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Abstract

The identification of subnetworks of interest—or active modules—by integrating biological

networks with molecular profiles is a key resource to inform on the processes perturbed in

different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algo-

rithm to identify active modules in MUltiplex biological Networks. MOGAMUN optimizes

both the density of interactions and the scores of the nodes (e.g., their differential expres-

sion). We compare MOGAMUN with state-of-the-art methods, representative of different

algorithms dedicated to the identification of active modules in single networks. MOGAMUN

identifies dense and high-scoring modules that are also easier to interpret. In addition, to our

knowledge, MOGAMUN is the first method able to use multiplex networks. Multiplex net-

works are composed of different layers of physical and functional relationships between

genes and proteins. Each layer is associated to its own meaning, topology, and biases; the

multiplex framework allows exploiting this diversity of biological networks. We applied

MOGAMUN to identify cellular processes perturbed in Facio-Scapulo-Humeral muscular

Dystrophy, by integrating RNA-seq expression data with a multiplex biological network. We

identified different active modules of interest, thereby providing new angles for investigating

the pathomechanisms of this disease.

Availability: MOGAMUN is available at https://github.com/elvanov/MOGAMUN and as

a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/

MOGAMUN.html.

Contact: anais.baudot@univ-amu.fr

Author summary

Integrating different sources of biological information is a powerful way to uncover the

functioning of biological systems. In network biology, in particular, integrating interac-

tion data with expression profiles helps contextualizing the networks and identifying
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Vignes M, Térézol M, Magdinier F, Tichit L, et al.

(2021) A multi-objective genetic algorithm to find

active modules in multiplex biological networks.

PLoS Comput Biol 17(8): e1009263. https://doi.

org/10.1371/journal.pcbi.1009263

Editor: Paul Jensen, University of Illinois at

Urbana-Champaign, UNITED STATES

Received: September 23, 2020

Accepted: July 9, 2021

Published: August 30, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1009263

Copyright: © 2021 Novoa-del-Toro et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

https://orcid.org/0000-0002-6135-5839
https://orcid.org/0000-0002-1565-5267
https://orcid.org/0000-0002-4090-2573
https://orcid.org/0000-0002-0159-9559
https://orcid.org/0000-0002-8350-1446
https://orcid.org/0000-0003-0885-7933
https://github.com/elvanov/MOGAMUN
https://bioconductor.org/packages/release/bioc/html/MOGAMUN.html
https://bioconductor.org/packages/release/bioc/html/MOGAMUN.html
https://doi.org/10.1371/journal.pcbi.1009263
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009263&domain=pdf&date_stamp=2021-09-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009263&domain=pdf&date_stamp=2021-09-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009263&domain=pdf&date_stamp=2021-09-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009263&domain=pdf&date_stamp=2021-09-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009263&domain=pdf&date_stamp=2021-09-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009263&domain=pdf&date_stamp=2021-09-20
https://doi.org/10.1371/journal.pcbi.1009263
https://doi.org/10.1371/journal.pcbi.1009263
https://doi.org/10.1371/journal.pcbi.1009263
http://creativecommons.org/licenses/by/4.0/


subnetworks of interest, aka active modules. We here propose MOGAMUN, a multi-

objective genetic algorithm that optimizes both the overall deregulation and the density to

identify active modules, considering jointly multiple sources of biological interactions.

We demonstrate the performance of MOGAMUN over state-of-the-art methods, and

illustrate its usefulness in unveiling perturbed biological processes in Facio-Scapulo-

Humeral muscular Dystrophy.

This is a PLOS Computational BiologyMethods paper.

1 Introduction

The success of functional genomics is associated with the massive production of quantitative

information related to genes, proteins or other macromolecules. These data include, for

instance, -omics molecular profiles measuring the expression or activity of thousands of

genes/proteins, sensitivity scores resulting from RNA interference or CRISPR screenings, and

GWAS scores providing significance of association between genes and phenotypic traits.

These scores and measurements, often presented as p-values, intend to inform on the cellular

responses associated to different cellular contexts. But transforming lists of deregulated genes/

proteins and their associated p-values to sets of pathways and processes affected in the different

cellular conditions remains a major challenge.

A classical approach to identify perturbed cellular processes is the search for over-represen-

tation of function or process annotations. Many tools exist that can take as input a list of

genes, selected after defining a threshold for significance or ranked according to their p-values

[1]. Such enrichment approaches will consider only the genes/proteins annotated in databases.

Another set of successful approaches try to overcome this limitation by integrating scores or

measures with biological networks. Biological networks are composed of nodes representing

the biological macromolecules, often genes or proteins, and edges representing physical or

functional interactions between those macromolecules. The goal is to identify active modules,
i.e., subnetworks enriched in interactions and in nodes of interest. These active modules then

facilitate the investigation of the perturbed cellular responses, as functional modules are the

building blocks of cellular processes and pathways [2].

The identification of active modules from networks is an NP-hard problem [3–5]. Some

active module identification algorithms are based on clustering co-expression networks [6, 7]

or memetic algorithms [4]. However, most approaches rely on greedy searches, simulated

annealing, and genetic algorithms (see [2] and [8] for general surveys of active module identifi-

cation methods).

Algorithms based on greedy searches, such as PinnacleZ [9] and MATISSE [10], follow

three general steps: i) selection of seed(s), ii) expansion of seed(s), and iii) significance test. In

the selection of seed(s), a set of genes of interest (for instance, significantly differentially

expressed genes) are picked. Then, the seed(s) are iteratively expanded (adding one node at a

time), following a greedy criteria, i.e. choosing the node in the network neighborhood of the

seed(s) that maximizes a score, which improves the module fitness. The expansion stops when

any of the following three conditions is met: 1) the improvement of the score of the subnet-

work is below a minimum threshold, 2) the subnetwork reached a maximum size, or 3) a
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maximum distance from the seed(s) is reached. As a last step, the subnetworks are tested for

significance, by comparing the score of each subnetwork with the score of a random subnet-

work. These three steps are common to greedy searches algorithms, but every method has vari-

ations. For instance, the seeds selected by PinnacleZ are single nodes, whereas MATISSE

selects connected subnetworks. The main drawback of greedy searches is that they can get

trapped in local optima because at every step they only look at the local options. In particular,

they cannot pick low scoring nodes, even if these can be key for escaping local optima and

have access to several high scoring nodes.

Methods based on simulated annealing, such as jActiveModules [3], follow a hill-climbing

philosophy, but instead of always picking the best option, i.e., the best neighbor node to be

added to the subnetwork, they can also choose unfavorable options (i.e. options decreasing the

global score), and thereby escape local optima. Algorithms based on simulated annealing fol-

low two steps: i) initialization of nodes states, and ii) toggling of nodes states. In the initializa-

tion of nodes states, each node in the network gets either the active or inactive state, with a

given probability. The set of active nodes constitutes the initial subnetwork, and the subnet-

work’s score is calculated as the aggregated score of its nodes. Then, in the second step, the

nodes states are toggled: in every iteration, the state of a random node is changed from active

to inactive, or vice versa. If the toggling improves the score of the subnetwork, it is always

accepted; otherwise, it is accepted with a probability calculated based on the temperature

parameter, which decreases gradually in every iteration. After toggling states for a given num-

ber of iterations, the highest scoring subnetwork found in any iteration is given as result. Some

algorithms, such as jActiveModules, have a third step to evaluate the significance of the final

subnetwork by comparing its score to scores obtained on randomized expression data. The

main drawback of simulated annealing is that the bigger the input network is, the more itera-

tions are needed in order to explore the full search space. Moreover, simulated annealing does

not guarantee that the final set of nodes forms a single connected component. However, jActi-

veModules can filter such set of nodes, in order to keep the top-scoring single connected com-

ponent(s).

