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Abstract In this contribution, a finite element

implementation of the stress gradient theory is

proposed. The implementation relies on a reformula-

tion of the governing set of partial differential

equations in terms of one primary tensor-valued field

variable of third order, the so-called generalised

displacement field. Whereas the volumetric part of

the generalised displacement field is closely related to

the classic displacement field, the deviatoric part can

be interpreted in terms of micro-displacements. The

associated weak formulation moreover stipulates

boundary conditions in terms of the normal projection

of the generalised displacement field or of the

(complete) stress tensor. A detailed study of repre-

sentative boundary value problems of stress gradient

elasticity shows the applicability of the proposed

formulation. In particular, the finite element

implementation is validated based on the analytical

solutions for a cylindrical bar under tension and

torsion derived by means of Bessel functions. In both

tension and torsion cases, a smaller is softer size effect

is evidenced in striking contrast to the corresponding

strain gradient elasticity solutions.

Keywords Generalised continuum � Stress gradient
theory � Stress gradient elasticity � Strain gradient

elasticity � Finite elements � Analytical solutions

1 Introduction

Stress gradient elasticity is a generalised continuum

theory that has been proposed very recently as a

counterpart of Mindlin’s well-known strain gradient

elasticity model [14, 25, 26]. Stress gradient elasticity

should neither be confused with the Aifantis gradient

elasticity model which is a special case of isotropic

strain gradient elasticity [13, 29], nor with models

based on Laplacians of stress and strain which have

been recently recognised as special cases of micro-

morphic elasticity [7, 10, 16]. The essential feature of

the stress gradient continuum is that each material

point is endowed with a third rank tensor of additional

degrees of freedom complementing its usual displace-

ment. These new degrees of freedom, called microdis-

placements in [14], are conjugate to the stress gradient
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tensor in the generalised work of internal forces. The

microstructural origin of the microdisplacements was

recently highlighted based on an original homogeni-

sation approach in [18]. In contrast, the strain gradient

model is solely based on the classic displacement

degrees of freedom.

The resolution of boundary value problems for

stress gradient elastic bodies requires the definition of

suitable boundary conditions. A debate commenced

after the discovery of the stress gradient theory on the

possibility of prescribing all stress components at a

boundary which emerges in the stress gradient frame-

work [27]. This is in contrast to classic Cauchy

mechanics where the traction vector only can be

controlled. Proper extensions of Korn’s inequality

show that the set of boundary conditions defined in

[14] leads to a well-posed boundary value problem,

with associated existence and uniqueness theorems

[31]. They confirm the possibility of applying

extended Neumann conditions in the form of fully

prescribed stress components at a boundary.

Applications of stress gradient elasticity have been

rather limited up to now. They include prediction of

size effects in bending with a comparison with strain

gradient and micromorphic approaches [28], and

particle size effects in composite materials [33]. The

latter reference contains extensions of the Eshelby and

Hashin-Shtrikman homogenisation approaches to

heterogeneous stress gradient media in a simplified

case of isotropic elasticity.

The objective of the present work is to propose the

first finite element implementation of stress gradient

linearised elasticity theory. The choice of appropriate

nodal degrees of freedom and matrix form of the

variational formulation of the boundary value problem

will be discussed. Validation examples with respect to

analytical solutions are provided for simple tension

and torsion in a simplified case of isotropic stress

gradient elasticity. Free surface boundary conditions

will be shown to play an essential role in the

modification of the stress distributions compared to

classic elasticity. The observed size effects with

respect to structure size and the intrinsic length scale

of the model will be discussed in detail.

In particular, this contribution is organised as

follows: after a brief recapitulation of the fundamen-

tals of the stress gradient theory in Sect. 2, a finite

element formulation is discussed in detail in Sect. 3.

By making use of the latter, representative boundary

value problems are studied in Sect. 4. Moreover,

analytical solutions are derived for validation pur-

poses. The findings are summarised and concluding

remarks are given in Sect. 5.

1.1 Notation

Let a, b, c, d, f, g denote arbitrary first order tensors, let

the standard dyadic product be indicated by a� b and

let the standard single tensor contraction be given by

a � b. With these definitions at hand, double and triple

tensor contractions are understood in the sense

a� b½ � : c� d½ � ¼ a � c½ � b � d½ � and a� b� c½ �) d�½
f� g� ¼ a � d½ � b � f½ � c � g½ �. Moreover, the symmetric

part of a second order tensor N is given by

Nij ei � ej
� �sym¼ 1

2
Nij þ Nji

� �
ei � ej; ð1Þ

with e� denoting Cartesian basis vectors. In analogy

with second order tensors, the additive spherical-

deviatoric decomposition of third order tensors T that

are symmetric with respect to the first two indices is

introduced as

T ¼ T sph þ T dev; T : I ¼ T sph : I;

T dev : I ¼ 0; T sph
)T dev ¼ 0:

ð2Þ

In particular, the spherical part of a symmetric third

order tensor in a three-dimensional setting is given by

T sph ¼ 1

4

h
T : I½ � � I þ T : I½ �� I

i

¼ 1

4
T ilm dlm djk þ T jlm dlm dik
� �

ei � ej � ek

ð3Þ

where the special dyadic product � was used, see also

[14]. In addition to the second order identity tensor

I ¼ dij ei � ej ð4Þ

with dij denoting the Kronecker-delta, the fourth order
symmetric identity tensor

Isym ¼ 1

2
dik djl þ dil djk
� �

ei � ej � ek � el; ð5Þ

the sixth order symmetric identity tensor

I sym ¼ Isymijpq dkr ei � ej � ek � ep � eq � er; ð6Þ

and the sixth order symmetric and deviatoric identity

tensor
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I sym;dev ¼ I
sym
ijpq dkr �

1

4
I
sym
pqir djk þ I

sym
pqjr dik

h i� �

ei � ej � ek � ep � eq � er

ð7Þ

with

T dev ¼ I sym;dev
)T

¼ I sym
)T � 1

2
Isym � I sym

)T½ � : I
ð8Þ

are introduced, see also [33]. Furthermore, (right-)

gradient and (right-)divergence operators are denoted

as r �ð Þ and r � �ð Þ, respectively.

2 Stress gradient theory

The governing equations of the stress gradient theory

as derived in [14] based on variational principles and

on the method of virtual power will briefly be

recapitulated in this section.

