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The amount and variety of data is increasing drastically for several years. These data are often represented as networks, which are then
explored with approaches arising from network theory. Recent years have witnessed the extension of network exploration methods to
leverage more complex and richer network frameworks. Random walks, for instance, have been extended to explore multilayer networks.
However, current random walk approaches are limited in the combination and heterogeneity of network layers they can handle. New analytical
and numerical random walk methods are needed to cope with the increasing diversity and complexity of multilayer networks.
We propose here MultiXrank, a Python package that enables Random Walk with Restart (RWR) on any kind of multilayer network with an
optimized implementation. This package is supported by a universal mathematical formulation of the RWR. We evaluated MultiXrank with
leave-one-out cross-validation and link prediction, and introduced protocols to measure the impact of the addition or removal of multilayer
network data on prediction performances. We further measured the sensitivity of MultiXrank to input parameters by in-depth exploration
of the parameter space. Finally, we illustrate the versatility of MultiXrank with different use-cases of unsupervised node prioritization and
supervised classification in the context of human genetic diseases.

Multilayer Network | random walk | Data Integration

Data amount and variety have soared as never seen be-
fore. These data offer a unique opportunity to better

understand complex systems. Among the different modes
of representation of data, networks appear as particularly
successful. Network representations are indeed particularly
interesting to refine raw data and extract relevant features,
patterns, and classes. They are exploited for years in the study
of complex systems, and a wide and powerful range of tools
from graph theory are available for their exploration.

However, the exploration and integration of large mul-
tidimensional datasets remains a major challenge in many
scientific fields. For instance, a comprehensive understanding
of biological systems would require the integrated analysis of
dozens of different datasets produced at different molecular,
cellular or tissular scales.
Recently, multilayer networks emerged as essential players of
the analysis of complex systems. Multilayer networks allow
integrating more than one network in a unified formalism,
in which the different networks are considered as layers (1).
For instance, Duran-Frigola et al. constructed a framework
of 25 different networks of chemical compounds and their
relationships (2), gathering relationships from chemical
structures to clinical outcomes. These networks allow an
integrated study of chemical compounds and their biological
activities. Another example is given by the Hetionet project
(3), in which the authors collected dozen of heterogeneous
networks, i.e networks with various kinds of nodes such as
genes, drugs or diseases to prioritize drugs for repurposing.

Several definitions of multilayer networks have been pro-
posed based on the (in)homogeneity of the layers and the
properties of the connections between layers (for review, see
(4, 5)). For instance, multiplex networks are multilayer net-
works composed of different layers containing the same nodes

(called replica nodes) but different types of edges, and thereby
different topologies. Heterogeneous networks link networks
composed of different types of nodes thanks to bipartite inter-
actions. Temporal networks follow the dynamic of a network
over time: all the layers have the same nodes, but each layer
represents the interaction state at a given time. We will here
consider universal multilayer networks, which can be composed
of any number of multiplex or monoplex networks (with edges
that can be directed and/or weighted), linked by bipartite
networks (with edges that can be directed and/or weighted)
(Fig.1).

A wide range of methods has been developed in the
recent years to analyze multilayer networks. For instance,
different network metrics have been adapted to multilayer
networks (6), as well as various network clustering algorithms
for community detection (7–9) or random walk for network
exploration (10–13).

Random walks are iterative stochastic processes widely
used to explore network topologies. They can be described as
simulated particles that walk iteratively from one node to one
of its neighbors with some probability (14). The Pagerank
algorithm, for instance, is based on a random walk process
that simulates the behavior of an internet user walking from
one page to another thanks to hyper-links. The user can
also restart the walk on any arbitrary page (15). In this
particular random walk strategy, the restart prevents the
random walker from being trapped in dead-ends (16). An
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interesting alternative strategy restricts the restart to specific
node(s), called the seed(s) (17). In this random walk strategy,
named Random Walk with Restart (RWR), the random
walk represents a measure of proximity from all the nodes
in the network to the seed(s). The RWR process can also
be described as a diffusion process, in which the objective
is to determine the steady-state of an initial probability
distribution.

RWR are widely used to exploit large-scale networks. In
computational biology, for instance, RWR strategies have been
shown to significantly outperforms methods based on local
distance measures for the prioritization of new gene-disease
associations (18). Importantly, different upgrades of the RWR
approach have been implemented during the last decade,
including i) its extension to heterogeneous networks (10), ii)
its extension to multiplex networks (11) and iii) its extension
to multiplex-heterogeneous networks (13). In RWR, the
degrees of freedom are summarized in the Transition rate
matrix, and corresponds to the available transition between
each node of the graph. The challenges of these different
RWR extension lay in the normalization of the Transition rate
matrices. To the best of our knowledge, this normalization is
currently only solved for multilayer networks composed of two
heterogeneous multiplex networks and the case of N multiplex
networks remains unsolved.