Methods such as COSINE [11], the algorithm proposed by Muraro et al. [12], the one pro-

posed by Ozisik et al. [13] or the one proposed by Chen et al. [5], are all based on genetic algo-

rithms. A key feature of genetic algorithms is that several potential solutions are considered

simultaneously. In a genetic algorithm, an initial population of individuals, i.e. subnetworks

corresponding to potential solutions, is usually randomly generated. Each individual’s fitness

is then evaluated using one (mono-objective optimization) or several (multi-objective optimi-

zation) objective functions. The population of individuals then starts the evolution process,

where new individuals are generated by crossing existing ones and by modifying them with

mutations. The fittest individuals (those with better values for the objective function(s)) have a

higher probability to be selected for the generation of offspring. The evolution stops when the

algorithm converges, for instance, when there is no improvement in the best value for the

objective function(s) for a given number of generations. One of the main advantages of genetic

algorithms is that the crossover and mutation operators can help to find a balance between

exploring different areas of the whole search space and exploiting the surroundings of promis-

ing regions. However, as in simulated annealing, standard crossover and mutation operators

cannot guarantee that the final solution will have a set of nodes forming a single connected

component. As an option, one can design customized crossover and mutation operators, as in

[12, 13]. Importantly, genetic algorithms are capable of optimizing multiple (often conflicting)

objectives simultaneously. If the problem is tackled as mono-objective, all the objectives are

added into a single objective function by considering weights for each one of them, and the

result is usually a single solution. In contrast, if the problem is defined as multi-objective, each
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objective is associated with an independent objective function, and the result generally leads to

several solutions that provide a trade-off for the values of the different objective functions.

By definition, active modules are expected to be enriched in interactions. However, to our

knowledge, only few methods, such as SigMod [14], consider the density of interactions.

Moreover, existing methods were designed for the analysis of single biological networks, usu-

ally a protein-protein interaction network. However, we now have access to several sources of

physical and functional interactions between biological molecules. These interactions are rep-

resented in a diversity of biological networks, from networks encompassing metabolic and sig-

naling pathways to networks representing correlation of expression. These different

interaction networks, each having their own features, topology and biases, are better repre-

sented as multiplex networks. Multiplex networks are multilayer networks (i.e., networks com-

posed of different layers, where every layer is an independent network), sharing the same set of

nodes, but different types of edges [15]. We and others recently developed different approaches

to study and leverage these more complex but richer biological networks [16–20]. In this work,

we present MOGAMUN, a multi-objective genetic algorithm able to explore a multiplex net-

work to identify several activez modules.

2 Materials and methods

2.1 The MOGAMUN algorithm

A multiplex network is defined as a triplet G ¼< V;E;C >, where V is the set of nodes,

E ¼ E1; . . . ; Ea correspond to the α different types of edges between the nodes in V, one type

per layer of the multiplex network, and C = {(v, v, l, k): v 2 V, l, k 2 [1, α], l 6¼ k} is the set of

coupling links that link every node v with itself across the α layers. For every type of edge in a

layer l, El = {(vi, vj): i 6¼ j, vi, vj 2 V} [21].

We introduce MOGAMUN, a Multi-Objective Genetic Algorithm to identify active mod-

ules from MUltiplex Networks. MOGAMUN is a customized version of the Non-dominated

Sorting Genetic Algorithm II (NSGA-II) [22], adapted to deal with networks. NSGA-II is a

widely used multi-objective genetic algorithm-based optimization method. NSGA-II uses

non-dominated sorting to rank the solutions, which allows optimizing two objective functions

simultaneously (see Supplementary Section 3 in S1 File. for details). Our goal is to identify sub-

networks that jointly fulfil two objectives: the relevance of the nodes and the density of interac-

tions, inside a given subnetwork.

2.1.1 Definition of the objective functions. We measure the relevance of the nodes in a

subnetwork, using the first objective function, the average nodes score, defined in Eq (1).

NodesScore ¼
1

n

Xn

i¼1

ðScorenormi Þ ð1Þ

Where n is the number of nodes in the subnetwork, and Scorei = F−1(1 − pi) is the weight of

node i.F−1 is the inverse standard normal cumulative distribution function and pi is the result-

ing p-value, or False Discovery Rate (FDR)-corrected p-value, of a statistical test. A node is

considered significant if its p-value/FDR is lower than a user-defined threshold. In many cases,

it corresponds to the result of a differential expression analysis.

The calculus of the inverse normal cumulative distribution (F−1) leads to values in the

range between (−1, +1). We use Eq (2) to normalize the nodes scores to be in the [0, 1]

range. The average nodes score NodesScore is thus also within this range. Notice that the aver-

age nodes score is not an aggregated z-score, as defined in [3], because our Scorenormi can be

computed from either p-values or FDRs and is scaled to the range from 0 to 1. It is thereby not
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necessarily distributed according to a standard normal distribution.

Scorenormi ¼
Scorei � minðScoreÞ

maxðScoreÞ � minðScoreÞ
ð2Þ

The second objective function intends to evaluate the density of interactions in a subnet-

work. Here, we compute a normalized density in order to evaluate the density of a subnetwork

in a multiplex network. We define the normalized density Dnorm in Eq (3).

Dnorm ¼
XL

l¼1

ds
dl

ð3Þ

Where L is the total number of layers in the multiplex network, dl is the overall density of layer

l, and ds is the density of the subnetwork in layer l; the densities ds and dl are defined by Eq (4).

d ¼
jEtj
jEmaxj

ð4Þ

Where Et is the total number of edges in ds or dl, and Emax is the number of edges of the com-

plete graph of the corresponding size.

2.1.2 General workflow of MOGAMUN. We present the general flowchart of MOGA-

MUN in Fig 1. We initialise the algorithm with a random population of individuals (parents).

We then mate the initial population to create a new population (children) of the same size.

Last, we select the best individuals out of the two populations (parents & children) to use them

as parents in the next generation. We iteratively repeat the process until convergence. The

step-by-step procedure is detailed below, in subsections 2.1.3 to 2.1.12. The algorithm parame-

ters are presented in section 2.3.

We modified NSGA-II [22] to work with networks. To do so, we defined a coding scheme

for the individuals with a variable length, where each feature corresponds to the identifier of a

node. We also customized the original steps involving either the creation or the modification

of individuals (generation of the initial population, crossover and mutation). In addition, we

added a step to replace duplicated individuals with randomly generated ones, in order to

ensure the diversity of the population and allow exploring the search space further. Impor-

tantly, we request all the individuals (i.e., the subnetworks of the multiplex network) to be sin-

gle connected components.

2.1.3 Generating the initial population. We first defined a multiplex-network version of

the Depth First Search (multiplex-DFS, see Algorithm 1), which allows generating individuals

that are single connected components. In every iteration of the multiplex-DFS, a uniformly

random layer of the multiplex network is visited (see Algorithm 1, line 9). We use the multi-

plex-DFS to generate an initial population of N individuals. Each individual is a connected

subnetwork with a random size betweenMinS andMaxS. The seed, i.e., the initial node in the

network, is randomly chosen from the pool of significant nodes, in order to focus around

interesting areas of the multiplex network.

2.1.4 Evaluating the initial population. We now evaluate all the individuals of the popu-

lation, i.e., the set of potential subnetwork solutions, with the two objective functions described

in Eqs (1) and (3). A high average nodes score implies that the individual contains high-scor-

ing nodes. Similarly, a high normalized density implies that the individual is densely connected

in the multiplex network.