At the outset of the theory, a generalised (volume

specific) stress energy density function of the form

w� r;Rð Þ is postulated which depends on the symmet-

ric small deformation stress tensor r and on the third

order generalised stress tensor R. The associated

minimisation problem of the (generalised) comple-

mentary energy functional on the domain B is

moreover subjected to the extended set of static

admissibility conditions

r � rþ q f ¼ 0 on B ; ð9aÞ

R� rr½ �dev¼ 0 on B ; ð9bÞ

with q denoting the mass density and f the (mass

specific) body force density. Based on the symmetry of

the stress tensor and on the observation that the

volumetric part of the stress gradient is determined by

(9a) since

rr½ � : I ¼ rr½ �sph: I ¼ r � r ¼ �q f ; ð10Þ

holds, the third order generalised stress tensor R is

assumed to be symmetric on the first two indices and

deviatoric. This entails the assumption that the devi-

atoric part of the stress gradient contributes to the

stress energy density function w� r;Rð Þ, in addition to

the stress tensor.

In order to derive the primal variational formu-

lation of the stress gradient theory, the static

admissibility conditions (9a) and (9b) are multiplied

by the kinematic field variables du and dU, respec-

tively. In analogy with R, the third order tensor field

dU is assumed to be symmetric and deviatoric. By

integrating the ensuing equations over the domain B
with boundary oB and with outward unit normal

vector n, and by applying the divergence theorem one

arrives at
Z

B
r : rdu½ �symþr � dU½ � þ R)dU dv

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PðiÞ du; dUð Þ

¼
Z

B
q f � du dv

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
PðvÞ duð Þ

þ
Z

oB
r : du� n½ �symþdU � n½ �da

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PðcÞ du; dUð Þ

ð11Þ

Equation (11) can be interpreted as a virtual work

balance for the stress gradient theory, with the virtual

work of internal forces PðiÞ du; dUð Þ, the virtual work
of volume distributed forces PðvÞ duð Þ and with the

virtual work of contact forces PðcÞ du; dUð Þ. With

regard to the virtual work of internal forces

PðiÞ du; dUð Þ, energetic dualities are observed between
the stresses r and the generalised strain tensor

e ¼ ru½ �symþr �U; ð12Þ

and between the generalised stress tensor R and the

kinematic variable U, which is henceforth referred to

as the micro-displacement tensor. The latter observa-

tion motivates the introduction of a generalised strain

energy density function w e;Uð Þ such that

r ¼ ow e;Uð Þ
oe

; ð13aÞ

R ¼ ow e;Uð Þ
oU

: ð13bÞ

The elasticity potentials w� r;Rð Þ and w e;Uð Þ are

related to each other by a Legendre(-Fenchel) trans-

form. Moreover, the specific form of the virtual work

of contact forces PðcÞ du; dUð Þ stipulates Dirichlet-

type boundary conditions in terms of the generalised
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displacements du� n½ �symþdU � n and Neumann-type

boundary conditions in terms of the complete stress

tensor r. A detailed discussion on the boundary

conditions of the stress gradient theory is additionally

provided in [14].

3 Finite element formulation

This section focuses on the finite element implemen-

tation of the stress gradient theory. In particular, a

reformulation of the generalised virtual work equa-

tion (11) is discussed in Sect. 3.1 and the correspond-

ing discretised weak form is derived in Sect. 3.2.

3.1 A different view on the virtual work equation

The derivation of the finite element implementation of

the stress gradient theory is based on a reformulation

of the generalised virtual work equation (11) in terms

of one primary field variableW, hereafter referred to as

the generalised displacement field. The generalised

displacement field is a tensor field of third order that is

symmetric with respect to the first two indices and that

was first introduced in the existence and uniqueness

proofs of the stress gradient theory presented in [31]. It

is constructed so that its deviatoric part is identical

with the micro-displacement field, i.e.

Wdev ¼ U; ð14Þ

whereas its spherical part is defined in terms of the

(classic) displacement field, namely,

Wsph ¼ 1

2
u� I þ u� I½ �: ð15Þ

The other way around, the displacement field can

conveniently be reconstructed from the generalised

displacement field via

u ¼ 1

2
W : I ¼ 1

2
Wsph : I; ð16Þ

and it can be observed that

u� n½ �sym¼ Wsph � n; ð17Þ

holds, see also [31]. By making use of (12) and by

invoking relation

ru½ �sym¼ r �Wsph ð18Þ

one moreover arrives at the representation of the

generalised strain tensor in terms of the generalised

displacements

e ¼ r �W: ð19Þ

Finally, inserting (14), (16) and (17) into (11) yields

the virtual work balance

Z

B
r : r � dW½ � þ R)dW dv

¼
Z

B
q f � 1

2
dW : I dvþ

Z

oB
r : dW � n da;

ð20Þ

which is particularly useful for the finite element

implementation, as it implies that either the (compo-

nents) of the stress tensor or the corresponding normal

projections of the generalised displacement field can

independently be prescribed. In this sense, the two-

field problem in terms of the displacement field u and

the micro-displacement field U is reformulated in

terms of one primary field quantity, i.e. in terms of the

generalised displacement field W.

3.2 Discretisation

The virtual work balance (20) serves as the basis for

the derivation of the discrete weak form of the stress

gradient theory. More specifically speaking, the gen-

eralised displacement field and the test function g are

discretised by using a finite element approach

Wh ¼
Xnen

B¼1

NB WB ð21aÞ

gh ¼
Xnen

A¼1

NA gA ð21bÞ

with shape functions N�, nodal values W� and g�, and
with nen denoting the number of element nodes. By

approximating the domain B with a finite number of

elements nel, by denoting the respective element

domains as Be and by making use of the assembly

operator , (20) and (21b) give rise to the discrete

vector of internal forces

ð22Þ

to the discrete vector of volume distributed forces
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ð23Þ

and to the discrete vector of contact forces

ð24Þ

Following standard procedure, the resulting system of

(in general non-linear) equations is brought into a

residual-type format rh and solved for the list of

generalised nodal displacements bW, namely

rh ¼ f hint � f hvol � f hcon; Drh ¼ drh

d bW
� D bW: ð25Þ

The linear part of the corresponding Taylor-series

expansion Drh is given in terms of the generalised

stiffness matrix

ð26Þ

where dead-loads have been assumed and with �T
13

indicating a transposition with respect to the first and

third index.

4 Representative simulation results

After the specification of the material model and of the

constitutive equations in Sect. 4.1, representative

simulation results are the focus of this section. In

particular, a cylindrical bar under tension is studied by

using the proposed finite element formulation in

Sect. 4.2 and by means of analytical methods in

Sect. 4.3. Breaking the rotational symmetry of the

tensile problem, the focus is on a rectangular bar under

tension in Sect. 4.4 before the torsion problem of a

cylindrical bar is eventually studied in Sect. 4.5. Finite

element results shown in this section are based on

element-wise mean values.

