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Abstract A reliable determination of the onset of void coalescence is critical to the modelling of ductile

fracture. Numerical models have been developed but rely mostly on analyses on single defect cells, thus

underestimating the interaction between voids. This study aims to provide the first extensive analysis of the

response of microstructures with random distributions of voids to various loading conditions and to characterize

the dispersion of the results as a consequence of the randomness of the void distribution. Cells embedding a

random distribution of identical spherical voids are generated within an elastoplastic matrix and subjected to a

macroscopic loading with constant stress triaxiality and Lode parameter under periodic boundary conditions

in finite element simulations. The failure of the cell is determined by a new indicator based on the loss of full

rankedness on the average deformation gradient rate. It is shown that the strain field developing in random

microstructures and the one in unit cells feature different dependencies on the Lode parameter L owing to

different failure modes. Depending on L, the cell may fail in extension (coalescence) or in shear. Moreover the

random void populations lead to a significant dispersion of failure strain, which is present even in simulations

with high numbers of voids.

Keywords Ductile Fracture · Void coalescence · Homogenization

? Corresponding author, E-mail: samuel.forest@mines-paristech.fr

C. Cadet · J. Besson · S. Forest · P. Kerfriden
MINES ParisTech, PSL University, MAT - Centre des Matériaux, CNRS UMR 7633, BP 87, 91003 Évry, France
E-mail: clement.cadet@mines-paristech.fr, jacques.besson@mines-paristech.fr, pierre.kerfriden@mines-paristech.fr

C. Cadet · S. Flouriot · V. de Rancourt
CEA Valduc, Is-sur-Tille, France
E-mail: sylvain.flouriot@cea.fr, victor.derancourt@cea.fr



2 C. Cadet & al.

1 Introduction1

Predicting the failure of a structural part subjected to monotonous loading requires a good understanding of the2

ductile fracture behavior of the material. However ductile fracture is a complex phenomenon involving a variety3

of mechanisms, strongly dependent on the material and involving large strain at least on a local level (Besson,4

2004). Voids are first nucleated within the material, especially near second phase inclusions. Depending on the5

loading conditions, the voids may or may not grow. Finally the material fails when voids coalesce, either by6

internal necking or by the nucleation of secondary voids (mostly for shear-dominated loading). Softening due to7

void growth may also be sufficient to initiate failure without coalescence per se (Tekoğlu et al., 2015). Although8

a large body of literature on ductile fracture has already been published, accurate failure prediction is still a9

research problem, as evidenced by the Sandia fracture challenges (Boyce, Kramer, Fang, et al., 2014; Boyce,10

Kramer, Bosiljevac, et al., 2016; Kramer et al., 2019): besides the difficulty of calibrating modellling parameters11

from experimental data, predicting ductile failure requires to take into account many strongly nonlinear physical12

processes.13

Experimental studies have shown that the failure behavior strongly depends on the stress state to which the14

material is subjected. The effects of the stress triaxiality (ratio of the von Mises equivalent stress to the mean15

stress) and the Lode parameters (reflecting the third stress invariant) have been extensively investigated (for16

instance by Helbert et al. (1996), Bao and Wierzbicki (2004), Barsoum and Faleskog (2007), Gao et al. (2009),17

Dunand and Mohr (2011), Gilioli et al. (2013), Zhai et al. (2016), Xiao et al. (2018), and Zhang, Badreddine,18

et al. (2020)). Models representing ductile failure should therefore account for the effect of these two parameters.19

Analytic and computational approaches at a micromechanical level have also been developed to investigate20

the mechanisms of ductile fracture, to model ductile fracture and provide microscale-informed failure prediction.21

Following Gurson’s (1977) results from limit analysis, increasingly precise analytic models have been developed22

by explicitly representing approximate strain fields near voids in a plastic material. Besson (2010) provides a23

review of such models but more recent ones have been developed to represent void growth and coalescence either24

by necking or in shear (Benzerga and Leblond, 2014; Morin, Leblond, Benzerga, and Kondo, 2016; Torki, 2019;25

Nguyen et al., 2020), and can be used for practical applications (Keralavarma et al., 2020). The limit analysis26

approach was also extended by Leblond and Mottet (2008) to random distribution of voids. Computational27

studies of ductile fracture may help validate these models or provide valuable insights in the failure mechanisms28

on their own, for example by quantifying the effect of stress triaxiality and Lode parameter (Barsoum and29

Faleskog, 2011; Zhu, Engelhardt, et al., 2018) or by distinguishing strain localization from coalescence (Wong30
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and Guo, 2015; Guo and Wong, 2018; Zhu, Ben Bettaieb, et al., 2020). However these studies are mostly carried31

out on unit cells: the global behavior of the material is summarized by that of a meshed cell containing a single32

void. Even though this approach was proven useful to analyze fundamental mechanisms at the void level at a33

low computational cost, it oversimplifies the interaction between voids, whose influence increases with porosity,34

by assuming that voids are regularly distributed as a cubic lattice.35

Some studies have investigated the interaction of voids in simplified configurations, involving only a couple36

of voids. For instance Bandstra and Koss (2008) considered three-voids clusters with rotational symmetry37

in an hexagonal volume element; Tvergaard (2016) and Tvergaard (2017) considered 2D clusters with three38

aligned pores, whereas Trejo Navas et al. (2018) systematically studied 3D three pore clusters. Khan and39

Bhasin (2017) investigated the interaction between two populations of voids, in the simplified context of a40

high symmetry periodic arrangement. However, in a real material, a large number of voids, with complex41

spatial distribution interact with each other. Shakoor et al. (2015) considered 2D microstructures with a random42

population of voids and showed that increased triaxiality accelerates coalescence. Shakoor et al. (2018) also43

provided a very fine description of the mechanisms of ductile fracture from nucleation up to coalescence,44

between randomly distributed voids. All these studies evidence the role of clusters but do not allow to compute45

coalescence properties depending on loading conditions, as a model of ductile fracture would require, because46

they investigate too few void configurations and loading cases.47

Analytical approaches can take random void distributions into account. For instance, Leblond and Mottet48