Algorithm 1 Multiplex Depth First Search
1: procedure DFS(M, seed)
2: Let S be a stack
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3: Let l be a layer from the multiplex network M
4: S.push(seed)
5: while S is not empty do
6: v = S.pop()
7: if v is not labeled as discovered then

Fig 1. General flowchart of MOGAMUN.

https://doi.org/10.1371/journal.pcbi.1009263.g001
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8: Label v as discovered
9: l = pick a layer from M
10: neighbors = get all direct neighbors of v in l
11: neighbors = Shuffle(neighbors)
12: for all i in neighbors do
13: S.push(i)
14: end for
15: end if
16: end while
17: end procedure

2.1.5 Ranking individuals in the population. We use the Pareto dominance, a classical

criterion in evolutionary multi-objective optimization, to rank the individuals [23]. In a maxi-

mization problem, an individual S1 dominates S2 (S1� S2), if NodesScoreðS1Þ �
NodesScoreðS2Þ and Dnorm(S1)� Dnorm(S2), and at least one of the two inequalities is strict.

The ranking process is carried out like in the original NSGA-II algorithm, as follows: initially,

all non-dominated individuals (i.e., those individuals that are not dominated by any other

individual in the current population) are assigned rank 1 and separated from the population.

After that, from the remaining individuals in the population, those non-dominated are

assigned rank 2 and separated from the population as well. Such process continues until there

are no remaining individuals in the current population. At the end, all individuals in the popu-

lation have a ranking value. The best individuals have rank 1.

Apart from assigning a rank to every individual, we also calculate their crowding distance,

which is a measure that determines the proximity of the individuals in the objective space. The

crowding distance of an individual is equivalent to the perimeter of the cuboid formed by its

surrounding nearest pair of individuals in the same Pareto front, one at each side. The only

exception is for those individuals that maximize one of the two objectives in each rank, which

are directly assigned an infinite crowding distance value [23].

2.1.6 Selecting compatible parents by tournament. The parents are selected by tourna-

ment [24]. The selection of a pair of parents restricts the crossover to individuals that are com-

patible. This ensures that the children are also single connected components. Two individuals

S1 and S2 are compatible if:

• S1 \ S2 6¼ ;, or

• S1 \N ðS2Þ 6¼ ;, where N ðS2Þ is the set of neighbors of the nodes of S2.

The first parent is chosen via tournament (considering the rank of the individuals, and the

crowding distance if they have the same rank). Depending on the number of compatible indi-

viduals, the second parent can be either selected also by tournament or directly assigned, if

there is only one compatible individual. The procedure is described in Algorithm 2. If no indi-

vidual is compatible with the first parent, we restart the process with a different individual as

Parent1 (line 10 of Algorithm 2). If after a pre-specified number of attempts, the search of

compatible parents is unsuccessful, we generate two random individuals, add them to the pop-

ulation of children and we skip crossover.

Algorithm 2 Selection of compatible parents
1: Let Parent1 be the first parent, an individual selected from the
population, with a tournament of size t, based on ranking
2: Let CI be the list the compatible individuals with Parent1
3: Let NCI be the number of compatible individuals with Parent1
4: if NCI > = t then
5: Let Parent2 be chosen via a tournament of size t from the individ-
uals in CI
6: else
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7: if NCI == 1 then
8: Let Parent2 be the only compatible individual
9: else
10: if NCI == 0 then
11: Discard Parent1 and return to line 1
12: end if
13: end if
14: end if

2.1.7 Crossover. The goal of the crossover operator is to combine the nodes of two parent

individuals, in an attempt to improve the values of any of the objective functions (average

nodes score and/or normalized density). We mate the parents with crossover rate c. In order

to guarantee that each child will be a single connected component, we use a crossover method

inspired from the one proposed in Muraro et al., where the subnetworks corresponding to the

parents are merged to have a single connected component [12]. In such a way, two nodes are

randomly chosen, and two new children are generated with a Depth First Search, having as

seed each selected node, respectively. However, our crossover varies according to two main

aspects: 1) each seed for the children must correspond to significant nodes, and 2) the children

can be generated either with Depth First Search or Breadth First Search. All children respect

the subnetwork size’s range.

2.1.8 Mutation. The goal of the mutation operator is to exploit the neighborhood of the

children, adding/removing nodes, here also in an attempt to improve the value of any of the

two objective functions. Notice that a node that is in the neighborhood of a child, i.e., directly

connected to it, and that has a high node score, would allow increasing the average nodes

score. In the same way, a neighbor node that is highly connected with the nodes of the child

could improve the normalized density. We mutate each child independently with ratem. We

first choose the list of potential nodes vp to be removed. We restrict this list to those nodes that

can be removed without disconnecting the child subnetwork and that are not significant. We

finalize the mutation process by adding |vp| new nodes to the subnetwork if |vp|>0, or a single

node if |vp| = 0. The new nodes are chosen randomly, from the neighborhood of the corre-

sponding child, considering all the layers of the multiplex network, and preferring significant

nodes, if existing.

2.1.9 Combining parent and children populations. We join the parent and children

populations, giving as result a population of size 2N.

2.1.10 Replacing duplicated individuals with randomly generated ones. Duplicates of

individuals appear in the population when no compatible parents are found or when no cross-

over nor mutation are applied. To preserve diversity in the population, promote the explora-

tion of the search space and avoid premature convergence, we introduce the replacement of

duplicated individuals. To determine if an individual is duplicated, we check if it has more

nodes in common with another individual than a given threshold Jt of the Jaccard similarity

coefficient. The Jaccard similarity coefficient J between two subnetworks (individuals) A and

B, is calculated as follows:

JðA;BÞ ¼
jA \ Bj
jA [ Bj

¼
jA \ Bj

jAj þ jBj � jA \ Bj
ð5Þ

The dominated individual is labeled as duplicated. If no domination exists, one of the indi-

viduals is randomly selected.

2.1.11 Selecting the new population. After ranking the full population of size 2N, the

new population of size N is selected with elitism. The top N ranked individuals will form the
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new population, whereas the other N are discarded. It is to note that the best individuals

(among the parents and children) will thereby always remain in the population.

2.1.12 Stopping criteria. At this point, we have completed one generation. We iterate

until reaching the stopping criteria, given by the number of generations gen. The result is the

set of individuals in the first Pareto front (rank = 1). Evolutionary algorithms are stochastic

search approaches, they must hence be run several times. As a result, we will have several first

Pareto fronts. In order to select the final set of individuals, we calculate the accumulated Pareto
front. To this goal, we take the results of all runs, re-rank them, and keep only those individuals

in the new first Pareto front.

2.2 Post-processing the results

We designed a post-processing step to remove redundancy in the individuals obtained in the

accumulated Pareto front. We calculated the Jaccard similarity coefficient (Eq 5) between every

pair of individuals and merged them if it is higher than a given threshold Jt2.

2.3 Parameter values

In the study presented here, we used the parameter values listed in Table 1. We generated sub-

networks in size range of [15–50], which corresponds to the size of communities identified by

four over five top-performing algorithms in a community identification challenge [25]. This

size range combined with a population of size 100 individuals, allows covering about a quarter

of the multiplex network, around the most interesting areas. The minimum size parameter is

important as real biological networks are sparse and the density definition will tend to favor

smaller subnetworks. The final subnetworks will tend to have sizes equal to the minimum size

allowed.

Tournament size and crossover rate are classical values in genetic algorithms [26–28].

Mutation rate of 10% is higher than in most approaches, to promote the exploitation of the

search space near good solutions. It is to note that the algorithm converges with different com-

binations of crossover and mutation rates, and overall leads to very similar values of the final

objective functions (Supplementary Section 4 in S1 File). We selected the total number of gen-

erations empirically, after running the algorithm several times in different contexts and moni-

toring its convergence. Similarly, both thresholds of the Jaccard similarity coefficient were also

obtained empirically; we found that a relatively low value for the detection of duplicated indi-

viduals (Jt) allows to keep a high diversity rate, while preventing premature convergence, and a

high value for the post-processing step (Jt2) allows merging individuals that vary only in a few

number of nodes (i.e., merging individuals corresponding to very close subnetworks).

