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Abstract

This work is concerned with the influence of non-smooth yield functions on material insta-

bilities. Using Rice’s criterion, the conditions for loss of ellipticity are determined in the

case of a family of non-smooth yield functions in principal stress space. It is found that the

presence of corners on the yield surface allows for postponing or advancing loss of elliptic-

ity. A procedure for the numerical detection of loss of ellipticity in multisurface plasticity

is proposed. An explicit expression of the subdifferential of the non-smooth yield function

is obtained, thereby extending existing results in the literature for the Tresca and Mohr-

Coulomb criteria. Structural computations show that the use of non-smooth yield functions

can lead to much earlier failure prediction than in the case of a commonly used von Mises

criterion.

Keywords: loss of ellipticity, Rice’s criterion, localization, non-smooth yield functions,

corners, critical hardening modulus, Tresca

1. Introduction

This work is concerned with strain localization in the context of non-smooth plasticity.

Introduced by [1] and [2], loss of ellipticity is commonly used as a criterion for the detection

of the onset of strain localization. Loss of ellipticity is usually referred to as Rice’s criterion

for localization and corresponds to the existence of vanishing eigenvalues of the acoustic5

IFully documented templates are available in the elsarticle package on CTAN.
∗Corresponding author. Tel.: +33 6 33 99 96 41
Email address: brian.staber@safrangroup.com (B. Staber)

Preprint submitted to Journal of LATEX Templates October 27, 2020

http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle


tensor. Loss of ellipticity is one criterion amongst others for the detection of instabilities. In

particular, it has to be distinguished from loss of strong ellipticity which corresponds to the

loss of positive definiteness of the symmetrized acoustic tensor. Classifications of instability

criteria can be found in, e.g., [3, 4, 5, 6] amongst others. In a three-dimensional solid at

small strains undergoing tension, loss of ellipticity is usually difficult to achieve unless the10

model exhibits a sufficiently strong softening behavior, i.e., a strongly negative hardening

modulus. In addition, in the case of a smooth yield function, it has been shown by [7]

that the critical hardening modulus for strain localization is never positive for associative

plasticity at small strains. From a computational point of view, the detection of loss of

ellipticity is recast as a minimization problem of the determinant of the acoustic tensor over15

the set of unit normals. Numerical strategies have been proposed in the literature by, e.g.,

[8]. More recently, a general and efficient multistart algorithm has been proposed for the

detection of loss of ellipticity in elasto-plastic structures by [9].

Strain localization strongly depends on the plastic yield function. It is, for instance,

well reported in the literature that strain localization predictions are highly sensitive to the20

formation of corners on the current yield surface. The phenomenon of vertex formation

has been revealed by calculations based on crystal plasticity and by experimental evidence

[10, 11]. Plasticity theories that take into account singularities on yield surfaces can roughly

be divided into two categories, namely, phenomenological models based on the deformation

theory of plasticity and computational-motivated models based on the classical flow theory25

of plasticity.

A first class of phenomenological corner theories has been proposed by [12]. It is assumed

that a corner exists on the yield surface and that it can be represented by a generalized cone

in stress space. A general framework is proposed and then specialized to its simplest version

known as the J2 corner theory. The model is built in such a way that it coincides with30

J2 deformation theory when stress increments are nearly proportional. This is achieved

by taking the instantaneous moduli for nearly proportional loading equal to the tangent

moduli of deformation theory. The aforementioned J2 corner theory has been used by

[13, 14, 15, 16, 17, 18] for instability analysis at large strains and it is observed that a good
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agreement with experimental data is obtained. According to [19, 20], phenomenological35

corner theories were not well suited for large-scale simulations because they require one to

track corners formation and their evolution. For these reasons, [19] has proposed a flow

theory that mimics corner effects. A smooth yield surface and an associative flow rule are

considered but the elasto-plastic moduli decrease as the deviation of the strain rate from

proportional loading increases. Similarly, [20] has proposed a pseudo-corner theory using a40

smooth yield surface with a non-normality flow rule under the assumption that the plastic

strain-rate and strain-rate deviator are coaxial. This model has been used in a few studies

such as in [21] where classical flow, pseudo-corner and deformation theories are compared

in a buckling analysis. Following these ideas, [22] extended the pseudo-corner model of [20]

by relaxing the coaxial assumption. Furthermore, [23, 24] incorporated the pseudo-corner45

model [22] into strain-gradient plasticity. The common feature of all the aforementioned

approaches is a reduction in the instantaneous shear moduli which in turn reduces the

predicted bifurcation levels.

The extension of classical flow theory of plasticity to elastic domains formed by in-

dependent yield surfaces intersecting non-smoothly has first been carried out by [25]. The50

generalization to dependent yield surfaces has been achieved by [26] to accommodate crystal

plasticity. This formulation of plasticity is commonly referred to as multisurface plasticity

and its numerical treatment can be found in [27]. In metal plasticity, the standard threshold

such as the Tresca criterion is covered by multisurface plasticity. A fully implicit integration

algorithm for the Tresca criterion has been proposed by [28] by having recourse to an optimal55

parameterization in stress space. The extension of this approach to the Mohr-Coulomb cri-

terion can be found in the textbook [29]. A generic fully implicit algorithm for multisurface

models in principal stress space is presented by [30] together with a comprehensive review

of methods for handling non-smooth yield surfaces. It should be noted that modern theory

of plasticity is based on convex analysis as in, e.g., [31] and [32]. In this framework, the flow60

rule of plasticity is written as a differential inclusion involving the subdifferential set of the

yield function and the initial boundary value problem is recast into an abstract variational

inequality. As a result, non-smooth elastic domains can be considered and multisurface mod-
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els can be obtained as a special case. Theoretical aspects including mathematical theory

and numerical analysis are presented by [33] in the context of small perturbations. Although65

the existence of solutions in finite deformations is still an open problem, recent advances can

be found in [34] and [35] for the incremental boundary value problem. Very recently, a fully

implicit subdifferential-based algorithm for the Mohr-Coulomb criterion has been devised by

[36]. In contrast to multisurface-based algorithms, a single plastic Lagrange multiplier has to

be computed and a simpler expression of the consistent tangent matrix can be determined.70

The present paper makes the following contributions to the analysis of material insta-

bilities: (a) The influence of non-smooth yield functions on the onset of loss of ellipticity is

investigated by considering a family of yield functions that can be written as a linear combi-

nation of the principal stresses. Such a family includes classical yield functions such as the

Tresca, twin shear stress [37], or the more recent mean influence factor model [38]. (b) It is75

shown that the presence and shape of corners on the yield surface allow for either postponing

or advancing loss of ellipticity, or equivalently, decreasing or increasing the critical hardening

modulus. (c) Based on the recent work of [9], a procedure for the numerical detection of

loss of ellipticity in multisurface plasticity is proposed. (d) An explicit expression of the

subdifferential set for the considered family of yield functions is provided, hence extending80

existing results in the literature for the Tresca and Mohr-Coulomb criteria [39, 40]. Such

an expression is contained in the abstract form of the flow rule and can be used to, e.g.,

establish the multisurface form of the flow, or devise an implicit integration algorithm [40].

(e) Finite element simulations are performed on simple and realistic geometries in order

to illustrate the proposed analysis. It is found that the choice of the yield function has a85

dramatic effect on the failure of structures. To the authors’ best knowledge, such results are

not yet reported in the literature.

This paper is organized as follows. First, in section 2, the theory of plasticity is presented

in a convex analysis setting. In section 3, the conditions for loss of ellipticity in multisurface

plasticity are recalled. The family of yield functions considered in this work is described in90

section 4 which includes the definition of the flow rule in subdifferential and multisurface

forms. The critical hardening moduli and shear bands orientations are then determined
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for stress states that lie on the smooth portions and corners of the yield surfaces. Finally,

in section 5, numerical illustrations are provided in the case of a cube and a thin plate

undergoing tension, and an experimental tubular specimen undergoing tension and torsion.95

2. Non-smooth plasticity

In this section, we briefly recall the dual formulation of plasticity under the assumption

of small strains. Comprehensive presentations of the theory of plasticity together with com-

putational aspects at finite and small strains can be found in, e.g., [41] or [29]. Theoretical

aspects including mathematical and numerical analysis are presented by [33] and the recent100

review [42].

2.1. Initial boundary value problem and flow rule

Let Ω be a three-dimensional subset of R3 with Lipschitz boundary Γ corresponding to

the reference configuration occupied by the body of interest B. The reference configuration

undergoes a deformation map ϕ : Ω× T → R3 that results in a deformed configuration Ωt.

Any point in the reference configuration is denoted by x ∈ Ω. We denote by u : Ω×T → R3

the displacement field given by u(x, t) = ϕ(x, t) − x and let ε : Ω × T → M3
S(R) be the

second-order infinitesimal strain tensor given by

ε(x, t) =
1

2
(u(x, t)⊗∇x +∇x ⊗ u(x, t)) . (1)

Based on thermodynamic considerations, the constitutive equations are described in terms

of the Helmholtz free energy function ψ. In order to account for plasticity, the strain tensor

ε is additively decomposed into an elastic contribution εe and a plastic contribution εp, i.e.,

ε(x, t) = εe(x, t) + εp(x, t) . (2)

In order to account for hardening, we introduce a symmetric second-order tensorα : Ω×T →

M3
S(R) which models kinematic hardening, and a vector p : Ω × T → Rmp which models

isotropic hardening. Here, mp ≥ 1 is an integer that corresponds to the number of internal

variables that model isotropic hardening. In most situations, isotropic hardening is described
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by a single internal variable, i.e., mp = 1. Multiple internal variables can be encountered in

the cases of complex isotropic hardening behaviors or multisurface plasticity. For instance,

in the case of single crystal plasticity, mp can be equal to the number of crystal systems.

Let then X and R be the symmetric second-order tensor and the vector which are conjugate

to α and p, respectively. The Helmholtz free energy function, assumed to be a function

of the elastic strain tensor εe := ε − εp and of the hardening variables α and p, is further

decomposed as

ψ(εe,α,p) = ψe(ε
e) + ψp(α,p) , (3)

where ψe and ψp denote the elastic and inelastic contributions, respectively. In the context

of linearized plasticity, the elastic free energy function is chosen as ψe(ε
e) = (1/2)εe : C : εe

where C denotes the fourth-order elasticity tensor. Following the Clausius-Duhem inequality,

the Cauchy stress tensor σ and the conjugate forces X and R are given by

σ = C : εe , X = −∂ψp
∂α

, R = −∂ψp
∂p

. (4)

The second-order tensor X corresponds to the back-stress and the entries of the vector

R = (R1, . . . , Rmp) correspond to yield stresses that define the yield surface. In what

follows, S and P denote the sets of generalized stresses and rate plastic variables such that

(σ,X,R) ∈ S and (ε̇p, α̇, ṗ) ∈ P . Arbitrary triplets in P and S will be denoted by (A,B, c)

and σ̃, X̃, R̃, respectively. The evolution of the plastic strain tensor and hardening variables

is described in terms of an elastic domain E. Let then NE(σ,X,R) be the normal cone to

the elastic region E at (σ,X,R) ∈ S,

NE(σ,X,R) =
{

(A,B, c) ∈ P |A : (σ−σ̃)+B : (X−X̃)+c·(R−R̃) ≥ 0, ∀ (σ̃, X̃, R̃) ∈ S
}
,

(5)

and let ∂φ be the multi-valued subdifferential set of the yield function, i.e.,

∂φ(σ,X,R) =
{

(A,B, c) ∈ P |φ(σ̃, X̃, R̃) ≥ φ(σ,X,R) + A : (σ̃ − σ)

+ B : (X̃−X) + c · (R̃−R), ∀ (σ̃, X̃, R̃) ∈ S
}
.

(6)

The evolution of the plastic and internal variables are governed by the abstract flow rule

(ε̇p, α̇, ṗ) ∈ NE(σ,X,R) , (7)
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which can be seen as an alternative formulation of the principle of maximum dissipation.

The elastic domain is expressed in terms of a yield function φ as follows

E =
{

(σ̃, X̃, R̃) ∈ S |φ(σ̃, X̃, R̃) ≤ R0

}
, (8)

where R0 is a positive constant yield stress. It is assumed that E is a closed convex set and

that it contains the origin, i.e., φ(0,0,0) ≤ R0. The abstract flow rule given by Eq. (7) can

also be written in terms of the subdifferential set ∂φ,

(ε̇p, α̇, ṗ) ∈ γ̇ ∂φ(σ,X,R) , (9)

where γ̇ ≥ 0 is the plastic Lagrange multiplier. For given rates (ε̇p, α̇, ṗ), the Lagrange

multipliers γ̇ is given by the dissipation function D(ε̇p, α̇, ṗ) defined as

D(ε̇p, α̇, ṗ) = sup
{
σ̃ : ε̇p + X̃ : α̇+ R̃ · ṗ | (σ̃, X̃, R̃) ∈ E

}
, (10)

which corresponds to the support function of the elastic region E. Essential and natural

boundary conditions are applied on the partitions ΓD and ΓN of Γ, with ΓD ∩ ΓN = ∅

and Γ = ΓD ∪ ΓN . Under the assumption of a quasi-static deformation process, the strong

formulation of the initial boundary value problem takes the form

−∇ · σ = f , in Ωt × T , (11a)

σn = td , on ΓN × T , (11b)

u = ud , in ΓD × T , (11c)

where σ : Ω × T → M3
S(R) is the second-order Cauchy stress tensor, f ∈ R3 describes the

volume forces, and n is the outward unit normal at x ∈ ΓN .

