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Quantum Fluctuations of a Particle's Arrival Time

We demonstrate that a real scalar quantum field has properties that can be interpreted as a field with vibrations of matters in time and space. Based on this interpretation, the formulations have a more symmetrical treatment of time and space in a matter field. A self-adjoint internal time operator can be defined without contradiction with Pauli's theorem. The particles observed are oscillators in proper time. In motion, the proper time oscillation translates to the oscillations of a particle in both time and space. A particle is oscillating back and forth along its trajectory. Therefore, two particles with the same initial average velocity can reach a target at different times depending on the phases of their oscillations. This leads to an uncertainty in the arrival time of a particle. In particular, we study the effects of these oscillations on the neutrinos' arrival time. The arrival time uncertainty measured can also be used to determine the mass of a neutrino.

Introduction

Particles are treated as sets of coupled oscillators with their own de Broglie's internal clock in quantum theory. A quantum field is defined as a sum of creation and annihilation operators with formulations akin to those developed for a quantum harmonic oscillator. However, instead of dealing with the different quantized energy levels of a quantum harmonic oscillator, a quantum field allows the creation and annihilation of particles. These analogies would lead us to ponder whether there could be a deeper correlation between the two different yet very similar systems. On the other hand, when we study a quantum harmonic oscillator, oscillations are considered only in the spatial directions. Thus, if space and time are to be treated on the same footing as stipulated by the theory of relativity, can there be oscillation in the temporal direction?

The treatment of time and space is asymmetrical in the formulations of a quantum field. In quantum theory, there is nothing dynamic about time, which is postulated as a parameter. Time, in general, is not treated as an operator based on the reasonings put forward by Pauli [START_REF] Pauli | General Principles of Quantum Mechanics[END_REF][START_REF] Srinivas | The 'time of occurrence' in quantum mechanics[END_REF] ‡. Positive operator valued measures (POVM) [START_REF] Muga | Arrival time in quantum mechanics[END_REF][START_REF] Egusquiza | Free-motion time-of-arrival operator and probability distribution[END_REF][START_REF] Galapon | Paulis theorem and quantum canonical pairs: the consistency of a bounded, self-adoint time operator canonically conjugate to a hamiltonian with non-empty point spectrum[END_REF][START_REF] Wang | How to introduce time operator[END_REF][7][8][START_REF] Galapon | Post Paulis theorem emerging perspective on time in quantum mechanics[END_REF], and other ‡ If time is taken as an operator, it shall form a conjugate pair with the Hamiltonian that satisfy a commutation relation [H, t] = -i. However, the spectrum of a Hamiltonian is either discrete or bounded from below. Consequently, time cannot be taken as a self-adjoint operator with a spectrum methods/models [START_REF] Lee | Can time be a discrete dynamical variable?[END_REF][START_REF] Lee | Difference equations and conservation laws[END_REF][START_REF] Greenberger | Conceptual problems related to time and mass in quantum theory[END_REF][START_REF] Bauer | A dynamical time operator in Dirac's relativistic quantum mechanics[END_REF][START_REF] Aharonov | Measurement of time of arrival in quantum mechanics[END_REF][START_REF] Olkhovsky | Time as a quantum observable[END_REF][START_REF] Ordonez | Existence and nonexistence of an intrinsic tunneling time[END_REF][START_REF] Kiukas | Tunneling times with covariant measurements[END_REF][START_REF] Brunetti | Time in quantum physics: From an external parameter to an intrinsic observable[END_REF][START_REF] Hegerfeldt | Symmetries and time operators[END_REF][START_REF] Yearsley | Quantum arrival and dwell times via idealized clocks[END_REF][START_REF] Strauss | Study of a self-adjoint operator indicating the direction of time within standard quantum mechanics[END_REF][START_REF] Arsenovic | Dynamical time versus system time in quantum mechanics[END_REF][START_REF] Madrid | Time as a dynamical variable in quantum decay[END_REF][START_REF] Kullie | Tunneling time in attosecond experiment for hydrogen atom[END_REF][START_REF] Ashmead | Does the Heisenberg uncertainty principle apply along the time dimension?[END_REF] are used as solutions to overcome the conundrum of Pauli's theorem. These efforts are engendered to allow a more dynamic treatment of time in the classical and quantum theories.