(2008) developed a limit analysis model coupling coalescence and shear band formation initially for a periodic49

distribution, but proposed a method to extend it to the random case by considering all possible orientations of50

the shear bands. Moreover, works by Danas and Ponte Castañeda (2009) or Vincent et al. (2009) for instance,51

considered random void populations within the context of a nonlinear variational homogenization scheme:52

the porous medium was compared to a linear composite, whose stiffness is based on Ponte Castañeda and53

Willis’s (1995) bounds, an effective method to represent a population of random elliptical voids. This variational54

technique was subsequently used by Danas and Ponte Castañeda (2012) to investigate the influence of stress55

triaxiality and Lode parameter. However, such analytical approaches should be compared to simulations to check56

the validity of their assumptions. For instance, Danas and Ponte Castañeda’s (2012) predictions for the behavior57

at low triaxiality were found to be unrealistic by Hutchinson and Tvergaard’s (2012) FEM simulations on unit58

cells with the same loading conditions.59

Explicit simulations of random void distributions have been carried out in a limited number of works.60

Bilger, Auslender, Bornert, Michel, et al. (2005) and Bilger, Auslender, Bornert, Moulinec, et al. (2007) using61
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Fast Fourier Transform then Fritzen, Forest, Böhlke, et al. (2012) with Finite Elements Analysis proposed a62

computational homogenization method to determine an effective yield surface. Several microstructures consisting63

of a random void distribution embedded in a plastic matrix are simulated up to overall plastic yield for several64

loading conditions. The results are averaged over the several microstructures to determine an homogenized65

yield surface (represented for Fritzen, Forest, Böhlke, et al. (2012) by a GTN criterion). This approach was66

extended to a Green-type porous matrix (Fritzen, Forest, Kondo, et al., 2013), to multiple void populations of67

different size (Khdir et al., 2014) and to non-spherical voids (Khdir et al., 2015). However these studies were68

focused on yield surface and did not address coalescence. Recently, Hure (2021) did perform FFT simulations69

on cells with multiple voids up to coalescence, and illustrated the influence of the number of voids on the stress70

at coalescence. Yet this study was limited to the simple case of axisymmetric loading.71

To the authors’ knowledge, a description of coalescence for various loading conditions and at the level of a72

representative volume element with multiple voids, has not been done yet. We therefore propose here to extend73

the methodology of Fritzen, Forest, Böhlke, et al. (2012) and Hure (2021) to the study of coalescence under74

various stress states. We aim to assess the effect of the interaction between randomly distributed voids on the75

macroscopic failure response of a cell, depending of the stress state. The results should be compared to those of76

unit cells to identify how they differ from cells with multiple voids. Moreover the statistical dispersion in failure77

results linked to the random distribution should be quantified.78

To this end, cells composed of a random population of identical spherical voids are generated and subjected79

to various loading conditions, characterized by constant stress triaxiality and Lode parameter levels, in finite80

element simulations with Z-set software (Besson and Foerch, 1998). We then propose a coalescence indicator81

based on the loss of full rankedness of the macroscopic deformation gradient rate. The identification of82

coalescence during the simulation allows to extract several quantities of interest at the onset of coalescence.83

Our main results show that the evolution of the onset of coalescence with respect to the Lode parameter is84

qualitatively different between random microstructures and unit cells. This difference is associated to a change85

of coalescence modes for random microstructures. Finally, dispersion of the results due to the randomness of the86

void distribution is studied.87

Section 2 describes the methodology used to generate random microstructures and to prescribe the loading88

conditions within the FE simulation. In section 3 typical numerical simulation results are presented and an89

indicator is defined to identify failure. Section 4 applies the methodology of sections 2 and 3 to compare the90

response of random microstructures to that of a unit cell, both on the evolution of macroscopic (cell-level)91

quantities, and on plastic strain field patterns. The dispersion of the results is also investigated. Finally, we92
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discuss in section 5 the simulation hypotheses chosen in this work, and verify to what extent the results can be93

generalized.94

An intrinsic notation is used for tensors: vectors, as first order tensors, are represented as v = vie i and95

second order tensors as A∼ = Ai je i⊗ e j, where (e i) is an orthonormal frame. The subscript 0 in the notation A096

refers to the value of A in the initial configuration at time t = 0. The position of a material point initially at x 097

evolves with time t as x = Φ (x 0, t); the deformation gradient is then defined as F∼ =
∂Φ
∂x 0

. Quantities decorated98

with an overlying bar, such as Ā, refer to the macroscopic counterpart (at the level of a cell) of a quantity A99

defined locally. For instance F̄∼ is the average deformation gradient (defined more precisely in section 2.3), and100

J̄ = det
(
F̄∼
)
.101

2 Methodology102

2.1 Generation of random microstructures and finite element meshing103

The methodology to create the elementary volumes follows that of Fritzen, Forest, Böhlke, et al. (2012). These104

cells consist of a cubic matrix containing a population of identical non overlapping spherical defects. As all the105

Nde f ects spheres have the same radius r, the porosity of the cell (of size Lcube and therefore of volume V0 = L3
cube)106

is defined as:107

f =
4π

3
Nde f ects

(
r

Lcube

)3

(1)

The radius of the voids is fully determined once the porosity and the number of voids are chosen. The initial108

porosity was chosen as f0 = 6%, to be compared to the range of porosity levels f0 ∈ [0.1%,30%] considered109

by Fritzen, Forest, Böhlke, et al. (2012). However unit cell analyses frequently study lower porosities, with110

f0 ∼ 0.1% (Wong and Guo, 2015; Vishwakarma and Keralavarma, 2019; Guo and Wong, 2018). For low porosity111

values, interactions between defects can indeed be neglected (Koplik and Needleman, 1988), at least for the112

growth phase. Fritzen, Forest, Böhlke, et al., 2012 showed for instance that unit cells and random microstructures113

with sufficiently low prosity levels have a similar growth behavior, which can be represented by a GTN criterion.114

