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Abstract
Boosted by the simultaneous translation shared task at

IWSLT 2020, promising end-to-end online speech translation ap-
proaches were recently proposed. They consist in incrementally
encoding a speech input (in a source language) and decoding
the corresponding text (in a target language) with the best pos-
sible trade-off between latency and translation quality. This
paper investigates two key aspects of end-to-end simultaneous
speech translation: (a) how to encode efficiently the continuous
speech flow, and (b) how to segment the speech flow in order
to alternate optimally between reading (R: encoding input) and
writing (W: decoding output) operations. We extend our previ-
ously proposed end-to-end online decoding strategy and show
that while replacing BLSTM by ULSTM encoding degrades
performance in offline mode, it actually improves both efficiency
and performance in online mode. We also measure the impact
of different methods to segment the speech signal (using fixed
interval boundaries, oracle word boundaries or randomly set
boundaries) and show that our best end-to-end online decoding
strategy is surprisingly the one that alternates R/W operations
on fixed size blocks on our English-German speech translation
setup.
Index Terms: simultaneous speech translation, online sequence-
to-sequence models, speech segmentation, efficient speech tech-
nologies.

1. Introduction
Online (also known as simultaneous) machine translation refers
to automatic translation systems which start generating an output
hypothesis before the entire input sequence has been consumed
[1, 2]. Emerging recently as a challenging task, it has been wit-
nessing several works proposed in text-to-text (T2T ) translation
[3, 4, 5, 6], and in speech-to-text (S2T ) translation [7, 8, 9, 10],
which attempt to deal with the low latency constraint imposed
by the task. Following the wait-k policy originally proposed
for T2T [3] and proven effective when applied to S2T [8, 9],
our previous work [10] introduced an adaptive version of wait-k
which leverages any pre-trained end-to-end offline speech trans-
lation model for online speech translation. However, the model
proposed in [10] had a speech encoder based on a Bi-directional
Long Short-Term Memory (BLSTM) [11] which was not effi-
cient in online mode since re-encoding of the full input was
needed each time a new speech block was read.

We show in this work that while replacing BLSTM by Uni-
directional Long Short-Term Memory (ULSTM) encoding de-
grades performance in offline mode, it actually improves both
efficiency and performance in online mode (this observation
was also made for online T2T translation by [6]). We also in-

vestigate how to segment the speech flow in order to alternate
optimally between reading (R: encoding input) and writing (W:
decoding output) operations. The contributions of this work are
the following:

• Showing that ULSTM speech encoder when using the
same (re-encode) encoding strategy yields better infer-
ence speed and performance in comparison with BLSTM
speech encoder,

• Further improving inference speed and performance of
ULSTM speech encoder using a new encoding strategy
(ULSTM Overlap-and-Compensate),

• Analyzing the impact of speech flow segmentation on
the BLEU/Latency trade-off, comparing three segmen-
tation methods: fixed interval boundaries, oracle word
boundaries or randomly set boundaries.

2. Background on low latency neural
speech translation

2.1. Decoding strategies

Real-life applications require translation systems to start emit-
ting output translation partially before the input sequence is
made fully available. Such a low latency constraint has been
imposing great challenge to neural sequence-to-sequence transla-
tion models, despite their state-of-the-art performance on offline
translation tasks. Notable efforts have been going into opti-
mizing quality/latency trade-off of the neural online translation
systems, including [12] who introduces a waiting policy which
alternates READ/WRITE operations. Inspired by [12], [13] de-
signs a static read and write decoding policy, which first reads S
input tokens, and alternates between a same number of WRITE
and READ operations until the entire source sequence is con-
sumed. In the same spirit, [3] proposes a wait-k decoding policy
which reads k source tokens at the first step, and then alternates
single WRITE/READ operations.

Several works on online automatic speech translation got de-
cent results when adapting wait-k policy to their task, including
[7, 8, 9, 10]. [9] made an attempt to build an end-to-end online
system which first reads k input frames, then alternates between
writing one output token or reading the next s input frames. [10]
extends this work, modifying their decoding policy to be able
to emit more than one (and maximum N ) output tokens at a
time. The policy of [10] allows them to exploit any pre-trained
offline model in an online decoding mode. However, they only
experiment with pre-trained models whose speech encoders use
BLSTM layers. [6] shows that, in online mode, BLSTM models
might be an unnecessarily costly choice, and therefore advo-
cates for using ULSTM models instead (for text translation). In
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this work, we explore the use of ULSTM models, and make
a comparison with their BLSTM counterpart for low latency
end-to-end speech translation. We also experiment alternative
speech segmentation policies to [10].