2.2. Multisurface plasticity deduced from convex analysis105

This section briefly describes how the multisurface flow rule can be deduced from the

abstract flow rule given by Eq. (7). We consider elastic regions E formed by subsets Ej ⊂ S

that intersect non-smoothly, where S denotes the set of generalized stresses. Hence, the

elastic domain is assumed to take the form E =
⋂m
j=1 Ej with

Ej =
{

(σ̃, X̃, R̃j) ∈ S |φj(σ̃, X̃, R̃j) = ϕj(σ̃ − X̃)− R̃j ≤ 0
}
, j = 1, . . . ,m , (12)
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where φj and ϕj are the j-th yield and canonical functions associated to Ej. Under the

assumption that there exists a family {µj}mj=1 of positive real scalars such that

φ(σ,X,R) =
m∑
j=1

µjφj(σ,X, Rj) , (13)

it can be shown that the subdifferential set ∂φ takes the form [43]

∂φ(σ,X,R) =
{

M ∈M3
S |M =

m∑
j=1

µjMj, Mj ∈ ∂φj(σ,X, Rj)
}
, (14)

where ∂φj is the subdifferential set associated to φj. Assuming that the yield functions φj,

j = 1, . . . ,m, are smooth functions of the generalized stresses, the subdifferential sets ∂φj

are simply given by the singletons

∂φj = {(ε̇p, α̇, ṗj) = (∇σφj,∇Xφj,∇Rj
φj)} , j = 1, . . . ,m , (15)

and the abstract flow rule given by Eq. (9) reduces to

ε̇p =
m∑
j=1

γ̇j∇σφj , α̇ = −
m∑
j=1

γ̇j∇Xφj , ṗ = −
m∑
j=1

γ̇j∇Rφj , (16)

which corresponds to Koiter’s form of the flow rule, with γ̇j = γ̇µj. The Lagrange multipliers

γ̇1, . . . , γ̇m satisfy the Kuhn-Tucker complementary conditions

γ̇j ≥ 0 , φj(σ,X, Rj) ≤ 0 , γ̇jφj(σ,X, Rj) = 0 , (17)

for j = 1, . . . ,m. Eq. (16) complemented by the conditions given by Eq. (17) is referred to

as a multisurface model for continuously differentiable yield functions that intersect non-

smoothly. Using the constitutive equations given by Eq. (4) together with the chosen form

of the canonical yield function, one has the following constitutive rate equations

σ̇ = C : ε̇−
m∑
j=1

C : Nj γ̇j , Ẋ =
m∑
j=1

K(α) : Nj γ̇j , Ṙi =
m∑
j=1

Hij(p) γ̇j , (18)

where Ni = ∇σφi is the normal tensor to the i-th yield surface, K = ∇2
αψp and [H] = ∇2

pψp

are the kinematic and isotropic hardening moduli, respectively. The multisurface form of
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the flow rule allows for eliminating the Lagrange multipliers γ̇1, . . . , γ̇m by invoking the

consistency conditions γ̇jφ̇j(σ,X,R) = 0, j = 1, . . . ,m. By successively applying the chain

rule, it is found that

φ̇j(σ,X,R) = ∇σφj(σ,X,R) : σ̇ +∇Xφj(σ,X,R) : Ẋ +∇Rj
φj(σ,X, Rj)Ṙj , (19)

which together with Eq. (18), leads to the following possibly non-linear system of equations

for (γ̇1, . . . , γ̇m),

[G(α,p)]λ̇ = b(ε̇) , (20)

where λ̇ is the vector gathering the Lagrange multipliers, that is, λ̇ = (γ̇1, . . . , γ̇m). The

entries of the matrix [A] and vector b are given by

Gij(α,p) = χij + ςij(α) +Hij(p) , bi(ε̇) = Ni : C : ε̇ , 1 ≤ i, j ≤ m, (21)

where χij ≡ Ni : C : Nj and ςij(α) = Ni : K(α) : Nj. While the Lagrange multiplier γ̇

in Eq. (9) can be written as γ̇ = D(ε̇p, α̇, ṗ), it can also be obtained through the relation

γ̇ =
∑m

j=1 γ̇j under the assumption that Eq. (13) holds with the additional constraint that∑m
j=1 µj = 1. Under the assumption that there exists at least one solution to the problem

defined by Eq. (20), the elasto-plastic tangent tensor Cep, defined such that

σ̇ = Cep : ε̇ , (22)

is given by

Cep = C−
m∑
j=1

C : Nj ⊗ Ñj : C , Ñj =
m∑
k=1

G−1
jk (α,p)Nk , (23)

where G−1
ij (α,p) for 1 ≤ i, j ≤ m denote the entries of the inverse matrix [G(α,p)]−1. The

elasto-plastic tangent tensor plays a fundamental role in the prediction of strain localization.

3. Conditions for loss of ellipticity in multisurface plasticity

This section is concerned with material instabilities due to the development of weak

discontinuities. It is assumed that there exists a singular surface Γs of order one which is
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characterized by a jump of the deformation rate and a continuous rate of the traction vector.

We let n ∈ S be the normal to the singular surface Γs, and define the sets Γ−s and Γ+
s as

Γ−s = {x ∈ Ω | (x− y)n < 0 ,∀y ∈ Γs} , Γ+
s = {x ∈ Ω | (x− y)n > 0 ,∀y ∈ Γs} . (24)

For any function f and a point p ∈ Γs, we let f− and f+ be the left and right limits given

by

f−(y) = lim
x→y,x∈Γ−

s

f(x) , f+(y) = lim
x→y,x∈Γ+

s

f(x) , (25)

and the jump of the function f at y ∈ Γs is given by Jf(y)K ≡ f+(y)−f−(y). The conditions

for a first-order singular surface can then be written as

J∇u̇K = ρg ⊗ n , Jσ̇nK = 0 . (26)

We restrict ourselves to the case of continuous localization which is characterized by a contin-

uous tangent elasto-plastic operator across the singular surface. Using the rate constitutive

equation σ̇ = Cep : ε̇ together with Eq. (26), it can be deduced that there exists a non-zero

m ∈ S such that

Qep(n) · g = 0 . (27)

where Qep(n) is the elasto-plastic acoustic tensor defined as Qep(n) ≡ Cep ◦ (n ⊗ n) with

(A ◦ B)ik = Aijk`Bj`. We recall that two situations can be encountered (see [7]): split110

instability whenever g ∝ n and shear band instability whenever g 6∝ n.

3.1. Case of a single active mechanism

We first assume that the current stress state lies on a smooth portion of the yield surface,

i.e., ϕK = 0 for some K ∈ {1, . . . ,m}. In this case, the tangent elasto-plastic tensor given

by Eq. (23) reduces to

Cep = C− (C : NK)⊗ (NK : C)

χKK +HKK

, χKK = NK : C : NK . (28)

By injecting the above expression into the acoustic tensor, using the condition det(Qep(n)) =

0, and assuming that the hardening modulus decreases with the plastic strain, the following
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critical hardening modulus is obtained

Hcrit
K (n) = max

n,‖n‖=1
〈d(n),Q−1

el (n)d(n)〉 −NK : C : NK , (29)

with d(n) = (C : NK)n. For an isotropic material, the elastic acoustic tensor is given by

Qel(n) = (λ+ 2µ)n⊗ n + µ ([1]− n⊗ n) and its inverse takes the form

Q−1
el (n) = − (λ+ µ)

µ(λ+ 2µ)
n⊗ n +

1

µ
[1] . (30)

Let then {NK
j }3

j=1 be the set of eigenvalues of NK . The optimization problem given by

Eq. (29) is equivalent to the maximization of a Lagrangian function, leading to

nj

(
(NK

j )2 − 1

1− ν

3∑
i=1

(n2
iN

K
i )NK

j −
β

4µ

)
= 0 , j ∈ {1, 2, 3} , (31)

where β is a Lagrange multiplier associated to the normalisation constraint ‖n‖2 = 1.

Different cases have to be distinguished depending on the values of n1, n2, and n3 and the

following solutions can be found (see [7]). If n1, n2, and n3 are non-zero, then the system is

indeterminate and there are no solutions. If ni 6= 0, nj 6= 0, nk = 0, and ni 6= nj, then

Hcrit
K (n) = −E(NK

k )2 , n2
i =

NK
i + νNK

k

NK
i −NK

j

, n2
j = 1− n2

i . (32)

In this case, the eigenvector g in Eq. (27) can be decomposed onto the principal basis as

g =
∑3

i=1 gimi ⊗mi where the components g1, g2, g3 are given by

gi = (NK
i −NK

j )ni , gj = (NK
j −NK

i )nj , gk = 0 . (33)

Finally, if ni = 1 and nj = nk = 0, then

Hcrit
K (n) = −2µ

(
(NK

j + νNK
k )2

1− ν
+ (1 + ν)(NK

k )2

)
. (34)

As a result, the critical hardening modulus for strain localization is never strictly positive

whenever a single mechanism is active.
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3.2. Case of multiple active mechanisms115

We now consider the case where the current stress state lies on a corner of the yield

surface, resulting in multiple active mechanisms. Using the general expression of Cep given

by Eq. (23) for multisurface plasticity, the acoustic tensor takes the form

Qep(n) = Qel(n)−
∑
J∈J

(
(C : NI)n

)
⊗
(
(ÑI : C)n

)
, (35)

where Qel(n) ≡ C ◦ (n ⊗ n) denotes the elastic acoustic tensor, J is the set of mact active

mechanisms, and ÑI is defined in Eq. (23). Under the assumption that the hardening matrix

[H] is symmetric, the acoustic tensor is parameterized by m(mact + 1)/2 hardening moduli

Hij. Let Qep(n) be the normalized acoustic tensor defined such that Qep(n) = Qel(n)Qep(n),

that is

Qep(n) = [1]−
∑
J∈J

Q−1
el (n)

(
(C : NI)n

)
⊗
(
(ÑI : C)n

)
. (36)

It follows that the determinant of the acoustic tensor can be written as det(Qep(n)) =

det(Qel(n)) det(Qep(n)). Under the assumption that det(Qel(n)) 6= 0, the condition for the

onset of continuous localization given by Eq. (27) is rewritten as: Find n ∈ S such that

det(Qep(n)) = 0 . (37)

Let [π(n)] be the mact ×mact matrix defined component-wise as

πIJ(n) ≡ 〈(NK : C)n,Q−1
el (n)(NL : C)n〉 , 1 ≤ I, J ≤ mact , (K,L) ∈ J× J , (38)

where it is recalled that mact = Card(J) denotes the number of active yield surfaces. Using

the expression of Q−1
el (n), the matrix [π(n)] defined by Eq. (38) can be rewritten as

πIJ(n) = −4µ(λ+ µ)

λ+ 2µ
〈n,NKn〉〈n,NLn〉+ 4µ〈NKn,NLn〉 . (39)

By analyzing the eigenvalue problem for the update matrix in Eq. (36), it can be deduced

that

det(Qep(n)) = det([1]− [G]−1[π(n)]) , [G] = [χ] + [H] . (40)

12



Under the assumption that [G] is positive definite (see Eqs. (20)-(21)), it follows that the

condition for the onset of localization given by Eq. (37) is equivalent to finding n ∈ S such

that

det([π(n)]− ([χ] + [H])) = 0 . (41)

This condition has been obtained by [44] and [45] for small and large strains, respectively,

and explicit expressions of the critical hardening moduli were obtained for a specific family

of hardening matrix. Herein, we introduce the eigenvalues NK
i , NL

i and ni of NK , NL, and

n in the principal stress basis (m1,m2,m3). The entries of the matrix [π(n)] can then be

written as π̂IJ(n1, n2, n3) = πIJ(n) with

π̂IJ(n1, n2, n3) = −4µ(λ+ µ)

λ+ 2µ

3∑
i=1

n2
iN

K
i

3∑
j=1

n2
jN

L
j + 4µ

3∑
i=1

NK
i N

L
i n

2
i , n =

3∑
k=1

nkmk .