We propose here MultiXrank, a new framework composed
of a method and a Python package to execute RWR process
on universal multilayer networks. We first introduce the math-
ematical bases of this universal RWR, which corresponds to
a generalization of the approach from (10). We evaluated
MultiXrank with leave one out cross-validation and link pre-
diction protocols. These evaluations highlight in particular the
critical influence of the bipartite networks. We then present
an in-depth exploration of the parameter space to measure
the stability of the RWR output scores under variations of
the input parameters. We finally illustrate the versatility
of MultiXrank with three different use-cases in the context
of human genetic diseases: two unsupervised strategies for
node prioritization and a supervised strategy to train a clas-
sifier. The MultiXrank Python package is freely available at
https://github.com/anthbapt/multixrank with an optimized
implementation allowing its application to large multilayer
networks.

Universal Random Walk with Restart mathematical for-
mulation

Random Walk with Restart (RWR).

Let us consider an irreducible Markov chain, for instance a
network composed of a giant component with undirected edges,
G = (V,E). It is known in the case of irreducible Markov
chains that a stationary probability p∗ exists and satisfies the
following properties:

{
p∗i ≥ 0 ; ∀i ∈ V∑

i∈V p
∗
i = 1 [1]

We introduce the probability that defines the walk from
one node to another. Let define x, a particle that explores the

network, xt its position at time t and xt+1 its position at time
t+ 1. Considering two nodes i and j:

P(xt+1 = j, xt = i) =
{ 1

di
if (i, j) ∈ E

0 Otherwise [2]

with di being the degree of the node i. All the normalized
possible transitions can be included in the Transition rate
matrix, noted M , which can be seen as the matrix of the
degrees of freedom of the particle in the system. It is useful
to note that the Transition rate matrix is here equal to the
row-normalized Adjacency matrix. The distribution describing
the probability of being in each node at time t is noted pt,
and the stationary distribution p∗ is obtained thanks to the
homogeneous linear difference equation [3] (16, 19):

pTt+1 = MpTt [3]

Moreover, we can introduce a non-homogeneous linear dif-
ference equation [4] (19), to take into account the restart on
the seed(s). When the stationary distribution is reached (see
supplementary section 1.A.1 for the proof of convergence), this
distribution can be seen as a measure of proximity of all the
network nodes to the seed(s).

pTt+1 = (1− r)MpTt + rpT0 [4]

The distribution p0 corresponds to the initial probability
distribution, where only the seed(s) have non-zero values, and
r represents the restart probability.
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Fig. 1. A universal multilayer network composed of three multiplex networks (green,
red and blue multiplex networks). Their corresponding Supra-adjacency matrices are
noted Ai. The three Supra-adjacency matrices are linked by six bipartite networks

(represented here as bipartite interactions for the sake of visualization). The
corresponding Bipartite network matrices are noted Bi,j . Note that all the edges of

the universal multilayer network can be weighted and/or directed.
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RWR on Multiplex networks.

The RWR method was recently extended to multiplex net-
works (11, 12), i.e., multilayer networks with a one-to-one
mapping between the (replica) nodes of the different layers
(Fig.1) (1, 11). Multiplex networks can be represented by a
Supra-adjacency matrix, which correspond to a generalization
of the standard Adjacency matrix. For a multiplex network
indexed by k, we note Ak its Supra-adjacency matrix. Its di-
mension is equal to (Lk ∗nk)x(Lk ∗nk), with nk the number of
nodes by layers in the multiplex network k and Lk the number
of layers in the multiplex network k. The Supra-adjacency
matrix is defined as follows:

(Ak)iα,jβ =
{

(A[α]
k )i,j if α = β
δi,j if α 6= β

[5]

where δ defines the Kronecker delta and α, β represent the lay-
ers of the multiplex network k. We can also define a multiplex
network as a set of nodes, VA and a set of edges, EA:

GA = (VA, EA)
VA = {vαi , i = 1, ..., n, α = 1, ..., L}
EA = {eααi,j , i, j = 1, ..., n, α = 1, ..., L,A[α]

i,j 6= 0}
∪{eαβi,i , i = 1, ..., n, α 6= β}

[6]

Importantly, we need to row-normalize the Supra-adjacency
matrix defined in the equation [4] in order to converge to the
steady-state, as defined in (13). This normalization requires
including the parameters related to the jumps from one layer to
another, i.e δk, inside the matrix representation, as described
in (11) (Fig.2). In order to generalize the inclusion of the
parameters related to the random walk with restart process
to universal multilayer networks. As detailed in the next
section, we need to index by k all the parameters that are
dedicated to the multiplex network k. The Supra-adjacency
matrix representing the multiplex network k can be written as
described in equation [7]. The matrix Ik ∈Mnk (R) represents
the Identity matrix.