4.1 Material model

Motivated by the theoretical developments of the

stress gradient theory presented in [14, 31, 33], a

symmetric positive definite quadratic form for the

generalised stress energy density function is assumed

w� r;Rð Þ ¼ 1

2
r : C : rþ 1

2
R)C)R; ð27Þ

with C and C denoting the compliance and the

generalised compliance tensor, respectively. By mak-

ing use of the Legendre(-Fenchel) transform, the

corresponding generalised strain energy density func-

tion takes the form

w e;Uð Þ ¼ 1

2
e : E : eþ 1

2
U)E)U; ð28Þ

with the stiffness tensor E and the generalised stiffness

tensor E defined as

E ¼ C�1 ð29aÞ

E ¼ C�1 ð29bÞ

In the scope of this work, a classic form for the

stiffness tensor E in terms of the Lamé-type constants

k and l, namely

E ¼ k I � I þ 2 l Isym; ð30Þ

is adopted and the generalised stiffness tensor is

assumed to take the form

E ¼ l
‘2

I sym;dev; ð31Þ

with ‘ denoting the material length scale parameter.

Moreover, the Lamé-type constants are related to the

generalised Young’s modulus and to the generalised

Poisson’s ratio via

k ¼ E m
1þ m½ � 1� 2 m½ � ð32aÞ

l ¼ E

2 1þ m½ � ð32bÞ

With the specific form of the strain energy density

function defined by (28)–(31) at hand, the evaluation

of (13) yields the specific form of the stress and

generalised stress tensor
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r ¼ E : e ð33aÞ

R ¼ E)U ð33bÞ

4.2 Cylindrical bar under tension

In this section, the tensile problem of a cylindrical bar

as depicted in Fig. 1 is studied, with positions and

tensor indices referring either to a Cartesian ðx1; x2; x3Þ
or to a cylindrical coordinates ðr; h; zÞ description. At
the left boundary of the bar (z ¼ 0 mm), generalised

clamping boundary conditions of the form

W � n ¼ 0;

W � n½ �ij ¼ �
W113 W123 W133

W213 W223 W233

W313 W323 W333

2

64

3

75 ¼
0 0 0

0 0 0

0 0 0

2

64

3

75;

ð34Þ

are assumed for the generalised displacement field. It

is noted that these do, in general, not imply vanishing

(classic) displacements since

u½ �i¼
1

2
W : I

� �

i

¼ 1

2

W111 þW122 þW133

W211 þW222 þW233

W311 þW322 þW333

2

64

3

75

¼ 1

2

W111 þW122

W211 þW222

W311 þW322

2

64

3

75;

ð35Þ

holds. At the right boundary (z ¼ 100 mm), gener-

alised traction boundary conditions of the form

r� n ¼ r33 e3 � e3 � e3; ð36Þ

with the overbar indicating a prescribed quantity, are

applied which result in a total axial force of 660 kN.

Moreover, the outer surface of the cylindrical bar

(r ¼ 10 mm) is assumed to be stress-free, i.e.

r� n ¼ r� er ¼ 0: ð37Þ

In order to study the size-dependent material

response, the problem dimensions defined in Fig. 1

are kept fixed and the material length scale parameter ‘

is varied. In particular, the set of material parameters

provided in Table 1 is used.

The simulation results are based on a finite element

discretisation with linear (eight-node) Lagrangian

elements, and integrals are evaluated numerically by

using a Gaussian quadrature scheme with eight

sampling points. Taking into account the rotational

symmetry of the problem, the predicted stress distri-

bution in the cross section at z ¼ 50 mm is presented

in Fig. 2 with respect to the natural (physical) basis

system induced by the cylindrical coordinates.

First, it is observed that the boundary condition (37)

causes all coefficients of the stress tensor to approach

zero at the boundaries. This is a significant difference

compared to the classic Cauchy continuum approach

where only the normal projection of the stress tensor

can be prescribed and where a constant stress profile

rzz � 2100 N/mm2 is expected when an isotropic,

linear elastic material response is assumed and when

boundary effects are neglected. In contrast, rzz takes a
parabolic profile in the present case, with the extreme

value at r ¼ 0 mm and the slope of the profile being

functions of the material length scale parameter ‘, see

Figs. 2a and 3a. The in-plane coefficients of the stress

tensor rrr and rzz, which would take zero values for a

classic Cauchy continuum theory, are depicted in

Figs. 2b, c, 3b and c. They show a strong dependence

on the material length scale parameter and are

observed to be approx. two orders of magnitude

smaller than the axial stresses. Due to the vanishing

er

eθ

θ
e1

e2e2
e3 = ez

σ ⊗ n = 0

σ ⊗ n = 0

Ψ · n = 0
σ ⊗ n

=
σ33 e3 ⊗ e3 ⊗ e3

100 20

Fig. 1 Geometric dimensions (in mm) and boundary conditions of the cylindrical bar under tension
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stress boundary condition at r ¼ 10 mm, it is more-

over observed that the element-wise mean values of all

coefficients of the stress tensor approach zero at the

boundary, with the resolution being limited by the

finite element discretisation. In addition, the radial

displacement as a function of the material length scale

parameter is provided in Fig. 2d. The corresponding

profile becomes linear for smaller values of the

internal length scale.

4.3 Comparison of simulation results

and analytical solution in the case of vanishing

Poisson’s ratio

In order to derive an analytic solution for the boundary

value problem depicted in Fig. 1, a class of axisym-

metric stress states is considered in the form

r ¼ rrðrÞ er � er þ rhðrÞ eh � eh þ rzðrÞ ez � ez;