(42)

Unfortunately, solving Eq. (41) for the entries of [H] and for any mact ≥ 2 seems to be

analytically intractable. In the sequel of this paper, at most two simultaneous active yield

surfaces will be considered. Hence, we consider mact = 2 and if [π(n)] − [χ] is invertible,

Eq. (41) reduces to

det([π(n)]− [χ]− [H]) = det([π(n)]− [χ]) + det([H]) + adj([π(n)]− [χ]) : [H] . (43)

In this case, explicit expressions of the critical hardening moduli are given by [44] for the

family of matrices [H(`)], that is,

[H(`)] ≡ H`(`[im] + (1− `)[1]) , (44)

where H` is a scalar hardening modulus and [im]IJ = 1 for all I, J ∈ {1, . . . ,mact}2. Three

cases can be distinguished.

(a) For ` = 1, it is found that det([H(`)]) = 0 and Eq. (43) reduces to

det([π(n)]− [χ])−H1adj([π(n)]− [χ]) : [im] = 0 . (45)

Hence, it can be deduced that the critical scalar hardening modulus Hcrit
1 is given by

Hcrit
1 = max

‖n‖=1
(([π(n)]− [χ])−1 : [im])−1 . (46)
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(b) For ` = 0, it is found that

H2
0 −H0 adj([π(n)]− [χ])) : [1] + det([π(n)]− [χ]) = 0 , (47)

which corresponds to the characteristic equation for [π(·)]−[χ] with H0 as an eigenvalue.

Hence, the critical hardening modulus is given by

Hcrit
0 = max

‖n‖=1
max
K

λK([π(n)]− [χ]) . (48)

(c) For an arbitrary ` such that ` 6= 0 and ` 6= 1, one has

a`H
2
` + b`(n)H` + c(n) = 0 , (49)

where a` = (1− `2), c(n) = det([π(n)]− [χ]), and

b`(n) = `adj([π(n)]− [χ]) : [im] + (1− `)adj([π(n)]− [χ]) : [1] . (50)

Given a normal n, the above second-order equation can easily be solved for the hardening

modulus, yielding n 7→ H`(n), in order to deduce the critical hardening modulus Hcrit
` =

max‖n‖=1 H`(n). Different cases have to be distinguished depending on the value of the120

parameter `.

Remark 1. It should be emphasized that the analysis presented in this section is valid under

the constraint that the matrix [G] defined by Eq. (21) is nonsingular. For ` ≥ 0 and ` 6= 1,

the matrix [G] = [χ] + [H(`)] loses positive definiteness if

H` =
2µ

`− 1
, or H` = − 6µ

`+ 1
, (51)

and for ` = 1,

H` = −3µ . (52)

All these critical values are negative for ` ≤ 1. However, in the case of latent hardening for

which ` > 1, the first critical modulus in Eq. (51) is positive.
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3.3. Numerical detection of loss of ellipticity in non-smooth plasticity

In this section, the recent algorithm proposed by [9] for the detection of loss of ellipticity

is specified for multisurface plasticity. The algorithm draws on the approach proposed by

[8] together with an efficient multistart strategy. The optimization problem raised by the

condition of the onset of loss of ellipticity is recast into the minimization problem: Find n?

such that

det([π(n?)]− [χ]− [H]) = min
n∈S

det([π(n)]− [χ]− [H]) . (53)

Let then r : S → R3 be the residual vector defined as

r(n) =
∂

∂n
det([π(n)]− [χ]− [H]) . (54)

For notational convenience, we let [π̃(·)] = [π(·)]− [χ]− [H]. The following identities will be

useful for the developments of this section:

∂ det([π̃])

∂[π̃]
= det([π̃])

(
[π̃]−1

)T
,

∂[π̃]−1

∂[π̃]
= −[π̃]−1 � [π̃]−1 , (55)

and the adjugate matrix det([π̃])[π̃]−1 will be denoted as adj([π̃]). It can then be deduced

that the residual r vector takes the form

r(n) = [ajd([π̃(n)])] :
∂[π(n)]

∂n
, (56)

where the first-order partial derivatives of [π(n)] with respect to n are given by

∂πIJ(n)

∂n
= α1〈n,NIn〉(NJn + NT

Jn) + α1〈n,NJn〉(NIn + NT
I n) + α2(NT

I NJn + NT
JNIn) ,

(57)

for I, J ∈ J× J and with α1 = −4µ(λ+µ)/(λ+ 2µ) and α2 = 4µ. The first-order derivative

of r with respect to n is given by

[K(n)] =
r(n)⊗ r(n)

det([π̃(n)])
− det([π̃(n)])

∂[π(n)]

∂n
: ([π̃(n)]−1 � [π̃(n)]−1) :

∂[π(n)]

∂n

+ [ajd([π̃(n)])] :
∂2[π(n)]

∂n⊗ ∂n
,

(58)

where the second-order partial derivatives of [π(n)] are given by

∂2πIJ(n)

∂n⊗ ∂n
= α1(NIn + NT

I n)⊗ (NJn + NT
Jn) + α1(NJn + NT

Jn)⊗ (NIn + NT
I n)

+ α1〈n,NIn〉(NJ + NT
J ) + α1〈n,NJn〉(NI + NT

I ) + α2(NT
I NJ + NT

JNI) .

(59)
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Since the normal vector n is normalized, it can be expressed in terms of polar θ1 and

azimuthal θ2 angles as n = n̂(θ) with n̂(θ) = (cos(θ1) sin(θ2), sin(θ1) sin(θ2), cos(θ2)) in the

canonical basis of R3. Hence, the minimization problem can be rewritten as

det([π̂(θ?)]− [χ]− [H]) = min
θ∈Θ

det([π̂(θ)]− [χ]− [H]) , (60)

with [π̂(θ)] = [π(n̂(θ))]. Using the chain rule, the associated residual vector R̂ : Θ→ R3 is

given by

R̂i(θ) = Dij(θ)TRj(n̂(θ)) , Dij(θ) =
∂n̂i(θ)

∂θj
. (61)

The problem of finding θ ∈ Θ such that R̂(θ) = 0 is solved with a Newton-Raphson scheme.

Given an initial guess θ(0) ∈ Θ, let θ(k) for k ≥ 1 be a sequence such that

k ≥ 0 : [K̂(θ(k))]
(
θ(k+1) − θ(k)

)
= −R(θk) , (62)

where the tangent matrix [K̂] is given component-wise by

K̂ij(θ) = DT
ik(θ)Kkl(n̂(θ))Dlk(θ) + R̂k(θ)

∂Dki(θ)

∂θj
. (63)

Loss of ellipticity is detected at each gauss point of the finite element using the Newton-

Raphson procedure given by Eq. (62). In practice, a set of initial guesses {θ(0,s)}Ms=1 is first

computed by discretization of the unit sphere. The minimization problem is solved for each

element of this set and the solution θ?,s that leads to the lowest indicator det([π(n̂(θ?,s)]−

[χ]− [H]) is used to determine if ellipticity is lost at the considered Gauss point. Using the

solution for the normal vector, n?, the determinant of the acoustic tensor can be obtained

using the relations

det(Qep(n
?)) = det(Qel(n

?)) det(Qep(n
?)) , det(Qep(n

?)) = det([1]− [G]−1[π(n?)]) , (64)

with det(Qel(n)) = (λ+2µ)µ2 for any normal vector n. It should be noted that this analysis125

relies on the tangent elasto-plastic tensor Cep in the strong formulation of the boundary

value problem (see Eqs. (22) and (23)). In the case of numerical simulations involving the

finite element method and an implicit discretization scheme, the classical loss of ellipticity
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analysis of the discretized boundary value problem can also be achieved by considering the

algorithmic acoustic tensor (see, e.g. [46]). The numerical procedures presented by [8] and130

[9] can be used for loss of ellipticity analysis of the continuum and discretized boundary

value problems.

4. Family of linear yield criteria in principal stress space

In this work, we focus on a family of yield functions first introduced by [47] as a family

of generalized Mohr-Coulomb criteria, i.e., a yield function that is a linear combination of

the principal stresses. For instance, the Tresca yield function which assumes that yielding

takes place when the shear stress reaches a maximum value, belongs to such a family. The

twin shear stress model of [37] and the more recent mean influence factor model of [38] also

consider yield functions that depend linearly on the principal stresses. The maximum and

minimum eigenvalues, σ1 and σ3, are defined as

σ1(σ) = max{〈z,σz〉 | z ∈ R3, ‖z‖ = 1} , σ3(σ) = min{〈z,σz〉 | z ∈ R3, ‖z‖ = 1} . (65)

The intermediate eigenvalue σ2(σ) is given by σ2(σ) = Tr(σ) − σ1(σ) − σ3(σ) and hence

σ1(σ) ≥ σ2(σ) ≥ σ3(σ). By invoking the spectral theorem, the Cauchy stress tensor admits

the decomposition

σ = σ1(σ) m1(σ)⊗m1(σ) + σ2(σ) m2(σ)⊗m2(σ) + σ3(σ) m3(σ)⊗m3(σ) , (66)

where m1, m2, and m3 are the eigenvectors associated to the ordered principal stresses.

When no confusion can be made, the dependence of the principal stresses and principal

directions on the stress tensor will be dropped. We further introduce a vector-valued pa-

rameter a = (a1, a2, a3) that takes its values in a subset C of R3 to be defined, and such that

3∑
i=1

ai = 0 . (67)

We consider the following yield function that is linear in the principal stresses:

φ(σ, R) = 〈a, σ̂(σ)〉 −R , (68)
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where σ̂ = (σ1, σ2, σ3) is the vector gathering the ordered eigenvalues of σ. Under the

assumptions given by Eq. (67), it can readily be deduced that φ is pressure insensitive,

φ(σ+q1) = φ(σ) for any q ∈ R. Due to this property, the yield function depends on only two

independent parameters. In addition, it should be noted that the parameter a = (a1, a2, a3)

takes its values in a subset Cconv of R3 that ensures the convexity of the yield function. The

functions σ 7→ σ1(σ) and σ 7→ (−σ3(σ)) are both convex but the intermediate principal

stress σ 7→ σ2(σ) is neither convex nor concave. Hence, in the following we shall restrict

ourselves to an admissible set of the form C = Cconv ∩ Cinc, where

Cconv = {a ∈ R3 | a1 > a2 > a3, a1 > 0, a3 < 0} , Cinc = {a ∈ R3 | a1 + a2 + a3 = 0} , (69)

for the parameter a. For simplicity, three particular cases will be highlighted in the sequel

of this paper, namely,135

(C1) Case of the Tresca model obtained for a1 = 1, a2 = 0, and a3 = −1, that is

φ(0)(σ, R) ≡ σ1(σ)− σ3(σ)−R . (70)

(C2) Case of a modified Tresca model obtained for a1 = 1, a2 = −δ, a3 = −1 + δ, i.e.,

φ(δ)(σ, R) ≡ σ1(σ)− δσ2(σ)− (1− δ)σ3(σ)−R . (71)

with −1 < δ < 1/2. This model will be referred to as the δ-Tresca model.

(C3) Case of a modified Tresca model obtained for a1 = 1−τ , a2 = τ , and a3 = −1, yielding

φ(τ)(σ, R) ≡ (1− τ)σ1(σ) + τσ2(σ)− σ3(σ)−R , (72)

with −1 < τ < 1/2. This model will be referred to as the τ -Tresca model.

These models are illustrated by sketches of the elastic domain in Fig. 1 for different values

of δ and τ . It can be seen that the parameter δ (resp. τ) allows for displacing the left corner

(resp. right corner) along the hexagone’s axes. A combination of these parameterizations

results in simultaneous displacements of both corners. It should be noted that given the
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ω2(σ) ω3(σ)

ω1(σ)

δ = 0

δ > 0

δ < 0

ω2(σ) ω3(σ)

ω1(σ)

τ = 0

τ > 0

τ < 0

Figure 1: Elastic domains in the deviatoric plane for different values of the parameters δ and τ . The classical

Tresca model (in red) is recovered for δ = 0 (or τ = 0) while δ 6= 0 and τ 6= 0 modify the positions of the

left and right corners along the hexagone’s axes. Here, ω1(σ), ω2(σ), ω3(σ) denote the eigenvalues of the

stress tensor σ without particular ordering.

assumption of ordered principal stresses, the yield functions φ(δ) and φ(τ) are distinct and

only the first sextants of the elastic domains depicted in Fig. 1 are relevant. The twin shear

stress model [37] can also be recovered by considering the yield function φ(δ) with δ = 1/2

(resp. φ(τ) with τ = 1/2) as the yield function if σ2 ≤ (σ1 +σ3)/2 (resp. if σ2 ≥ (σ1 +σ3)/2),

that is to say,

φ(TSS) =


σ1 −

1

2
(σ2 + σ3)−R , σ2 ≤

1

2
(σ1 + σ3) ,

1

2
(σ1 + σ2)− σ3 −R , σ2 ≥

1

2
(σ1 + σ3) .

