (LP) protocol (Supplementary Note 4.B). LP
has already been used to measure the predictive power of RWR
methods (25). In the LP protocol, we systematically removed
gene-disease edges from the gene-disease bipartite network,
and predicted the rank of the removed gene using the disease
as seed in the RWR. The LP protocol is applied on the airport
multilayer network by removing a French-British edge from
the French-British bipartite network, and predicting the rank
of the French airport using the British airport node as a seed
in the RWR. We overall observed similar behaviors as in the
LOOCV (Fig. S11 and S14).

Importantly, the LOOCV and LP protocols can be used
to evaluate the pertinence of adding new multiplex networks
in a multilayer network or new network layers in a multiplex
network. Both evaluation protocols are available within the
MultiXrank package.

Parameter space exploration.

We next evaluated the stability of MultiXrank output scores
upon variations of the input parameters. We illustrate this
exploration of the parameter space with the biological multi-
layer network composed of the gene multiplex network and
the disease monoplex network. We first compared the top-5
and top-100 gene and disease nodes prioritized by MultiXrank
using 125 different sets of parameters (see Supplementary Note
5 for the definition of the sets of parameters). We observed
that the top-ranked gene nodes vary more depending on the
input parameters than the top-ranked disease nodes (Fig. 4a).

To better understand the stability of the output scores upon
variations of the input parameters, we proposed a protocol
based on 5 successive steps: i) definition of the sets of param-
eters, ii) construction of a matrix containing the similarities
of the RWR output scores obtained with each set of input
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parameters, using a the similarity measure defined in equation
[17]. The similarities are computed for each type of node
independently (i.e., for gene and disease nodes independently).

Θk
γσ =

nk∑
j=1

√
( 1

[(rkγ)j−(rkγσ)j ] )
2 + ( 1

[(rkσ)j−(rkσγ)j ] )
2

( (rkγ)j+(rkσ)j
2 )2

[17]

where γ and σ define two sets of parameters, nk is the number
of nodes associated with the multiplex network k. In addition,
rkγ (resp. rkσ) is the rank output scores distribution that
associates with each node its rank given by the RWR with
the set of parameters γ (resp. σ) for the multiplex network
k. Finally, rkγσ (resp. rkσγ) gives to each node of the output
scores distribution obtained by the set of parameters γ (resp.
σ) (in the multiplex network k) their rank in the distribution
σ (resp. γ).

We next computed a consensus Similarity matrix with a
normalized euclidean norm of each individual Similarity matrix
(equation [18]).

Θγσ =

√√√√ N∑
k=1

(Θk
γσ)2

nk
[18]

where N is the number of multiplex networks.
The next step is iii) projection of the consensus Similarity

matrix into a Principal Component Analysis (PCA) space (Fig.
4b). In this PCA space, each dot represents the output scores
resulting from a set of parameters. Then, iv) clustering (using
k-means on the two first principal components) to identify
sub-regions containing similar RWR output scores. Finally,
v) comparing the top-ranked nodes obtained with the set of
parameters belonging to each cluster (Fig 4c., Supplementary
Note 5).

We applied this protocol to evaluate the output scores
obtained by MultiXrank on the previously defined biological
multilayer network composed of the gene multiplex network
and the disease monoplex network, using 125 different combi-
nations of parameters (Fig. 4, supplementary Fig. S16). We
projected the consensus Similarity matrix into a PCA space
and identified 8 clusters (Fig. 4b). To illustrate the behav-
ior inside clusters, we concentrated our analyses on the two
clusters defined in the bottom left subspace (clusters number
4 and 6, zoom-in Fig. 4b). The top-100 ranked gene and
disease nodes inside each of the two clusters are overall similar
(Fig. 4c). This means that, even if the node prioritization can
be sensitive to input parameters, we can identify regions of
stability in the parameter space. Moreover, the protocol allows
identifying the monoplex/multiplex networks that generate
most variability in the output scores upon changes in the input
parameters.