ð38Þ

where the stress components rr ¼ rr r; rh ¼ rhh and

rz ¼ rzz are unknown functions of r in the cylindrical

coordinate system ðr; h; zÞ. Subject to the assumptions

of quasi-statics and vanishing body forces, see (9b)

and (10), the generalised stress tensor is computed as

Table 1 Material parameters used in the simulations of the

cylindrical bar depicted in Fig. 1

E m ‘

210,000 N/mm2 0.30 0.5–2.0 mm

x1 in mm

σ
z

z
in

N
m

m
−

2

= 0.5 mm
= 1.0mm
= 2.0 mm

−10 −5 5 10
0

0

500

1000

1500

2000

2500

3000

3500

4000

(a) axial stress
x1 in mm

σ
θ

θ
in

N
m

m
−

2

= 0.5mm
= 1.0mm
= 2.0mm

−120

−100

−80

−60

−40

−20

20

40

60

80

−10 −5 5 10

0

0

(b) circumferential stress

x1 in mm

σ
r

r
in

N
m

m
−

2

= 0.5 mm
= 1.0 mm
= 2.0 mm

−10 −5 5

10

10

0

0

20

30

40

50

60

70

80

(c) radial stress
x1 in mm

u
1

in
m

m

= 0.5 mm
= 1.0 mm
= 2.0 mm

−0.04

−0.03

−0.02

−0.01

0.01

0.02

0.03

0.04

−10 −5 5 10

0

0

(d) radial displacement

Fig. 2 Finite element solution of the tensile problem depicted in Fig. 1 (E ¼ 210;000 N/mm2, m ¼ 0:3)
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R ¼ rr ¼ or

or
� er þ

1

r

or

oh
� eh þ

or

oz
� ez

¼ r0r er � er þ r0h eh � eh þ r0z ez � ez
� �

� er

þ rr � rh
r

er � eh þ eh � er½ � � eh

ð39Þ

with primes denoting derivatives with respect to r. By

additionally invoking the static balance equation for

the active stress components, i.e.

r0r þ
rr � rh

r
¼ 0; ð40Þ

the generalised stress tensor can be rewritten as

R ¼ r0r er � er � er � er � eh � eh � eh � er � eh½ �
þ r0h eh � eh � er þ r0z ez � ez � er:

ð41Þ

For the computation of the third order tensor U of

microdisplacements, it is necessary to evaluate the

divergence of the generalised stress tensor

r � R ¼ oR

or
� er þ

1

r

oR

oh
� eh þ

oR

oz
� ez

¼ r00r þ
3 r0r
r

� �
er � er

þ r00h þ
r0h
r
� 2 r0r

r

� �
eh � eh

þ r00z þ
r0z
r

� �
ez � ez

ð42Þ

where the equilibrium equation (40) has again been

taken into account.

The displacement vector and its gradient are taken

in the form

u ¼ urðrÞ er þ uzðzÞ ez; ð43aÞ

ru ¼ u0r er � er þ
ur
r
eh � eh þ

ouz
oz

ez � ez: ð43bÞ

Under simple tensile/compression loading conditions,

the displacement gradient contribution ouz
oz ¼ �e is

prescribed. The generalised strain tensor can now be

computed by making use of (12), (29)–(33) and by

assuming that ‘ and l are constant in space, i.e.

e ¼ ru½ �symþr �U ¼ ru½ �symþ‘2l�1 r � R

¼ 1þ m
E

r� m
E
tr rð Þ I:

ð44Þ

Combining (42)–(44) leads to the differential

system

σzz in N mm−2

0 1000 2000 3000 4000

(a) axial stress

σθθ in N mm−2

0−120 −50 50 80

(b) circumferential stress

σrr in N mm−2

0 20 40 60 80

(c) radial stress

Fig. 3 Stress distribution predicted by finite element calculations of the tensile problem depicted in Fig. 1 (E ¼ 210;000 N/

mm2, m ¼ 0:3, ‘ ¼ 1:0 mm)
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Eu0rþ2 1þ m½ �‘2 r00r þ
3r0r
r

h i
¼ rr � m rhþrz½ � ð45aÞ

E
ur
r
þ 2 1þ m½ �‘2 r00hh þ

r0h
r
� 2 r0r

r

h i
¼ rh � m rr þ rz½ � ð45bÞ

E �eþ 2 1þ m½ � ‘2 r00z þ
r0z
r

� �
¼ rz � m rr þ rh½ � ð45cÞ

This system must be complemented by the balance

relation (40) in order to be solved for the four unknown

functions ur; rr; rh; rz. In accordance with Fig. 1,

vanishing stress boundary conditions are prescribed at

the outer boundary of the cylindrical bar with radius

rm, i.e.

rrðrmÞ ¼ rhðrmÞ ¼ rzðrmÞ ¼ 0: ð46Þ

It can be shown that the functions rr ¼ rh ¼ 0 are no

solutions of the system, with the considered boundary

conditions, except in the very special case m ¼ 0. This

is in contrast to simple tension in a cylindrical bar for

the Cauchy continuum.

In the particular case m ¼ 0 the system simplifies

and it is found that ur ¼ 0, that rr ¼ rh ¼ 0 and that

the axial stress is solution of the ordinary differential

equation

r00z þ
1

r
r0z �

1

~‘2
rz þ

E
~‘2

�e ¼ 0 ð47Þ

with

~‘ ¼
ffiffiffi
2

p
‘: ð48Þ

A particular solution is the classic one rzðrÞ ¼ E �e,
which, however, does not fulfil the boundary condition

of vanishing stresses at r ¼ rm. With the scaling x ¼
r=~‘ and with the notation yðxÞ ¼ rzð~‘ xÞ being

adopted, the homogeneous equation to solve is given

by

xy00 þ y0 � xy ¼ 0; ð49Þ

where primes indicate derivatives with respect to x.

This is a special case of the modified Bessel’s equation

x2y00 þ xy0 � x2 þ a2
� �

y ¼ 0 ð50Þ

with a ¼ 0, see [1]. The solution is given by a linear

combination of modified Bessel functions, also

denoted as hyperbolic Bessel functions, of the first

and second kind: I0ðxÞ and K0ðxÞ. The function K0 is

singular at x ¼ 0 and cannot appear in the solution of

the considered boundary value problem. Thus, the

solution is of the form

rzðrÞ ¼ yðr=~‘Þ ¼ C1 I0ðr=~‘Þ þ C2

with rzðr ¼ 0Þ ¼ r0; rzðrmÞ ¼ 0
ð51Þ

where r0 is the stress value at the centre that can be

related to the stress value E �e ¼ C2. Finally, this gives

C1 ¼
� r0

I0ðrm=~‘Þ � 1
; C2 ¼ r0

I0ðrm=~‘Þ
I0ðrm=~‘Þ � 1

: ð52Þ

Figure 4 shows the excellent agreement between the

analytical and finite element solutions for three differ-

ent length scales and vanishing Poisson’s ratio.

Regarding the analytical solution of the tensile prob-

lem given by (51) and (52), it ismoreover observed that

the solution converges to the one of a classic Cauchy

continuum for ~‘ ! 0þ, except for an increasingly thin
boundary layer that occurs due to the vanishing stress

boundary condition at the outer surface. In addition to

the latter results, the convergence of the finite element

results towards the analytical solution upon mesh

refinement is studied in the Appendix.

