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This paper proposes a decoding strategy for end-to-end simultaneous speech translation. We leverage end-to-end models trained in offline mode and conduct an empirical study for two language pairs (English-to-German and English-to-Portuguese). We also investigate different output token granularities including characters and Byte Pair Encoding (BPE) units. The results show that the proposed decoding approach allows to control BLEU/Average Lagging trade-off along different latency regimes. Our best decoding settings achieve comparable results with a strong cascade model evaluated on the simultaneous translation track of IWSLT 2020 shared task.

INTRODUCTION

Simultaneous (online) machine translation consists in generating an output hypothesis before the entire input sequence is available [START_REF] Bangalore | Real-time incremental speech-to-speech translation of dialogs[END_REF][START_REF] Kumar | Segmentation strategies for streaming speech translation[END_REF]. To deal with this low latency constraint, several strategies were proposed for neural machine translation with input text [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefixto-prefix framework[END_REF][START_REF] Arivazhagan | Monotonic infinite lookback attention for simultaneous machine translation[END_REF][START_REF] Ma | Monotonic multihead attention[END_REF]. Only a few works investigated low latency neural speech translation [START_REF] Niehues | Low-latency neural speech translation[END_REF][START_REF] Elbayad | ON-TRAC Consortium for End-to-End and Simultaneous Speech Translation Challenge Tasks at IWSLT 2020[END_REF][START_REF] Hou | End-to-end simultaneous translation system for IWSLT2020 using modality agnostic metalearning[END_REF]. At IWSLT 2020 workshop, a simultaneous translation track was proposed and attempted to stimulate research on this challenging task [START_REF] Ebrahim Ansari | Findings of the IWSLT 2020 Evaluation Campaign[END_REF]. In 2020, the best system of this track [START_REF] Elbayad | ON-TRAC Consortium for End-to-End and Simultaneous Speech Translation Challenge Tasks at IWSLT 2020[END_REF] was made up with a cascade of an ASR system trained using Kaldi [START_REF] Povey | The Kaldi speech recognition toolkit[END_REF] and an online MT system with wait-k policies [START_REF] Dalvi | Incremental decoding and training methods for simultaneous translation in neural machine translation[END_REF][START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefixto-prefix framework[END_REF]. Only one end-to-end simultaneous system was proposed [START_REF] Hou | End-to-end simultaneous translation system for IWSLT2020 using modality agnostic metalearning[END_REF] but its performance was not at the level of the cascaded model.

In this paper, we propose a simple but efficient decoding approach that allows to leverage any pre-trained end-to-end speech translation (offline) model for simultaneous speech translation. We conduct an empirical study of the decoding parameters for different language pairs and for different output token granularities (characters or BPEs). Our contributions are the following:

• We adapt the algorithm from [START_REF] Hou | End-to-end simultaneous translation system for IWSLT2020 using modality agnostic metalearning[END_REF] but introduce the possibility to write several output tokens at a time.

• We show that it allows to control AL/BLEU trade-off along different latency regimes with a pre-trained endto-end AST model that does not need to be re-trained in simultaneous mode.

• We conduct an empirical evaluation of our decoding strategies for 2 different language pairs (English-to-Portuguese (EN-PT) and English-to-German (EN-DE)) and with different output granularities (characters or BPEs).

• We show that our best system, evaluated on the same IWSLT 2020 simultaneous shared task dataset, is competitive with the winning (cascade) system of the IWSLT 2020 shared task [START_REF] Elbayad | ON-TRAC Consortium for End-to-End and Simultaneous Speech Translation Challenge Tasks at IWSLT 2020[END_REF].