We applied the parameter space exploration protocol to
other multilayer networks and observed diverse behaviors, from
highly variable top-rankings and scattered projections in the
PCA space for the airport multilayer network (supplementary
Fig. S15) to robust top-rankings with well-clustered projec-
tions in the PCA space for the biological multilayer network
composed of 3 types of nodes (genes, diseases and drugs, sup-
plementary Fig. S16). Overall, our parameter space study
reveals different sensitivities to input parameters depending
on the multilayer network explored. The protocol is available

within the MultiXrank package and can be used to characterize
in-depth the sensitivity to input parameters of any multilayer
network.

Discussion

Multilayer networks are nowadays very popular, in partic-
ular because they allow capturing a larger part of real and
engineered systems. In biology, multilayer networks integrat-
ing multiscale sources of heterogeneous interactions provide a
more comprehensive picture of biological system functionali-
ties. However, data representation as multilayer networks must
be accompanied by the development of tools allowing their
exploration. Many efforts are thereby dedicated to extend clas-
sical network theory algorithms to multilayer systems (5, 26).
These algorithms include for instance clustering algorithms
(27), Graph Convolutional Networks (28, 29) or meta-path
based methods (3, 30). Other important network exploration
algorithms, such as diffusion kernels or methods based on ran-
dom walk, are based on the principle of network propagation
(26). The methods based on random walk, such as PageRank,
biased random walk or Random Walk with Restart (RWR),
are widely used in network science. They are indeed versatile:
the random walk output scores can be used directly for node
prioritization and subnetwork extraction, but can also be used
as input for downstream analyses, for instance for supervised
classification or node embedding (22).

Different random walk methods have been adapted to con-
sider multilayer networks. However, a large variety of mul-
tilayer networks exist, from multiplex to temporal networks,
for instance. To the best of our knowledge, network explo-
ration algorithms that have been adapted to handle multilayer
networks can usually be applied only to specific categories of
multilayer networks, such as multiplex networks composed of
the same set of nodes.

We present here MultiXrank, a tool that proposes an opti-
mized and general formalism for RWR on universal multilayer
networks. MultiXrank can be applied to explore multilayer
networks composed of any combination of multiplex, mono-
plex or bipartite networks, and all the network edges can be
directed and/or weighted. To the best of our knowledge, any
type of multilayer networks could be represented with our
formalism, even if it might sometimes require some adapta-
tions. We illustrated the use of MultiXrank with RWR on
biological and airport multilayer networks and thereby provide
guidelines for users. Even if one’s initial intuition in data
analysis could be that "more data is better", the addition of
interaction network layers also brings additional degrees of
freedom (5). To evaluate the pertinence of the addition of
multiplex networks or the addition of layers in a multilayer
system, MultiXrank includes a systematic evaluation protocol
based on Leave-One-Out-Cross-Validation and Link Prediction.
Overall, our results show that adding networks data does not
always increase the predictive power of the RWR, as already
suggested by previous studies (11). Our evaluation protocol
can be used, for the first time to our knowledge, to evaluate
in-depth the signal-to-noise of multilayer system combinations.
Finally, we complemented MultiXrank with a parameter space
exploration protocol to measure the influence of varying the
input parameters on the global stability of the output scores.
It is to note that this parameter space exploration protocol
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is universal and can be used to study any complex system
exploration approach providing scores as outputs.

The output scores of MultiXrank can be used in a wide
variety of downstream analyses. For instance, shallow embed-
ding methods need similarity measures for the optimization
of the loss function (22, 31). MultiXrank can produce such
a similarity measure respecting the global topology of the
multilayer network. An interesting application could be to
use MultiXrank output scores for embedding and evaluate
the predictive power of the gene-disease association prediction
task. Indeed, the embedding is expected to be more robust to
the noise than the direct network space(32).

The MultiXrank package can be applied to any kind of
multilayer network such as social, economic, or ecological mul-
tilayer networks. MultiXrank is optimized and can handle
multilayer networks containing up to millions edges. To con-
sider billion-scale network problems, several strategies could
be considered, such as the Block Elimination Approach for
RWR (BEAR) that can be exact or approximate (33) or the
Best of Preprocessing and Iterative approaches (BEPI) that is
an approximate approach (34).

Data availability

All the data and the code used in the article are avail-
able on an OSF repository: https://osf.io/zsmua (DOI
10.17605/OSF.IO/ZSMUA). This repository includes all the
results obtained in the article.