Table 1. Parameters of MOGAMUN and values used in this study.

Feature Description Value

N Population size 100

MinS Minimum size of the individuals 15

MaxS Maximum size of the individuals 50

t Tournament size 2

c Crossover rate 80%

m Mutation rate 10%

gen Total number of generations 500

Jt Jaccard similarity coefficient threshold or duplicated individuals 30%

Jt2 Jaccard similarity coefficient threshold for the post-processing step 70%

https://doi.org/10.1371/journal.pcbi.1009263.t001
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2.4 Benchmark to compare the performance of MOGAMUN with existing

methods

In order to compare the performance of MOGAMUN with state-of-the-art approaches, we

used and extended the benchmark initially proposed by Batra et al. [29]. It is worth noticing

that this benchmark works with a single interaction network as, to our knowledge, no active

module identification method can consider multiplex networks. It artificially generates expres-

sion data to simulate a differentially expressed subnetwork. To this goal, the nodes of the net-

work (i.e., the genes) are separated into two groups: Foreground Genes (FG) and Background

Genes (BG). A seed-and-select algorithm is defined to randomly select the FG as a connected

subnetwork. Such an algorithm selects a random seed and proceeds to iteratively add one

node at a time to the subnetwork, by picking it up from the list of neighbors, such that the sub-

network remains connected. The process ends when the subnetwork reaches the desired size.

Artificial expression data is then generated so that the FG contrasts with the BG, which means

that the FG genes are artificially differentially expressed.

We computed the F1 score (also known as F score or Fmeasure) to evaluate the quality of

the active modules identified by the different methods. The F1 score is calculated on the union

of all the active modules retrieved by each method over the 30 runs, using the Eq 6.

F1 ¼ 2�
precision� recall
precisionþ recall

� �

ð6Þ

Where precision ¼ TP
TPþFP and recall ¼ TP

TPþFN. The TP and the FP are the number of FG and BG

present in the active modules, respectively, and the FN are the number of missing FG (i.e. the

FG that were not retrieved).

2.4.1 Benchmark networks. We used two independent protein-protein interaction (PPI)

networks in the benchmark (Table 2). PPI_1 is the human protein reference database [30],

taken from [29]. PPI_2 was generated by merging interactions identified from several data-

bases through the PSICQUIC portal [31] and the Center for Cancer Systems Biology (CCSB)

Interactome database [32], taken from [16].

2.4.2 Benchmark artificial expression data. We simulated 2 different artificial expression

datasets, one following a normal distribution and another one sampled from real RNA-seq

data, as follows:

1. Sim_normal.We simulated expression data following a normal distribution. The mean val-

ues μ of the FG and BG groups of genes are μ(FG) = 5, and μ(BG) = 2, respectively, and a

standard deviation SD = 1 for both groups of genes. This situation corresponds to a high

signal strength, as in [29]. To test for differential expression, we performed a series of t-
tests, and considered a gene as significantly differentially expressed if the p-value�0.05.

We used a set of 20 FG, and did not correct the p-value for multiple testing in order to

make the test more challenging.

2. Samp_TCGA.We sampled data from real expression data, in order to have an RNA-seq dis-

tribution-like. We downloaded breast cancer RNA-seq expression dataset from The Cancer

Genome Atlas breast cancer project (TCGA-BRCA) from the US National Cancer GDC

Table 2. Interaction networks used in the benchmark.

Name No. of nodes |V| No. of edges |E| Density d
PPI_1 9425 36811 8.28 x 10−4

PPI_2 12621 66971 8.41 x 10−4

https://doi.org/10.1371/journal.pcbi.1009263.t002
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portal (https://portal.gdc.cancer.gov/), as of May, 2019. This dataset is composed of 1 102

cases and 112 controls (we removed the outlier control sample “d5f0ea64.6660.49ac.

a37e.3cd747045147”). To test for differential expression, we used the R package edgeR ver-

sion 3.26.8 [33]. We consider a gene to be significantly differentially expressed if its False

Discovery Rate FDR�0.05 and |log2(FC)| > 1, where FC (Fold Change) is the ratio of the

difference in expression between cases/patients and controls. The expression data for the

FG and BG were randomly sampled from the set of significantly differentially expressed

and non-differentially expressed genes, respectively. We used a set of 20 FG.

In Table 3 we describe our two datasets. Columns “Cases” and “Controls” show the number

of patients/cases and controls, respectively, “Genes” shows the total number of genes in the

simulated dataset, corresponding to the total number of nodes in the networks, and “Signifi-

cant DE” is the number of significantly differentially expressed genes.

2.4.3 State-of-the-art algorithms selected for comparison. We compared MOGAMUN

with three selected methods, representative of the main approaches seeking for active modules:

jActiveModules [3], PinnacleZ [9], and COSINE [11].

jActiveModules. Ideker et al. [3] proposed jActiveModules. They use a simulated anneal-

ing algorithm to find subnetworks with the highest scores, calculated from the differential

expression of the subnetwork nodes. The search starts by selecting a subnetwork containing

approximately half of the nodes of the full network. After that, they iteratively add or remove

one node at a time from the selected subnetwork (the number of iterations is defined a priori).
Whenever the addition or removal of a node increases the score of the subnetwork, the modifi-

cation is accepted. Otherwise, it is accepted with a probability that decreases along the itera-

tions, according to the temperature value. After finishing adding/removing nodes, the highest

scoring subnetwork (found in any iteration) is selected as result. Finally, the significance of the

selected subnetwork is evaluated. Several parameters can be tuned, but for the tests performed

here, we used the default values recommended by the authors [3]. The only exception is that

we set to 1 the number of modules to be retrieved, as this corresponds to the benchmark set-

tings. jActiveModules is available as a Cytoscape plugin.

COSINE. Ma et al. [11] proposed COSINE, a method based on a standard mono-objective

genetic algorithm. The goal of COSINE is to find the subnetwork with the highest change in

expression among conditions, represented as node weights. COSINE further allows consider-

ing the level of co-expression between pairs of genes, represented as edge weights. To compute

the edge weights, we calculated the co-expression of every pair of nodes connected in the

benchmark networks. COSINE further allows giving more importance to either the weights of

the nodes or the edges, with a parameter lambda. For the tests performed here, we used the

same parameters as reported in [11], where COSINE is compared with other methods (num-

ber of iterations = 5000; zero to one ratio = 30), and we set lambda to 0.5, in order to give the

same importance to changes in expression (i.e. node weights) and co-expressions (i.e. edge

weights). COSINE is available as an R-package.

PinnacleZ. Chuang et al. [9] designed PinnacleZ, a greedy algorithm to identify active

subnetworks that maximize the mutual information. The mutual information measures the

differences in the distribution of the expression values of a given set of genes between two

Table 3. Artificial expression datasets.

Name Cases Controls Genes Significant DE

Sim_normal 100 10 9425 483

Samp_TCGA 1102 112 12621 20

https://doi.org/10.1371/journal.pcbi.1009263.t003
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conditions. PinnacleZ starts the search by selecting an initial set of seeds, and for each of these

seeds, it iteratively adds the neighbor node that maximizes the mutual information of the sub-

network. The search stops when a maximal distance from the seed is reached or when the

improvement of the mutual information score is not considered significant, given a threshold.