4.4 Rectangular bar under tension

Breaking the rotational symmetry of the boundary

value problem discussed in Sects. 4.2 and 4.3, the

tensile problem of a rectangular bar with a square cross

section sketched in Fig. 5 is studied in this section. In

accordance with the previous sections, generalised

x1 in mm

σ
z

z
in

N
m

m
−

2

= 0.5mm (FEM)
= 0.5mm (Analytic)
= 1.0mm (FEM)
= 1.0mm (Analytic)
= 2.0mm (FEM)
= 2.0mm (Analytic)

−10 −5 5 10
0

0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 4 Finite element vs. analytic solution of the simple tensile

problem depicted in Fig. 1 (E ¼ 210;000 N/mm2, m ¼ 0)
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clamping boundary conditions are assumed at the left

boundary (z ¼ 0 mm), and generalised traction

boundary conditions that result in a total axial force

of 840 kN are applied at the right boundary

(z ¼ 100 mm). At the remaining boundaries, homo-

geneous generalised Neumann boundary conditions

are assumed. The material parameters are chosen in

accordance with Table 1, the bar is discretised by

using linear (eight-node) Lagrangian elements, and a

Gaussian quadrature scheme with eight sampling

points is used for numerical integration.

The finite element results are presented with respect

to the Cartesian basis specified in Fig. 5 and are

evaluated for the cross section at z ¼ 50 mm to reduce

the influence of boundary effects. The simulation

results are summarised in Fig. 6 and differ signifi-

cantly from the homogeneous, uniaxial stress state

expected in the case of a classic Cauchy continuum

with an isotropic, linear-elastic material model: (1) A

strongly inhomogeneous axial stress field r33 is

observed in Fig. 6a–c. The axial stress takes its

maximum value in the centre of the cross section

and approaches zero at the boundaries. In accordance

with the observations for the cylindrical bar in

Sect. 4.2, the slope and the maximum value of the

r33 profile depend on the material length scale

parameter ‘ which penalises stress gradients in an

energetic manner. (2) Significant in-plane stresses are

observed in Fig. 6d–i. (3) The complex stress state in

the cross-section is associated with a complex defor-

mation of the cross-section which, in particular, does

not remain square. The latter deformation mode

becomes more pronounced with increasing values of

the material length scale parameter ‘. Moreover, no

warping of the cross section’s surface with unit normal

vector e3 is observed.

In contrast, the homogeneous uniaxial stress state

that is expected (at a distance from the clamped

boundary) in the case of a classic Cauchy continuum

with an isotropic linear-elastic material model can be

recovered by taking into account a different set of

boundary conditions. More specifically speaking, the

bar is again assumed to be clamped (in a generalised

sense) at the left boundary (x3 ¼ 0 mm)

W � n ¼ �W � e3 ¼ 0 ð53Þ

and homogeneous traction boundary conditions

r� n ¼ r33 e3 � e3 � e3 ð54Þ

are assumed at the right boundary (x3 ¼ 100 mm). At

the remaining boundaries, generalised stress boundary

conditions that are consistent with the expected uni-

axial stress state are prescribed, i.e.

r� n ¼ � r33 e3 � e3 � e1 on oB1 ð55aÞ

r� n ¼ � r33 e3 � e3 � e2 on oB2 ð55bÞ

r� n ¼ r33 e3 � e3 � e1 on oB3 ð55cÞ

r� n ¼ r33 e3 � e3 � e2 on oB4 ð55dÞ

The simulation results that were calculated with the

set of boundary conditions (53)–(55), cf. Fig. 5, and

with ‘ ¼ 1:0 mm are provided in Fig. 7. For an

applied axial load of 840 kN, the uniaxial stress state

at a distance from the clamped boundary is given by

r ¼ r33 e3 � e3 ¼ 2100N=mm2 e3 � e3; ð56Þ

as indicated by light grey colour. In addition, an

inhomogeneous stress distribution due to the clamping

conditions is observed in the vicinity of the left

boundary.

e1

e2e2
e3

σ ⊗ n = 0

σ ⊗ n = 0

Ψ · n = 0
σ ⊗ n

=
σ33 e3 ⊗ e3 ⊗ e3

100 20

20

∂B1 ∂B2

∂B3∂B4

Fig. 5 Geometric dimensions (in mm) and boundary conditions of the rectangular bar under tension
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σ33 in N mm−2

0 900 1800 2700 3600

(a) axial stress, � = 0.5mm

σ33 in N mm−2

0 900 1800 2700 3600

(b) axial stress, � = 1.0mm

σ33 in N mm−2

0 900 1800 2700 3600

(c) axial stress, � = 2.0mm

σ11 in N mm−2

−115 −70 −25 20 65

(d) horizontal stress, � = 0.5mm (e) horizontal stress, � = 1.0mm (f) horizontal stress, � = 2.0mm

σ11 in N mm−2

−115 −70 −25 20 65
σ11 in N mm−2

−115 −70 −25 20 65

σ12 in N mm−2

0−46 −23 23 46

(g) shear stress, � = 0.5mm

σ12 in N mm−2

0−46 −23 23 46

(h) shear stress, � = 1.0mm

σ12 in N mm−2

0−46 −23 23 46

(i) shear stress, � = 2.0 mm

Fig. 6 Stress distribution predicted by finite element calcula-

tions of the tensile problem depicted in Fig. 5 (E ¼ 210;000 N/

mm2, m ¼ 0:3) with zero stress boundary conditions on oB1–

oB4. The results are shown on the deformed cross-section, with

the deformation scaled by a factor of 50 for visualisation

purposes
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4.5 Torsion test

The torsion problem of a cylindrical bar as depicted in

Fig. 8 is analysed in this section. The bar is assumed to

be clamped (in a generalised sense) at the left boundary.