In this paper, we will demonstrate that a real scalar quantum field can be interpreted as a field with vibrations of matter in time and space [START_REF] Yau | Temporal vibrations in a quantized field[END_REF][START_REF] Yau | Time and space symmetry in a quantum field[END_REF][START_REF] Yau | Self-adjoint time operator in a quantum field[END_REF][START_REF] Yau | Proper time oscillator and its uncertainty relation[END_REF]. Based on this interpretation, the particles created or annihilated are oscillators in proper time. The reason why the energy in this field must be quantized is due to the constraint that a particle's mass is on-shell. In addition, the internal time of this system can be reckoned as a self-adjoint operator. The spectrum of this operator spans the entire real line without contradiction with Pauli's theorem. In motion, a particle oscillates back and forth along its trajectory. Two particles with the same initial average velocity can reach a target at different times depending on their phases of oscillations. These deviations will result in an uncertainty of arrival time when we measure a large collection of particles. The theory propounded in this paper can be tested by the possible detection of this uncertainty. In particular, we are interested in the measurements of the neutrinos' arrival time.

A neutrino possesses mass. Its velocity should be lower than the speed of light. Many experiments have been conducted to measure the neutrinos' speed [START_REF]Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam[END_REF][START_REF]Measurement of the neutrino velocity with the OPERA detector in the CNGS beam[END_REF][START_REF] Caccianiga | GPS-based CERN-LNGS time link for Borexino[END_REF][START_REF]Measurement of the velocity of neutrinos from the CNGS beam with the Large Volume Detector[END_REF][START_REF]Measurement of the neutrino velocity with the OPERA detector in the CNGS beam using the 2012 dedicated data[END_REF][START_REF] Adamson | Precision measurement of the speed of propagation of neutrinos using the MINOS detectors[END_REF][START_REF] Stecker | Constraining Superluminal Electron and Neutrino Velocities using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events[END_REF] for determining their mass and testing the validity of special relativity. So far, no deviation from the prediction of special relativity has been observed. However, experiments are continued for the possibilities of theoretical reasons that deviations may occur under certain circumstances, e.g. tachyon [START_REF] Chodos | The Neutrino as a Tachyon[END_REF], Lorentz violating neutrino oscillation [START_REF] Daz | Lorentz and CPT-violating models for neutrino oscillations[END_REF]. Particularly, in the study of quantum gravity, it is advocated that a particle can have an intrinsic variability in the travel distance/time for propagating through the fluctuating spacetime -lightcone fluctuation [START_REF] Deser | General relativity and the divergence problem in quantum field theory[END_REF][START_REF] Dewitt | Gravity: a universal regulator?[END_REF][START_REF] Ford | Gravitons and light cone fluctuations[END_REF]. Its accumulated effect can result in an uncertainty of a neutrino's travel time, which is conjectured to follow a power-law depending on the distance traveled and the particle's energy [START_REF] Anchordoqui | Probing Planck scale physics with IceCube[END_REF][START_REF] Stuttard | Neutrino decoherence from quantum gravitational stochastic perturbations[END_REF][START_REF] Lisi | Probing possible decoherence effects in atmospheric neutrino oscillations[END_REF][START_REF] Coloma | Decoherence in Neutrino Propagation Through Matter, and Bounds from IceCube/DeepCore[END_REF]. Although our proposed theory is not about quantum gravity, the arrival time uncertainty equation derived has analogies to the aforementioned power-law, and is a function of the particle's mass and energy. Since the neutrinos' arrival time uncertainty is a function of its mass, the uncertainty measured can be used to reconcile the mass of a neutrino.

Matter Field with Vibrations in Space and Time

Let us consider the free real scalar field in a cube with volume V ,

ϕ(x) = k (2ωV ) -1/2 [a k e -ikx + a † k e ikx ]. (1) 
Periodic boundary conditions are to be imposed at the box walls. Instead of treating ϕ(x), a k , and their conjugates as operators, we will first consider them as functions. As shown, ϕ(x) is a superposition of plane waves with different momenta. In particular, a that spans the whole real line.

plane wave with energy ω and momentum k is,

ϕ k = a k e i(k•x-ωt) . (2) 
We will further define another function

ζ k from ϕ k , ζ k = ϕ k ω 2 0 = T 0k ω 0 e i(k•x-ωt) , (3) 
where

a k = ω 0 T 0k , (4) 
and T 0k has the dimension of time.