END-TO-END SIMULTANEOUS DECODING STRATEGIES FOR AST

Architecture of the end-to-end model

As mentioned in [START_REF] Nguyen | ON-TRAC consortium end-to-end speech translation systems for the IWSLT 2019 shared task[END_REF], we use an attention-based encoderdecoder architecture, whose encoder is a stack of 2 VGGlike [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] CNN blocks, and then 5 layers of 1024-dimensional BLSTM [START_REF] Hochreiter | Long shortterm memory[END_REF]. Each VGG block consists of two 2D-convolution layers, followed by a 2D-maxpooling layer. These two VGG blocks transform the shape of input speech features from (T × D) to (T /4 × D/4), with T being the length of the input sequence (number of frames), and D being the features' dimension. We use Bahdanau's attention mechanism [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF] throughout all the experiments presented in this paper. The decoder is a stack of two 1024-dimensional LSTM layers.

Simultaneous decoding strategies

Our end-to-end simultaneous decoding strategy is inspired by wait-k decoding strategy introduced for text NMT in [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefixto-prefix framework[END_REF].

It is also built on [START_REF] Hou | End-to-end simultaneous translation system for IWSLT2020 using modality agnostic metalearning[END_REF] who proposed the only end-to-end approach at the simultaneous translation track of IWSLT 2020. However, their models were based on Transformer and a metalearning approach was needed to obtain decent results in low latency regimes. Transformer-based wait-k models also required re-training in low latency mode in [START_REF] Elbayad | Efficient Wait-k Models for Simultaneous Machine Translation[END_REF]. For online decoding, we propose a deterministic strategy 1 with the following parameters (see figure 1):

• k (wait parameter) denotes the number of acoustic frames (at the beginning of the input speech features sequence) read before writing the first output token (k=100 or 200 frames in our experiments which is equivalent to 1s or 2s), • s (stride parameter) represents the number of acoustic frames in the input speech features sequence to be consumed in order to produce each new target token (s=10 or 20 in our experiments which is 0.1s or 0.2s), • N (write parameter) represents the number of output tokens written at each decoding step (N=1, 2 or 3 in our experiments, output tokens can be characters or BPEs).

In details, let X = (x 1 , x 2 , ..., x |X| ) be the source audio sequence, and Y = (y 1 , y 2 , ..., y |Y| ) be the target hypothesis. Let us also assume that g(t) denotes the number of source frames consumed by the encoder at each decoding step t, and q(t) is the number of target tokens generated up to step t. In this work, g(t) = min{k + (t -1) * s, |X|}, and q(t) = q(t -1) + w t , with 0 ≤ w t ≤ N being the number of target tokens emitted at step t, and q(0) = 0. At each decoding step t, the model encodes g(t) source frames in order to decode at maximum N target tokens.

Since our pre-trained offline AST models are based on Bidirectional Long Short Term Memory (BLSTM) networks, one has to re-encode from beginning of the source sequence every time new frames are read:

h t = encode(X t ) (1) 
with

X t = x ≤g(t) = (x 1 , x 2 , ..., x g(t)
) being input buffer at step t.

The decoder then takes the encoder's hidden states sequence h t , and the cached previous hidden state z q(t-1) to compute w t hidden states, and predict w t corresponding target tokens. With j ∈ [q(t -1) + 1, q(t)], we have:

z j = decode(h t , z j-1 , y j-1 ) (2) 
y j = predict(z j ) (3) 
We update the output buffer Y t by simply appending (y q(t-1)+1 , ..., y q(t) ) to Y t-1 :

Y t = Y t-1 + (y q(t-1)+1 , ..., y q(t) ) (4) 
This process ends when the end of sequence token </s> is predicted, or the length of the output buffer |Y| exceeds 1 We leave dynamic decoding with adaptive read/write policy for future work a threshold. 2 In case the decoder generates the </s> token before the whole source sequence X is read, we only append the tokens preceding </s>, then break the loop and read more source frames. 