The remaining boundary, except for the right end of the

cylindrical bar where a torque is induced by means

tangential forces, is assumed to be stress free. In

particular, traction boundary conditions at the surface

with outward unit normal vector n ¼ er, in the vicinity

of the right boundary (z ¼ 100 mm), of the form

r� n ¼ rhr eh � er þ er � eh½ � � er ð57Þ

are applied that result in a torque of approx. 1100 N m

with respect to the ez-axis. Moreover, by making use

of the relation between the Cartesian and polar basis

er ¼ cos hð Þ e1 þ sin hð Þ e2 ; ð58aÞ

eh ¼ � sin hð Þ e1 þ cos hð Þ e2 ; ð58bÞ

ez ¼ e3; ð58cÞ

the boundary condition (57) can alternatively be

expressed as

ð59Þ

The corresponding coefficient matrix with respect to

the Cartesian basis system takes the form

r� n½ �ij1¼
�2 sin hð Þ cos hð Þ cos2 hð Þ � sin2 hð Þ

� �
0

cos2 hð Þ � sin2 hð Þ
� �

2 sin hð Þ cos hð Þ 0

0 0 0

2

64

3

75 cos hð Þ rhr

ð60aÞ

r� n½ �ij2¼
�2 sin hð Þ cos hð Þ cos2 hð Þ � sin2 hð Þ

� �
0

cos2 hð Þ � sin2 hð Þ
� �

2 sin hð Þ cos hð Þ 0

0 0 0

2

64

3

75 sin hð Þ rhr

ð60bÞ

r� n½ �ij3¼
0 0 0

0 0 0

0 0 0

2

64

3

75 ð60cÞ

The material parameters are chosen according to

Table 1, and a Gaussian quadrature scheme with eight

sampling points and discretisations based on linear

(eight-node) Lagrangian elements are used.

The simulation results are summarised in Figs. 9

and 10 with respect to a cylindrical basis system and

are evaluated for the cross section at z ¼ 50 mm. Due

to the boundary conditions at the outer surface of the

σ33 in N mm−2

1900 2000 2100 2200 2300

Fig. 7 Stress distribution predicted by finite element calcula-

tions of the tensile problem depicted in Fig. 5 (E ¼ 210;000 N/

mm2, m ¼ 0:3, ‘ ¼ 1:0 mm) with boundary conditions accord-

ing to (53)–(55)

er

eθ

θ
e1

e2e2
e3 = ez

σ ⊗ n = 0

σ ⊗ n = 0

σ ⊗ n = 0

Ψ · n = 0

σ ⊗ n = σθr [eθ ⊗ er + er ⊗ eθ] ⊗ er

100 20

Fig. 8 Geometric dimensions (in mm) and boundary conditions of the cylindrical bar under torsion
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cylinder, the in-plane shear stress rhz does not linearly
increase on the interval r 2 0mm; 10mm½ � as would be
the case for a classic Cauchy continuum with an

isotropic, linear elastic material model. In contrast, a

parabolic profile that approaches zero at the centre

(r ¼ 0 mm) and at the outer radius (r ¼ 10 mm) is

observed in Fig. 9, with the slope and the maximum

shear stress value depending on the material length

scale ‘. In addition, the shear stress distribution in the

cross section is provided in Fig. 10 for the three

different values of the length scale parameter studied.

4.6 Comparison with the analytic solution

in torsion

The stress tensor takes the form

r ¼ s eh � ez þ ez � eh½ � ð61Þ

where s ¼ rhz is the unknown function to be deter-

mined. The static balance equations, in the absence of

body forces, require that s is a function of the sole

variable r. Under these conditions, the stress gradient

is deviatoric and one finds that

R ¼ rr ¼ s0 eh � ez � er þ ez � eh � er½ �

� s
r

er � ez � eh þ ez � er � eh½ �
ð62Þ

where s0 denotes the derivative of the stress compo-

nent with respect to r. Its divergence is then computed

as

r � R ¼ s00 þ s0

r
� s
r2

� �
eh � ez þ ez � eh½ �: ð63Þ

On the other hand, the displacement vector is

described by a single function uhðr; zÞ in the form

u ¼ uhðr; zÞ eh ð64Þ

from which the infinitesimal strain tensor is computed

as

ru½ �sym¼ 1

2

ouh
or

� uh
r

� �
er � eh þ eh � er½ �

þ 1

2

ouh
oz

ez � eh þ eh � ez½ �:
ð65Þ

Assuming that ‘ and l are constant in space, the

generalised strain tensor can now be expressed as

e ¼ ru½ �symþr �U ¼ ru½ �symþ‘2l�1 r � R

¼ 1

2

ouh
or

� uh
r

� �
er � eh þ eh � er½ �

þ 1

2

ouh
oz

þ ‘2l�1 s00 þ s
r

h i0h i� �
ez � eh þ eh � ez½ � :

ð66Þ

In the analysed torsion case, generalised Hooke’s law

(33a) simplifies to

e ¼ 1

2 l
r: ð67Þ

By taking into account (61), (66) and (67), the

differential system of two equations

ouh
or

� uh
r
¼ 0 ð68aÞ

l
ouh
oz

þ 2 ‘2 s00 þ s
r

h i0h i
� s ¼ 0 ð68bÞ

is thus derived. It follows from (68a) that uhðr; zÞ ¼
aðzÞ r where a is a function of the sole variable z.

Furthermore, (68b) shows that this function reduces to

aðzÞ ¼ a0 z. Equation (68b) can now be written in the

form

l a0 r þ 2 ‘2 s00 þ s
r

h i0h i
� s ¼ 0: ð69Þ

x1 in mm

σ
θ

z
in

N
m

m
−

2

= 0.5mm
= 1.0mm
= 2.0mm

−10 −5 5 10
0

0

200

400

600

800

1000

Fig. 9 Shear stress distribution predicted by finite element

simulations of the torsion problem depicted in Fig. 8

(E ¼ 210;000 N/mm2, m ¼ 0:3)
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A particular solution of this equation is the well-

known linear field from classic elasticity

s rð Þ ¼ l a0 r: ð70Þ

The remaining homogeneous ordinary differential

equation to be solved is then

r2s00 þ rs0 � 1þ r2

~‘2

� �
s ¼ 0; ð71Þ

where definition (48) was used. The change of variable

r ¼ ~‘ x and the definition yðxÞ ¼ sð~‘ xÞ lead to the

ordinary differential equation

x2 y00 þ x y0 � 1þ x2
� �

y ¼ 0; ð72Þ

where primes indicate derivatives with respect to x.

According to [1], the solutions are given by modified

Bessel functions of order one, i.e.

yðxÞ ¼ C1 I1ðxÞ þ C2 Y1ðixÞ ð73Þ

with Y1ðixÞ ¼ � I1ðxÞ � 2i
p K1ðxÞ. The modified Bessel

function of the second kind K1 is singular at x ¼ 0 and

is therefore not acceptable for the considered bar. The

solution of the torsion problem thus takes the form

sðrÞ ¼ l a0 r þ C1 I1ðr=~‘Þ ð74Þ

¼ l a0 rm
r

rm
� I1ðr=~‘Þ
I1ðrm=~‘Þ

" #

ð75Þ

where the constant C1 was determined from the

condition sðr ¼ rmÞ ¼ 0.