PinnacleZ then performs three tests of significance on each of the identified active subnet-

works, in order to guarantee that their individual mutual information is higher than the

mutual information of a random subnetwork. We used the same parameters reported in [9]

(distance from the seed = 2 nodes, minimal mutual information score improvement thresh-

old = 0.05), and we set the maximum size per subnetwork = 50 (the same size that we allowed

for MOGAMUN). PinnacleZ was originally available as a Java program and a Cytoscape

plugin, but this latter one is no longer supported.

2.5 Application to Facio-Scapulo-Humeral muscular Dystrophy type 1

(FSHD1)

2.5.1 RNA-seq expression data. We used five Facio-Scapulo-Humeral muscular Dystro-

phy type 1 (FSHD1) RNA-sequencing expression datasets publicly available [34–36], extracted

from the Gene Expression Omnibus [37]. We performed the differential expression analyses

using the R package edgeR version 3.26.8 [33]. As recommended in the user guide of edgeR, we

performed glmQLF tests for the two datasets with samples from different batches [35, 36], and

Fisher Exact tests for the three datasets with samples from a single batch [34]. We considered a

gene as a significantly Differentially Expressed Gene (significantly DEG) if the False Discovery

Rate FDR�0.05 and the |log2(FC)| > 1, where the FC (Fold-Change) is the ratio of the differ-

ence in expression between cases and controls.

We selected from Yao et al. [34] RNA-seq data from muscle biopsies of 9 FSHD1 patients

(quadriceps, 4 males and 5 females) and 9 controls (8 quadriceps, 1 tibialis anterior, 5 males

and 4 females). We also selected data from two myoblasts derived from patients and the two

corresponding myotubes, as well as two myoblasts from controls and three control myotubes

(Supplementary Table S1 in S1 File). The cells were obtained from the University of Rochester

repository and are described in Young et al. [38]. Our differential expression analyses revealed

6, 7 and 343 significantly DEGs, for biopsies, myoblasts and myotubes, respectively.

In Banerji et al. 2017 [35] RNA-sequencing was performed in triplicate on confluent

immortalized myoblasts, for three FSHD1 patients (corresponding to 5 cell lines, for a total of

15 samples) and three healthy individuals (corresponding to 4 cell lines, for a total of 12 sam-

ples) (Supplementary Table S2 in S1 File). These cells were on one hand derived from a mosaic

patient and described in Krom et al. [39] (54–12; 54–45; 54–2 for FSHD1 cells with 3 D4Z4

units and 54–6; 54-A10 as controls with 13 D4Z4 units). On the other hand, the 12Ubic and

16Ubic cells obtained from two FSHD1 patients and the 12Abic and 16ABic cells from match-

ing controls are described in Homma et al. [40]. We identified 192 significantly DEGs compar-

ing all the FSHD1 to control samples.

The last dataset was obtained from Banerji et al. 2019 [36] and corresponds to myotubes

collected at the end of myoblasts to myotubes differentiation. These myotubes are derived

from the myoblasts described in Banerji et al. 2017 [35]. In Banerji et al. 2019, a time course

expression during differentiation was analyzed. We considered here only the last time point

(T8) and selected triplicated samples for 5 FHSD1 patients and 4 controls (Supplementary

Table S3 in S1 File). We identified 261 significantly DEGs.

2.5.2 Biological interaction networks. We built a multiplex network composed of three

layers of physical and functional interactions (see Table 4). The nodes are either genes or

proteins, considered here equally. The edges are undirected, and we removed loops (i.e.,
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self-interactions). The three networks were taken from [16]. The first network (PPI_2), is a

protein-protein interaction network, and is also the one used for the benchmark (Section 2.4).

In the second network (Pathways), the links correspond to pathway interaction data, obtained

with the R package graphite [41]. The last network (Co-expression), contains edges correspond-

ing to correlations of expression. Spearman correlations were calculated from RNA-seq data of

32 tissues and 45 cell lines, and absolute correlations of at least 0.7 were selected to build the

network [42].

3 Results

To the best of our knowledge, MOGAMUN is the first algorithm that detects active modules

from multiplex networks. However, several methods exist to detect one [4, 10, 11], or several

[3, 5, 6, 9, 12] active modules in monoplex networks -aka single networks. We here compare

MOGAMUN with three state-of-the-art approaches to detect active modules in monoplex net-

works (section 3.1). We then applied our algorithm to study Facio-Scapulo-Humeral muscular

Dystrophy type 1 (FSHD1), using a multiplex network (section 3.2).

3.1 MOGAMUN against state-of-the-art active module identification

methods

We ran jActiveModules, COSINE, PinnacleZ and MOGAMUN 30 times (see Materials and

methods). The execution times per run of each algorithm, in a desk computer with Intel pro-

cessor i7 at 3.60GHz and 32GB of RAM, were approximately 30 min, 8 hours, 30 min, and 12

hours for jActiveModules, COSINE, PinnacleZ and MOGAMUN, respectively.

As a first experiment, we used the PPI_1 network (Table 2) and the Sim_normal dataset

(Table 3) (see Materials and methods). The goal is to retrieve the active module, which is a sin-

gle subnetwork composed of 20 nodes (i.e., the foreground genes (FG)). The four methods

retrieved the 20 nodes of the FG. PinnacleZ retrieved 13 231 subnetworks in total, correspond-

ing to 494 subnetworks with at least one different node. These 494 subnetworks have an

average size of 6 nodes and 3% average Jaccard similarity between them. COSINE and jActive-

Modules retrieved 30 subnetworks each, one per run. The 30 subnetworks found by COSINE

all have at least one different node, an average size of 640 nodes and 5% average Jaccard simi-

larity. Finally, 29 out of the 30 subnetworks retrieved by jActiveModules have at least one dif-

ferent node, an average size of 6 952 nodes and 76% average Jaccard similarity. MOGAMUN

retrieved 6 modules with at least one different node, an average size of 17 nodes and 13% aver-

age Jaccard similarity. We calculated the F1 score (Materials and Methods) of the union of all

the active modules retrieved by each method on the 30 runs. The F1 score determines how

good the methods are to retrieve the foreground genes (FG) while avoiding picking back-

ground genes (BG). The F1 score for jActiveModules, COSINE and PinnacleZ is close to zero

(FjActiveModules1 ¼ 0:00461; FCOSINE
1

¼ 0:00507; FPinnacleZ
1

¼ 0:0319), and over 0.4 for MOGAMUN

(FMOGAMUN
1

¼ 0:476), as shown in Fig 2.

Overall, PinnacleZ identified the best modules in terms of both average nodes score and

density (Fig 3A). However, the identified modules are small (average size of 6 nodes).

Table 4. Multiplex biological network.

Name No. of nodes |V| No. of edges |E| Density d
PPI_2 12621 66971 8.41 x 10−4

Pathways 10534 254766 4.59 x 10−3

Co-expression 10458 1337347 2.45 x 10−2

https://doi.org/10.1371/journal.pcbi.1009263.t004
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PinnacleZ indeed restricts the search locally around the seed neighborhood by considering

only the subset of nodes that are (at most) two steps away from the seed. In such small mod-

ules, the two objectives are expected to reach their maximum values. For example, a subnet-

work composed only of two significant nodes with scores = 1 linked by an interaction will

have a maximal average nodes score, as well as a maximal subnetwork density because it is a

complete graph. In order to consider this, we filtered all the modules obtained by the four

methods to keep only the subnetworks with at least 15 nodes (Fig 3B). This removed all the

active modules obtained by PinnacleZ, and revealed that MOGAMUN succeeded to find the

best results, in terms of the two objectives. MOGAMUN is the only approach allowing setting

a minimum allowed size from the four methods implemented here. It is to note that, if we also

remove the subnetworks with more than 50 nodes (the maximum size we set in MOGAMUN

and PinnacleZ, the two methods allowing this setting), we would also discard all the results

from COSINE and jActiveModules, which obtain subnetworks with hundreds or even thou-

sands of nodes.