Nonetheless, high porosity levels of 6% are possible in sintered materials (Becker, 1987), nodular cast iron115

(Zhang, Bai, et al., 1999), irradiated stainless steel (Cawthorne and Fulton, 1967). Moreover, overall porosity of116

0.5% to 2% can be found in weld joints (Li et al., 2003; Sarre, 2018; Lacourt, 2019), but porosity values defined117

at a smaller scale, near void clusters, can be higher. A high initial porosity level can also provide insight for118

coalescence at lower initial porosity levels. Coalescence starts after a sufficient phase of growth so that voids119
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begin interacting with each other and can no longer be considered isolated, which means that the porosity is no120

longer negligible. Notwithstanding the change of void shape which will play a significant role, starting at high121

porosity is equivalent, to some extent, to considering the end of a simulation at lower porosity.122

The position of the defects is chosen according to a Poisson sphere process (Matern, 1986). As the target123

porosity is significantly lower than the jamming porosity levels that characterize such processes (around 38 %124

according to Gamito and Maddock (2009)), a dart-throwing method is sufficient for the sampling. The position125

of the center of a sphere is chosen according to a uniform distribution on the cube. If the distance between the126

resulting spheres and the already built defects is larger than 10% of the radius of a sphere, the new sphere is127

included in the list of defects. Otherwise it is rejected and a new possible center is chosen randomly. Introducing128

a repulsion distance between the defects allows a better mesh quality. During the FEM simulations, periodic129

boundary conditions are applied (see section 2.3). Therefore a periodic microstructure and in turn a periodic130

mesh should be used. In order to ensure the periodicity of the population of defects, each time a new defect131

intersects a side of the cube, it is copied on the other side (thus there are four copies if an edge is intersected,132

and eight if the defect contains a vertex of the cube). All of these copies are taken into account to determine133

intersections between defects. Fritzen, Forest, Böhlke, et al. (2012) verified several statistical properties of the134

representativeness of this process.135

The cell with the preceding defect population is meshed with NETGEN software (Schöberl, 1997). This136

tool first meshes surfaces, then volumes, and generates a non structured tetrahedral mesh. Periodicity of the137

mesh is imposed so that opposite sides of the cube have identical surface meshes. A maximum element size of138

hcell = r is imposed globally on the cell, but on the surface meshes of the defects the maximum element size is139

reduced to hvoid = r/5. The mesh is thus refined on the part of the surface mesh corresponding to the surface of140

voids. Finally, tetrahedral second-order 10-nodes elements with reduced integration are used to limit volume141

locking (due to large strain plasticity) in the FEA simulations. An example of the meshing of a microstructure142

with 27 cells is shown in figure 1a.143

As cells are cubic, they define a canonical orthonormal frame (O,e 1,e 2,e 3) where O is a vertex of the144

cube and the unit vectors e 1, e 2, e 3 are parallel to edges of the cube (in the initial configuration). All tensor145

components will be expressed in this frame.146

Although a diversity of microstructures were used in this study, several are repeatedly referred to in this147

article; they are shown in figure 1. The microstructures R1 and R2 are two random microstructures with 27-voids148

of radius r = 0.08Lcube,R1. The one-pore cell unit is defined as a cubic matrix of size Lcube,unit = Lcube,R1/3149

containing a unique defect of radius r = 0.08Lcube,R1 (same radius as before, and thus same volume fraction). It150
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is meshed with the same procedure and same parameters as the larger cells with a random population. Finally151

the microstructure lattice consists in 3×3×3 defects arranged on a cubic lattice; it is meshed in the same way152

as the random microstructures, so the mesh is not the assemblage of 27 small identical meshes of the unit cells.153

2.2 Material behavior law at finite strain154

Finite element simulations are carried out using Zset software (Besson and Foerch, 1998; www.zset-software.com

2020). As the matrix can undergo large deformation before coalescence, the simulations are performed in a finite

strain framework. A local objective frame approach is adopted to formulate the constitutive law of the matrix

(Besson, Cailletaud, et al., 2009). The strain rate D∼ and Cauchy stress σ∼ tensors are convected in a corotational

frame:

ė∼= Q
∼

T D∼Q
∼

(2)

s∼= JQ
∼

T
σ∼Q
∼

(3)

where Q
∼

is a rotation matrix verifying −Q
∼

T Q̇
∼
= Q̇
∼

T Q
∼
=W∼ (W∼ = skew(Ḟ∼F∼

−1) is the material spin tensor). This155

choice of corotational frame is equivalent to using the Jaumann derivative of the stress in the hypo-elasticity law.156

The constitutive law is then defined by a classical additive decomposition of convected strain rates in a157

isotropic elastic part and a plastic part. Isotropy and time-independent perfect plasticity (absence of hardening)158

with a von Mises yield criterion are assumed for the matrix material:159

ė∼= ė∼e + ė∼p

e∼e =
1+ν

E
s∼−

ν

E
(trs∼)1∼

svm =

√
3
2

s∼
dev : s∼

dev

f (s∼) = svm−R0 ≤ 0

ė∼p = ṗ
∂ f
∂ s∼

(4)

with s∼
dev the deviatoric part of the rotated Cauchy stress tensor s∼, svm the equivalent von Mises stress and160

ṗ =
√

2
3 ė∼p : ė∼p playing the role of the plastic multiplier. The Young modulus, the Poisson ratio and the yield161

strength are respectively chosen as E = 200GPa, ν = 0.3 and R0 = 500MPa, hence R0/E = 0.0025. The162
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z

(a) Random microstructure R1 with 27 voids (FE mesh with 255628 nodes).

x

y

z

(b) Random microstructure R2 with 27 voids (FE mesh with 176982 nodes).

x

y

z

(c) Unit cell with one void.

x

y

z

(d) Microstructure lattice with 27 voids on a cubic lattice.