Next, let us look at the derivatives of ζ k ,

ζ tk = ∂ 0 ζ k = -iT k e i(k•x-ωt) , (5) 
ζ xk = -∇ζ k = -iX k e i(k•x-ωt) , (6) 
where

T k = (ω/ω 0 )T 0k , X k = (k/ω 0 )T 0k , (7) 
and (T k , X k ) is a 4-vector Lorentz transformation of (T 0k , 0). Taking X k as a spatial displacement amplitude, ζ xk from Eq. ( 6) is a plane wave with vibrations of matter in space. Since X k is the spatial component of a 4-vector, T k is a temporal displacement amplitude. Therefore, ζ tk from Eq. ( 5) can be interpreted as a plane wave with vibrations of matter in time. The properties of these temporal vibrations will be elaborated further in the rest of this paper. (Note that T 0k , X k and T k are complex amplitudes, but only the real components of the temporal and spatial vibrations are observable.) In terms of ζ k , the real scalar field from Eq. ( 1) can be rewritten as,

ϕ(x) = ζ(x) ω 3 0 V = k (2ωV ) -1/2 [ω 0 T 0k e -ikx + ω 0 T * 0k e ikx ], (8) 
where

ζ(x) = ω 0 2ω k [ζ k (x) + ζ * k (x)] = k (2ωω 0 ) -1/2 [T 0k e -ikx + T * 0k e ikx ]. (9) 
As the superposition of plane waves ζ k and ζ * k , the real scalar field ϕ(x) has the properties that can be interpreted as a field with vibrations of matter in space and time. This allows a more symmetrical treatment between space and time in a matter field. The plane wave ζ and its complex conjugate ζ * satisfy the wave equations:

∂ u ∂ u ζ + ω 2 0 ζ = 0, (10) 
∂ u ∂ u ζ * + ω 2 0 ζ * = 0. ( 11 
)
The corresponding Lagrangian density and Hamiltonian density in terms of ζ are,

L = mω 2 0 2V [(∂ u ζ * )(∂ u ζ) -ω 2 0 ζ * ζ], (12) 
H = mω 2 0 2V [(∂ 0 ζ * )(∂ 0 ζ) + (∇ζ * ) • (∇ζ) + ω 2 0 ζ * ζ]. (13) 
In deriving the Lagrangian and Hamiltonian densities, we have used the de Broglie's angular frequency, ω 0 = m [46].

Let us look at the Hamiltonian density of a plane wave in more detail. Substitute ζ k from Eq. (3) into Eq. ( 13), the Hamiltonian density of a plane wave is,

H = H 1 + H 2 + H 3 , (14) 
where

H 1 = ( mω 2 0 2V )T * k T k , (15) 
H 2 = ( mω 2 0 2V )X * k • X k , (16) 
H 3 = ( mω 2 0 2V )T * 0k T 0k . (17) 
As we shall note, H 1 , H 2 and H 3 are the Hamiltonian densities associated with the vibrations of matter in time, space, and proper time. In particular, within the nonrelativistic limit, H 2 gives us the Hamiltonian density of a classical harmonic system with vibrations in the spatial direction. The Hamiltonian densities of the temporal vibrations, H 1 and H 3 , have similar equations as H 2 , except the spatial amplitude is replaced by the temporal amplitudes.

Proper Time Oscillator

Let us consider the plane wave from Eq. (3) with vibrations in proper time only (|k| = 0, and |X| = 0), i.e.,

ζ 0 = T 0 ω 0 e -iω 0 t . (18) 
Its temporal vibration from Eq. ( 5) is,

ζ 0t = -iT 0 e -iω 0 t , (19) 
which shall be measured against the 'external time' t of an observer's clock at spatial infinity that is not coupled to the system under investigation [START_REF] Busch | On the energy-time uncertainty relation Part I: Dynamical time and time indeterminacy[END_REF][START_REF] Busch | On the energy-time uncertainty relation Part II: Pragmatic time versus energy indeterminacy[END_REF][START_REF] Hilgevoord | Time in quantum mechanics: a story of confusion[END_REF][START_REF] Butterfield | On Time in Quantum Physics[END_REF]. This external time is the same 'time' used in the formulations of quantum theory. It is postulated as a parameter, and there is nothing dynamic about its nature. On the other hand, matter shall propagate with temporal vibration based on what we have proposed. However, it shall also travel along a time-like geodesic (or at least equivalent to one when averaged over time) as stipulated by relativity. Therefore, if matter carries a clock, its internal time is,

t f = t + Re(ζ 0t ) = t + t d = t -T 0 sin(ω 0 t), (20) 
where

t d = -T 0 sin(ω 0 t). (21) 
The Hamiltonian density of the plane wave ζ 0 from Eq. ( 13) is,