2.2. Evaluation metrics

Performance of online translation systems is usually illustrated as
a trade-off between translation quality and latency. As in offline
translation, BLEU remains the most frequently used metrics
for measuring translation quality of online systems. Several
metrics have been proposed for latency measurement [12, 3, 14],
amongst which Average Lagging (AL) proposed by [3] is a
frequent choice. The original AL metric measures the average
rate at which the translation system lags behind an ideal wait-0
translator. [15] argues that this metric has a shortcoming when
applied to S2T translation, and proposes an adaptive version
which remedies this problem. However, we noticed that this
adaptive version is strongly sensitive to the reference’s length,
which can be arbitrarily long and weakly dependent on the input
speech. In some cases, a slight change of the reference length
(which might come from a different tokenization method for
example) could drastically change the AL value. Furthermore,
one should keep in mind that negative values of AL can still
occur when the translation system in question gets ahead of the
ideal translator (i.e when it predicts output tokens although the
already read source frames do not account for them). Despite
those shortcomings, we keep using the adaptive AL from [15] in
this work in order to measure our improvements of results over
those of [10].

3. End-to-end online model
Our previous work [10] reused an attention-based encoder-
decoder architecture described in [16]. The speech encoder
stacks two VGG-like CNN blocks [17] before five layers of
BLSTM. We stack in each VGG block two 2D-convolution
layers, followed by a 2D-maxpooling layer. After these two
VGG blocks, the shape (T ×D) of an input speech sequence
is transformed to (T/4 × D/4), with T being the length of
the input sequence (number of frames), and D being the fea-
tures’ dimension respectively. The decoder is a stack of two
1024-dimensional LSTM layers, and Bahdanau’s attention mech-
anism [18] is used to bridge the encoder and the decoder. In
online mode, the BLSTM speech encoder must re-encode from
the beginning, from left-to-right and from right-to-left, the input
speech sequence every time new input frames are read. In terms
of decoding strategy, an adaptive version of wait-k is proposed
in [10]. This deterministic decoding strategy reads at the first
reading operation k (wait parameter) first acoustic frames of
the input speech features sequence. At each reading operation
after this, the system continues consuming fixed intervals of s
(stride parameter) frames (this reading strategy is also referred in
this paper as the fixed interval boundaries segmentation method).
A writing operation is put after each reading operation, which
writes at maximum N (write parameter) output tokens.

ULSTM Re-encode strategy [6] proves that, for T2T on-
line translation, using a ULSTM encoder gives not only better
decoding speed but also better BLEU/AL trade-off. We verify
if this idea works for speech as well, comparing BLSTM and
ULSTM speech encoders in this work. In order to make this com-
parison, we retrain an offline model similar to the one presented
in [10], except that the speech encoder is modified to stacked
ULSTM layers instead of BLSTM layers after the VGG-like
blocks. In this strategy (presented in figure 1a) we still re-encode
the full speech sequence left-to-right every time we read new

input frames, but this ULSTM-Re-encode approach frees us from
computing the BLSTM’s right-to-left re-encoding pass, hence
being expected to improve decoding speed.

ULSTM Overlap-and-Compensate strategy Moving
from BLSTM to ULSTM is a first step towards efficiency but re-
encoding the full sequence left-to-right each time speech frames
are read is still sub-optimal. To avoid this, we tried to feed
chunk by chunk of input frames independently but this solution
gave very disappointing results probably because of the quality
deterioration of the VGG blocks’ output representations due
to padding issues near the chunk boundaries (especially in the
last several positions of the representations). Therefore, when
dealing with ULSTM speech encoders, we propose an Overlap-
and-Compensate encoding strategy which allows the encoder to
read extra frames from the past in order to compensate some dis-
carded positions in the end of the previous output representation
of the VGG-like blocks (figure 1b).

Algorithm 1 Overlap-and-Compensate encoding strategy
Input: sequence x;
Output: representation h;
Initialization step t = 1, wait parameter k, stride parameter s,
total number of frames read so far g = k, offset = 0,
finish_read = False, h0 = None,
overlap = round(k/2); # Overlap half of chunk_size
while g < |x| do

if t > 1 then
overlap = round(s/2);

end
if g >= |x| then

g = |x|; overlap = 0;finish_read = True;
end
xt = x[offset : g]; # A chunk read at time t
ht = Encode(xt, overlap, ht−1, finish_read);
g+ = s; t+ = 1; offset = g − overlap;

end
Fuction Encode(x, overlap, prev_h, finish_read):

num_discard = round(overlap/4);
hvgg = V GG(x);
if not finish_read then

# Discard num_discard positions in the end
new_length = |hvgg| − num_discard;
hvgg = hvgg[0 : new_length];

end
return hULSTM = ULSTM(hvgg, prev_h);

Algorithm 1 describes the overlap-and-compensate approach
applied to the fixed interval segmentation presented in [10]. It
introduces another parameter overlap, which decides how many
past frames the encoder should read at each encoding step (our re-
encode strategy corresponds to overlap = 0, offset = 0). We
experiment with overlap corresponding to half of the number
of input frames of the current step (overlap = round(s/2)).