Fig. 1: Meshes of some microstructures repeatedly used in the study.
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cumulative plastic strain is defined as:163

p =
∫ t

0
ṗdt (5)

where t is actually a fictitious time in rate-independent plasticity, acting as an increasing loading parameter.164

During the finite element analysis, this constitutive law is integrated at each quadrature point of the finite165

element mesh by an implicit Euler method, then the global static equilibrium is solved in total Lagrangian166

formulation by a Newton-Raphson scheme with a consistent tangent matrix.167

2.3 Boundary and loading conditions168

The boundary and loading conditions follow that of Ling et al. (2016). Periodic boundary conditions are applied169

on the sides of the cube (Besson, Cailletaud, et al., 2009). The displacement field u should therefore have the170

form:171

u = (F̄∼ −1∼) · x 0 + v (x 0) (6)

with F̄∼ the average deformation gradient, and v a displacement fluctuation field, periodic and with zero average

over the cell. The periodicity of v and the anti-periodicity of traction vectors mean that:

v (x +
0 ) = v (x−0 ) (7)

σ∼ ·n (x
+
0 ) =−σ∼ ·n (x

−
0 ) (8)

if x +
0 and x−0 represent two homologous points on opposite sides of the periodic mesh and n (x 0) represent the172

outward-pointing normal to the mesh boundary at x 0. In this formulation, the degrees of freedom are the three173

components of the displacement fluctuation field for each node of the mesh and the nine components of F̄∼ (or174

rather of E∼ = F̄∼ −1∼).175

The macroscopic Boussinesq (or first Piola-Kirchhoff) and Cauchy stress tensors are defined by:

S̄∼ =
1

V0

∫
V0

S∼dV0 =
1− f0

V0

∫
V matrix

0

S∼dV0 (9)

σ̄∼ =
1
J̄

S̄∼.F̄∼
T (10)

where J̄ = det
(
F̄∼
)

and V0 is the volume of the cell (matrix and defects) in the initial configuration. The integration176

on V0 implicitly considers that stress is well-defined and identically zero in the voids.177
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The simulations are carried out at constant (macroscopic) stress triaxiality and Lode parameter. These

quantities are here defined as:

T =
tr σ̄∼

3σ̄vm
(11)

L =
2σ̄2− σ̄1− σ̄3

σ̄1− σ̄3
(12)

where σ̄eq is the von Mises equivalent stress calculated from σ̄∼ and σ̄1 ≥ σ̄2 ≥ σ̄3 (with σ̄1 > σ̄3) are the three178

eigenvalues of σ∼ . L =−1, L = 0 and L = 1 respectively correspond to states of generalized tension, shear and179

compression. An alternative definition of a Lode parameter with L = 1 for tension and L =−1 for compression180

can also be found in literature (e.g. Barsoum and Faleskog (2011) and Wong and Guo (2015))181

To ensure that T and L remain constant during the simulation, a special macroscopic spring element was182

developed by Ling et al. (2016). It acts on the Ei j degrees of freedom, and its reaction forces are calculated so183

that σ̄∼ keeps the following diagonal form throughout the simulation:184

σ̄∼ =


σ̄1 0 0

0 σ̄2 0

0 0 σ̄3

= σ̄11


1 0 0

0 η2 0

0 0 η3

 (13)

where η2 = σ̄2/σ̄1 and η3 = σ̄3/σ̄1 are prescribed constants which define the stress state. Therefore the185

eigenvectors of σ̄∼ are collinear to the three axes of the cube.186

Unlike Barsoum and Faleskog (2011), Dunand and Mohr (2014), Wong and Guo (2015), and Zhu, Engelhardt,187

et al. (2018) but like Zhu, Ben Bettaieb, et al. (2020) and Guo, Ling, et al. (2020), we chose not to consider188

the effect of a shear stress component (for instance σ̄12) for computational cost reasons. However the cubic189

cell exhibits cubic symmetry and has an anisotropic behavior. The additional stress component could allow190

different loading orientations with identical T and L values. The consequences of this choice will be discussed191

in section 5.1.192

To prevent degeneracy of solutions due to rigid body motion, a global translation and a global rotation of the193

cube should be fixed. The translation is taken care of by fixing a vertex of the cube. For the rotation, a possible194

method is to impose three additional constraints on the average deformation gradient F∼ . For instance F∼ can be195

supposed symmetric, as done by Ling et al. (2016):196

F̄12 = F̄21 F̄23 = F̄32 F̄13 = F̄31 (14)
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Another method is presented and discussed in appendix B.2.197

With the aforementioned conditions, the simulation can be strain-controlled by specifying only the average198

strain along the first axis E11 = F̄11−1. We impose E11 = ε̇t, with ε̇ an arbitrary strain rate (the value can be199

arbitrarily chosen, as the plasticity is time-independent). At the beginning of the simulation t = 0, the cell is200

undeformed, and F̄∼ = 1∼.201

3 Description of a coalescence indicator202

3.1 Typical results of a computation203

With the method described in the previous subsection, simulations can be carried out for several loading204

conditions. In this study, we are interested in the evolution of several quantities at failure. However defining205

ductile failure and detecting it during the simulation is not straightforward. To illustrate this issue, some206

enlightening simulation results will be described first.207

Three simulations on the microstructure R1 were carried out in generalized tension (L = −1) at three208

triaxiality levels T = 0.8, T = 1 and T = 1.4. The figure 2a compares the macroscopic Cauchy and Boussinesq209

stress components along the main loading axis (the marker on the curves corresponds to the indicator described210

later in section 3.3). The three loading conditions lead to a similar evolution of stress. The stress maximum is211

reached shortly after the beginning of the computation (for E11 < 0.01) then the stress decreases monotonously212

and almost linearly. However, at a critical strain that depends on the loading condition, the decrease in stress213

suddenly accelerates and the unit cell quickly loses all its load-bearing capacity (at approximately E11 = 0.5,214