H 0 = ( mω 2 0 V )T * 0 T 0 . ( 22 
)
Since there is no vibration of matter in the spatial directions, the energy due to the proper time vibrations shall correspond to certain intrinsic energy of the system. However, the system we are considering is a free field with no charges or force fields. For a normalized plane wave, the only energy presence is the intrinsic energy of a particle with mass m, which must be on-shell, i.e. H 0 = m/V . Thus, Eq. ( 22) implies the condition,

ω 2 0 T * 0 T 0 = 1. ( 23 
)
or

| T0 | = 1/ω 0 . (24) 
Under this condition, a particle with mass m is an oscillator in proper time that has an unique amplitude | T0 |. Its internal time tf is,

tf = t + td = t - sin(ω 0 t) ω 0 , (25) 
with a time rate of

∂ tf ∂t = 1 -cos(ω 0 t). (26) 
From Eq. ( 26), the internal time rate of a particle has an average value of 1, and is bounded between 0 and 2. Therefore, the internal time of the oscillator bounces back and forth along the time-like geodesic but never goes back to its past. The 'moving' external time t is the equilibrium position of the proper time oscillator. The oscillating displaced time td is measured against this 'equilibrium'.

We can extend Eq. ( 23) to a system with n multiple integer number of particles, i.e.,

ω 2 0 T * 0 T 0 = n. (27) 
However, each particle can only be observed with the unique proper time amplitude as restricted by Eq. [START_REF] Kullie | Tunneling time in attosecond experiment for hydrogen atom[END_REF]. The energy of this system must be quantized under the constraint that the mass of a particle is on-shell. The Hamiltonian density of a field with vibrations of matter in space and time is not continuous, and cannot be treated as a classical field.

In quantum theory, a classical field can be transformed to a quantum field via canonical quantization. Similarly, we can construct a quantum field with oscillations of matter in proper time, i.e.,

ζ = 1 √ 2 [ζ 0 + ζ † 0 ] = 1 √ 2ω 0 [T 0 e -iω 0 t + T † 0 e iω 0 t ], (28) 
after promoting ζ , T 0 and T † 0 as operators. Based on Eq. ( 4), the creation and annihilation operators are,

a † = ω 0 T † 0 , (29) 
a = ω 0 T 0 , (30) 
with

N = a † a = ω 2 0 T † 0 T 0 , (31) 
as the particle number operator. The proper time amplitude and its conjugate satisfy a commutation relation,

[T 0 , T † 0 ] = 1 ω 2 0 . ( 32 
)
The displaced time t d and the displaced time rate u d in the field can be obtained by applying Eq. ( 5) and the superposition principle,

t d = ζ t = ∂ 0 ζ = -i √ 2 [T 0 e -iω 0 t -T † 0 e iω 0 t ] = -i √ 2ω 0 [ae -iω 0 t -a † e iω 0 t ], (33) 
u d = ∂ 0 t d = -ω 0 √ 2 [T 0 e -iω 0 t + T † 0 e iω 0 t ] = -1 √ 2 [ae -iω 0 t + a † e iω 0 t ]. (34) 
As a simple harmonic oscillator, we expect the proper time oscillator's energy should be proportional to the square of its amplitude. Analogous to the quantum harmonic oscillator, but replace the spatial oscillation by temporal oscillation, we can write the Hamiltonian of the proper time oscillator as,

H = 1 2 (mω 2 0 t d 2 + P d 2 m ) = ω 0 (a † a + 1 2 ), (35) 
where

P d = mu d . (36) 
The two terms after the first equality sign on the RHS of Eq. ( 35) resemble the 'potential' and 'kinetic' energy terms. The expression after the second equality sign is analogous to the Hamiltonian for a quantum harmonic oscillator. The quantity P d plays a similar role as 'momentum'. The displaced time t d and the displaced time momentum P d are analogies of the position and momentum operators for a quantum harmonic oscillator. However, we stress that this P d is not the 0-component of the 4-momentum; it is not the energy of the system. Also, t d and P d satisfy an uncertainty relation,

∆t d ∆P d = n + 1 2 ≥ 1 2 . ( 37 
)
This uncertainty relation is obtained from the variances for the displaced time and the displaced time momentum based on the standard operations of the creation and annihilation operators,

∆t d = 1 m n + 1 2 , ( 38 
)
∆P d = m n + 1 2 . ( 39 
)
Compare Eq. ( 37) with ∆x∆p ≥ 1 2 , the proper time field satisfies an uncertainty relation that is similar to the one obtained for the quantum harmonic oscillator.