Evaluation of simultaneous speech translation

In order to measure the latency, we use an adaptive version [START_REF] Wang | Simuleval: An evaluation toolkit for simultaneous translation[END_REF] of Average Lagging (AL) introduced by [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefixto-prefix framework[END_REF]. The original AL metric measures the average rate (in milliseconds in our case) that the MT system lags behind an ideal wait-0 translator:

AL g (X, Y) = 1 τ g (|X|) τg(|X|) t=1 g(t) - t -1 γ (5) 
The "cut-off" step τ g (|X|) = min{t|g(t) = |X|} is defined as the decoding step when the policy first finishes reading all source frames, and the target-to-source length ratio γ = |Y|/|X| is a scale factor accounting for the source and target having different sequence lengths. In our case, since the decoder can emit more than one target token at step t, equation (5) becomes:

AL g (X, Y) = 1 τ g (|X|) τg(|X|) t=1 [g(t) - t -1 γ ] * w t (6)
However, as observed by [START_REF] Wang | Simuleval: An evaluation toolkit for simultaneous translation[END_REF], the original metric often generates negative values when applied to speech-to-text translation. Therefore, they propose an adaptive version which computes γ as: γ = |Y * |/|X|, with Y * being the reference sentence. Tables and curves presented in this paper are computed using the adaptive AL version unless stated otherwise.

In this work, AL is computed at word-level. This means that with models that generate target token units smaller than word, for example character or BPEs, we wait until a complete word is merged, before committing the corresponding delay to the AL computing module. [START_REF] Nguyen | ON-TRAC consortium end-to-end speech translation systems for the IWSLT 2019 shared task[END_REF] shared task. As mentioned in [START_REF] Nguyen | ON-TRAC consortium end-to-end speech translation systems for the IWSLT 2019 shared task[END_REF], these models were trained on a merged version of MuST-C EN-PT [START_REF] Antonino | Must-c: a multilingual speech translation corpus[END_REF], and How2 corpus [START_REF] Sanabria | How2: a large-scale dataset for multimodal language understanding[END_REF]. Being trained on this combination of about 674. All of these models were trained using normalized (mean and variance normalization) 83-dimensional Mel filter-bank and pitch features. We consistently use speed perturbation with factors of 0.9, 1.0, and 1.1 as one of the data augmentation methods in all of our experiments. Besides, SpecAugment [START_REF] Daniel S Park | Specaugment: A simple data augmentation method for automatic speech recognition[END_REF] is used to train our EN-DE char model as well. Further details can be found in [START_REF] Nguyen | ON-TRAC consortium end-to-end speech translation systems for the IWSLT 2019 shared task[END_REF][START_REF] Elbayad | ON-TRAC Consortium for End-to-End and Simultaneous Speech Translation Challenge Tasks at IWSLT 2020[END_REF].

SIMULTANEOUS DECODING RESULTS

Impact of decoding parameters

The experimental results (BLEU for different AL) are given in Table 1 for EN-DE and in Table 2 for EN-PT for the characterbased models. For a fair comparison with the online mode, the offline models were re-decoded in greedy decoding mode. This gives the results on the last rows of both the tables. We observe that: (a) the 3 parameters of our simultaneous decoding strategy allow to move over the whole range of AL (from very low latency regimes <1s to higher AL values between 2s and 3s), (b) for a latency of 2s, the strategy reaches decent BLEU scores (BLEU=14.60 for EN-DE and BLEU=17.94 for EN-PT on tst-COMMON), (c) writing two characters at each decoding step (N=2) with bigger stride (s=20) seems to be slightly better in term of AL, yet slightly worse in term of BLEU scores than writing one character at a time (N=1) with smaller stride (s=10) (compare lines 6-7 and 9-10 of Table 1 and 2 for instance).