(73)

Similarly, the recent mean influence factor model [38] can be recovered by taking δ = (1 −

2
√

3 +
√

13)/4 and τ = (1− 2
√

3 +
√

13)/4.

4.1. Flow rule associated to the family of linear yield functions in principal stress space140

In this section, we briefly determine the flow rule associated to the yield function defined

by Eq. (68) for arbitrary values of the parameter a. Given that the mapping g 7→ φ(·, R) is

continuously differentiable, the flow rule (9) reduces to

ε̇p ∈ γ̇∂φσ(σ, R) , ṗ = γ̇
∂φ(σ, R)

∂R
, (74)
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ω2(σ) ω3(σ)

ω1(σ)

∂Er
∂Es

∂El

δ = 0 (Tresca)

δ > 0

δ < 0

a1 = 1, a2 = −δ, a3 = −1 + δ

Figure 2: Elastic domains in the deviatoric plane for different values of the parameter δ together with the

the subsets ∂El, ∂Es, and ∂Er. Here, ω1(σ), ω2(σ), ω3(σ) denote the eigenvalues of the stress tensor σ

without particular ordering.

where ∂σφ is the subdifferential of the yield function φ for a fixed yield stress R, i.e.,

∂φσ(σ, R) = {p̂ ∈ P |φ(σ̃, R) ≥ φ(σ, R) + p̂ : (σ̃ − σ) , ∀ σ̃ ∈ S} . (75)

The yield function φ is differentiable whenever the principal stresses are distinct, i.e.,

σ1(σ) > σ2(σ) > σ3(σ), while it is subdifferentiable whenever σ1(σ) = σ2(σ) ≥ σ3(σ)

or σ1(σ) ≥ σ2(σ) = σ3(σ). For further developments, we introduce the following subsets

of generalized stresses (σ, R). The boundary of the elastic domain is denoted by ∂E and

decomposed as a union of disjoint sets ∂E = ∂El ∪ ∂Es ∪ ∂Er. These sets correspond to the

left corner, smooth portion, and right corner of the yield surface, that is

∂El = {(σ, R) ∈ ∂E |σ1(σ)− σ2(σ) = 0, σ2(σ) ≥ σ3(σ)} , (76a)

∂Es = {(σ, R) ∈ ∂E |σ1(σ) > σ2(σ) > σ3(σ)} , (76b)

∂Er = {(σ, R) ∈ ∂E |σ1(σ) ≥ σ2(σ), σ2(σ)− σ3(σ) = 0} . (76c)

The closure of the elastic domain being denoted by E, we let E0 be its open counterpart. The

subsets given by Eq. (76) are illustrated for the δ-Tresca model in Fig. 2. These definitions

hold for any vector-valued parameter a ∈ C and thus for the three particular cases defined

by Eqs. (70)-(72). An explicit expression of the subdifferential set ∂σφ (75) is reported in

Appendix Appendix A. Such an expression extends existing results for the Tresca and Mohr-

Coulomb criteria obtained by [39] by [40], respectively. In addition, it can be used to derive
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an implicit integration scheme but this is out of scope of this paper and left for further work.

Here, we focus on the multisurface form of flow rule in order to use the loss of ellipticity

conditions summarized in section 3. For this purpose, it can be noticed that the elastic

domain can also be defined in terms of the following three yield functions

φ1(σ, R) = 〈σ̂, a〉−R , φ2(σ, R) = a1σ2+a2σ1+a3σ3−R , φ3(σ, R) = a1σ1+a2σ3+a3σ2−R .

(77)

Please note that this multisurface representation depends on a single yield stress R and that

the extension to distinct yield stresses could be considered in a future work. We propose to

deduce the multisurface form of the flow rule ε̇p =
∑3

j=1 γ̇jNj(σ) (see Eq. (16)) from the

subdifferential-based flow rule ε̇p ∈ γ̇∂σφ(σ). In contrast with the abstract flow rule, the

Lagrange multipliers γ̇1, γ̇2, γ̇3 can be eliminated in order to derive the rate form of the stress-

strain relation. Let then µ1, µ2, µ3 be three positive real numbers such that µ1 +µ2 +µ3 = 1,

and let φ̃ be the auxiliary yield function defined as

φ̃(σ, R) = µ1φ1(σ, R) + µ2φ2(σ, R) + µ3φ3(σ, R) . (78)

In the sequel of this section, we shall denote by Nj the second-order tensors defined as

Nj = ∇σφj, that is

N1 =
3∑
i=1

aimi ⊗mi , N2 = a1m2 ⊗m2 + a2m1 ⊗m1 + a3m3 ⊗m3 ,

N3 = a1m1 ⊗m1 + a2m3 ⊗m3 + a3m2 ⊗m2 .

(79)

In order to determine possible sets of values for µ1, µ2, µ3 such that φ̃(σ, R) = φ(σ, R), four

cases have to be distinguished depending on the current values of the principal stresses:

(a) If (σ, R) ∈ E0 then clearly φ̃(σ) < 0 regardless of the values of µ1, µ2, and µ3. Upon

injecting Eq. (77) into Eq. (78), it is found that φ̃(σ) = φ(σ) for any (µ1, µ2, µ3) such

that µ1 + µ2 = 1 and µ2 = µ3.145

(b) Consider the case for which (σ, R) ∈ ∂Es, then φ1(σ, R) = 0. Hence, it can be deduced

that φ(σ, R) = φ̃(σ, R) for any µ1 ≥ 0 and µ2 = 0, µ3 = 0. It follows that the
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subdifferential set ∂σφ is given by

∂φσ(σ, R) = µ1∂σφ1(σ, R) , (80)

and thus ε̇p = µ1γ̇∂σφ1(σ). Given that the mapping σ 7→ φ1(σ, ·) is differentiable, the

set ∂σφ1(σ) reduces to the singleton {N1}. Based on this result, the flow rule takes the

form

ε̇p = γ̇1N1 , γ̇1 ≡ γ̇ , (81)

where the property µ1 = 1 has been used.

(c) Let (σ, R) ∈ ∂El, then the generalized stresses satisfy the conditions φ1(σ, R) = 0 and

φ2(σ, R) = 0. It follows that φ(σ, R) = φ̃(σ, R) for any µ1 ≥ 0, µ2 ≥ 0, and µ3 = 0. In

this case, the subdifferential set ∂σφ can also be written as

∂σφ(σ, R) = µ1∂σφ1(σ, R) + µ2∂σφ2(σ, R) , (82)

Hence, it can be deduced that flow rule takes the form

ε̇p = γ̇1N1 + γ̇2N2 , γ̇1 ≡ µ1γ̇ , γ̇2 ≡ µ2γ̇ . (83)

(d) Finally, consider the case for which (σ, R) ∈ ∂Er. This condition is equivalent to

φ1(σ, R) = 0 and φ3(σ, R) = 0. Hence, φ̃(σ, R) = µ2φ2(σ, R) for any positive µ1 ≥ 0

and µ3 ≥ 0. It follows that if µ2 = 0, then φ(σ, R) = φ̃(σ, R). The subdifferential set

∂σφ can be additively decomposed as

∂σφ(σ, R) = µ1∂σφ1(σ, R) + µ3∂σφ3(σ, R) , (84)

where ∂σφ3 = {N3}. The flow rule εp ∈ γ̇∂σφ takes the form

ε̇p = γ̇1N1 + γ̇3N3 , γ̇1 ≡ µ1γ̇ , γ̇3 ≡ µ3γ̇ . (85)

As a result, it is always possible to find a triplet (µ1, µ2, µ3) such that φ(σ) =
∑3

j=1 µjφj(σ)

for all σ ∈ M3
S. It can also be seen that this result leads to an equivalence between the
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abstract flow rule given by Eq. (9) and the multisurface flow rule given by Eq. (16). One

advantage of the subdifferential-based flow rule is that it can lead to a simpler fully implicit150

integration scheme as shown by [36] for Mohr-Coulomb plasticity. It should be emphasized

that for a1 = 1, a2 = 0, and a3 = −1, the multisurface and subdifferential flow rule of the

Tresca yield function are recovered (see, e.g., [29] and [39]).

4.2. Critical hardening moduli

With the yield function and flow rule now clearly defined, we are able to analyze under

which circumstances loss of ellipticity may occur. In the sequel of this section, Young’s

modulus is set to E = 210 GPa and unless stated otherwise, the Poisson’s ratio is chosen

as ν = 0.3. The aim of this section is to determine the critical hardening moduli and the

associated normals vector n to the shear bands. The hardening matrix [H] is assumed to

belong to the family defined by Eq. (44) with ` = 1. Given that the yield function (77) can

be represented by three mechanisms (see Eq. (68)), the hardening matrix simply takes the

form

[H] = H[i3] , [i3] =


1 1 1

1 1 1

1 1 1

 . (86)

Three different situations will be considered, namely, a current stress state that lies on the155

smooth portion, left corner, right corner of the yield surface. For each situation, the three

particular cases described in section 4 (see Fig. 1) will be illustrated. The critical hardening

moduli and normals to shear bands are denoted by

• Hcrit
0,s , Hcrit

0,l , Hcrit
0,r and ncrit0,s , ncrit0,l , ncrit0,r for the Tresca model,

• Hcrit
δ,s , Hcrit

δ,l , Hcrit
δ,r and ncritδ,s , ncritδ,l , ncritδ,r for the δ-Tresca model,160

• Hcrit
τ,s , Hcrit

τ,l , Hcrit
τ,r and ncritτ,s , ncritτ,l , ncritτ,r for the τ -Tresca model.

The case of the smooth portion of the yield surface is first studied in section 4.2.1. The left

and right corners are then addressed in section 4.2.2.
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4.2.1. Critical hardening modulus on the smooth portion of the yield surfaces

If the current stress state lies on the smooth portion of the yield surface, (σ, R) ∈ ∂ES,

the critical hardening modulus can be obtained using the results presented in section 3.1.

Let k? be the index defined such that |ak? | = min{|a1|, |a2|, |a3|}. Using Eq. (32), the critical

hardening modulus and the associated normal n are given by

Hcrit
s = −Ea2

k? , nk? = 0 , n2
i =

ai + νak?

ai − aj
, n2

j = 1− n2
i , i, j 6= k? . (87)

If ni = 1 and nj = nk = 0 for any i ∈ {1, 2, 3}, then the critical modulus is given by Eq. (34).165

However, it has been found that this solution yields less favorable critical hardening moduli.

(C1) In the particular case of a Tresca model, that is a1 = 1, a2 = 0, and a3 = −1, the most

favorable critical hardening modulus Hcrit
0,s and the normal vector ncrit0,s are given by

Hcrit
0,s = 0 , ncrit0,s =

1√
2


±1

0

±1


(mi)3i=1

, (88)

meaning that the shear band is oriented with a 45◦ angle in the plane spanned by

(m1,m3).

(C2) In the case of the δ-Tresca model, it is found that ak? = a2 and thus ak? = −δ for any

δ ∈]− 1, 1/2[. The first possible critical hardening modulus is given by Hcrit
δ,s = −Eδ2

and the associated normal vector ncritδ,s can be written as ncritδ,s = (cos(θ), 0, sin(θ)) in

the principal stress basis. In summary, the following solutions are found for the critical

hardening modulus and the normal vector:

Hcrit
δ,s = −Eδ2 , ncritδ,s =

1√
2− δ


±
√

1− νδ

0

±
√

1− δ(1− ν)


(mi)3i=1

or ncritδ,s =
1√

2− δ


±
√

1− δ(1− ν)

0

±
√

1− νδ


(mi)3i=1

.

(89)
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Figure 3: Graphs of the angles δ 7→ θ1(δ) and δ 7→ θ2(δ) formed by the two possible normal vectors to the

shear band on the smooth portion of the yield surface, and depending on the value of the Poisson ratio.

Graphs of the mappings δ 7→ θ1(δ) and δ 7→ θ2(δ) associated to the above normal

vectors are shown in Fig. 3 for selected values of Poisson’s ratio ν ∈ [0.1, 0.5]. It can170

easily be verified that 1 − νδ > 0 and 1 − δ(1 − ν) > 0 for any ν ∈ [0, 0.5] and

δ ∈]− 1, 1/2[.

(C3) In the case of the τ -Tresca model with a1 = 1− τ , a2 = τ , a3 = −1, one has ak? = τ .

Similarly to Eq. (89), it follows that the critical hardening modulus Hcrit
τ,s and the

possible normal vectors take the forms

Hcrit
τ,s = −Eτ 2 , ncritτ,s

1√
2− τ

=


±
√

1− τ(1− ν)

0

±
√

1− ντ


(mi)3i=1

or ncritτ,s =
1√

2− τ


±
√

1− ντ

0

±
√

1− τ(1− ν)


(mi)3i=1

.