As we have demonstrated, the proper time oscillator field and the quantum harmonic oscillator have very similar formulations, except the former has oscillations in time. However, there is another major disparity between the two oscillating systems. Instead of considering the quantized energy level of a quantum harmonic oscillator, the proper time field is dealing with the creation and annihilation of particles.

Self-Adjoint Internal Time Operator

For convenience purposes, let us define a normalized plane wave

ζk = ω 0 ω ζ k = T 0k √ ωω 0 e i(k•x-ωt) , (40) 
where ω 0 /ω is a normalization factor. After promoting T 0k as an operator, the field ζ(x) from Eq. ( 9) can be rewritten as,

ζ(x) = 1 √ 2 k [ ζk (x) + ζ † k (x)] = k 1 √ 2ω [ Tk e -ikx + T † k e ikx ], (41) 
where

Tk = ω ω 0 T 0k = ω ω 3 0 a k , (42) 
T † k = ω ω 0 T † 0k = ω ω 3 0 a † k . (43) 
Based on the Lagrangian density given in Eq. ( 12), the conjugate momenta of ζ(x) is,

η(x) = ∂L ∂[∂ 0 ζ(x)] = -iρ m ω 2 0 √ 2 k [ Tk e -ikx -T † k e ikx ], (44) 
and ρm = m/V is a mass density constant of the system. On the other hand, the displaced time obtained by applying Eq. ( 5) and the superposition principle is,

t d (x) = ζ t (x) = ∂ 0 ζ(x) = k -i √ 2 [ Tk e -ikx -T † k e ikx ]. (45) 
Compare Eqs. ( 44) and ( 45), we can relate the conjugate momenta η(x) and the displaced time t d (x),

η(x) = ρm ω 2 0 t d (x). ( 46 
)
The field ζ(x) forms a conjugate pair with its conjugate momenta η(x), which satisfy the equal-time commutation relations,

[ζ(t, x), η(t, x )] = iδ(x -x ), ( 47 
) [ζ(t, x), ζ(t, x )] = [η(t, x), η(t, x )] = 0. ( 48 
)
Based on Eq. ( 46), t d (x) and ζ(x) can also form a conjugate pair, such that

[ζ(t, x), t d (t, x )] = (ρ m ω 2 0 ) -1 δ(x -x ), ( 49 
) [t d (t, x), t d (t, x )] = 0. ( 50 
)
From quantum theory, ϕ(x) and its conjugate momenta Π(x) are self adjoint operators. Similarly, ζ(x), η(x) and t d (x) are also the same. As we shall note, time oscillation can be displaced either in the positive or negative direction relative to the equilibrium position. The spectrum of the displaced time t d (x) can span the whole real line.

As shown in Eq. ( 8), the real scalar quantum field ϕ and the field with vibrations of matter ζ are related by,

ζ(x) = ϕ(x) ω 0 √ ρm . ( 51 
)
Similarly, based on Eq. ( 45), we have

t d (x) = Π(x) ω 0 √ ρm , (52) 
where

Π(x) = k -iω 0 ρm 2 [ Tk e -ikx -T † k e ikx ] = k -i ω 2V [a k e -ikx -a † k e ikx ], (53) 
as derived in quantum theory. Therefore, we can obtain the eigenstates for ζ and t d by simply multiplying a factor (ω 0 √ ρm ) -1 to the eigenstates for ϕ and Π . As discussed before, external time t is a parameter. Matter is oscillating about this external time, which is taken as the equilibrium position of the oscillation. Therefore, the internal time of the matter field is,

t f (t, x) = t + t d (t, x). ( 54 
)
Matter in the field is propagating at a varying time rate but along a time-like geodesic when averaged over time. Since t d (t, x) is a self adjoint operator and t is a parameter, this implies that the internal time t f (t, x) can also be treated as a self-ajoint operator. Based on Eqs. ( 49) and ( 50), ζ(x) and t f (t, x) shall satisfy the equal-time commutation relations,

[ζ(t, x), t f (t, x )] = (ρ m ω 2 0 ) -1 δ(x -x ), ( 55 
) [t f (t, x), t f (t, x )] = 0. ( 56 
)
Because t f (t, x) does not form a conjugate pair with the Hamiltonian, this internal time operator can be treated as a self-adjoint operator without conflict with Pauli's theorem.