The solution is found to be such that sðr ¼ 0Þ ¼ 0,

with the vanishing shear stress at the tube’s axis being

a consequence of the specific form of the analytical

solution and not imposed to the governing differential

equation. In accordance with the tensile problem

discussed in Sect. 4.3, it is moreover observed that the

analytical solution (75) converges towards the one of a

classic Cauchy continuum in the limit ~‘ ! 0þ, except
for an increasingly thin boundary layer that occurs due

to the vanishing stress boundary condition at the outer

surface. In addition, the convergence of the finite

element results towards the analytical solution upon

mesh refinement is exemplarily shown for ‘ ¼ 1:0 mm

in the Appendix.

The next step consists in evaluating the torque

resulting from the computed shear stress function. The

only non-vanishing component of this vector is M ez
and given by

σθz in N mm−2

0 200 400 600 800

(a) shear stress, � = 0.5mm

σθz in N mm−2

0 200 400 600 800

(b) shear stress, � = 1.0mm

σθz in N mm−2

0 200 400 600 800

(c) shear stress, � = 2.0mm

Fig. 10 Shear stress distribution predicted by finite element simulations of the torsion problem depicted in Fig. 8 (E ¼ 210;000 N/

mm2, m ¼ 0:3)
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M ¼
Z

S

r2 s drdh ð76Þ

¼ l a0
p r4m
2

þ 2 pC1

Z rm

0

r2 I1ðr=~‘Þ dr ð77Þ

¼ l a0
p r4m
2

þ 2 p ~‘3 C1

Z xm

0

x2 I1ðxÞ dx ð78Þ

with xm ¼ rm=~‘. The last integral can be evaluated

exactly1 by means of two successive integrations by

parts as

Z xm

0

x2 I1ðxÞdx ¼ x2m I0ðxmÞ � 2 xm I1ðxmÞ: ð79Þ

The torque can now be related to the torsion angle per

unit length, a0, as

M ¼ l a0
p r4m
2

1� 4
~‘2

r2m

rm
~‘

I0ðrm=~‘Þ
I1ðrm=~‘Þ

� 2

" #" #

:

ð80Þ

The torque value was prescribed in the finite element

analysis of Sect. 4.5. The value a0 can be computed

from (80) and completely determines the shear stress

field (75). A comparison of the analytical and numer-

ical shear stress profiles is plotted in Fig. 11 for three

values of the intrinsic length scale. Excellent agree-

ment is obtained, which shows that the usual linear

shear stress profile is replaced by a non-monotonic

distribution with a boundary layer close to the free

surface.

4.7 Smaller is softer

The torsion stiffness J ‘ can be defined from relation

(80). It is a function of the wire radius and of the

characteristic length of the stress gradient elastic

continuum. Specifically speaking,

J ‘ ¼ J 0 1� 4
~‘2

r2m

rm
~‘

I0ðrm=~‘Þ
I1ðrm=~‘Þ

� 2

" #" #

; ð81Þ

holds, with J 0 denoting the usual torsion stiffness of a

cylindrical bar

J 0 ¼ l
p r4m
2

: ð82Þ

A tensile stiffness of the cylindrical bar can also be

defined from the solution found in Sect. 4.3. The stress

distribution was given by (51) and (52). Alternatively,

it can be expressed in terms of the stress value E �e,
where �e is the prescribed axial displacement gradient,

namely

rzðr=~‘Þ ¼ E �e 1� I0ðr=~‘Þ
I0ðrm=~‘Þ

" #

: ð83Þ

The tensile stiffness of the bar is defined as the ratio of

the applied force F and the prescribed relative

displacement d ¼ L �e, with L denoting the length of

the bar. In the case of a Cauchy continuum, it is well-

known that the reference stiffness is

K0 ¼ E
p r2m
L

: ð84Þ

For the stress gradient continuum, the total force is

computed as

r in mm

σ
θ

z
in

N
m

m
−

2

= 0.5mm (FEM)
= 0.5mm (Analytic)
= 1.0mm (FEM)
= 1.0mm (Analytic)
= 2.0mm (FEM)
= 2.0mm (Analytic)

108642
0
0

100

200

300

400

500

600

700

800

Fig. 11 Comparison between the analytic and numerical

predictions for the shear stress distribution in torsion for the

stress gradient continuum endowed with three different intrinsic

length scales (E ¼ 210;000 N/mm2, m ¼ 0:3)

1 The following identities for Bessel functions have been used:

I00ðxÞ ¼ I1ðxÞ; I01ðxÞ ¼ I0ðxÞ � I1ðxÞ=x.
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F ¼
Z

S

rz r dr dh

¼ 2 pE �e
Z rm

0

r 1� I0ðr=~‘Þ
I0ðrm=~‘Þ

" #

dr

ð85Þ

¼ 2 pE �e ~‘2
Z xm

0

x 1� I0ðxÞ
I0ðxmÞ

� �
dx

¼ pE �e r2m 1� 2 I1ðxmÞ
xm I0ðxmÞ

� �
:

ð86Þ

It follows that

K‘ ¼ E
p r2m
L

1� 2 I1ðxmÞ
xm I0ðxmÞ

� �
; ð87Þ

with the relative tensile stiffness defined as

K‘

K0

¼ 1� 2 I1 ðxmÞ
xm I0ðxmÞ

� �
: ð88Þ

The tensile and torsion relative stiffnesses are plotted

in Fig. 12. The curves clearly reveal a smaller is softer

tendency, meaning that the stiffness decreases when

the intrinsic length scale increases. It is particularly

remarkable that the bar stiffness tends towards zero

when the length scale increases or when the bar radius

decreases. This effect stems from the existence of a

boundary layer with vanishing stress whose thickness

becomes dominant for small bar radii or large intrinsic

length scales.

The limit case of torsion for large radii or small

internal length scales is also interesting. The usual

stiffness J 0 is retrieved in this limit case in spite of the

presence of a stress gradient. The reason is that, at the

limit, the shear stress is a linear function implying that

the divergence of the stress gradient and of microdis-

placements (see (63)) vanishes, leaving the usual

strain tensor unaffected.

A comparison can be drawn with solutions accord-

ing to existing strain gradient elasticity models,

including Mindlin’s original theory [25] or Aifantis

simplified model [13]. No size effect is expected in

tension in strain gradient elasticity at least for long

enough bars fulfilling Saint-Venant’s conditions. The

softening effect obtained in torsion according to stress

gradient elasticity is in striking contrast to the

predictions of strain gradient elasticity which are

notoriously associated with a smaller is stiffer effect,

see [6]. Solutions of the torsion problem of strain

gradient elastic bars have been provided in [2, 20, 32].