In a second test, we used the PPI_2 network (Table 2) and the Samp_TCGA dataset

(Table 3). The goal is also to retrieve a single active module, which is a subnetwork composed

of 20 nodes (i.e., the foreground genes (FG), see Materials and methods). jActiveModules

retrieved the highest number of FG genes (19/20), whereas PinnacleZ and MOGAMUN found

18/20 each, and COSINE, 12/20. The results are similar to the ones obtained in the first experi-

ment (Fig 3C). PinnacleZ found 25 313 modules, out of which 1 055 have at least one different

node. These 1 055 subnetworks have an average size of 6 nodes and 5% average Jaccard simi-

larity between them. COSINE and jActiveModules retrieved 30 modules each, one per run.

The 30 subnetworks found by COSINE all have at least one different node, with an average

size of 205 nodes and 5% average Jaccard similarity. Four out of the 30 subnetworks retrieved

by jActiveModules have at least one different node, with an average size of 1 033 nodes and

28% average Jaccard similarity between these 4 subnetworks. MOGAMUN retrieved 18 mod-

ules with at least one different node, an average size of 16 nodes and 18% average Jaccard simi-

larity. The F1 score of the union of all the active modules retrieved by each method on the 30

runs is below 0.1 for jActiveModules, COSINE and PinnacleZ (FjActiveModules1 ¼ 0:00921,

FCOSINE
1

¼ 0:00601, FPinnacleZ
1

¼ 0:0211), and over 0.3 for MOGAMUN (FMOGAMUN
1

¼ 0:31), as

shown in Fig 2.

The filtering of the modules having more than 15 nodes in this comparison also removed

all the results obtained by PinnacleZ, as well as two high-scoring subnetworks from jActive-

Modules (Fig 3D).

Fig 2. F1-scores obtained by jActiveModules, COSINE, PinnacleZ, and MOGAMUN in the two benchmark

experiments. Experiment 1 corresponds to PPI_1 network and Sim_normal dataset; Experiment 2 corresponds to

PPI_2 and Samp_TCGA dataset.

https://doi.org/10.1371/journal.pcbi.1009263.g002
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Fig 3. Density and average node score of the subnetworks identified by MOGAMUN, COSINE, PinnacleZ and jActiveModules. (A) Results of 30 runs

using the PPI_1 network and the Sim_normal dataset. (B) Filtered results from (A), keeping only the subnetworks with at least 15 nodes. (C) Results of 30

runs using the PPI_2 network and the Samp_TCGA dataset. (D) Filtered results from (C), keeping only the subnetworks with at least 15 nodes. The size

distributions of all the modules can be retrieved in Supplementary Figs S1-S8 in S1 File.

https://doi.org/10.1371/journal.pcbi.1009263.g003
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After filtering on module size, MOGAMUN led to the best results, although jActiveMo-

dules succeeded in finding a module with an average nodes score similar to one of MOGA-

MUN. However, MOGAMUN found overall denser subnetworks. This is expected as

MOGAMUN is the only approach also optimizing subnetwork densities. If we also remove the

subnetworks with more than 50 nodes, we would again discard all the results from COSINE

and jActiveModules, with the exception of a single subnetwork, found by jActiveModules. In

summary, MOGAMUN clearly identifies the best modules in terms of the multiple objective

setting. Moreover, the retrieved modules have reasonable and tunable sizes.

3.2 Application to FSHD1

Facio-Scapulo-Humeral muscular Dystrophy type 1 (FSHD1) is a rare autosomal dominant

genetic disease characterized by a progressive and asymmetric weakening of specific groups

of muscles, with progression from the face to the lower limbs. The particularity of this dis-

ease resides in the absence of mutation in a gene encoding a muscle-specific factor. FSHD1

is however associated to a variable number of tandem repeats in the disease locus at the sub-

telomeric 4q35, more specifically to an array of 3.3 kb macrosatellite elements (D4Z4). In

unaffected individuals, this array comprises between 11 and up to an average of 75 units

[43]. In patients, this array is shortened with a threshold limit of less than 10 units. D4Z4

encodes the DUX4 transcription factor. The current pathological model associates D4Z4

array shortening with chromatin relaxation, expression of the DUX4 transcription factor

and subsequent activation of a number of target genes of poorly known function in muscle

physiology [44]. Overall, the biological processes leading to the muscle defects remain cur-

rently unclear.

We aim here to apply MOGAMUN in order to reveal biological processes that would not

have been exposed by previous analyses, and further define biomarkers associated with the

muscle phenotype of patients. We applied MOGAMUN using a multiplex network composed

of three layers of biological interactions and FSHD1 RNA-sequencing expression datasets

obtained from different types of cells [34–36] (Materials and Methods). More precisely, the

first FSHD1 RNA-seq datasets were obtained from biopsies, myoblasts and myotubes differen-

tiated from those myoblasts [34]. The two other datasets were obtained from immortalized

myoblasts [35] and myotubes differentiated from those myoblasts [36] (Materials and Meth-

ods). We independently ran MOGAMUN 30 times.

We first considered the results obtained from [34] datasets, and analyzed the active modules

identified by MOGAMUN in biopsies (18 active modules, Supplementary Fig S9 in S1 File),

myoblasts (10 active modules, Supplementary Fig S10 in S1 File) and corresponding myotubes

(23 active modules, Supplementary Fig S11 in S1 File). We also analyzed these three expression

datasets with the other active module identification methods (jActiveModules, PinnacleZ,

COSINE). Overall, these different active module identification approaches identified either

extremely small or extremely large modules (see Supplementary Section 5 in S1 File for details

on the results obtained by all the methods). MOGAMUN is the approach providing the best

trade-off, as it allows retrieving modules that can be easily used for further biological

interpretation.

In Yao’s dataset, myoblasts, all the 10 active modules obtained by MOGAMUN contain at

least one of the two significantly down-regulated genes LRRTM4 and GFRA1 (Supplementary

Fig S10 in S1 File). LRRTM4 is required for presynaptic differentiation and GFRA1 belongs to

the GDNF family receptor, also involved in the control of neuron survival and differentiation.

The function of these two factors in muscle cells is, to our knowledge, not described. However,

it is interesting to note that they belong to active modules containing proteins implicated in
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ubiquitination, intracellular signaling and DNA replication machinery, as FSHD1 cells display

increased apoptosis and reduced proliferation.

Using expression data obtained from myotubes differentiated from these myoblasts (Yao’s

dataset, myotubes), MOGAMUN identified 23 active modules, among which many contain a

subset of highly over-expressed nodes (Supplementary Fig S11 in S1 File). These nodes associ-

ated to a high fold-change are DUX4 target genes, as defined in Geng et al. [44] and in Yao

et al. [34] from DUX4-transduced over-expression experiments. In the active modules, the

DUX4 target genes are however only linked together by interactions inferred from correlation

of expression, and do not share pathway nor physical interactions. The over-expression of

DUX4 target genes in differentiated cells is consistent with previous observations showing

increased expression of this gene and its target genes upon differentiation. In some active

modules, the DUX4 target genes are connected to cyclins through the Ubiquitin conjugating

enzymes E2 D1 (Fig 4A). They are connected in particular to CCNA1, involved in cell cycle

regulation at the G1/S and G2/M, and also reported as a DUX4 target gene in DUX4-trans-

duced [34, 44] and immortalized [39, 45] myoblasts.