Code availability

The package is available on GitHub github/MultiXrank,
can be installed with standard pip installation command:
pypi/MultiXrank, and is associated with complete documen-
tation: https://multixrank-doc.readthedocs.io/en/latest.
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Fig. 1. A universal multilayer network. A universal multilayer network composed of three multiplex networks (green, blue and red multiplex networks). Each multiplex network
contains different types of nodes (denoted 1 to 4, α to ε, and a to d, respectively). Their corresponding Supra-adjacency matrices are denoted by Ai. The three multiplex

networks are linked by six bipartite networks (represented here as bipartite interactions for the sake of visualization). The corresponding Bipartite network matrices are denoted
by Bi,j . It is to note that a connection between a node i in the multiplex network α and node j in multiplex network β imposes the creation of edges between all replicas of
node i present in the different layers of the multiplex network α and all replicas of node j present in the different layers of multiplex network β. All the edges of the universal

multilayer networks can be weighted and/or directed.

  
Fig. 2. MultiXrank Random Walk with Restart parameters. Parameters of the Random Walk with Restart allowing to explore universal multilayer networks composed of N

multiplex networks (each composed of several layers containing the same set of (replica) nodes but different edges). The parameters δ are associated with the probability to
jump from one layer to another in a given multiplex network, λ with the probability to jump from one multiplex network to another multiplex network, τ with the probability to

restart in a given layer of a given multiplex network, and η with the probability to restart in a given multiplex network.
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Fig. 3. Evaluation and comparison of MultiXrank performances on different combinations of multilayer networks.
a and b: Cumulative Distribution Functions (CDFs) representing the ranks of the left-out nodes in the Leave-One-Out Cross-Validation (LOOCV) protocol. a: focus on different

combinations of biological networks: protein-protein interactions network alone (PPI), gene multiplex network (multi-1), multilayer network composed of the gene multiplex
network and the disease monoplex network (multi-2), and multilayer network composed of the gene and drug multiplex networks and the disease monoplex network, for two
different sets of parameters (multi-3, multi-3 bis). The multilayer networks are connected by the bipartite networks described in the Evaluations section. b: focus on different

combinations of airports networks: French multiplex network (multi-1), multilayer network composed of the French and British airports multiplex networks (multi-2), and
multilayer network composed of the French, British, and German airports multiplex networks, for two different sets of parameters (multi-3, multi-3 bis). These multilayer

networks are connected by the bipartite networks described in the Evaluations section.
c and d: CDFs representing the ranks of the left-out nodes in the LOOCV protocol for the multi-3 multilayer networks described previously with artificially increased connectivity
in the gene-drug and disease-drug bipartite networks. c: The connectivity is artificially increased thanks to the addition of 1 (multi3+1), 2 (multi3+2) or 5 (multi3+5) transit drug

nodes for each gene-disease association. d: In the airport multilayer network, the connectivity is artificially increased in the French-German and British-German bipartite
networks thanks to the addition of 1 (multi3+1), 2 (multi3+2) or 5 (multi3+5) transit German nodes for each French-British airports association. The parameters of the Random

Walk with Restart (RWR) are detailed in Supplementary Tables S5-S6.
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Fig. 4. Exploration of MultiXrank parameter space. a: Comparison of the top-5 and top-100 nodes ranked by MultiXrank using a biological multilayer networks composed of the
gene multiplex network and the disease monoplex network for 125 different sets of parameters. The top-5 or top-100 ranked nodes for each set of parameters are merged, and

the number of occurrences of each node are counted. The nodes are represented in bars colored in red when the node is found in all top-5 or top-100 scores, and in blue
otherwise. b: Clustering in the Principal Component Analysis (PCA) space of the output scores obtained with MultiXrank on the biological multilayer network composed of the
gene multiplex network and the disease monoplex network using 125 different sets of parameters. The zoom-in emphasizes the clusters number 4 and 6. c: Comparison of the
top-100 nodes retrieved for the sets of parameters belonging to clusters 4 and 6 defined in b. The bar is colored in red when a node is found in all top-100 scores, and in blue

otherwise. The parameters of the Random Walk with Restart (RWR) are detailed in Supplementary Table S7.
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