Impact of target granularity

In order to investigate the impact of different target token types, we decode our pre-trained offline BPE2K and BPE400 models trained for IWSLT 2019 [START_REF] Nguyen | ON-TRAC consortium end-to-end speech translation systems for the IWSLT 2019 shared task[END_REF], using the presented simultaneous decoding strategy. We alternate between different (k, s, N ) triplets, with k = [100, 200], s = [START_REF] Povey | The Kaldi speech recognition toolkit[END_REF][START_REF] Iranzo-Sánchez | Europarl-ST: A multilingual corpus for speech translation of parliamentary debates[END_REF], and N = [START_REF] Bangalore | Real-time incremental speech-to-speech translation of dialogs[END_REF][START_REF] Kumar | Segmentation strategies for streaming speech translation[END_REF]. We then sort the results by the increasing order of AL of each model, and pick the (k, s, N ) combinations that give the best BLEU-AL trade-offs. The results are shown in figure 2, whose data points correspond to (k, s, N ) = (100, 10, 2), (200, 10, 2), (200, 20, 2), (200,[START_REF] Iranzo-Sánchez | Europarl-ST: A multilingual corpus for speech translation of parliamentary debates[END_REF][START_REF] Bangalore | Real-time incremental speech-to-speech translation of dialogs[END_REF]. Results are given as a trend and should be taken with caution since offline char-based and BPE-based models have different performance as well. However, figure shows that in general, for a same (k, s, N ) triplet, char model tends to give higher BLEU score, yet bigger AL than the two BPE models. We can observe the same trend when comparing BPE400 with BPE2K model. This could be explained by the fact that since BPEs are bigger token units than characters, when given the same amount of context (number of source frames), and forced to generate approximately the same number of target tokens, BPE models unsurprisingly give worse translation quality. However, it takes less number of source frames for BPE models to make up a word in comparison with char model, consequently resulting in smaller AL for BPE models with similar (k, s, N ) settings.

Comparison to the state-of-the-art

At IWSLT 2020, the winning system for speech-to-text online translation paired an ASR system with an online MT system and decoded following a deterministic algorithm described in [START_REF] Elbayad | ON-TRAC Consortium for End-to-End and Simultaneous Speech Translation Challenge Tasks at IWSLT 2020[END_REF]. The ASR system was a strong hybrid HMM/DNN system built using the Kaldi speech recognition toolkit [START_REF] Povey | The Kaldi speech recognition toolkit[END_REF] (WER=14.2% on MuST-C tst-COMMON dataset in offline mode). The online MT system was a Transformer-based [START_REF] Vaswani | Attention is all you need[END_REF] wait-k decoder with unidirectional encoder. Instead of optimizing a single decoding path, [START_REF] Elbayad | ON-TRAC Consortium for End-to-End and Simultaneous Speech Translation Challenge Tasks at IWSLT 2020[END_REF] jointly optimized across multiple wait-k paths. The additional loss terms provide a richer training signal, and yield models that perform well under different lagging constraints.

In Figure 3, we choose the (k, s, N ) triplets for the EN-DE char model that give close AL regimes to that of the above cascaded models. It is clear that our proposed decoding strategy (the blue curve) performs reasonably well in comparison with the cascaded models with (multi-path) or without (k train = ∞) re-training for simultaneous mode (e2e is better in low latency regimes and cascade is better in higher latency regimes). We recall that our e2e model did not require retraining in simultaneous mode, it is thus fair to compare it with the corresponding cascaded model: k train = ∞. We note that since [START_REF] Elbayad | ON-TRAC Consortium for End-to-End and Simultaneous Speech Translation Challenge Tasks at IWSLT 2020[END_REF] use the original AL metric to compute their latency, in this curve, we also use original AL [START_REF] Ma | STACL: Simultaneous translation with implicit anticipation and controllable latency using prefixto-prefix framework[END_REF] to compute the latency of our end-to-end model.