4. Experimental Setup
Data This work focuses on the English-German (EN-DE) lan-
guage pair. As mentioned in [8], the data used to train our models
is a combination of MuST-C EN-DE [19], Europarl EN-DE [20],
and How2 [21] synthetic (i.e. the German translation has been
automatically generated by a T2T machine translation system),
overall more than 750h of translated speech.

Pre-trained models The offline BLSTM model presented in
this work was trained for our participation to IWSLT 2020 [8]. It
scores 21.38 and 20.54 BLEU on MuST-C tst-COMMON, and



(a) Re-encode

(b) Overlap-and-compensate

Figure 1: Different encoding strategies.

tst-HE, in greedy decoding mode, respectively. We pre-train an-
other offline ULSTM model with exactly the same configuration
as the BLSTM model, only replacing BLSTM layers by ULSTM
layers. It scores 18.21 and 17.98 BLEU on tst-COMMON, and
tst-HE, in greedy decoding mode, respectively.

5. Experiments
5.1. Impact of encoding strategies

This subsection compares different models using either BLSTM
or ULSTM speech encoders with different encoding strategies
(re-encode versus overlap-and-compensate). We use the same
segmentation (arbitrarly fixed interval boundaries) presented in
[10]. Figure 2 illustrates the BLEU/AL trade-off of BLSTM
and ULSTM models with different encoding strategies, eval-
uated on MuST-C tst-HE and MuST-C tst-COMMON, with
different (k, s,N) triplets (k = [100, 200], s = [10, 20], and
N = [1, 2]). It is noticeable that models with ULSTM speech
encoders give consistently better BLEU/AL trade-off than the
model with BLSTM speech encoder, on both MuST-C tst-HE
and tst-COMMON. Moreover, figure 2 clearly shows that UL-
STM overlap-and-compensate strategy outperforms ULSTM
re-encode, especially in low-latency regimes.

We also investigate the actual time spent decoding each sen-
tence of MuST-C tst-HE using different encoding strategies. In
order to do this, we exclusively use the same CPU machine to de-
code the whole test set using either BLSTM, ULSTM re-encode
or ULSTM overlap-and-compensate encoding strategy. Actual
time spent decoding each sentence is captured and averaged over
the whole test set. To better illustrate the difference between
the encoding strategies, in each latency regime, the time spent
of BLSTM is set as a speed unit, and the results of ULSTM
re-encode and ULSTM overlap-and-compensate are reported
according to this speed unit. We observe that amongst all la-
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Figure 2: Comparing translation models with BLSTM/ULSTM
re-encode/ULSTM Overlap encoding strategies, evaluated on
MuST-C tst-HE and tst-COMMON.

tency regimes, ULSTM models are much faster than the BLSTM
model since they only need to encode the input speech in one
direction (from left to right). ULSTM re-encode is about twice
as fast as BLSTM, scoring 0.53. Remarkably, scoring 0.06, the
ULSTM overlap-and-compensate is fastest among all encoding
strategies (about 17 times faster than the BLSTM, and 9 times
faster than ULSTM re-encode, respectively). We believe that
this huge improvement in terms of computation speed of the
ULSTM overlap-and-compensate approach is due to the fact
that its input chunks are consistently smaller than that of the
ULSTM re-encode approach.

5.2. Impact of speech input segmentation

In this section, we investigate the optimal ways to segment the
speech flow in order to alternate between reading (R: encod-
ing input) and writing (W: decoding output) operations: fixed
interval boundaries (as presented in [10] and in previous experi-
ments of this paper), oracle word boundaries segmentation, and
randomly set boundaries segmentation.