Fig 4. Four active modules obtained by applying MOGAMUN on different FSHD1 expression datasets. The color of the nodes represents the fold-change, where

green and red nodes correspond to under- and over-expressed genes, respectively. Nodes with bold black border correspond to genes significantly differentially

expressed (FDR<0.05 and absolute log2 fold-change>1). Blue nodes correspond to genes with no associated transcriptomics data. The color of the edges represents

the layer of the multiplex network, where blue, orange, and yellow correspond to PPI, Pathways, and Co-expression, respectively. The active modules are extracted

from the sets of active modules obtained from (A) Yao’s dataset, myotubes [34], (B) Yao’s dataset, biopsies [34], (C) Banerji’s 2017 dataset [35], and (D) Banerji’s 2019

dataset [36].

https://doi.org/10.1371/journal.pcbi.1009263.g004
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In biopsies, Yao et al. also detected some DUX4 targets genes at a low level [34]. However,

we do not identify DUX4 target genes in active modules obtained by MOGAMUN from

biopsy expression data.

Notably, in Yao’s dataset, biopsies, we identified an interesting active module containing

ACTC1 (encoding the Alpha Actin Cardiac Muscle 1) (Fig 4B). ACTC1 is mainly expressed in

developing skeletal muscle, but its expression is also reactivated in diseased mature skeletal

muscle, possibly as a sign of regeneration. In this module, we also noticed the presence of the

over-expressed gene ABCC8, encoding a modulator of ATP-sensitive potassium channel and

insulin release, and involved in the control of contractility and protection of the tissue against

calcium overload and fiber damage. An intriguing observation is also the presence of OGDHL,

encoding the 2-oxoglutarate deshydrogenase complex component E1-like, which localizes to

mitochondria and degrades glucose and glutamate. OGDHL is significantly down-regulated in

diseased biopsies. Overall, this active module links a potential reduced mitochondrial activity,

frequently described for FSHD1, to an increased expression of factor involved in the calcium

release when cellular energetics is compromised, and possible dysfunction of the contractile

apparatus associated with over-expression of ACTC1, which might reveal an increased muscle

regeneration or immaturity of the contractile apparatus.

In Banerji et al. 2017, the authors highlighted the repression of PAX7 target genes as a hall-

mark of FSHD1 skeletal muscle [35]. This signature, associated with the activation of the hyp-

oxia pathway, was considered as more robust than the DUX4 signature, which remains

variable between studies [34, 44, 46]. We identified 23 active modules with MOGAMUN using

Banerji’s 2017 dataset (Supplementary Fig S12 in S1 File). The nodes belonging to these mod-

ules, as observed for instance in Fig 4C, reveal MAPK-dependent decrease in cell signaling

pathways, response to oxydative stress and reduced cell proliferation, as often reported for

FSHD1 cells in culture.

We finally applied MOGAMUN to Banerji’s 2019 dataset, which corresponds to RNA-seq

data from myotubes derived from immortalized myoblasts [36]. This RNA-seq study was

designed to consider the temporal dimension of gene expression. Genes are classified into 6

categories divided in 3 different groups: up or down regulated in FSHD1; up or down regu-

lated during myogenesis and up or down regulated during FSHD1 myogenesis. One of the

main message of this work relates to the suppression of PGC1α (encoded by the PPARGC1A

gene) in FSHD1 myotubes as a cause of hypotrophy in FSHD1 myotubes [36]. We applied

MOGAMUN only to RNA-seq data obtained from the last time point of the myoblast to myo-

tubes differentiation kinetics (i.e. fully differentiated post-mitotic myotubes) (Materials and

Methods). We identified 17 active modules (Supplementary Fig S13 in S1 File). An interesting

module revealed, among other, connections between PPARGC1A and CPT1C (Fig 4D).

PPARGC1, down-regulated in FSHD1, is involved in regulating the activities of cAMP

response element binding protein (CREB) and nuclear respiratory factors (NRFs). CPT1C, up-

regulated in FSHD, is involved in muscle glucose uptake. We also observed in the module the

presence of MAPK10, required for protection against apoptosis. It is to note that MAPK10 is

also identified in a module from FSHD1 immortalized myoblasts Fig 4C), overall highlighting

the existence of connections between specific signalling pathways and chromatin-associated

factors previously identified as implicated in the disease (YY1, EP300, CREBBP) [46, 47].

4 Discussion

We here designed, compared and applied MOGAMUN, a multi-objective genetic algorithm

that is able to detect active modules in multiplex networks. Multiplex biological networks are

composed of different layers of physical and functional interactions; each layer has its own
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meaning, topology and noise. The protein-protein interaction layer, for example, is sparse, but

composed of physical binary interactions extracted from curated databases. On the other

hand, the co-expression network is very dense, but prone to indirect and spurious interactions.

However, altogether, the different layers can provide complementary functional information

[16, 17].

We compared MOGAMUN to three different methods, representative of the main algo-

rithms dedicated to the identification of active modules: greedy searches (PinnacleZ), simu-

lated annealing (jActiveModules), and mono-objective genetic algorithm (COSINE). As, to

our knowledge, no existing method is able to leverage multiplex networks as inputs, we

designed a benchmark for comparison that is based on single networks. In order to have a fair

comparison between MOGAMUN and the three other methods, we used the parameters rec-

ommended by the authors, except when parameter values could be tuned to match the bench-

mark scenario or the parameters selected for MOGAMUN (Table 1). In particular, we set the

number of subnetworks to be retrieved by jActiveModules to one in the benchmark because

there was a single active module. In addition, we set the maximum size per subnetwork to 50

nodes in PinnacleZ. Finally, in COSINE, we set the lambda parameter to 0.5, to have a trade-

off between the weights of the nodes and edges. Both the weights of the nodes and edges in

COSINE are calculated from the expression data (section 2.4.3), and they cannot be manipu-

lated by the user. Importantly, none of the four methods compared in this manuscript can

handle weighted networks.

In the benchmark analyses, we observed that jActiveModules and COSINE tend to retrieve

very large subnetworks (up to hundreds or even thousands of nodes), whereas PinnacleZ tends

to retrieve very small ones (mostly composed of 2 or 3 nodes). Although jActiveModules,

COSINE and PinnacleZ were able to retrieve most or all of the simulated foreground genes,

their F1 scores were lower than those of MOGAMUN because they selected more background

genes (i.e., false positives). Importantly, only PinnacleZ and MOGAMUN have a user-defined

threshold to limit the maximum size of the modules, and MOGAMUN is the only method

having a user-defined threshold to limit the minimum size of the modules.

In addition to the benchmark with artificial expression data, we also applied the four meth-

ods to the three RNA-Seq datasets of FSHD1 from [34]. MOGAMUN is the only method that

can take as input more than one network. Hence, in order to apply all the approaches, we

aggregated the three network layers of the multiplex biological network (Table 4). The behav-

iour of jActiveModules, COSINE and PinnacleZ is similar in this real-case experiment as in

the benchmark analyses (see Supplementary Section 5 in S1 File for detailed results). jActive-

Modules and COSINE tend to retrieve large subnetworks, and PinnacleZ finds only very small

ones (Supplementary Figs S17-S25 in S1 File). We further observed that, as expected, the sim-

ple density (Eq 4) is higher for MOGAMUN active modules obtained from the aggregated net-

works, whereas the normalized density (Eq 3) is higher for MOGAMUN active modules

obtained from the multiplex network (Supplementary Figs S17-S25 in S1 File). In addition,

since the aggregated network is denser than any of the individual network layers, the chances

of connecting high-scoring nodes is also higher. In the future, a benchmark based on biological

proxies, using for instance Gene Ontology annotation enrichments [48], as recently proposed

in the DOMINO approach [49], could be used to compare the active modules obtained from

aggregated versus multiplex networks.