Ak =



(1− δk)A[1]
k

δk
(Lk−1)Ik ... δk

(Lk−1)Ik

δk
(Lk−1)Ik (1− δk)A[2]

k ... δk
(Lk−1)Ik

... ... ... ...

δk
(Lk−1)Ik

δk
(Lk−1)Ik ... (1− δk)A[Lk]

k


[7]

RWR on universal multilayer networks.

We here define a new RWR method that can be applied to
universal multilayer networks (Fig. 1). Universal multilayer
networks are composed of any combination of multiplex
networks, linked by any combination of bipartite networks.
All networks can also be weighted and/or directed. The
formalism for the application of RWR on multiplex networks
is described in the previous section. We will now detail the
Bipartite network matrices, and how to combine intra- and
inter- multiplex networks information to obtain the Supra-
heterogeneous adjacency matrix. The Supra-heterogeneous

adjacency matrix will embed all the possible transitions in a
universal multilayer networks.

Bipartite networks connect heterogeneous informa-
tion: The Bipartite network matrices contain the transitions
between the different types of nodes present in the different
multiplex networks. Let us define Ai and Aj , two Supra-
adjacency matrices representing the multiplex networks i and
j. The Bipartite network matrix Bi,j (resp. Bj,i) represents
the transitions from the nodes of the multiplex network i (resp.
j) to the nodes of the multiplex network j (resp. i). The size
of the Bipartite network matrix Bi,j (resp. Bj,i) is equal to
(Li ∗ ni)x(Lj ∗ nj) (resp. (Lj ∗ nj)x(Li ∗ ni)). The Bipartite
network matrices are composed of (ni*nj) duplications of the
bi,j Bipartite network matrix, connecting all the layers of the
multiplex network i with all the layers of the multiplex network
j. We extended the formalism used in (13) in order to consider
more than two different multiplex networks.

Bi,j =



bi,j bi,j ... bi,j

bi,j bi,j ... bi,j

... ... ...

bi,j bi,j ... bi,j


︸ ︷︷ ︸

nj times


ni times [8]

The representation of the bipartite networks as a set of
nodes VB and a set of edges EB can be written as: GB = (VB, EB)

VB = {vik, k = 1, ..., ni} ∪ {vjl , l = 1, ..., nj}
EB = {eijk,l k = 1, ..., ni , l = 1, ..., nj ; (bi,j)k,l 6= 0}

[9]

It is to note that if the bipartite networks are undirected,
bTj,i = bi,j and BTj,i = Bi,j

Universal multilayer networks unify the representa-
tion of heterogeneous multiplex networks: We defined
previously the Supra-adjacency matrices of each multiplex
network and the Bipartite network matrices connecting the
different multiplex networks. We now introduce the Supra-
heterogeneous adjacency matrix, noted S. This matrix, de-
fined in equation [10], collects the N Supra-adjacency matrices
representing each multiplex network, A1,A2, ...,AN , and the
N(N−1) Bipartite network matrices connecting each multiplex
network, B1,2, B1,3, ..., B1,N , B2,1, ..., BN,N−1.

S =


A1 B1,2 ... B1,N

B2,1 A2 ... B2,N

... ... ... ...

BN,1 BN,2 ... AN

 [10]

We can also define the Supra-heterogeneous adjacency ma-
trix as a set of nodes and edges:
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Fig. 2. MultiXrank RWR parameters to explore universal multilayer networks composed of N multiplex networks (each composed of several layers containing the same set of
nodes but different edges). The parameters δ are associated with the probability to jump from one layer to another in a given multiplex network, λ with the probability to jump
from one multiplex network to another multiplex network, τ with the probability to restart in a given layer of a given multiplex network, and η with the probability to restart in a

given multiplex network.



GS = (VS , ES)

VS =
N⋃
k=1
{vαkk,i , i = 1, ..., nk, αk = 1, ..., Lk}

ES =
N⋃
k=1

({eαk,αki,j , i, j = 1, ..., nk, (Ak)[αk]
i,j 6= 0}

∪{eαk,βki,i , i = 1, ..., nk, αk 6= βk})

∪
N⋃

k,l=1;k 6=l
{eαk,αli,j , i = 1, ..., nk, j = 1, ..., nl, (Bk,l)i,j 6= 0}

[11]

The normalization of the Supra-heterogeneous adja-
cency matrix ensures the convergence of the RWR to
the steady-state: The most complex issue is the normal-
ization of the Supra-heterogeneous adjacency matrix into a
Transition rate matrix that can be used in equation [4]. The
normalization allows obtaining a Stochastic matrix that guar-
antees the convergence of the RWR to the steady-state (see
proof in supplementary section 1.A.1). It is important to
note that we have chosen a row normalization. The resulting
normalized matrix, noted Ŝ is defined in equation [12]. We
generalized the formalism of (10), established for two hetero-
geneous monoplex networks, to universal multilayer networks,
thanks to intra- and inter- multiplex networks normalization
defined in equations [13-14], with α ∈ [|1, N |], β ∈ [|1, N |], and
c the number of bipartite networks where the node iα appears
as source multiplex network α, noted Mα.