5.2.1. Oracle word boundaries
Questioning whether or not feeding relatively precise word-by-
word speech chunks instead of fixed-length chunks [10] would
improve the performance, we segment the input audio (phrase
level) into words using Montreal Forced Aligner [22]. Their
pre-trained English model (from Librispeech [23])1 is used out
of the box. In terms of decoding strategies, we slightly modify

1https://montreal-forced-aligner.readthedocs.
io
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Figure 3: BLEU/AL trade-off for different speech input segmen-
tation methods, evaluated on MuST-C tst-HE, using ULSTM
overlap-and-compensate approach.

the strategy proposed by [10]:

• k remains the number of frames the encoder should wait
before starting writing, serving as an upper bound. At
the first decoding step, the encoder reads the first several
chunks of frames (matching the words boundaries) un-
til total_number_of_frames ≥ k. In this work, we
experiment with k = [0, 50, 100, 150, 200].

• s is the number of source words (chunks of frames) read
at each decoding step after the first step. In this work, we
keep s = 1 for all our experiments regarding the oracle
word boundaries segmentation.

• N remains the maximum number of output tokens (char-
acters) written at each decoding step (N = [1, 2]).

5.2.2. Randomly set boundaries
The randomly set boundaries segmentation method cuts the
audio input into random sized audio chunks. However, to
avoid unreasonable fluctuation of the size of each chunk, we
set a lower bound (the minimum number of frames) and a
higher bound (the maximum number of frames) for each chunk.
The number of frames in each chunk is randomly generated
within this constraint. We continuously accumulate these
random numbers until their sum exceeds the total number
of frames in the input sequence. The number of frames in
the last chunk is adjusted so that the sum of frames in all
chunks is equal to the input sequence’s length. In this work,
we experiment with [low_boundary, high_boundary] =
[5, 10], [5, 20], [5, 50], [5, 100], [10, 50], [10, 100]. We experi-
ment with N = [1, 2] in this setup.

Algorithm 1 when applied to these two segmentation meth-
ods would slightly change: s = |segment[t]| − |segment[t−
1]|, and k = |segment[0]|. Note that as for the oracle word
boundaries, segment[0] corresponds to all words read at the
first decoding step.

Figure 3 illustrates that the ULSTM Overlap-and-
compensate encoding strategy performs best with the fixed in-
terval boundaries segmentation. Surprisingly, the oracle word
boundaries segmentation does not seem to be beneficial in com-
parison with the fixed interval boundaries as it almost always
takes bigger AL in order to achieve comparable BLEU scores.
We suspect that this happens because the average length of
each word (37 frames) is much bigger than the stride param-
eter (s = 10 or s = 20 frames) that we set for the fixed interval
boundaries. Figure 3 also shows that the randomly set boundaries
segmentation perform the worst. Their BLEU scores approach 0

(the red dots at the bottom of figure 3) when the segment sizes
are too small ([low_boundary, high_boundary] = [5, 10]).

5.3. Highlighting the most difficult utterances for simulta-
neous decoding

[24] introduced a metric to measure the lagging difficulty of
an utterance: after estimating source-target ((x, y)) alignments
(for instance with fast-align [25]), they define a non-decreasing
function zalign(t), denoting the number of source words needed
to translate a target word. This function guarantees that at a given
decoding position t, zalign(t) is larger than or equal to all the
source positions aligned with t. Lagging difficulty (LD) is then
defined as equation (1) below, with τ = argmint{t|zt = |x|}:

LD(x, y) =
1

τ

τ∑
t=1

zalignt − |x||y| (t− 1) (1)

Based on LD, we extract the 100 most difficult and the
100 easiest sentences according to the metrics, and report the
BLEU/AL trade-off for these sets of utterances. Figure 4 shows
that LD metrics could be a good tool for highlighting the most dif-
ficult utterances for simultaneous decoding since the AL/BLEU
curve for the easiest utterances is clearly above the one for the
hardest utterances. This suggest the possibility to build specific
challenge sets for end-to-end simultaneous speech translation.
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Figure 4: BLEU/AL trade-off scored on different subsets of MuST-
C tst-HE based on Lagging Difficulty (LD).

6. Conclusions
This paper advocates for using ULSTM instead of BLSTM
speech encoder for online translation systems, as it shows that
ULSTM outperforms BLSTM in terms of both inference speed
and BLEU/AL trade-off. We further improve inference speed
and performance of ULSTM speech encoder by proposing a
new encoding strategy called ULSTM overlap-and-compensate.
Moreover, this work investigates the impact of segmentation on
the BLEU/AL trade-off of the ULSTM overlap-and-compensate
strategy, and shows that this encoding method works best with
equal sized chunks. We also show that difficulty lagging, an indi-
cator of the complexity of the source sentence, might have a great
impact on the performance of the online translation systems.
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