We demonstrated the performance of MOGAMUN in retrieving modules both densely

connected and containing top-scoring nodes, i.e., nodes associated with a high deregulation.

The two objective functions of MOGAMUN overall allow using an aggregated node score to

optimize the differential expression of the subnetworks while balancing their size. However,

MOGAMUN tends to find subnetworks of the minimum size allowed (or very close to it).
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This is expected, given the sparse nature of biological networks. This bias towards minimum

size active modules could lead to having a large active module cut into several smaller subnet-

works, which are nonetheless easier to visualize and interpret. Overall, theMinS parameter has

to be chosen carefully, depending on the user’s needs. We implemented in addition a post-pro-

cessing step to merge overlapping subnetworks, according to a user-defined threshold. It is to

note that, given the small-world property of biological networks, if this threshold is too low,

the result might be a single (large) active module. We therefore recommend trying different

thresholds values.

MOGAMUN running time is, similarly to the other genetic algorithm COSINE, one order

of magnitude slower than jActiveModules and PinnacleZ in its current implementation. This

running time could be improved by implementing the most computationally demanding tasks

(e.g., crossover) in lower programming languages, like C or C++, or using surrogate-assisted

multi-objective evolutionary algorithms.

The extensive analysis of the different FSHD1 datasets highlighted the reduced proliferation

and increased apoptosis of cells from FSHD1 patients and led to the identification of novel

genes in these different pathways by linking cell defects to factors involved in muscle function.

It further revealed consistencies in biological processes identified by different teams in their

respective models but also some putative discrepancies in the interpretation of disease-associ-

ated biological processes depending on the type of samples used (biopsies of muscle unaffected

in the disease, immortalized or transduced proliferative myoblasts or post-mitotic myotubes).

Overall, this also reveals that MOGAMUN can be applied to identify disease-associated biolog-

ical processes in rare diseases for which the number of samples is limited, and also to compare

the processes identified in different datasets.

We applied here MOGAMUN to identify active module from the integration of RNA-seq

expression data into multiplex networks. However, it is to note that any type of molecular pro-

file associated to p-values can be integrated on the networks, such as p-values obtained from a

GWAS, from phenotypic hit screening, or from proteomics profiling.

Supporting information

S1 File. Supporting text, tables and figures. 1. Supplementary Figs: Fig S1: Sizes of the

subnetworks identified by PinnacleZ in the experiment using the network PPI_1 and the

simulated data with normal distribution. Fig S2: Sizes of the subnetworks identified by Pin-

nacleZ in the experiment using the network PPI_2 and the sampled data from RNA-Seq

TCGA breast cancer dataset. Fig S3: Sizes of the subnetworks identified by COSINE in the

experiment using the network PPI_1 and the simulated data with normal distribution. Fig

S4: Sizes of the subnetworks identified by COSINE in the experiment using the network

PPI_2 and the sampled data from RNA-Seq TCGA breast cancer dataset. Fig S5: Sizes of the

subnetworks identified by jActiveModules in the experiment using the network PPI_1 and

the simulated data with normal distribution. Fig S6: Sizes of the subnetworks identified by

jActiveModules in the experiment using the network PPI_2 and the sampled data from

RNA-Seq TCGA breast cancer dataset. Fig S7: Sizes of the subnetworks identified by all the

methods in the experiment using the network PPI_1 and the simulated data with normal dis-

tribution. Fig S8: Sizes of the subnetworks identified by all the methods in the experiment

using the network PPI_2 and the sampled data from RNA-Seq TCGA breast cancer dataset.

Fig S9: Yao’s dataset, biopsies: Active modules 1–18. Fig S10: Yao’s dataset, myoblasts:

Active modules 1–10. Fig S11: Yao’s dataset, myotubes: Active modules 1–23. Fig S12: Bane-

rji’s 2017 dataset: Active modules 1–23. Fig S13: Banerji’s 2019 dataset: Active modules
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1–17. 2. Supplementary Tables. Table S1: Samples from Yao’s datasets. Downloaded from

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56787. Table S2: Samples from

Banerji’s 2017 dataset. Downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE102812. Table S3: Samples from Banerji’s 2019 dataset. Downloaded from https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123468. 3. Non-dominated Sorting

Genetic Algorithm II (NSGA-II). Algorithm S1: Fast non-dominated sorting. Fig S14:

Crowding distance concept. Algorithm S2: Crowding distance assignment. Algorithm S3:

Elitist selection of a new population. 4. MOGAMUN Genetic Algorithm parameter tuning.

Fig S15: Convergence plots of the average nodes score (A) and density (B). At each genera-

tion, the best values for the average nodes score and density of the 30 runs are averaged and

plotted. Fig S16: Average nodes score (A), density (B), and overlapping nodes (C) of the

active modules obtained in the accumulated Pareto fronts of 30 runs of MOGAMUN with

different combinations of parameters. 5. Application to Facio-Scapulo-Humeral muscular

Dystrophy type 1 (FSHD1). Fig S17: Sizes of the subnetworks identified by the five

approaches on Yao’s dataset, biopsies. Fig S18: Size, average nodes score and density of the

subnetworks obtained by the different methods using Yao’s dataset, biopsies. The sizes of

the subnetworks are represented on a log scale. The density is computed either on the aggre-

gated network, corresponding to the union of the three biological networks used in this

study, or using the multiplex-normalized density, proposed in the main manuscript. Fig S19:

Size, average nodes score and density of the subnetworks obtained by the different methods

using Yao’s dataset, biopsies, selecting only the subnetworks containing at least 15 nodes.

The sizes of the subnetworks are represented on a log scale. The density is computed either

on the aggregated network, corresponding to the union of the three biological networks

used in this study, or using the multiplex-normalized density, proposed in the main manu-

script. Fig S20: Sizes of the subnetworks identified by the five approaches on Yao’s dataset,

myotubes. Fig S21: Size, average nodes score and density of the subnetworks obtained by the

different methods using Yao’s dataset, myotubes. The sizes of the subnetworks are repre-

sented on a log scale. The density is computed either on the aggregated network, corre-

sponding to the union of the three biological networks used in this study, or using the

multiplex-normalized density, proposed in the main manuscript. Fig S22: Size, average

nodes score and density of the modules obtained by the different methods using Yao’s data-

set, myotubes, selecting only the subnetworks containing at least 15 nodes. The sizes of the

subnetworks are represented on a log scale. The density is computed either on the aggre-

gated network, corresponding to the union of the three biological networks used in this

study, or using the multiplex-normalized density, proposed in the main manuscript. Fig S23:

Sizes of the subnetworks identified by the five approaches on Yao’s dataset, myoblasts. Fig

S24: Size, average nodes score and density of the subnetworks obtained by the different

methods, using Yao’s dataset, myoblasts. The sizes of the subnetworks are represented on a

log scale. The density is computed either on the aggregated network, corresponding to the

union of the three biological networks used in this study, or using the multiplex-normalized

density, proposed in the main manuscript. Fig S25: Size, average nodes score and density of

the subnetworks obtained by the different methods, using Yao’s dataset, myoblasts, selecting

only the modules containing at least 15 nodes. The sizes of the subnetworks are represented

on a log scale. The density is computed either on the aggregated network, corresponding to

the union of the three biological networks used in this study, or using the multiplex-normal-

ized density, proposed in the main manuscript. Table S4: Number of genes and number and

percentage of differentially expressed genes (DEGs) retrieved in the active modules by the

different methods in 30 runs. Table S5: Number of genes and number and percentage of

differentially expressed genes (DEGs) retrieved in the active modules by the different
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methods in 30 runs. Only the statistics of the subnetworks with at least 15 nodes are reported

here.
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