Ŝ =


Ŝ11 Ŝ12 ... Ŝ1N

Ŝ21 Ŝ22 ... Ŝ2N

... ... ... ...

ŜN2 ŜN2 ... ŜNN

 [12]

Ŝαα(iα, jα) =


Aα(iα,jα)∑nα

kα=1
Aα(iα,kα)

if ∀β :
∑nβ

kβ=1 Bα,β(iα, kβ) = 0

(1−
∑c

β=1
λαβ)∗λααAα(iα,jα)∑nα

kα=1
Aα(iα,kα)

Otherwise

[13]

Ŝαβ(iα, jβ) =



λαβBα,β(iα,jβ)∑nβ

kβ=1
Bα,β(iα,kβ)

if
∑nβ

kβ=1 Bα,β(iα, kβ) 6= 0

λαβ∑c

β=1
λαβ

∑c

iα=1
Bα,β(iα,jβ)∑c

iα=1

∑nβ

kβ=1
Bα,β(iα,kβ)

if iα not in Mα

0 Otherwise
[14]

The normalization allows including the parameters λij to
jump between the different multiplex networks (Fig. 2). In
other words, these parameters weight the jumps from one mul-
tiplex network i to another multiplex network j, if the bipartite
interaction exists. Moreover, the standard probability con-
dition of normalization imposes that

∑N

i=1 λij = 1, ∀ j, with
N the number of multiplex networks. Finally, the universal
RWR equation is defined as:

pTt+1 = (1− r)ŜpTt + rpT0 [15]

RWR initial probability distribution in universal mul-
tilayer networks: The initial probability distribution p0 from
equation [15], which contains the probabilities to restart on
the seed(s), can be written in its general form as follows:
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pT0 =


η1v̄1

0
η2v̄2

0
...

ηN v̄N0

 [16]

with ηk the probability to restart in one of the layers of the
multiplex network k, and v̄k0 the initial probability distribution
of the multiplex network k. The size of v̄k0 is equal to (Lk ∗nk)
with Lk the number of layers in the multiplex network k and nk
the number of nodes in the multiplex network k. We constraint
the parameter η with the standard probability condition of
normalization that imposes

∑N

i=1 ηi = 1. We defined another
parameter τ to take into account the probability of restarting
in the different layers of a given multiplex network. This
parameter include τij , where i corresponds to the index of
the multiplex network (i) and j to the index of the layer
of the multiplex network (i) (Fig.2). In other words, τij
corresponds to the probability to restart in the jth layer of
the multiplex network i. Finally, v̄k0 is defined as follows:
v̄k0 = [τi1vk0 , τi2vk0 , ..., τinivk0 ]T , with vk0 being a vector with
ones in the position(s) of seed(s) and zeros elsewhere. The
probability condition of normalization gives the constraint:∑Lk

j=1 τij = 1, ∀ i.

Numerical implementation: MultiXrank.

Our RWR on universal multilayer networks method is im-
plemented as a Python package called MultiXrank with an
optimized implementation. Default parameters allow exploring
homogeneously the multilayer network (supplementary section
1.B). The running time of the package depends on the number
of edges of the multilayer network (see complexity analyses in
supplementary section 2.A).
The package is available on GitHub github/MultiXrank, and
can be installed with standard pip installation command:
pypi/MultiXrank.

Evaluations and Parameter space exploration

Evaluations.

We first evaluated the performance of MultiXrank using
two different multilayer networks. The first one is a large
biological multilayer network composed of a gene multiplex
network gathering gene physical and functional relationships,
a disease monoplex network representing disease phenotypic
similarities, and a drug multiplex network containing drug
clinical and chemical relationships. Each monoplex/multiplex
network is connected to the others thanks to bipartite net-
works containing gene-disease, drug-gene, and drug-disease
interactions (supplementary section 3.B). The second mul-
tilayer network is composed of three multiplex networks: a
French airports multiplex network, a British airports multiplex
network, and a German airports multiplex network. In each
multiplex network, the nodes represent the airports and the
edges the national flight connections between these airports for
three airline companies. These three multiplex networks are
linked with bipartite networks corresponding to transnational
flight connections (supplementary section 3.A).