0.35, 0.18 for T = 0.8, 1, 1.4 respectively). This event can be thought as the failure of the cell. Moreover, at the215

same strain as the onset of stress drop, the transverse strain E22 stabilizes (fig. 2b). This macroscopic failure is216

also related to the behavior at a more microscopic level. Figure 2 shows the cumulative strain field p shortly217

after this failure, for T = 1: plastic strain is concentrated in a band, mostly parallel to a side of the cube (and218

perpendicular to the main loading axis) but its exact shape fits closely the distribution of voids.219

Although the stress decrease acceleration is clearly visible on the stress-strain plots in generalized tension, it220

is difficult to define its exact location so as to determine the precise failure onset and compute relevant physical221

quantities at this instant. Moreover the stress decrease does not generalize to shear-dominated loading conditions.222

Therefore a more precise failure indicator remains to be determined.223
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(a) Evolution of stress for three triaxiality levels at L =−1.
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(b) Transverse strain for three triaxiality levels at L =−1.
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(c) Cumulative plastic field after coalescence for T = 1, L =−1.

Fig. 2: Typical computation results for the R1 microstructure.

3.2 Available failure indicators in the literature224

Several criteria for ductile failure in a unit cell have been developed, and are reviewed for instance by Zhu,225

Ben Bettaieb, et al. (2020). The earliest approaches were purely geometrical: Brown and Embury’s (1973)226

criterion determines when strain bands are oriented at 45◦ relative to the main loading axis, whereas McClintock227

(1968) and Tvergaard and Needleman (1984) (who modified Gurson’s (1977) model) consider a critical porosity.228

Following Needleman and Tvergaard’s (1992) work, a class of criteria determines the instant when strain is229

no more homogeneous and concentrates in the ligaments between voids. These criteria compare the norm230

of the strain rate in a localization band and its value outside the band (or the average value throughout the231

unit cell): if the ratio is higher than an arbitrarily chosen value, failure is said to have been reached. Such232

criteria are used for example by Barsoum and Faleskog (2007) or Dunand and Mohr (2014). Similarly, Luo233

and Gao (2018) and Vishwakarma and Keralavarma (2019) consider unit cells composed of several layers and234

force strain localization to happen in the central one (because the external layers contain smaller voids or no235
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voids at all): failure can then be monitored by comparing the behavior of the layers. Another class of criteria236

determines when a maximum stress or force is reached. Such criteria can be derived by limit analyses, for237

instance Thomason (1985), Benzerga and Leblond (2014) or Morin, Leblond, Benzerga, and Kondo (2016).238

Guo and Wong (2018) interpreted the maximum of an effective force in terms of Rice’s (1976) criterion on239

strain localization. Another approach, adopted by Koplik and Needleman (1988) and used for example by Ling240

et al. (2016) defines coalescence as the transition to a specific strain state: in coalescence, ligaments are in a241

state of uniaxial straining (whereas the rest of the cell is rigid and hardly deforms). Coalescence could also242

be interpreted in terms of plastic and elastic energy, as done by Wong and Guo (2015). A last approach was243

proposed by Zhu, Ben Bettaieb, et al. (2020) and involves computing the macroscopic acoustic tensor in order244

to directly apply Rice’s (1976) criterion on strain localization.245

However, as pointed for instance by Tekoğlu et al. (2015), Guo and Wong (2018) or Zhu, Ben Bettaieb, et al.246

(2020), the above criteria actually described two different physical processes: strain localization and coalescence.247

During strain localization, strain concentrates in narrow bands, which can be interpreted as a loss of ellipticity,248

according to Rice’s (1976) analysis. As stated previously, Guo and Wong (2018) establish a link between strain249

localization (through Rice’s criterion) and maximum force criteria. Nonetheless, the more direct application250

of Rice’s criterion by Zhu, Ben Bettaieb, et al. (2020) detects localization significantly later than Guo and251

Wong’s (2018) interpretation. On the other hand, coalescence represents the fusion of several voids into a unique252

larger void during ductile failure. However the material model described in this article contains no ingredient253

to represent explicitly this process of coalescing voids. The state of coalescence can be deduced nevertheless254

from the FEM results: at some point in the loading, the cell stops thinning and the plastic flow inside becomes255

macroscopically uniaxial according to Koplik and Needleman (1988).256

As the figure 2a shows, the cell’s failure, defined by the sudden acceleration of the stress decrease, is257

incorrectly predicted by the instant of maximum force applied on the cell (with our choice of periodic boundary258

conditions, this force is here represented by S11). Due to the absence of hardening, the maximum of S11 happens259

at the beginning in the simulation, much earlier than the sudden stress drop. On the other hand, this stress drop260

occurs simultaneously with the stabilization of deformation in the 2-direction transverse to the main loading261