(90)

Similar graphs of the associated angles θ1 and θ2 are obtained as those given by the

right and left panel of Fig. 3, respectively. From the previous developments, it follows

that 1− ντ > 0 and 1− τ(1− ν) > 0 for any ν ∈ [0, 0.5] and τ ∈]− 1, 1/2[.175

As a result, it can be deduced that the standard Tresca model leads to the largest critical
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hardening modulus whenever the stress tensor lies on the smooth portion of the yield surface.

In the next section, the same analysis is performed on the corners of the yield surface.

4.2.2. Critical hardening modulus on the corners of the Tresca yield surface

If the current stress state lies on a corner of the yield surface, then the critical hardening

modulus can be obtained using the developments of section 3.2. In the following, we first

assume that the stress state lies on the right corner, that is (σ, R) ∈ ∂Er (see Eq. (76) and

Fig. 2). The hardening matrices [H0,r], [Hδ,r], and [Hτ,r] denote the restriction of [H] when

the stresses lie on the right corner of the Tresca model and its variants, that is

[H0,r] = H0,r[i2] , [Hδ,r] = Hδ,r[i2] , [Hτ,r] = Hτ,r[i2] , [i2] =

1 1

1 1

 , (91)

and we let [π
(0)
r (n)], [π

(δ)
r (n)], and [π

(τ)
r (n)] be the matrix given by Eq. (38) on the right180

corner of the Tresca, δ-Tresca, and τ -Tresca models, respectively. Similar notations are used

for the left corners.

As a first illustration, we consider the case of the standard Tresca model on the right

corner of the yield surface. The set of active mechanisms is thus given by J = {1, 3}. The

eigenvalues of N1 and N3 are N1
1 = a1, N1

2 = a2, N1
3 = a3, and N3

1 = a1, N3
2 = a3, N3

3 = a2.

The matrix [π
(0)
r (n)] takes the form

[π(0)
r (n)] = 4µ

 α(n2
1 − n2

3)2 + n2
1 + n2

3 α(n2
1 − n2

3)(n2
1 − n2

2) + n2
1

α(n2
1 − n2

3)(n2
1 − n2

2) + n2
1 α(n2

1 − n2
2)2 + n2

1 + n2
2

 , (92)

where α = −(λ + µ)/(λ + 2µ) has been introduced for convenience. The critical hardening

modulus Hcrit
0,r can be obtained using Eq. (46) if the matrix [π

(0)
r (n)]− [χ] is invertible. It is

found that the matrix [π
(0)
r (n)]− [χ] is singular whenever n2

1 = n2
2 and n3 = 0, n2

1 = n2
3 and

n2 = 0 or n1 = 0 and n2
2 = n2

3. In these cases, the conditions for loss of ellipticity reduce to

det([π(0)
r (n)]− [χ]− [H0,r]) = H0,rµ

3λ+ 5µ

λ+ 2µ
, if n2

1 = n2
2 =

1

2
, n3 = 0 , (93a)

det([π(0)
r (n)]− [χ]− [H0,r]) = H0,rµ

3λ+ 5µ

λ+ 2µ
, if n2

1 = n2
3 =

1

2
, n2 = 0 , (93b)

det([π(0)
r (n)]− [χ]− [H0,r]) = 0 , if n2

2 = n2
3 =

1

2
, n1 = 0 , (93c)
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and the hardening moduli solutions to det([π
(0)
r (n)] − [χ] − [Hr]) = 0 in Eqs. (93a)-(93c)

are respectively given by H
(1)
0,r (n) = 0, H

(2)
0,r (n) = 0 and H

(3)
0,r (n) ∈ R. Whenever the

matrix [π
(0)
r (n)] − [χ] is nonsingular, the hardening modulus H0,r : n 7→ H0,r(n) satisfying

det([π
(0)
r (n)]− [χ]−Hr[i2]) = 0 is given by

H0,r(n) = (([π(0)
r (n)]− [χ])−1 : [i2])−1 , (94)

and the associated critical value can be obtained by maximizing over the set of unit vectors

n in R3 not including the three pathological cases given by Eqs. (93a)-(93c). A classical

analytical approach would be to introduce a Lagrangian function together with a Lagrange

multiplier associated to the normalization constraint ‖n‖2 − 1 = 0. Unfortunately, even in

this simple case, this strategy is intractable. Instead, the critical hardening modulus and

the associated normal are computed numerically using the numerical procedure presented in

section 3.3. Graphs of the hardening modulus with respect to some parameterized normal

vectors are shown in Fig. 4 together with graphs of det(Qep(n)) and det([π
(0)
r (n)]−[χ]−Hr[i2])

with respect to Hr in Fig. 5. It is found that the conditions

det(Qep(n0,r)) = 0 and det([π(0)
r (n0,r)]− [χ]−Hr(n0,r)[i2]) = 0 (95)

can be met as long as

H0,r ∈ R , n0,r = (0, n2, n3) , n2
2 + n2

3 = 1 . (96)

This means that the acoustic tensor Qep is singular as soon as the material plastifies. In

addition, the conditions given by Eq. (95) are also met for H0,r = 0 together with normal

vectors n0,r of the forms

n0,r =
1√
2


±1

0

±1


(mi)3i=1

or n0,r =
1√
2


±1

±1

0


(mi)3i=1

. (97)

Furthermore, it can be seen in Figs. 4-5 that the conditions

det(Qep(n0,r)) ≤ 0 and det([π(0)
r (n0,r)]− [χ]−Hr(n0,r)[i2])) ≤ 0 (98)
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Figure 4: Graph of the critical hardening modulus (normalized by Young’s modulus) on the right corner of

the Tresca yield surface computed with normals of the form n = (cos(θ), sin(θ), 0) or n = (cos(θ), 0, sin(θ)).

The same curve was obtained on the left corner of the yield surface.

can be fulfilled for perfectly plastic or softening behaviors, i.e., for any H0,r ≤ 0. From

Eqs. (95)-(97), it can be deduced that the determinant of the acoustic tensor vanishes for a

perfectly plastic material and becomes negative for a softening behavior whenever the stress

state lies on the right corner of the yield surface. Recall that the critical hardening modulus

is defined such that it yields a singular acoustic tensor (see section 3), it is found that on

the right corner the yield surface:

Hcrit
0,r ∈ [0,+∞) , ncrit0,r =


± 1√

2
(m2 ±m3) , if H0,r ≥ 0 ,

± 1√
2

(m1 ±m2) , if H0,r = 0 ,

± 1√
2

(m1 ±m3) , if H0,r = 0 ,

(99)

where it should be emphasized that the eigenvectors m2 and m3 are arbitrary unit vectors

orthogonal to m1.

On the left corner of the yield surface, (σ, R) ∈ ∂El, the set of active mechanisms is given

by J = {1, 2}. The eigenvalues of N1 and N2 are given by N1
1 = a1, N1

2 = a2, N1
3 = a3, and

N2
1 = a2, N2

2 = a1, N2
3 = a3. The entries of the matrix [π

(0)
l (n)] take the form

[π
(0)
l (n)] = 4µ

 α(n2
1 − n2

3)2 + n2
1 + n2

3 α(n2
1 − n2

3)(n2
2 − n2

3) + n2
3

α(n2
1 − n2

3)(n2
2 − n2

3) + n2
3 α(n2

2 − n2
3)2 + n2

2 + n2
3

 . (100)

28



-1 -0.5 0 0.5 1

-5

-4

-3

-2

-1

0

1

-1 -0.5 0 0.5 1

-5

-4

-3

-2

-1

0

1

Figure 5: Left: Graphs of the determinant of the normalized acoustic tensor Qep = Q−1el Qep on the right

corner of the Tresca yield surface with respect to the normalized hardening modulus H0,r(n) × E−1. The

normal vectors are chosen as: n1 6= 0, i.e., n = (cos(θ), sin(θ), 0) or n = (cos(θ), 0, sin(θ)), and: n1 = 0,

i.e., n = (0, cos(θ), sin(θ)). Similar trends were obtained on the left corner of the yield surface. Right:

determinant of the normalized acoustic tensor obtained with the algorithm described in section 3.3.

Similar results are obtained for the critical hardening modulus as in the case of the right

corner. The matrix [π
(0)
l (n)] − [χ] is singular whenever n2

3 = n2
2 and n1 = 0, n2

3 = n2
1 and

n2 = 0, or n3 = 0 and n2
1 = n2

2. Similarly to Eq. (95), the conditions

det(Qep(n0,l)) = 0 and det([π(0)(n0,l)]− [χ]−Hl(n0,l)[i2])) = 0 (101)

are met for

H0,l ∈ R , n0,l = (n1, n2, 0) , n2
1 = n2

2 , n2
1 + n2

2 = 1 . (102)

The acoustic tensor can also be negative semi-definite for perfectly plastic or softening

behaviors. Furthermore, the conditions given by Eq. (101) can be satisfied for the hardening

modulus H0,l = 0 and normal vectors of the form

n0,l =
1√
2


0

±1

±1


(mi)3i=1

or n0,l =
1√
2


±1

0

±1


(mi)3i=1

. (103)

Please note that in this case the principal directions m1 and m2 can be any vectors in R3

that are orthogonal to m3. Hence, the critical hardening modulus Hcrit
0,l and the normal
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Figure 6: Graphs of the hardening modulus on the left and right corner of the δ-Tresca model. The normal

n is parameterized as follows: n = (cos(θ), sin(θ), 0) on the right corner, and n = (0, cos(θ), sin(θ)) on the

left corner.

vector ncrit0,l that yield a singular acoustic tensor are given by

Hcrit
0,l ∈ [0,+∞) , ncrit0,l =


± 1√

2
(m1 ±m2) , if H0,l ≥ 0 ,

± 1√
2

(m2 ±m3) , if H0,l = 0 ,

± 1√
2

(m1 ±m3) , if H0,l = 0 .

(104)

The standard Tresca yield criterion leads to loss of ellipticity whenever the stress lies on the185

smooth portion of the surface if the hardening modulus vanishes (see Eq. (88)). In addition,

the acoustic tensor is singular on both corners of the yield surface and becomes negative

definite for perfectly plastic or softening behaviors.

4.2.3. Critical hardening modulus on the corners of the δ-Tresca and τ -Tresca yield surfaces

The same analysis can be carried out for the δ-Tresca and τ -Tresca models. The entries190

of the matrices [π
(δ)
r (n)], [π

(δ)
l (n)], [π

(τ)
r (n)], and [π

(τ)
l (n)] can be obtained using Eqs. (42)

and (79) but their expressions are reported in Appendix Appendix B for the sake of clarity.

Graphs of the hardening modulus are shown in Figs. 6 and Fig. 7 for a normal vector n of

the forms n = (cos(θ), sin(θ), 0) and n = (0, cos(θ), sin(θ)). For δ = 0 and τ = 0, it can

be seen that the results for the standard Tresca model are recovered. Non-zeros values of195

δ and τ allow for modifying the maximum value reached by the hardening modulus with
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Figure 7: Graphs of the hardening modulus on the left and right corner of the τ -Tresca model. The normal

n is parameterized as follows: n = (cos(θ), sin(θ), 0) on the right corner, and n = (0, cos(θ), sin(θ)) on the

left corner.

respect to the orientation of the shear band. In particular, for negative values of δ or τ , the

maximum value significantly increases.

However, these observations are conditioned by the choice of the normal vector n. It

was found that two families of normal vectors n are relevant by performing numerical in-200

vestigations based on the procedure presented in section 3.3. Depending on the values of

δ or τ , the acoustic tensor can be singular or negative semi-definite for any real values of

the hardening modulus. This observation is illustrated in Figs. 8 and 9 where the graphs of

loss of ellipticity indicators with respect to the hardening modulus are shown on the right

corners of the yield functions.205

• In the left panels of Figs. 8 and 9, the determinant of the normalized acoustic tensor Qep

is computed with respect to the hardening modulus and for two chosen families of normal

vectors.

• In the right panels of Figs. 8 and 9, infn∈S det(Qep(n)) is computed with respect to the

hardening modulus using the strategy described in section 3.3.210

It can be deduced that on the right corner of the yield surface, the δ-Tresca model is highly

unstable for any δ ∈] − 1, 0[ while loss of ellipticity can be postponed for any δ ∈]0, 1/2[.

31



In the case of the τ -Tresca model, it can be seen in Fig. 9 that the effect of the parameter

τ is similar but reversed. Ellipticity is not achieved for all τ ∈]0, 1/2[ while negative values

of τ ∈] − 1, 0[ allow for increasing the critical hardening modulus, i.e., prepone loss of215

ellipticity. Similar results are obtained on the left corners of the yield functions, as shown

in Fig. 10. As a conclusion to this section, the presence of the corners on the yield surface

together with the parameters δ and τ allow for postponing loss of ellipticity (i.e., decreasing

the critical hardening modulus), or advancing loss of ellipticity (i.e., increasing the critical

hardening modulus). These results are summarized in Tab. 1 and graphs of the critical220

hardening moduli with respect to δ and τ are depicted in Fig. 11. Several situations can be

encountered, namely:

• For δ ∈]− 1, 0[, loss of ellipticity is advanced on the left corner and the associated critical

hardening modulus is positive. However, loss of ellipticity is postponed on the smooth

portion (see Eq. (89)), and the acoustic tensor is negative definite on the right corner.225

• For δ ∈]0, 1/2[, loss of ellipticity is postponed on right corner and the corresponding

critical hardening modulus is negative. Loss of ellipticity is also postponed on the smooth

portion but the acoustic tensor is negative definite on the left corner.