We designed a Leave-One-Out Cross-Validation (LOOCV)
protocol inspired by F.Mordelet and J.P.Vert (20) and

A.Valdeolivas et al. (13). The protocol assesses the reconstruc-
tion of left-out data using the data remaining in the network.
In the case of the biological multilayer network, we left-out
data from the gene-disease bipartite network: the edges as-
sociating genes with a given disease are removed one by one.
Each time a gene-disease edge is removed, the corresponding
gene is considered as the left-out gene. The remaining genes
associated with the same disease are used as seed(s), together
with the disease node when the disease network is considered
in the RWR. We considered only diseases associated with at
least two genes. The RWR algorithm is then applied, and
all the network nodes are scored according to their proximity
to the seed(s). The rank of the gene node that was left-out
in the ongoing run is recorded. The gene left-out process
is repeated iteratively. Finally, the Cumulative Distribution
Function (CDF) of the ranks of the left-out genes is plotted
(Fig. 3). The CDF displays the percentage of left-out genes
that are ranked by the RWR within the top-K ranked gene
nodes. The CDFs are used to evaluate and compare the perfor-
mance of the RWR using different combinations of biological
networks: the protein-protein interactions (PPI) network, the
gene multiplex network, the multilayer network composed of
the gene multiplex and disease monoplex networks, and the
multilayer network composed of the gene multiplex, disease
monoplex, and drug multiplex networks (Fig. 3 panel A.1).

We observed that considering multiple sources of network
data is always better than considering the PPI alone. In
addition, considering multilayer information is better than
considering only the gene multiplex network. However, the
increased performances in the LOOCV seems to arise only
from the consideration of the gene multiplex network with
the disease monoplex network (and associated gene-disease
bipartite network). Indeed, the addition of the drug multiplex
network (and associated drug-gene and drug-disease bipartite
networks) to the system does not increase the performances
(Fig. 3 panel A.1).

We repeated the same LOOCV protocol for the airports
multilayer network, in which the left-out nodes are French air-
port nodes associated with a given British airport node. Here,
the behavior is different, as adding the multiplex network of
German airports connections (and associated French-German
and British-German bipartite networks) increases the perfor-
mances of the RWR to predict the associations between French
and British airports (Fig. 3 panel A.2).

To better understand these behaviors, we examined in de-
tail the overlaps between the different bipartite networks. We
observed that only 23% of the genes from the gene-disease
bipartite network are present in the drug-gene bipartite net-
work. Similarly, only 5% of the diseases from the gene-disease
bipartite network are present in the disease-drug bipartite
network (Fig. S10). Given this low overlaps, the drug multi-
plex network might not contribute significantly to connecting
gene and disease nodes during the random walks, which might
explain why adding the drug multiplex network does not im-
prove the performances of the LOOCV. Contrarily, the airport
multilayer network displays high overlaps between the different
bipartite networks (Fig. S10), which might explain why the
addition of the third multiplex network in this case increases
the predictive power (Fig.3 panel A.2).

To validate the proposed central role of bipartite network
overlaps in the RWR performances, we artificially increased
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the connectivity of the gene-drug and disease-drug bipartite
networks before applying the same LOOCV protocol. To this
goal, we added artificial transit drug nodes linking existing
gene-disease associations (strategy described in Fig. S11). We
observed that these artificially added transit nodes increased
drastically the performances of the LOOCV (Fig.3 panel B.1).
The same phenomenon is observed for the airports multilayer
network (Fig.3 panel B.2). In addition, we checked if random
perturbations in these artificially enhanced bipartite networks
would decrease the performances of the LOOCV. To do so,
we progressively randomized the edges in the bipartite net-
works with artificially increased connectivity until obtaining
completely random bipartite networks. We observed that
the progressive randomization of the bipartite networks con-
tinuously decreased the predictive power of the RWR up to
obtaining the same performances as with only two multiplex
networks (Fig. S12.A for the airport multiplayer networks and
S12.B for the biological multilayer networks).

Finally, we repeated all these evaluations using a Link Pre-
diction (LP) protocol (21). In this protocol, we systematically
removed gene-disease edges from the gene-disease bipartite
network, and predicted the rank of the removed gene using the
disease as a seed in the RWR. The LP protocol is applied on
the airport multilayer network by removing a French-British
edge from the French-British bipartite network, and predicting
the rank of the French airport using the British airport node
as a seed in the RWR. We overall observed similar behaviors
as LOOCV (Fig. S9 and S13).

It is to note that the LOOCV and LP protocols can be used
to evaluate the pertinence of adding new multiplex networks
in a multilayer network or new network layers in a multiplex
network. Both protocols are available within the MultiXrank
package.

Parameter space exploration.

We next evaluated the stability of MultiXrank output scores
upon variations of the input parameters. We illustrate this
exploration of the parameter space with the biological mul-
tilayer network composed of two types of nodes: genes and
diseases. We first compared the top-5 and top-100 gene and
disease nodes prioritized by MultiXrank using 124 different
sets of parameters (Fig 4.A, see supplementary section 4.B for
the definition of the sets of parameters). We observed that
the gene top-ranking is more sensitive to input parameters
than the disease top-ranking (Fig 4.A).