1-axis, and can thus be associated with coalescence: the stabilization of the average transverse deformation262

indicates that the macroscopic strain becomes purely uniaxial. Coalescence thus seems an accurate failure263

indicator in this situation. According to Zhu, Ben Bettaieb, et al. (2020), an ellipticity loss approach based on the264

computation of the macroscopic acoustic tensor could also give sensible values of failure strains. This criterion265

was found to predict slightly earlier failure than a coalescence indicator. However Morin, Blystad Dæhli, et al.266
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(2019) tried to apply coalescence and strain localization approaches to match experimental results; both gave267

acceptable results, with slightly better results for coalescence. Therefore we will focus on the coalescence268

approach.269

3.3 Failure indicator based on the loss of full rankedness of ˙̄F∼270

The criterion of the stabilization of transverse displacement, as used by Ling et al. (2016), suffers from two main271

drawbacks. In a random population of voids, strain localization bands might not be parallel to a face of the cube,272

so monitoring E22 with respect to E11 might not detect coalescence. Moreover, this criterion is limited to the273

detection of coalescence by internal necking where voids coalesce in the plane orthogonal to the main loading274

axis. However, for shear dominated loading conditions (when the Lode parameter is close to zero), coalescence275

is known to occur in shear bands (Barsoum and Faleskog, 2007; Barsoum and Faleskog, 2011). We generalize276

here the stabilization of transverse deformation by noting that for both internal necking and shear, deformation277

gradient has a specific form during coalescence. After coalescence, there exist orthogonal unit vectors e and e ′278

such that F̄∼ = 1∼+ ε̇t e ⊗ e for uniaxial straining and F̄∼ = 1∼+ ε̇t (e ⊗ e ′+ e ′⊗ e ) for pure shear. In both cases,279

det
(

˙̄F∼
)
= 0. Therefore, as coalescence takes place, det

(
˙̄F∼
)

should vanish.280

This behavior of det
(
Ḟ∼
)

should be compared to the homogeneous plastic deformation case (which is an281

approximation, since strain may be concentrated in some ligaments). Let us then consider the function:282

δ (t) = ε̇
−3(1+ ε̇t)3det

(
˙̄F∼
)

(15)

which compares the evolution of det
(

˙̄F∼
)

to its theoretical evolution in the case of homogeneous compressible283

plastic flow. A derivation of the expression of δ and an example can be found in appendix A. Therefore,284

if δ (t)→ 0, det
(

˙̄F∼
)

decreases faster than expected by homogeneous plastic flow, and localization can be285

considered to have taken place.286

The onset of failure can then be defined as the first instant tc such that:287

δ (tc)≤min(Amax
t<tc

δ (t),B) (16)

where A = 0.05 is a threshold comparing the maximal and current values of δ and B = 0.005 is an absolute288

threshold. As shown by the α2 factor in equation (33), δ keeps smaller values for simulations with L close to289

zero. In these cases, the relative threshold (depending on A) was found to be inappropriate due to numerical290
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errors, and an absolute threshold B (consistent with the value of A) was implemented; it is only needed for291

loading conditions with |L|< 0.3. A sensitivity analysis with respect to the empirically chosen values A and B292

is carried out in appendix A and shows that the results which will be presented in section 4 are not strongly293

influenced by the values chosen for A and B. The indicator is therefore robust with respect to the choice of these294

parameters.295

As this criterion using the δ function relies only on macroscopic quantities (at cell-level), it is easy to296

compute and does not make any assumption on the position and orientation of the possible strain localizations.297

Moreover it can be used as a landmark in order to stop the simulations shortly after failure in order to spare298

computation time. However, the indicator detects a loss of full rank of the deformation gradient rate, and is299

therefore not adapted to loading conditions where the deformation gradient rate is intrinsically of rank 1 or300

2. This is especially the case for L = 0 for which the material is initially in shear, so that the indicator is301

activated in the elastic regime and predicts an early failure. This is acceptable for a perfectly plastic von Mises302

matrix, but leads to an underestimation of the strain at failure for materials whose hardening behavior delays303

coalescence. Moreover it is not able to represent a third and rarer form of coalescence known as necklace304

coalescence. This form was studied by Gologanu et al. (2001) for a cylindrical unit cell with an axisymmetric305

loading corresponding to our L = 1 situation. The coalescence between voids takes place along the cylinder axis,306

which corresponds in our situation to the third and least stressed axis. Necklace coalescence is not associated to307

a loss of full rank, so the δ indicator cannot be activated. However for the loading conditions involving overall308

stress triaxiality considered in this work, the proposed indicator has been found to be relevant in all cases.309

The failure onset tc can be determined with this method for the different loading conditions, and allows310

to define several quantities at the onset of coalescence: deformation at coalescence Ec = E11(tc), stress at311

coalescence σc = σ̄11(tc) and porosity at coalescence fc = f (tc). In the following, the evolution of those312

quantities and their dispersion due to the randomness of microstructures will be studied with respect to T and L313

parameters.314

4 Results315

4.1 Response of a microstructure subjected to proportional loading with different stress triaxiality and Lode316

parameter values317

The random microstructures constructed in section 2.1 have two main differences in comparison to standard318

unit cells: they contain several voids and these voids are located irregularly within the cell. In this section, the319
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effect of these differences on the behavior of cells is investigated. Several microstructures are considered and320

subjected to various loading conditions (defined by T and L). Their failure behavior (evolution of Ec, fc and321

σc with respect to T and L) are then compared. The four microstructures shown on figure 1 are analysed: two322

random 27-void cells R1 and R2, a unit cell, and a 27-void cell, lattice, where the voids are distributed following323

a 3×3×3 cubic cell. The four microstructures have the same porosity 6%, the same pore size and are meshed324

with identical mesh size requirements in order to limit the influence of mesh convergence on the comparison325

(the mesh of the unit cell is thus composed of significantly fewer elements than the other three microstructures).326

Mesh size will be further discussed in section B.1. The lattice cell allows to separate effects due to the presence327

of several voids in the cell from those due to the irregular void distribution.328

Although the failure behavior on the whole T −L space should be explored, it is instructive to first consider329

constant triaxiality or constant Lode parameter slices of this space. Let us concentrate first on axisymmetric330

loading cases characterised by fixed L = −1, as in Ling et al. (2016). We focus on the zone of intermediate331

triaxiality T ∈ [0.7,2.0], as usual in unit cell studies (Guo and Wong, 2018; Vishwakarma and Keralavarma,332