Particle's Time of Arrival

Let us return to the normalized plane wave ζ as defined in Eq. ( 40) §. Its Hamiltonian density from Eq. ( 13) is,

H = mωω 0 T * 0 T 0 V . (57) 
Under the normalization condition |T 0 | = 1/ω 0 , this Hamiltonian density H is equivalent to one particle with energy ω in a volume V . Based on Eqs. ( 5) and ( 6), matters have vibrations in both the temporal and spatial directions,

tf = t + Re( ζt ) = t + td , (58) xf 
= x + Re( ζx ) = x + xd , (59) 
where

ζt = ∂ 0 ζ = -i T e i(k•x-ωt) , (60) ζx 
= -∇ ζ = -i Xe i(k•x-ωt) , (61) 
T = T 0 ω ω 0 , X = T 0 k √ ω 0 ω . (62) 
As discussed before, matter in this plane wave shall be oscillating about the external time t, which is taken as the equilibrium position of the temporal oscillation. On the other hand, matter also vibrates in the spatial directions with a displacement xd . This displacement is measured relative to the undisturbed position state x.

The particle observed in this plane wave is traveling at an average velocity of v = k/ω. Following the trajectory of the particle with this average velocity and the quantized amplitude | T0 | = 1/ω 0 , its internal time and spatial locations are

tf = t -T sin(ω p t), (63) xf 
= vt -X sin(ω p t), (64) 
where

T = ω ω 3 0 , X = k ω 3 0 ω , ω p = ω 2 0 ω . (65) 
The particle's internal time rate and velocity with spatial vibrations are,

∂ tf ∂t = 1 - ω 0 ω cos(ω p t), (66) 
v = ∂x f ∂t = v[1 - ω 0 ω cos(ω p t)].
(67) § Without loss of generality, we have omitted k when labeling the normalized plane wave and other related variables in this section.

As shown in Eq. (67), a particle is traveling back and forth along its trajectory. For a target at a distance d from the origin, a particle will arrive at a time t , such that

d = t 0 vdt = v[t -T sin(ω p t + θ)], (68) 
where we have added θ as a phase factor for the particle's oscillation. In other words, particles with the same average velocity v can begin at the origin with different initial velocities depending on the initial phases of their oscillations. On the other hand, the average time t avg for a particle to travel the distance d with the average velocity v is,

t avg = |d| |v| = t -T sin(ω p t + θ), (69) 
as obtained from Eq. ( 68). The deviation of the arrival time t from the average time t avg is,

δt = t -t avg = T sin(ω p t + θ). (70) 
Next, let us consider a phase angle,

δθ = ω p δt = ω 0 ω sin(ω p t + θ). (71) 
The magnitude of this deviation is very small, i.e.,

|δθ| ≤ ω 0 ω << 1, (72) 
since we are testing particles at high energy, ω >> ω 0 . From Eqs. (69) and taking δθ as negligible, the particle's arrival time is,

t = t avg + T sin[ω p t avg + δθ + θ] ≈ t avg + T sin[ω p t avg + θ]. (73) 
Consequently, two particles with the same average velocity, but different initial phases of oscillation θ 1 and θ 2 , can reach a target at different times. In theory, this deviation

δt 2-1 = t 2 -t 1 ≈ T [sin(ω p t avg + θ 2 ) -sin(ω p t avg + θ 1 )], (74) 
can be observed by repeated measurements of the particles' time of arrival in an experiment. Also, this effect will become more conspicuous when we project the particles to a higher speed. As shown in Table 1, using a neutrino assumed mass of m = 2eV [START_REF] Aseev | Measurement of the electron antineutrino mass in tritium beta decay in the Troitsk nu-mass experiment[END_REF][START_REF] Olive | Review of particle physics[END_REF], an oscillator has a lower frequency and larger amplitudes of oscillation when the particle's speed is increased. Therefore, it will be easier to detect the effects of the particle's oscillations at a higher energy level. The deviations will result in an uncertainty of arrival time when we measure a large collection of particles with the same average velocity, i.e.