• Similarly, τ ∈] − 1, 0[ allows for advancing loss of ellipticity on the right corner with a

positive critical hardening modulus. Loss of ellipticity is postponed on the smooth portion230

but the acoustic tensor is negative definite on the left corner.

• Finally, for τ ∈]0, 1/2[, loss of ellipticity is postponed on the left corner and on the smooth

portion. The acoustic tensor is negative definite on the right corner.
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Figure 8: Graphs of the determinant of the normalized acoustic tensor Qep = Q−1el Qep with respect to

the hardening modulus on the right corner of the δ-Tresca model for several values of δ. Left: the de-

terminant of the normalized acoustic tensor is computed using two parameterization of the normal n:

n = (cos(θcritδ,r ), sin(θcritδ,r ), 0) with θcritδ,r being the angle maximizing the hardening modulus in Fig. 6, and n

such that n1 = 0, n22 = n23 = 1/2. Right: determinant of the normalized acoustic tensor obtained with the

algorithm described in section 3.3.
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Figure 9: Graphs of the determinant of the normalized acoustic tensor Qep = Q−1el Qep on the right corner

of the δ-Tresca model for several values of δ. Two parameterization of the normal ncritδ,r are considered:

n = (cos(θcritδ,r ), sin(θcritδ,r ), 0) with θcritδ,r being the angle maximizing the hardening modulus in Fig. 7, and

n = (n1, n2, n3)(mi)3i=1
such that n1 = 0, n22 = n23 = 1/2.
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Figure 10: Graphs of the determinant of the normalized acoustic tensor Qep = Q−1el Qep with respect to the

hardening modulus on the left corners of the δ-Tresca and τ -Tresca models.
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Figure 11: Graphs of the critical hardening moduli with respect to δ and τ .

Table 1: Summary of the critical hardening moduli. Whenever the condition det(Qep(n)) = 0 is not reached

for given values of δ and τ , the critical hardening modulus does not exist (@).

model σ ∈ ∂Es σ ∈ ∂El σ ∈ ∂Er

Tresca Hcrit
0,s = 0 Hcrit

0,l ∈ [0,∞) Hcrit
0,r ∈ [0,∞)

δ-Tresca Hcrit
δ,s = −Eδ2 Hcrit

δ,l = @, δ ∈]0, 1/2[ Hcrit
δ,r < 0, δ ∈]0, 1/2[

δ ∈]− 1, 1/2[ Hcrit
δ,l > 0, δ ∈]− 1, 0[ Hcrit

δ,r = @, δ ∈]− 1, 0[

τ -Tresca Hcrit
τ,s = −Eτ 2 Hcrit

τ,l < 0, τ ∈]0, 1/2[ Hcrit
τ,r = @, τ ∈]0, 1/2[

τ ∈]− 1, 1/2[ Hcrit
τ,l = @, τ ∈]− 1, 0[ Hcrit

τ,r > 0, τ ∈]− 1, 0[
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(a) Cube (b) Thin plate (c) Experimental tubular speci-

men

Figure 12: Finite element meshes of the cube (using 10 elements in each direction) and thin plate (using

80, 240, and 4 quadratic elements along the width, height, and thickness, respectively), and geometry of the

tubular specimen taken from [48] and [9].

5. Numerical examples

In the next section, finite element simulations are performed in order to illustrate the

proposed analysis. For simplicity, only the δ-Tresca model will be considered. Three different

geometries are introduced, namely, a cube in section 5.2, and a thin plate that measures

L = 12 mm in height, L/3 mm in width, and is L/6 mm thick in section 5.3. Finally, an

experimental tubular specimen is considered in section 5.4. The geometries are discretized

with 20-noded hexahedral elements and a reduced integration scheme is used within each

element to reduce locking phenomena. Finite element meshes of the geometries are shown in

Fig. 12. Finite element simulations are performed with the non-linear material and structure

analysis suite Zset (http://zset-software.com/). A nonlinear hardening function p̂ 7→

R(p̂) is chosen as

R(p̂) = R0 + Sp̂+Q(1− exp(−bp̂)) ,
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for which the hardening modulus p̂ 7→ H(p̂) ≡ dR(p̂)/dp̂ takes the form

H(p̂) = S +Qb exp(−bp̂) . (105)

In the above equations, R0 is a constant yield stress, Q, and b are two hardening parameters

chosen as

R0 = 1000 MPa , Q = 100 MPa , b = 300

and the linear hardening modulus S is given by

S = −1000 MPa .

Young’s modulus and Poisson’s ratio are set to E = 210, 000 MPa and ν = 0.3. Imperfections235

are inserted by imposing a reduced yield stress R′0 = 999.0 MPa in chosen elements of the

cube and thin plate. The objective of the imperfection is to fix the location of the strain

localization band which will form and avoid complex interactions with the boundaries. This

section is organized as follows. First, in section 5.1, the implicit integration scheme used

for the time integration of the elasto-plastic constitutive problem is described. Then, in240

the remaining sections, localization and loss of ellipticity are studied for various plastic

thresholds and the considered three geometries.

5.1. Implicit integration scheme

The elasto-plastic constitutive problem is solved with an implicit integration scheme.

A general implicit integration scheme for multisurface plasticity has been proposed by [27]

and recently reformulated in principal stress space by [30]. It should be noted that there

also exist fully implicit integration schemes for the Tresca criterion with isotropic hardening

[28, 36] and for the yield function given by Eq. (68) [47]. Herein, we have recourse to

the general procedure described by [27] in order to easily accommodate any yield function

expressed in terms of principal stresses. At a fixed Gauss point, given εen, pn, and ∆εn+1

at a given time increment tn, we seek the updated tensor εen+1 and the increments of the

Lagrange multipliers ∆γj,n+1 for j = 1, . . . ,m. A sketch of the algorithm is given in the box

Algorithm 1. It consists in solving the residual equation r ≡ (re, rφ) = 0 for the principal
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stresses σ̂n+1, the internal variable pn+1, and the set of Lagrange multipliers {∆γj,n+1}j∈J
where

re = [C]−1(σ̂n+1 − σ̂trialn+1 ) +
∑
j∈J

∆γj,n+1n̂j , rφj = φj(σ̂n+1, Rn+1) , j ∈ J , (106)

where

• the vectors gathering the ordered principal stresses and elastic strains are related by245

σ̂n+1 = [C]ε̂n+1, in which the matrix [C] can easily be deduced from the entries of the

fourth-order elasticity tensor C;

• the updated yield stress is given by Rn+1 = R(pn +
∑

j∈J ∆γj,n+1);

• the yield function has been written in terms of the principal stresses, i.e.,

φ̂j(σ̂, r) = φj(
3∑
i=1

σ̂iMi, r) , j = 1, . . . ,m , (107)

for any yield stress r, where Mi, i = 1, 2, 3, denotes the elements of the eigenbasis of the

stress tensor,250

• and the vectors n̂1, n̂2 and n̂3 correspond to the first-order partial derivatives of the yield

function with respect to the ordered principal stresses, i.e.,

n̂1 =


a1

a2

a3


(ei)3i=1

, n̂2 =


a2

a1

a3


(ei)3i=1

, n̂3 =


a1

a3

a2


(ei)3i=1

. (108)

By having recourse to a Newton-Raphson procedure, one has to solve the following sequence

until convergence has been met:

k ≥ 0 : [J(η(k))](η(k+1)−η(k)) = −r(η(k)) , η(k) ≡ (σ̂
(k)
n+1,α

(k)
n+1, (∆γ

(k)
j,n+1)j∈J) , (109)

where [J(η(k))] denotes the jacobian matrix for a given value η(k) of the unknowns. The

jacobian matrix is populated by the partial derivatives of the residuals re and rφ with
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respect to σ̂
(k)
n+1, p

(k)
n+1, and (∆γ

(k)
j,n+1)j∈J. In addition, the consistent tangent modulus that is

necessary for the global Newton-Raphson scheme (at the structural level) is computed using

the systematic approach presented by, e.g., [49]. Once the Newton-Raphson procedure has255

converged for some k?, the Jacobian matrix [J(η(k?))] is assembled for the solution η(k?).

The consistent tangent matrix is then given by the first (6 × 6) block of the inverse of the

jacobian matrix [J(η(k?))]−1.

Algorithm 1: Implicit integration scheme

1 Compute the elastic predictor σtrialn+1 = C : (εen + ∆εn+1) and Rtrial
n+1 = R(pn)

2 Compute the trial principal stresses σ̂trialn+1 and eigenbases {Mi}3
i=1 such that

σtrialn+1 =
∑3

i=1 σ̂
trial
i,n+1Mi

3 Compute the trial yield functions φ̂trialj,n+1 = φ̂j(σ̂
trial
n+1 , R

trial
n+1 ) for all j = 1, . . . ,m

4 Compute the set of active yield surfaces J = {J ∈ {1, . . . ,m} |φtrialj,n+1 > 0}

5 if J = ∅ then

6 σn+1 = σtrialn+1 , pn+1 = pn and ∆γj,n+1 = 0 for all j ∈ {1, . . . ,m}.

7 else

8 Solve the residual equation r = 0 for the principal stresses σ̂n+1, the internal

variable pn+1, and the set of Lagrange multipliers {∆γj,n+1}j∈J.

9 if ∆γK,n+1 ≤ 0 for any K ∈ J then

10 Remove K from J.

11 Return to 7.

12 else

13 Update the stress tensor as follows: σn+1 =
∑3

i=1 σ̂i,n+1Mi.

5.2. Softening cube undergoing tension

We start by comparing the results obtained with a cube using the Tresca and von Mises260

yield functions. A vertical displacement ud is applied to the top edge and boundary condi-

tions at the bottom of the cube are such that tensile homogeneous deformations take place
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in the elastic regime. In this setting, we expect the stress state to lie on the right corner

of the yield surface at most Gauss points of the finite element mesh. The parameter S in

Eq. (105) is chosen as S = −1000MPa in order to enforce a slightly softening behavior.265

Figure 13 shows the reaction forces on the top surface of the cube for six different

plastic thresholds, namely, for the von Mises, Tresca, and δ-Tresca model with four different

values of the parameter δ. In addition, in Fig. 13, the prescribed deformation εE for which

loss of ellipticity occurs for the first time in the finite element mesh is shown. The first

occurrence of lost of ellipticity is obtained as follows. At each time step, the minimum of270

the loss of ellipticity indicator over all the Gauss points is computed. This minimum value

is considered to be negative as soon as it gets lower than or equal to −10−14. The prescribed

deformation εD for which the resultant force reaches its maximum value is also given. In the

case of the von Mises model, it is seen that loss of ellipticity occurs well after the resultant

force has reached its maximum value. In contrast, in the case of the δ-Tresca models with275

δ ∈ {−0.2,−0.1, 0.0, 0.1, 0.2}, it is observed that loss of ellipticity occurs slightly before

the maximum resultant force. In Fig. 14, the graph of the minimum value of the loss of

ellipticity indicator is shown with respect to the prescribed deformation ud/L. The minimum

is taken over all the Gauss points of the finite element mesh. A value equal to 1 means that

ellipticity has not decreased. It can be seen that the indicators suddenly decrease as soon280

as the cube plastifies. In the case of the von Mises model, the indicator drops to a positive

value then smoothly decreases. In contrast, in the case of the Tresca model, the indicator

directly drops to zero then smoothly decreases towards negative values. This numerical

observation can be explained by means of Eq. (99). Indeed, on the right corner of the Tresca

yield function, we expect the acoustic tensor to be singular as soon as the material plastifies.285

Figure 15 shows that strain remains almost homogeneous using the von Mises criterion,

whereas strain localization bands tend to form according to Tresca and δ-Tresca criteria.

The same fields are shown in Fig. 16 in the case of the Tresca model. In contrast to the

von Mises model, a distinctive strain localization band forms on the top surface of the cube.