CONCLUSION

We propose in this paper a simple yet efficient simultaneous decoding strategy, which allows pre-trained end-to-end AST offline model to decode in simultaneous mode. Our empirical evaluation, conducted on models trained for 2 different language pairs EN-DE and EN-PT, with either characters or BPEs, shows that this strategy can give decent BLEU-AL trade-offs, and its best settings achieve competitive results in comparison with a strong cascade baseline, without re-training the models in online mode (this will however be investigated in future work).

  encoder_hidden_state_sequence_length = 1.0 for EN-DE experiments, and 1.6 for EN-PT experiments.

Fig. 1 :

 1 Fig. 1: Illustration of our simultaneous decoding strategy: k source frames are read before 1st decoding step where N tokens are generated; then s additional frames are read before the next decoding step, etc. Different values of (k, s, N ) are displayed in (a) and (b).

  and 23.11 BLEU respectively on MuST-C tst-COMMON set, in beam search mode (beam_size = 10). 4 EN-DE pair. The offline char EN-DE was trained for our participation to IWSLT 2020 [7]. MuST-C EN-DE, Europarl EN-DE [20], and How2 synthetic (i.e. English speech -German synthetic translation from the original transcription) were merged together in order to train this model. It scored 23.55 and 22.35 BLEU on MuST-C tst-COMMON, and MuST-C tst-HE, in beam search mode (beam_size = 10), respectively.

Fig. 2 :

 2 Fig. 2: Character-based vs bpe-based models on English-to-Portuguese translation, evaluated on MuST-C tst-COMMON.

Fig. 3 :

 3 Fig. 3: Comparison of our proposed character-based EN-DE end-to-end model (e2e model) with that of the (winning) ON-TRAC cascaded models with (multi-path) or without (k train = ∞) re-training for simultaneous mode. Original AL metric [3] is used to compute the latency illustrated in this curve.

Table 1 :

 1 (BLEU / AL) scores of the EN-DE char model evaluated on MuST-C tst-HE and MuST-C tst-COMMON. Sorted by AL of tst-HE in increasing order. AL is in milliseconds.

	No.	k	s	N	tst-HE	tst-COMMON
	1	100 10 3	3.01 / 743	4.42 / 800
	2	100 10 2	4.26 / 1049	6.89 / 1135
	3	100 20 3	5.49 / 1353	8.61 / 1441
	4	200 10 3	7.07 / 1521	10.37 / 1552
	5	200 10 2	8.77 / 1836	12.79 / 1931
	6	100 20 2	8.77 / 2062	12.68 / 2097
	7	100 10 1	9.46 / 2146	12.85 / 2157
	8	200 20 3 10.38 / 2223	14.6 / 2286
	9	200 20 2	13.8 / 2934	16.59 / 2840
	10 200 10 1 14.11 / 2973	16.83 / 2880
	11 100 20 1 14.64 / 3487	15.79 / 3086
	12 200 20 1 17.15 / 4066	17.94 / 3610
	13		offline		20.54 / 7005	21.38 / 5782

Table 2 :

 2 

	No.	k	s	N tst-COMMON
	1	100 10 3	4.67 / 611
	2	100 10 2	8.38 / 907
	3	100 20 3	11.43 / 1237
	4	200 10 3	11.61 / 1402
	5	200 10 2	15.97 / 1748
	6	100 20 2	16.67 / 1948
	7	100 10 1	16.95 / 1976
	8	200 20 3	17.94 / 2106
	9	200 20 2	20.69 / 2697
	10 200 10 1	20.98 / 2735
	11 100 20 1	20.64 / 2910
	12 200 20 1	22.67 / 3505
	13		offline		25.07 / 5986
		3. EXPERIMENTAL SETUP
	EN-PT pair. As for the EN-PT offline models, we re-use our
	best offline character-based (char) model, and two BPE-based
	(BPE400, and BPE2K) models, which were trained for IWSLT
	2019			

(BLEU / AL) scores of the EN-PT char model evaluated on MuST-C tst-COMMON. Sorted by AL in increasing order. AL is in milliseconds.

Our performance in simultaneous mode will be, in contrast, given with greedy decoding mode.
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