2019). We did not study the very low triaxiality regime T < 0.4 where the phenomenon of void collapse takes333

place (Bao and Wierzbicki, 2004; Liu et al., 2016). Triaxiality levels T ∈ [0.4,0.7] were not studied so as to334

limit the duration of simulations: coalescence generally happens with the same mechanisms as for T > 0.7, but335

at significantly higher strain values.336

The evolution of Ec, fc, and σc with respect to T are shown on the left side of figure 3. The four microstruc-337

tures display globally similar responses: Ec decreases monotonously with increasing T while σc increases338

linearly with T . fc behaves similarly to Ec, except for the microstructure R2: fc is still a mainly decreasing339

function of T but a local maximum is found at T = 1.2. Note that the evolution of Ec with respect to T is340

smoother and less noisy than that of σc (for T = 0.8, the stress value for the lattice cell is for instance particularly341

low, when compared to the values at T = 0.6 or T = 1.0). A possible explanation is that, unlike E11 which is342

linearly increasing with time, σ̄11 and f vary rapidly around the instant of coalescence: σ̄11 decreases sharply343

around the coalescence (as evidenced by figure 15). Note also that for R2, the porosity at coalescence for T = 1.2344

is larger than for T = 1.1, in contradiction to the overall evolution. Coalescence is detected at approximately345

the same strain in these two conditions, but as the porosity grows faster with increasing triaxiality, the porosity346

at coalescence is larger for T = 1.2 than for T = 1.1. This slight deviation from the overall evolution with T347

seems due to the randomness of the void population.348

The evolution of strain at coalescence Ec was plotted in a logarithmic scale, so as to illustrate the exponential349

decrease for each microstructure. According to Rice and Tracey’s (1969) results, a spherical void typical growth350
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Fig. 3: Evolution of strain Ec (top), porosity fc (center) and stress σc (bottom) at coalescence for various
microstructures, with respect to T in generalized tension L =−1 (left column) or with respect to Lode parameter,
at constant triaxiality T = 1 (right column). The points with arrows at L = 1 (right column) correspond to the
last data point from simulations that diverged or for which the indicator was not reached: these points correspond
to lower bounds (for Ec and fc) and upper bounds (for σc, as σ̄11 is decreasing with E11) for the values at failure,
if it does exist.
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rate varies as exp(3T/2). If we assume that coalescence happens at a given porosity (as for Tvergaard and351

Needleman (1984)), Ec should vary as exp(−3T/2). The evolution of strain at coalescence for the random352

microstructures, the unit and the lattice cell can be well represented by this simple relation, as shown by the353

comparison with the straight line of slope −3/2.354

The evolution of failure-related quantities with respect to triaxiality, at fixed L =−1 is thus very similar355

for the various studied microstructures, although some differences are visible. The situation is different if the356

triaxiality T = 1 is fixed and the coalescence behavior is studied with respect to the Lode parameter (the whole357

range L ∈ [−1,1] is explored). The results of the simulations are shown on the right side of figure 3. Values358

for L = 1 are indicated with superimposed arrows but should be taken with caution because, for these loading359

cases, the simulations diverged or the failure indicator was not reached; the data for the last computed point360

is indicated to serve as lower or upper bounds for the real value at coalescence, if it exists. The case L = 1,361

which corresponds to an axymmetric loading where the two largest principal stress components are equal, is362

associated by Gologanu et al. (2001) to the necklace coalescence. Our criterion described in section 3 is not able363

to represent this type of coalescence, which is not associated to a loss of full rank of the deformation gradient364

rate. Examining the stress strain curve of the unit cell in the case L = 1 (not shown here for brevity) shows a365

stabilization of stress which could be linked indeed to a coalescence event, undetected by the δ indicator.366

If we do not consider anymore the values for L = 1, the unit and lattice cells behave in a similar way (the367

difference between these two types of cells, which should represent the same void configuration, is due to the368

meshing): Ec increases slowly with L. This type of evolution was reported by Zhu, Ben Bettaieb, et al. (2020)369

and Zhu, Engelhardt, et al. (2018) and by Guo and Wong’s (2018) localization indicator (when σ̄∼ does not have370

shear components). However, Barsoum and Faleskog (2011), Wong and Guo (2015), Dunand and Mohr (2014),371

Guo, Ling, et al. (2020), Zhu, Engelhardt, et al. (2018), and Guo and Wong (2018) (for the latter two, in more372

general loading cases), report that Ec is a convex function of L, with a minimum near L = 0. Yet, in our case, a373

sharp decrease in ductility is observed for L close to zero. This behavior in generalized shear corresponds to the374

expected behavior of a perfectly plastic von Mises material which localizes immediately in shear.375

However the random microstructures R1 and R2 do not exhibit the same evolution as the unit cell. Three376

zones can be observed on the Ec−L plot for the R1 microstructure (schematized in figure 4). The first zone377

corresponds to L ∈ [−1,−0.7], in which Ec increases up to a maximum value on a cusp. For L ∈ [−0.7,0.4], Ec378

is convex in L and minimal for L = 0. The third zone corresponds to L ∈ [0.4,1[, where Ec decreases from its379

maximum at L = 0.1 and stabilizes.The zone boundaries correspond to local maxima (significantly higher than380

the rest of the data points) of Ec. They are associated to slope discontinuities, although Ec remains continuous.381
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In the following, these three zones will be referred to as: Low Lode parameter Extension Mode Zone (LLEMZ),382

Shear Mode Zone (SMZ) and High Lode parameter Extension Mode Zone (HLEMZ); the rationale behind383

these names will be made clearer after section 4.2. A similar decomposition in three zones can be seen for384

the microstructure R2 although for different zone boundaries (L =−0.9 and L = 0.55). To the knowledge of385

the authors, such an evolution of Ec with respect to L was not found in literature. Although Guo and Wong’s386

(2018)’s coalescence criterion yields a non-smooth evolution of Ec, there is only one local maximum, for L > 0387

(with our definition of L). An explanation for the existence of these three zones will be proposed in section 5.1.388

An asymmetry between positive and negative values of L can also be observed: ductility Ec is higher in389

generalized compression than in tension. This asymmetry is present in previously mentioned studies, but the390

sign of the difference varies among them. Our results are consistent with Zhu, Ben Bettaieb, et al. (2020) and391

Dunand and Mohr (2014) but Barsoum and Faleskog (2011), Wong and Guo (2015), and Guo and Wong (2018)392

have found cells more ductile in generalized tension than in compression (taking into account the different393

definitions of L).394
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Fig. 4: Identification of three ductility zones, with respect to L (R1 microstructure, constant triaxiality T = 1).