The indicator of loss of ellipticity decreases where localization occurs.290

It is well-known that loss of ellipticity for von Mises plasticity under tension can only
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(c) δ-Tresca

Figure 13: Cube undergoing simple tension: graphs of the force resultant R with respect to the prescribed

deformation ud/L with L = 4mm. The deformations εE and εR correspond to: the first occurrence of loss

of ellipticity and to when R reaches its maximum value.
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Figure 14: Cube undergoing simple tension: graph of minimum value of the loss of ellipticity indicator

over the Gauss points of the finite element meshes, with respect to the prescribed deformation ud/L with

L = 4mm.
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(a) ud/L = εR (b) ud/L = εE (c) ud/L = 0.49

(d) ud/L = εR (e) ud/L = εE (f) ud/L = 0.49

Figure 15: Cumulative plastic strain x 7→ p(x) (first row) and loss of ellipticity indicator x 7→

infn(x)∈S det(Qep(n(x))) (second row) in the case of a von Mises model at three overall strain levels in-

dicated in Fig. 13(a).

occur for a very low value of softening modulus, namely −E/4, as discussed by, e.g., [50].

Here, the presence of an imperfection leads to a heterogeneous deformation field and loss of

ellipticity occurs even in the case of the von Mises model. However, it occurs for a much

larger prescribed displacement and much higher deformations that are unrealistic under the295

assumptions of small strains.

5.3. Thin softening plate undergoing tension

In this second illustration, we consider the case of a thin plate. The boundary conditions

are the same as in the case of the cube addressed in the previous section, namely, there

are such that homogeneous simple tension takes place in the absence of localization. The

parameter S in Eq. (105) is chosen as S = −1000MPa as in the previous section. The

resultant forces on the top surface of the plate are shown in Fig. 17 for the von Mises and

δ-Tresca models. As in the case of the cube, loss of ellipticity occurs late after the resultant

41



(a) ud/L = εR (b) ud/L = εE (c) ud/L = 0.0325 (d) ud/L = 0.0825

(e) ud/L = εR (f) ud/L = εE (g) ud/L = 0.0325 (h) ud/L = 0.0825

Figure 16: Cumulative plastic strain x 7→ p(x) (first row) and loss of ellipticity indicator x 7→

infn(x)∈S det(Qep(n(x))) (second row) in the case of a Tresca model at four overall strain levels indicated

in Fig. 13(b).

force has reached its maximum value for the von Mises model. In contrast, for all the δ-Tresca

models, loss of ellipticity takes place before the maximum reaction force. In addition, it can

be seen that loss of ellipticity is slightly postponed as δ increases. Views of the cumulative

plastic strain field in the case of a Tresca model are shown in Fig. 18. The localization band

is found to be inclined across both the thickness and width. To explain this numerical result,

we refer to Eq. (99) which shows that on the right corner of the Tresca yield surface, we may

have

det(Qep(n(x))) = 0 , n =
1√
2


0

±1

±1


(mi)3i=1

, ∀H(p(x)) ∈ [0,+∞[ , (110)
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or

det(Qep(n(x))) = 0 , n(x) =
1√
2


±1

±1

0


(mi)3i=1

or n(x) =
1√
2


±1

0

±1


(mi)3i=1

, forH(p(x)) = 0 ,

(111)

at any point x in deformed configuration. If it is assumed that in this scenario of simple

tension the eigenvalues {mi}3
i=1 coincide with the canonical basis (ex, ey, ez) of R3, then

Eq. (110) means that a flat shear band across the plate’s width may take place as well.300

Similarly, Eq. (111) states that an inclined shear band in the planes spanned by (ex, ey) or

(ex, ez) may take place. However, it should be emphasized that the eigenvectors m2 and m3

can be arbitrary vectors than span the space orthogonal to the linear space {αm1 , α ∈ R},

hence leading to the observed shear band in Fig. 18. As a comparison, in the case of a von

Mises model, the shear band would also be inclined across the plate’s width but flat across305

the thickness of the plate. In the latter case, necking takes place within the thickness of the

band and no loss of ellipticity occurs.

To end this section, Fig. 19 shows the loss of ellipticity indicators in the case of various

plastic thresholds. Similar results are obtained in most cases expect for the δ-Tresca model

with δ = −0.2 and the von Mises model. For the latter, it is not surprising that ellipticity310

is not lost at ud/L ≈ 0.0175 since loss of ellipticity occurs for ud/L ≥ εE with εE > 0.0175

(see Fig. 17). In the case of the δ-Tresca model with δ = −0.2, it is found that a flat shear

band takes place across the plate’s width. Recall that for negative values of δ and any

real hardening modulus there exists a normal vector n such that the acoustic tensor Qep(n)

is negative definite (see Fig. 8). We infer that for δ = −0.2, we obtained a shear band315

orientation n with entries n1 = 0, n2
2 = n2

3 in the principal basis (that may coincide with

the canonical basis).

43



0 0.01 0.02 0.03 0.04

0

200

400

600

800

1000

1200

(a) von Mises

0 0.005 0.01 0.015 0.02

0

200

400

600

800

1000

1200

(b) Tresca

0 0.005 0.01 0.015 0.02

0

200

400

600

800

1000

1200

0.01478 0.01479 0.0148

0

500

1000

1500

(c) δ-Tresca

Figure 17: Tension of a thin plate: graphs of the force resultant R/S with respect to the prescribed

deformation ud/L. The prescribed deformations εE and εR correspond to: the first occurrence of loss of

ellipticity and to when R reaches its maximum value.
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Figure 18: Cumulative plastic strain field in a Tresca plate for ud/L ≈ 0.0175. Three views of the plate are

shown (from left to right): front view, side view, and clipped view inside the plate.

(a) δ = −0.2 (b) δ = −0.1 (c) Tresca (d) δ = 0.1 (e) δ = 0.2 (f) von Mises

Figure 19: Tension of a thin plate: loss of ellipticity indicators for various plastic models and a prescribed

displacement ud/L ≈ 0.0175.
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5.4. Experimental tubular specimen undergoing tension and torsion

In this last section, we consider the experimental tubular specimen shown in Fig. 12(c).

The objective of this example is to show that the proposed analysis is applicable to realistic320

experimental samples under complex loading conditions. Three different boundary value

problems are considered. The first one consists in a pure torsion test where a relative

rotation θ is applied to the top and bottom surfaces. The second configuration is a simple

tension test where a vertical displacement is applied to the top surface. And finally, the

third scenario is obtained by combining these tension and torsion tests. As in the previous325

numerical illustrations, a slightly softening behavior is enforced by taking S = −1000 MPa

(see Eq. (105)). However, in contrast to the previous cases in sections 5.2 and 5.3, no

imperfection is inserted in the finite element mesh. The following subsections comment the

finite element simulations displayed in Fig. 21 (pure torsion), Fig. 22 (simple tension), Fig .23

(combined torsion-tension). All the snapshots were taken at the time-step at which ellipticity330

is lost for the first time during the simulations. The reader is referred to Fig. 20 where graphs

of the resultant moments and forces are shown, together with the first occurrences of loss of

ellipticity. The results can be compared to the corresponding experimental data provided

by [48] for ultra-high strength steel which does not exhibit significant damage prior to shear

band localization and final fracture. It is proposed that Tresca-like constitutive models335

would be more suitable than the standard von Mises criterion to capture these localization

events.

5.4.1. Experimental tubular specimen undergoing pure torsion

Graphs of the resultant moment with respect to the rotation angle are shown in the left

panel of Fig. 20 in the case of pure torsion, and snapshots of the cumulative plastic strains340

and loss of ellipticity indicators are provided in Fig. 21. In this scenario, the stress tensor

lies on the smooth portion of the δ-Tresca yield surfaces. It can be observed that the Tresca

and von Mises models lead to loss of ellipticity almost simultaneously when the resultant

moment reaches its maximum value. This is due to the fact that their normals to the yield

surfaces and critical hardening moduli coincide in pure shear. In contrast, the δ-Tresca345
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models with δ = −0.2 or δ = 0.2 allow for postponing loss of ellipticity. These observations

are in agreement with the analysis carried out in section 4.2.1.

5.4.2. Experimental tubular specimen undergoing simple tension

Graphs of the resultant force with respect to the prescribed displacement are shown in

the right panel of Fig. 20. Only a positive value for δ is considered since negative values lead350

to a material that never reaches ellipticity when it undergoes simple tension (see Fig. 8). As

in the previous examples, it can be seen that the Tresca and δ-Tresca models lose ellipticity

earlier than the von Mises model. The δ-Tresca and von Mises model exhibits similar

cumulative plastic strain fields and loss of ellipticity indicators as it can be seen in Fig. 22.

The Tresca test tube plastifies in a similar fashion but with different magnitudes. Note355

that these snapshots are taken when the structure loses ellipticity for the first time during

simulation and for further time steps, the three models exhibit different localization bands.

The von Mises model was expected to remain elliptic but due to the geometry, the material

does not undergo simple tension, even in the region of interest.

5.4.3. Experimental tubular specimen undergoing combined torsion-tension360

In this last scenario, a 1mm vertical prescribed displacement and a 10◦ rotation along

the test tube axis are applied to the top surface. Snapshots of the cumulative plastic

strain fields and the loss of ellipticity indicators are shown in Fig. 23. The von Mises model

loses ellipticity for ud = 0.0396mm and θ = 0.396◦, while the Tresca and δ-Tresca model

lose ellipticity at times for ud = 0.0275mm, θ = 0.275◦, and ud = 0.0275mm, θ = 0.273◦,365

respectively. Each model exhibit similar localization patterns but with different magnitudes.

While the von Mises model tends to localize on the inner surface of the specimen, the Tresca

model localizes on the outer surface. The δ-Tresca seems to stabilize the simulation as it

leads to lower cumulative plastic strains when ellipticity is lost.

6. Conclusion370

This work is concerned with the analysis of ellipticity when dealing with non-smooth yield

surfaces. Towards this end, we consider a class of yield functions that are given by a linear
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(a) Pure torsion: moments w.r.t the rotation angle.
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Figure 20: Simple tension and pure torsion of a tubular specimen. Red bullets indicate loss of ellipticity

and blue squares point out the maximum load.

(a) von Mises (b) δ = −0.2 (c) δ = 0 (Tresca) (d) δ = 0.2

(e) von Mises (f) δ = −0.2 (g) δ = 0 (Tresca) (h) δ = 0.2

Figure 21: Pure torsion test: cumulative plastic strain (top row) and loss of ellipticity indicator

infn det(Qep(n)) (bottom row) when ellipticity is lost for the first time during the simulations (Fig. 20(a)).
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(a) von Mises (b) Tresca (c) δ = 0.2

(d) von Mises (e) Tresca (f) δ = 0.2

Figure 22: Simple tension: cumulative plastic strains (top row) and loss of ellipticity indicator

infn det(Qep(n)) (bottom row) when ellipticity is lost for the first time during the simulations (Fig. 20

(b)).
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(a) von Mises (b) Tresca (c) δ = 0.2

(d) von Mises (e) Tresca (f) δ = 0.2

Figure 23: Combined tension-torsion: cumulative plastic strains (top row) and loss of ellipticity indicator

infn det(Qep(n)) (bottom row) when ellipticity is lost for the first time during the simulations.

combination of the principal stresses. In principal stress space, yield functions belonging to

such a family are non-smooth as they include two sharp corners on their surfaces, referred

to as the left and right corners. For simplicity, three particular cases are considered, namely,375

the Tresca, δ-Tresca, and τ -Tresca models. The parameters δ and τ allow for modifying the

positions and the shape of the corners. The following findings are made:

(a) The corners on the yield surface have a significant effect on the conditions for loss of

ellipticity, i.e., they strongly affect the critical hardening modulus. In order to better

understand this phenomenon, two new parametric families of yield functions are intro-380

duced. The parameter δ (resp. τ) in the δ-Tresca (resp. τ -Tresca) model allows for

increasing or decreasing the angle formed by the right corner (resp. left corner) of the

yield surface.

(b) It is found that the presence of such corners allow for postponing of advancing loss of

ellipticity. For instance, on the right corner of the δ-Tresca yield surface, the critical385
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hardening modulus can be negative or positive depending on the chosen value for δ. In

the particular case of the Tresca model, recovered for δ = 0, it is found that the critical

hardening modulus vanishes.

(c) A numerical procedure for the detection of loss of ellipticity in multisurface plasticity is

obtained by combining the recent algorithm proposed by [9] and the analysis proposed390

by [44]. This numerical approach is used to determine the critical hardening moduli for

all the considered non-smooth yield functions and to detect loss of ellipticity in finite

element simulations.

(d) An explicit expression of the subdifferential of the non-smooth yield function is derived

and generalize recent expressions obtained in the cases of the Tresca [39] and Mohr-395

Coulomb [40] models. This expression allows for expressing the flow rule in an abstract

compact form and can be used for deriving an implicit integration algorithm.

(e) Finite element simulations on simple geometries undergoing simple tension show that

the Tresca and δ-Tresca models lead to loss of ellipticity much earlier than the com-

monly used von Mises model. More specifically, the von Mises model loses ellipticity for400

unrealistic deformations that are out of the range of the small perturbations assump-

tion. In contrast, the Tresca and δ-Tresca models may lose ellipticity for much lower

deformations.