A torsion stiffening effect is predicted by strain

gradient elasticity when the bar radius has the same

order of magnitude as the intrinsic length scale and

below. The linear stress profile is still valid in a strain

gradient elastic circular cylindrical bar because it

fulfils all required higher order boundary conditions.

This is in contrast to the stress gradient solution

worked out in the previous section. However, the

torsion stiffness is increased by a contribution of the

higher order elasticity moduli [19, 20], at least if the

bar is long enough to fulfil the Saint-Venant condi-

tions, see [23] which focuses on special boundary

conditions at the bar’s ends. This relative stiffness

enhancement is proportional to 1þ a x�2
m

� �
, where xm

is the ratio of the bar radius divided by one strain

gradient elastic length scale, and where a is a factor

depending on the specific strain gradient model

considered. This implies that the relative stiffness

approaches infinity for vanishingly small radii or very

large intrinsic length scales. It is recalled that the stress

gradient elasticity theory predicts a vanishing relative

stiffness under these conditions. Finite element solu-

tions of the torsion problem of strain gradient elastic

bars were presented in [5], confirming the absence of

warping for circular bars and computing the warping

of elliptical sections.

rm/˜

K /K0

J /J0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.0
0.01

0.1

0.1 1.0 10 100 1000

Fig. 12 Relative stiffness of a cylindrical bar in tension or in

torsion as a function of the ratio between the bar radius rm and

the intrinsic length scale ~‘ ¼
ffiffiffi
2

p
‘
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5 Closure

In this contribution, a finite element implementation of

the stress gradient theory was proposed and studied in

detail. The implementation relied on a reformulation

of the governing set of field equations (of the stress

gradient theory) in terms of one primary, tensor-

valued field variable of third order. Since the latter

field variable was based on the classic displacement

field and on a micro-displacement field-type quantity,

it was referred to as a generalised displacement field. It

was then shown that a reformulation of the weak form

of the balance equations in terms of the generalised

displacement field is particularly suitable for a finite

element-based implementation, especial with regard

to (the implementation of) boundary conditions. More

specifically speaking, a peculiarity of the stress

gradient theory as opposed to the classic Cauchy

continuumwas that the complete stress tensor could be

prescribed at the boundaries. With the finite element

implementation at hand, representative boundary

value problems were studied in detail. In particular,

a cylindrical bar under tension was analysed for which

an analytical solution by means of Bessel functions

could be derived for validation purposes in the case of

a circular cross section. Breaking the rotational

symmetry of the bar, the study of a rectangular bar

under tension revealed a significantly different defor-

mation behaviour as compared to a classic Cauchy

continuum. These results strongly differ from strain

gradient elasticity which does not predict any size

effect for a bar in tension, at least in the sense of Saint-

Venant. Finally, the (unusual) shear stress distribution

in a cylindrical bar under torsion was studied bymeans

of numerical and analytical methods. Note that the

analytical solution of the simple tension problem was

provided explicitly for a circular bar in the special case

of vanishing Poisson’s ratio. In contrast, the solution

presented for torsion loading in isotropic stress

gradient elasticity is general.

The stress gradient continuum represents a gener-

alisation of a classic Cauchy continuum. Amongst

others, it allows for generalised boundary conditions

in terms of the complete stress tensor and naturally

accounts for a material length scale. The simulation

examples provided in this work illustrate a remarkable

feature of stress gradient elasticity which predicts that

smaller is softer in the presence of stress free

boundaries. This is in contrast to smaller is stiffer

effects according to strain gradient elasticity. Free

boundary layer effects can be accounted for by means

of second strain gradient elasticity and essentially lead

to an increase of the tensile stiffness of a bar [9, 22].

Smaller is softer effects have been reported in

materials science for the apparent Young’s modulus

of nanowires in [36] in relation to free surface effects,

see [9] and references quoted therein. This trend was

also observed in the plasticity of bulk metallic glasses

according to [17]. It may also be relevant in the context

of boundary layer effects in elastic composite mate-

rials, see the bending-gradient theory for thick

heterogeneous plates discussed in [30]. Additionally,

both smaller is stiffer as well as smaller is softer

effects have been reported in bending experiments on

human cortical bone samples [8, 35]. These seemingly

contradictory results prompted the analyses presented

in [34], which suggests by employing simple analyt-

ical laminate beam theories and finite element-based

studies of two-dimensional beam-type samples with

periodic heterogeneities that the latter experimental

findings can be explained by the particular properties

of the material surface. From a modeling point of

view, recent research efforts moreover focus on the

combination of gradient and nonlocal elasticity theo-

ries to account for both smaller is softer as well as

smaller is stiffer effects that may, possibly, be related

to different material length scales, [3]. Applications of

nonlocal strain gradient theories to simulate beam- and

shell-type nanoscale structures are discussed in, for

example, [11, 24], and it remains to be shown how

these theories are related to the stress gradient theory

that serves as the basis for the present contribution.

In addition, the simplified isotropic elasticity law

used in the present work involving a single additional

intrinsic length scale should be extended to more

general sixth order tensors of stress gradient elasticity,

including isotropy and anisotropy [4, 14]. Further-

more, more complex geometries and loadings will be
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investigated in future works so as to reveal the full

potential of the stress gradient theory. Another chal-

lenging issue to be considered is the introduction of

nonlinear aspects of the stress gradient theory into the

proposed finite element approach, regarding either the

finite deformation framework established in [15] or

plasticity theory [12]. The latter would allow for a

comparison between stress gradient plasticity and

strain gradient plasticity predictions for a wealth of

physical situations which were explored in the past

only in the case of strain gradient approaches [6, 21].
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Appendix: Convergence studies

The convergence upon mesh refinement of the finite

element results discussed in Sects. 4.3 and 4.5 is

briefly studied in this section. In particular, the

convergence of the element-wise mean values of the

axial stress rzz for the tensile problem and of the in-

plane shear stress rhz for the torsion problem against

the analytical solution is exemplarily shown for ‘ ¼
1:0 mm in Fig. 13. The simulation results for the
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Fig. 13 Convergence study of finite element results for a the tensile problem according to Fig. 1 and b the torsion problem depicted in

Fig. 8. Element-wise mean values are shown with markers indicating the centre position of elements
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different finite element meshes are additionally pro-

vided in Figs. 14 and 15 in terms of surface plots.
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