To better understand the stability of the output scores
upon variations of the input parameters, we proposed a pro-
tocol based on 5 successive steps: i) definition of the sets of
parameters, ii) construction of a matrix containing the simi-
larities of the RWR output scores obtained with each set of
input parameters, using a new similarity measure (equation
[17]). We computed these similarities between RWR output
scores for each type of node independently (i.e., for genes and
diseases).

Siαβ =
mi∑
j=1

√
[(riα)j − (riβα)j ]2 + [(riβ)j − (riαβ)j ]2

(
riα+ri

β

2 )2
[17]

Where α and β define two sets of parameters, mi is the
number of nodes associated with the multiplex network i, riα

(resp. riβ) are the scores associated to the set of parameters α
(resp. β) for the multiplex network i, riαβ (resp. riβα) is the
distribution of the positions of the nodes associated with the
set of parameters α (resp. β) for the distribution associated
with β (resp. α), for the multiplex network i.

We next computed a consensus Similarity matrix for each
type of node with a normalized euclidean norm of each indi-
vidual Similarity matrix (equation [18]).

Sαβ =

√√√√ N∑
i=1

(Siαβ)2

mi
[18]

Where N is the number of multiplex networks.
The next step, iii) projection of the consensus Similar-

ity matrix into a PCA space, where each dot represents the
output scores resulting from a set of parameters (Fig. 4.B).
Then, iv) clustering (using k-means on the two first principal
components) to identify sub-regions containing similar RWR
output scores. Finally, v) comparing the top-ranked nodes
obtained with the set of parameters belonging to each cluster
(see supplementary section 4.B for details).

We applied this protocol to evaluate the output scores
obtained by MultiXrank on the previously defined biological
multilayer network composed of the gene multiplex network
and the disease monoplex network, using 124 different combi-
nations of parameters. We projected the consensus Similarity
matrix into the PCA space and identified 8 clusters (Fig. 4.B).
We then focused our analyses on the two clusters defined in the
bottom left subspace (clusters number 0 and 5, zoom in Fig.
4.B). The top-100 ranked gene and disease nodes identified
using the sets of parameters inside each of the two clusters
are overall similar (Fig 4.C). This means that even if the node
prioritization can be sensitive to input parameters, we can
identify regions of stability on the parameter space. Moreover,
the protocol allows identifying the source monoplex/multiplex
networks generating the variability in the output scores upon
changes in the input parameters.

We applied the protocol to other multilayer networks and
observed varied behavior, from highly variable top-rankings
and scattered projections in the PCA space for the airport
multilayer network (supplementary Fig. S14) to robust top-
rankings with well-clustered projections in the PCA space for
the biological multilayer network composed of 3 types of nodes
(genes, diseases and drugs, supplementary Fig. S15). Overall,
our parameter space study reveals different sensitivities to in-
put parameters depending on the multilayer network explored.
The protocol is available within the MultiXrank package and
can be used to characterize in-depth the sensitivity to input
parameters of any multilayer network.

Applications

MultiXrank output scores can be used in a wide variety
of applications. Indeed, RWR scores can be employed
directly for node prioritization, and they can also be the
starting point for clustering (22–24) or embedding (25–27),
for instance. We illustrate here the versatility and usefulness
of MultiXrank output scores in different use-cases. The first
use-case is dedicated to node prioritization in Leukemia using
a multilayer biological network composed on two multiplex
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Fig. 3. A.1 and A.2: Cumulative Distribution Functions (CDFs) representing the ranks of the left-out nodes in the LOOCV protocol. A.1: focus on different combinations of
biological networks: protein-protein interactions network (PPI), gene multiplex network (multi-1), multilayer network composed of the gene multiplex network and the disease
monoplex network (multi-2), and multilayer network composed of the gene multiplex network, the drug multiplex networks and the disease monoplex network for two different

sets of parameters (multi-3, multi-3 bis). The multilayer networks are connected by the bipartite networks described in the evaluation section. A.2: focus on different
combinations of airports networks: French multiplex network (multi-1), multilayer network composed of the French and British airports multiplex networks (multi-2), and

multilayer network composed of the French, British, and German airports multiplex networks for two different sets of parameters (multi-3, multi-3 bis). These multilayer networks
are connected by the bipartite networks described in the evaluations section.