(f) Finite element simulations on a realistic structure show that the choice of the yield

function can lead to drastic differences in terms of localization and loss of ellipticity. In405

all cases, it is seen that the non-smooth yield functions lose ellipticity earlier than the

von Mises model and they also lead to different localization patterns and localization

magnitudes.

These findings suggest that the choice of the yield function, and its smoothness, is of

primary importance for structural computations. Strain localization observed in many engi-410

neering alloys (see, e.g., [48, 9]) can lead to slant fracture that cannot be properly described
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by existing ductile fracture models. The von Mises model and more generally smooth yield

functions that are used in the industry, do not properly account for such localization modes

under tension. We anticipate that more realistic models should incorporate corners, emerg-

ing from polycrystal plasticity. As demonstrated in the present work, such models can415

predict earlier strain localization events.

In future works, it is planned to study the influence of kinematic hardening on mate-

rial instabilities, incorporate large deformation in the present anlaysis, and investigate the

influence of corners in polycrystal plasticity.
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Appendix A. Subdifferential set for the family of yield criteria linear in principal

stresses

In this section, an explicit expression of the subdifferential set ∂σφ (75) is provided for

the yield function defined by Eq. (68). To the authors’ best knowledge, such expressions are

only available for the Tresca [39] and Mohr-Coulomb [40] models. Based on the previous

work of [51], two approaches are presented by [39], namely, a direct approach that starts from

the definition (75), and an indirect approach that uses corollary results of convex analysis

(see, e.g., [52, 53]). In the work of [40], the expression of the subdifferential set is obtained

starting from its definition (75) in the case of a Mohr-Coulomb criterion. Here, we adopt

an indirect approach. The yield function (68) can be rewritten as

φ(σ, R) = (a1 − a2)σ1(σ) + a2Tr(σ) + (a2 − a3)(−σ3(σ)) , (A.1)

where it is recalled that a1 > 0, a3 < 0, a1 > a2 > a3, and σ1(σ) ≥ σ2(σ) ≥ σ3(σ).

According to [51, 53], the functions σ 7→ σ1(σ) and σ 7→ (−σ3(σ)) are both convex. The

yield function (A.1) being given by a sum of three convex functions, it can be deduced
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[52, 53] that its subdifferential takes the form

∂σφ(σ, R) = (a1 − a2)∂σσ1(σ) + a2∂σTr(σ) + (a2 − a3)∂σ(−σ3(σ)) . (A.2)

The subdifferential set of the largest eigenvalue is given by [51, 53]

∂σσ1(σ) =
{
ξ =

3∑
i=1

ξimi ⊗mi | ξ : σ = σ1(σ), T r(ξ) = 1
}
, (A.3)

and can be reduced to

∂σσ1(σ) =
{
ξ =

3∑
i=1

ξimi⊗mi | (σ1−σ2)(ξ1− 1) + (σ2−σ3)(−ξ3) = 0, T r(ξ) = 1
}
. (A.4)

The subdifferential of the smallest eigenvalue is such that ∂σ(−σ3(σ)) = −∂σσ1(−σ). Using

Eq. (A.3) and the relationship σ1(−σ) = −σ3(σ), it can be deduced that

∂σ(−σ3(σ)) =
{
η =

3∑
i=1

ηimi ⊗mi | (σ1 − σ2)η1 + (σ2 − σ3)(−1− η3) = 0, T r(η) = −1
}
.

(A.5)

Finally, the function σ 7→ Tr(σ) is smooth and its subdifferential is given by the singleton

{I} containing the identity tensor. It follows that any tensor W ∈ ∂σφ(σ, R) is given by

W = (a1 − a2)ξ + a2

3∑
i=1

mi ⊗mi + (a2 − a3)η , ξ ∈ ∂σσ1(σ) , η ∈ ∂σ(−σ3(σ)) . (A.6)

A compact expression of the subdifferential set can be obtained by noticing that the coeffi-

cients W1,W2,W3 such that W =
∑3

i=1Wimi ⊗mi satisfy

(σ1 − σ2)(W1 − a1) + (σ2 − σ3)(a3 −W3) = 0 , W1 +W2 +W3 = a1 + a2 + a3 . (A.7)

Hence, Eq. (A.2) is also given by

∂σφ(σ, R) =
{

W =
3∑
i=1

Wimi⊗mi | (σ1−σ2)(W1−a1)+(σ2−σ3)(a3−W3) = 0, T r(W) = a1+a2+a3

}
.

(A.8)

Using either Eq. (A.2) or Eq. (A.8) and by considering stress tensors on the smooth portion,425

left corner, or right corner of the yield surface, it can be verified that the abstract flow rule

ε̇p ∈ γ̇∂σφ(σ, R) is equivalent to the multisurface flow rule presented in section 4.1.

53



Appendix B. Useful expressions for the analysis of loss of ellipticity

The analysis conducted in section 4.2.3 requires the expressions of the matrices [π
(δ)
r (n)],

[π
(δ)
l (n)], [π

(τ)
r (n)], and [π

(τ)
l (n)]. The entries of these matrices can be obtained using

Eqs. (42) together with (79). According to Eq. (79), the second-order tensors N1, N2, and

N3 are given by

N1 =


a1

a2

a3


(mi)3i=1

, N2 =


a2

a1

a3


(mi)3i=1

, N3 =


a1

a3

a2


(mi)3i=1

, (B.1)

where {mi}3
i=1 denotes the set of principal stress directions. For arbitrary values of the

parameters a1, a2, a3 in C (see Eq. (69)), the entries of the matrix [π(n)] by plugging Eq. (B.1)

into Eq. (42) , i.e., into

π̂IJ(n1, n2, n3) = −4µ(λ+ µ)

λ+ 2µ

3∑
i=1

n2
iN

K
i

3∑
j=1

n2
jN

J
j + 4µ

3∑
i=1

NK
i N

L
i n

2
i , n =

3∑
k=1

nkmk ,

(B.2)

where (I, J) ∈ {1, 2}2. On the left corner of the yield surface, (K,L) ∈ J×J with J = {1, 2}.

On the right corner, the set of active mechanisms is given by J = {1, 3}. In the case of the

δ-Tresca model, one has a1 = 1, a2 = −δ, and a3 = −1 + δ. Hence, the second-order tensors

in Eq. (B.1) reduce to

N1 =


1

−δ

−1 + δ


(mi)3i=1

, N2 =


−δ

1

−1 + δ


(mi)3i=1

, N3 =


1

−1 + δ

−δ


(mi)3i=1

. (B.3)

Using the second-order tensors N1 and N2, it is found that the entries of the matrix [πδl (n)]

are given by

[π̂δl (n1, n2, n3)]11 = −4µ(λ+ µ)

λ+ 2µ

(
n2

1 − δn2
2 − (1− δ)n2

3

)2
+ 4µ

(
n2

1 + δ2n2
2 + (1− δ)2n2

3

)
,

[π̂δl (n1, n2, n3)]22 = −4µ(λ+ µ)

λ+ 2µ

(
−δn2

1 + n2
2 − (1− δ)n2

3

)2
+ 4µ

(
δ2n2

1 + n3
2 + (1− δ)2n2

3

)
,

(B.4)
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and [π̂δl ]21 = [π̂δl ]12 with

[π̂δl (n1, n2, n3)]12 =− 4µ(λ+ µ)

λ+ 2µ

(
n2

1 − δn2
2 − (1− δ)n2

3

) (
−δn2

1 + n2
2 − (1− δ)n2

3

)
+ 4µ

(
n2

1 + δ2n2
2 + (1− δ)2n2

3

) (
δ2n2

1 + n3
2 + (1− δ)2n2

3

)
.

(B.5)

Similarly, using the second-order tensors N1 and N3, the following entries of the matrix

[πδr(n)] are found:

[π̂δr(n1, n2, n3)]11 = −4µ(λ+ µ)

λ+ 2µ

(
n2

1 − δn2
2 − (1− δ)n2

3

)2
+ 4µ

(
n2

1 + δ2n2
2 + (1− δ)2n2

3

)
,

[π̂δr(n1, n2, n3)]22 = −4µ(λ+ µ)

λ+ 2µ

(
n2

1 − (1− δ)n2
2 − δn2

3

)2
+ 4µ

(
n2

1 + (1− δ)2n3
2 + δn2

3

)
,

(B.6)

and [π̂δr ]21 = [π̂δr ]12 with

[π̂δr(n1, n2, n3)]12 =− 4µ(λ+ µ)

λ+ 2µ

(
n2

1 − δn2
2 − (1− δ)n2

3

) (
n2

1 − (1− δ)n2
2 − δn2

3

)
+ 4µ

(
n2

1 + δ2n2
2 + (1− δ)2n2

3

) (
n2

1 + (1− δ)2n3
2 + δn2

3

)
.

(B.7)

In the case of the τ -Tresca model, the parameters a1, a2, a3 are given by a1 = 1− τ , a2 = τ ,

and a3 = −1. As a result, the second-order tensors N1, N2, and N3 reduce to

N1 =


1− τ

τ

−1


(mi)3i=1

, N2 =


τ

1− τ

−1


(mi)3i=1

, N3 =


1− τ

−1

τ


(mi)3i=1

. (B.8)

It can be deduced that the entries of the matrix [πτl (n)] are given by

[π̂τl (n1, n2, n3)]11 = −4µ(λ+ µ)

λ+ 2µ

(
(1− τ)n2

1 + τn2
2 − n2

3

)2
+ 4µ

(
(1− τ)2n2

1 + τ 2n2
2 + n2

3

)
,

[π̂τl (n1, n2, n3)]22 = −4µ(λ+ µ)

λ+ 2µ

(
τn2

1 + (1− τ)n2
2 − n2

3

)2
+ 4µ

(
τ 2n2

1 + (1− τ)2n3
2 + n2

3

)
,

(B.9)

and [π̂τl ]21 = [π̂τl ]12 with

[π̂τl (n1, n2, n3)]12 =− 4µ(λ+ µ)

λ+ 2µ

(
(1− τ)n2

1 + τn2
2 − n2

3

) (
τn2

1 + (1− τ)n2
2 − n2

3

)
+ 4µ

(
(1− τ)2n2

1 + τ 2n2
2 + n2

3

) (
τ 2n2

1 + (1− τ)2n3
2 + n2

3

)
.

(B.10)

55



Finally, on the right corner of the τ -Tresca yield surface, one has

[π̂τr (n1, n2, n3)]11 = −4µ(λ+ µ)

λ+ 2µ

(
(1− τ)n2

1 + τn2
2 − n2

3

)2
+ 4µ

(
(1− τ)2n2

1 + τ 2n2
2 + n2

3

)
,

[π̂τr (n1, n2, n3)]22 = −4µ(λ+ µ)

λ+ 2µ

(
(1− τ)n2

1 − n2
2 + τn2

3

)2
+ 4µ

(
(1− τ)2n2

1 + n3
2 + τ 2n2

3

)
,

(B.11)

and [π̂τr ]21 = [π̂τr ]12 with

[π̂τr (n1, n2, n3)]12 =− 4µ(λ+ µ)

λ+ 2µ

(
(1− τ)n2

1 + τn2
2 − n2

3

) (
(1− τ)n2

1 − n2
2 + τn2

3

)
+ 4µ

(
(1− τ)2n2

1 + τ 2n2
2 + n2

3

) (
(1− τ)2n2

1 + n3
2 + τ 2n2

3

)
.

(B.12)
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(1981) 3–39.495

[33] W. Han, B. Reddy, Plasticity: mathematical theory and numerical analysis, Vol. 9, Springer Science &

Business Media, 2012.

[34] C. Carstensen, K. Hackl, A. Mielke, Non–convex potentials and microstructures in finite–strain plas-

ticity, Proceedings of the royal society of London. Series A: mathematical, physical and engineering

sciences 458 (2018) (2001) 299–317.500

[35] A. Mielke, Existence of minimizers in incremental elasto-plasticity with finite strains, SIAM journal on

mathematical analysis 36 (2) (2004) 384–404.

[36] S. Sysala, M. Čermák, T. Koudelka, J. Kruis, J. Zeman, R. Blaheta, Subdifferential-based implicit

return-mapping operators in computational plasticity, ZAMM-Journal of Applied Mathematics and

Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 96 (11) (2016) 1318–1338.505

[37] M. Yu, Twin shear stress yield criterion, International Journal of Mechanical Sciences 25 (1) (1983)

71–74.

[38] S. Zhang, X. Jiang, C. Xiang, L. Deng, Y. Li, Proposal and application of a new yield criterion for

metal plastic deformation, Archive of Applied Mechanics 90 (2020) 1705–1722.

[39] Q.-C. He, C. Vallée, C. Lerintiu, Explicit expressions for the plastic normality-flow rule associated to510

the Tresca yield criterion, Zeitschrift für angewandte Mathematik und Physik ZAMP 56 (2) (2005)

357–366.
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