∆t = ω 2ω 3 0 = h E 2m 3 , (75) 
for a sinusoidal distribution with amplitude T . Again, take the neutrino as an example .

Since the mass of a neutrino is not known at this moment, we will consider its effects using three different assumed masses (m=2eV, 0.2eV, and 0.02 eV). As shown in Figure 1, the effects of the uncertainties can be magnified by projecting the particles to a higher speed.

1.pdf The detection of the uncertainty in arrival time will not only provide evidence for a particle's temporal oscillation, but can also yield a way to determine the neutrino's mass. Based on Eq. (75), the mass of a particle is

m = [ h2 E 2(∆t ) 2 ] 1/3 . ( 76 
)
With the arrival time uncertainty obtained from experiments, the mass of a neutrino can be reconciled.

Neutrino is a 1/2 spin particle. Although the results developed in this paper are based on spin-0 particles, we expect the properties of mass (including the proposed proper time oscillation) shall be universal for all massive particles regardless of their spins.

Conclusions and Discussions

The resemblances of the formulations between a quantum harmonic oscillator and a real scalar quantum field have alluded to the fact that certain symmetries could exist in the quantum theory. In this paper, we demonstrate that a real scalar quantum field has properties that can be interpreted as a field with vibrations of matter in space and time. If general relativity demands time and space to be treated on an equal footing, it is not implausible that time can have a more dynamic role in the quantum theory. Based on the interpretation that matter can have additional vibrations in time, the internal time of a particle can be reckoned as a self-adjoint operator. The displaced time and displaced time momentum of the oscillator obey an uncertainty relation resembling the one between position and momentum. The proposed interpretation allows a more symmetrical treatment between time and space in a matter field.

The experiments on neutrinos' speed could provide evidence for a particle's temporal oscillation. As advocated in the study of quantum gravity, investigations have been made on evaluating the accumulated uncertainty effects a neutrino's travel time and distance in fluctuating spacetime. The suggested uncertainty follows a power-law depending on the neutrino's energy, i.e., ∆t ∝ E n , where n is a factor that will have to be established by experiments or theoretical predictions [START_REF] Anchordoqui | Probing Planck scale physics with IceCube[END_REF][START_REF] Stuttard | Neutrino decoherence from quantum gravitational stochastic perturbations[END_REF][START_REF] Lisi | Probing possible decoherence effects in atmospheric neutrino oscillations[END_REF][START_REF] Coloma | Decoherence in Neutrino Propagation Through Matter, and Bounds from IceCube/DeepCore[END_REF]. Although velocity fluctuations have not yet been detected for GeV neutrinos, it is believed that quantum fluctuations could be observed for > T eV [START_REF] Stuttard | Neutrino decoherence from quantum gravitational stochastic perturbations[END_REF]. As we have demonstrated in Eq. (75), the uncertainty derived from temporal oscillation is ∆t ∝ E 1/2 , which is akin to the power-law contemplated in the study of quantum spacetime.

From Eq. (75), the arrival time uncertainty is a function of the particle's mass and energy. As shown in Figure 1, with an assumed neutrino's mass/energy of m = 2eV and E = 1GeV , the calculated arrival time uncertainty is in the order of 10 -12 s. Unfortunately, the accuracy required to measure this uncertainty is outside the range of current experiments. On the other hand, the mass of a neutrino is not yet known, and could be even lower than 2eV . Assuming m = 0.2eV and E = 1T eV , the calculated uncertainty is in the order of 10 -9 s. By projecting the neutrinos to a higher speed, we can magnify the effects for possible detection. Since the neutrino's arrival time uncertainty is a function of its mass, the uncertainty measured can be used to reconcile the mass of a neutrino.

Figure 1 .

 1 Figure 1. Neutrino's arrival time uncertainty as related to the particle's energy given by Eq. (75). Since the mass of a neutrino is not yet known, three different assumed mass are used in the plot.

Table 1 -

 1 Amplitudes and Frequencies w/ a Particle Assumed Mass of 2eV

	E(GeV )	T (s)	X(cm)	ω p (s -1 )
	1	7.4x10 -12	0.22	6.1x10 6
	10	2.3x10 -11	0.70	6.1x10 5
	100	7.4x10 -11	2.2	6.1x10 4
	1000	2.3x10 -10	7.0	6.1x10 3