B.1-2: Cumulative Distribution Functions (CDFs) representing the ranks of the left-out nodes in the LOOCV protocol for the multi-3 multilayer networks described previously with
artificially increased connectivity in the gene-drug and disease-drug bipartite networks thanks to the addition of 1 (multi3+1), 2 (multi3+2) or 5 (multi3+5) transit drug nodes for

each gene-disease association (B.1), and with artificially increased connectivity in the French-German and British-German bipartite networks thanks to the addition of 1
(multi3+1), 2 (multi3+2) or 5 (multi3+5) transit German nodes for each French-British airports association (B.2).

networks. We then applied MultiXrank to predict candidate
drugs for epilepsy using a large and heterogeneous multilayer
network. This second use-case allowed us to compare
the results obtained by MultiXrank with an unsupervised
approach with the results obtained by Himmelstein et al.
with a supervised machine learning approach (3). Finally,
in a third use-case, we used MultiXrank output scores to
train a supervised classifier to predict gene-disease associations.

Node Prioritization in Leukemia: In order to illustrate
the value of MultiXrank for node prioritization, we analyzed
two nodes of interest for Leukemia, a well-studied disease for
which we can confront our predictions with the knowledge
existing in the literature. Our goal is to prioritize nodes
around i) Tipifarnib (DB04960), a drug investigated for
the treatment of Acute Myeloid Leukemia and other types
of cancer (28–30), and ii) HRAS, as mutations in the RAS
gene family have been described in a wide variety of tumors,
in particular in Myeloid Leukemia (31). The association
between these two nodes is particularly relevant as HRAS is

a farnesylated protein and Tipifarnib a farnesyltransferase
inhibitor (32). We used HRAS and Tipifarnib as gene
and drug seeds, respectively, in MultiXrank applied on a
multilayer network composed of a gene multiplex network
and a drug multiplex network (supplementary section 3.B for
details). A literature survey of the top-10 prioritized genes
and drugs demonstrates established or suspected connections
with Leukemia (supplementary section 5.A). For instance,
the second highest-scoring gene is FNTB, a gene coding the
farnesyltransferase and a target of Tripifarnib. Different genes
related to signal transduction and known to be relevant for
cancer, including RAF1, RASGRP1, RASA1 or ARAF are
also identified among the top-scoring genes.

Node Prioritization to predict candidate drugs for epilepsy
and comparison of MultiXrank with the Hetionet framework:
We applied MultiXrank to prioritize candidate drugs for
epilepsy, using as seed the epilepsy disease node (OID:1826) in
the large and heterogeneous multilayer network assembled in
the Hetionet project (3). This multilayer network is composed

A.Baptista et al. July 12, 2021 | 7–10



  

Cluster 0

Cluster 5

B

Top-5 and the top-100 disease nodes  across all output scores
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Fig. 4. A: Comparison of the top-5 and top-100 nodes ranked by MultiXrank using a biological multilayer networks composed of the gene multiplex network and the disease
monoplex network for different sets of parameters. The top-5 or top-100 ranked nodes for each set of parameters are merged, and the occurences of each node are counted.
The nodes are represented in bars colored in red when the node is found in all top-5 or top-100 scores, and in blue otherwise. B: Clustering in the PCA space of the output

scores obtained with MultiXrank on the biological multilayer network composed of a gene multiplex network and a disease monoplex network using different sets of parameters.
C: Comparison of the top-100 nodes retrieved for the sets of parameters belonging to clusters 0 and 5 defined in B. The bar is colored in red when a node is found in all top-100

scores, and in blue otherwise.

of nine different types of nodes distributed in multiplex and
monoplex networks (supplementary section 3C for details).
We compared the drugs top-predicted by MultiXrank (an
unsupervised approach) with the drugs top-predicted by
the Hetionet approach using a supervised machine learning
approach based on regularized logistic regression (3). Many
drugs are predicted by both approaches. Indeed, for one of
the set of parameters tested in MultiXrank (set of parameters
number 4), 59% of the top-100 Hetionet prediction are
also in the top-100 of MultiXrank, 80% in the top-200 of
MultiXrank, and 99% in the top-500 of MultiXrank (Fig.
S18). We checked in detail the 41 drugs retrieved in the
top-100 MultiXrank scores that were not identified by the
Hetionet approach (supplementary Table S7). We identified
different drug classes of interest, including Cytochrome P-450
Substrates, Analgesics and Indoles. A literature survey
showed that these three classes of drugs have potential
curative effects on epilepsy (33–35). These results indicate
that MultiXrank can provide predictions complementary to
the Hetionet machine learning approach (for detailed results
and statistics, see supplementary section 5.B). In addition,
MultiXrank predictions can be easily interpreted thanks to
the extraction of the subnetworks underlying the prioritization.

Supervised classification of gene-disease associations: The
third use-case is dedicated to the training of a supervised
binary random forest classifier to predict new gene-disease

associations. Pertinent predictions of gene-disease associa-
tions are crucial for the diagnosis, understanding, and treat-
ment of genetic diseases. Among the approaches available for
gene-disease predictions, network-based methods have been
particularly employed and demonstrated good performances
(36). These network approaches were initially mainly based on
unsupervised strategies, but an increasing number of methods
are currently testing supervised strategies (36).
We applied MultiXrank (using the parameters described in
supplementary Table S8) to two different biological multilayer
networks, one composed of the gene multiplex network and
the disease monoplex network, and one composed of the gene
multiplex network, the drug multiplex network and the disease
monoplex network (supplementary section 3.B). In these two
multilayer networks, we connected the gene multiplex and the
disease monoplex network with a gene-disease bipartite net-
work constructed with an outdated version of DisGeNET (v2.0,
2014 (37)). We then trained binary random forest classifiers
with different parameters (38) using the MultiXrank output
scores (see supplementary Fig. S19 for the workflow). We
tested the performance of the classifiers to predict gene-disease
associations that have been added in an updated version of the
same bipartite network (DisGeNET v7.0, 2020 (39)). With
the first biological multilayer network, the best random for-
est classifier according to the F1 score had a score equal to
0.90 (supplementary Table S9), which demonstrate that Mul-
tiXrank outputs can be a used to train a classifier to predict
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new gene-disease associations. We observed that the same
task using the second biological multilayer network, containing
also the drug multiplex networks, show lower performances
(F1 score = 0.63, Table S10). These results corroborate our
previous observations with the LOOCV and the LP protocols
in the evaluations section, i.e. the drug multiplex network
does not increase the prediction performances of the RWR.

Discussion

Multilayer networks are nowadays very popular, in particu-
lar because they allow to apprehend a larger part of real and
engineered systems. In biology, multilayer networks integrat-
ing multiscale sources of heterogeneous interactions provide a
more comprehensive picture of biological system functionali-
ties. However, data representation as multilayer networks must
be accompanied by the development of tools allowing their
exploration. Many efforts are thereby dedicated to extend clas-
sical network theory algorithms to multilayer systems (4, 40).
These algorithms include for instance clustering algorithms
(41), Graph Convolutional Networks (42, 43) or meta-path
based methods (3, 44). Another important class of network
exploration algorithms, such as diffusion kernels or methods
based on random walk, is based on the principle of network
propagation (40). The methods based on random walk, such as
PageRank, biased random walk or Random Walk with Restart
(RWR) are widely used in network science. Their versatility
indeed allow using the random walk output scores directly for
node prioritization and subnetwork extraction, but can also be
used as input of downstream analysis pipelines, for instance
for supervised classification, clustering or node embedding
(27). Different random walk approaches have been adapted
to consider multilayered networks. However, many different
types of multilayer networks exist, from multiplex to multi-
relational, for instance. Network exploration algorithms that
have been adapted to handle multilayer networks can often be
applied only to specific categories of multilayer networks, such
as multiplex networks composed of the same set of nodes.

We propose here MultiXrank, a new tool that proposes
an optimized and general formalism for universal RWR on
multilayer networks. MultiXrank can be applied to explore
multilayer networks composed of any combination of multiplex,
monoplex or bipartite networks, and all the layers and edges
can be directed and weighted. We complemented MultiXrank
with a parameter space exploration protocol to measure the
influence of variations in the input parameters on the global
stability of the results. It is to note that this parameter space
exploration protocol is universal and can be used to study
any complex system exploration approach providing scores as
outputs.

The output scores of MultiXrank can be used in a wide
variety of downstream analyses, such as clustering and embed-
ding. For instance, shallow embedding methods need similarity
measure for the optimization of the loss function (27, 45). Mul-
tiXrank can produce such a similarity measure respecting the
global topology of the network. Using MultiXrank output
scores with subsequent embedding would allow taking advan-
tage of the embedding space on the robustness to increase
the predictive power of the gene-disease association prediction
task(46).

We illustrate the usefulness of MultiXrank with various
use-case applications related to biology and human diseases,
providing guidelines for users. The MultiXrank package can
be applied to any kind of multilayer network such as social,
economic, or ecological multilayer networks. MultiXrank is
optimized and can handle multilayer networks containing up
to millions edges. To consider billion-scale network problems,
several strategies can be considered, such as the Block Elim-
ination Approach for RWR (BEAR) that can be exact or
approximate (47) or the Best of Preprocessing and Iterative
approaches (BEPI) that is an approximate approach (48).

Finally, even if one’s initial intuition in data analysis could
be that "more data is better", the addition of interaction
network layers also brings additional degree of freedom (4). To
evaluate the pertinence of the addition of multiplex networks
or the addition of layers in a multilayer system, MultiXrank
includes a systematic evaluation protocol based on Leave-One-
Out-Cross-Validation and Link Prediction. Overall, our results
show that adding networks data does not always increase the
predictive power of the RWR, as already suggested by previous
studies (9). Our evaluation protocol can be used, for the first
time to our knowledge, to evaluate in-depth the signal-to-noise
of multilayer system combinations.
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