Similar behaviors and differences between the unit and lattice cells on the one hand and the random395

microstructures on the other hand can be observed on the results for porosity at coalescence. For the stress at396

coalescence, the asymmetry between L < 0 and L > 0 is clear. There is no significant difference between the397

microstructures at L > 0, for L < 0; σc is almost constant for the lattice and unit cells, whereas it increases398

slightly with L for the random microstructures. No zone boundaries can be easily identified. The theoretical399

values for σc obtained for a von Mises material failing when σvm = R0 are also represented. The type of evolution400
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agrees with the results for the unit cells, but due to the porosity and the complex coalescence behavior, stress401

levels are significantly lower for the cells, and the slope of σc with respect to T for the simulations at constant402

L =−1 also differs.403

In contrast to the unit and lattice cells, the random microstructures display several zones on their Ec−L404

curve, which could be linked to different coalescence behaviors. The different zones for the microstructure R1405

are also shown in the T −L space in figure 5. Multiple simulations were carried out for T ∈ [0.7,1.1]. A simple406

interpolation using Gaussian Process Regression (as implemented in Scikit-learn (Pedregosa et al., 2011)) is407

proposed and allows for an easier visualization in the Ec−T −L space, although cusps at zone boundaries are408

smoothed. The results of the simulations are also projected in the Ec−L plane. The triaxiality has two effects on409

Ec: Ec globally decreases with higher triaxiality levels, in agreement with the previous study at fixed L =−1,410

and the position of the zone boundaries is modified (at T = 1.1, the central zone is wider than at T = 0.7).411
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Fig. 5: Strain at coalescence in the T −L space, for the R1 microstructure. Left: Coalescence surface interpolated
by Gaussian process regression for multiple loading cases (simulations shown as red points). Right: Projection
of the simulation results on the L−Ec plane.

4.2 Relation to localization modes412

Several ductility zones were identified on the strain at failure curves for the random microstructure cells, in413

contrast to unit cells. However the Ec curves only give macroscopic information and shed no light on the414
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mechanisms inside the cell responsible for the drastic changes in strain at coalescence. We now investigate the415

relation between the presence of these zones and the aspect of strain fields inside the cell.416

The figure 6 shows, for each microstructure, the cumulative plastic strain field p shortly after coalescence417

(for E11 ' 1.1Ec). Each image corresponds to a different L value (T = 1 is fixed). The images are inserted on418

Ec−L curves in order to better correlate macroscopic and field information.419

All the p fields display zones of higher strain or even strain localization (as localization is known to happen420

before coalescence (Guo and Wong, 2018)). These zones are organized along approximately planar bands. For421

both the unit and lattice cells, these bands are exactly planar and correspond to a crystallographic plane of422

the void lattice. In the lattice cells, the three rows of voids are equivalent, but this symmetry is broken after423

coalescence. For random microstructures, the bands are more complex: a base plane can be identified but bands424

are distorted by void distribution so as to include more voids.425

For a given microstructure, the orientation of the bands is not constant with L. Two different orientations can426

be distinguished. In the first one the band is roughly parallel to a face of the cell (and perpendicular to the main427

loading axis). For the cases with L' 1, the localization pattern is more complex and is composed of several428

bands. The second type of orientations is characterized by strain bands of overall direction approximately 45◦429

relative to the faces of the cell (although their precise shape is more complex). These two orientations are partly430

constrained by the periodic boundary conditions because strain localization bands should be compatible with the431

periodicity of the cell. Notice that bands oriented at 45◦ are only found for Lode parameters close to zero (and432

only for L = 0 in the regular unit and lattice cells) whereas parallel orientation is found for higher values of |L|.433

Observing more carefully the relation between the orientation of the bands and the macroscopic Ec−L curves434

for the random microstructures shows that strain band orientation is systematically associated with ductility435

zones: the 45◦ orientation is only found in the SMZ whereas parallel orientations are found in the LLEMZ and436

HLEMZ. Therefore the transition between ductility zones can be linked to a change in strain localization mode:437

between extension mode, with strain bands at parallel orientation, and shear mode characterized by the 45◦438

orientation.439

To better characterize the transition between ductility zones, as explained by p fields, the similarity between440

the p field at coalescence for a given value of L and three reference coalescence p fields for L ∈ {−1,0,0.9}441

is here quantified for the R1 microstructure. Each loading case is considered a paragon of its ductility zone442

(respectively the LLEMZ, the SMZ, and the HLEMZ). If two p fields are similar, they should represent a similar443

coalescence mechanism. A similarity indicator is defined as follows. The p field after coalescence (at strain444

E11 = 1.1Ec), as produced by a FEM computation, is represented by the vector [P] of p values at all Gauss445
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Fig. 6: Link between Ec evolution with respect to L and cumulative plastic strain field shortly after coalescence
(at strain E11 = 1.1Ec, which depends on the simulation). Fixed triaxiality T = 1

points (for the R1 microscructure, the [P] vectors are around 7×105 components long). The relative spatial446

position of Gauss points is irrelevant here. For two vectors [P] and [P′] representing p fields on the same mesh447

and with the same ordering of Gauss points, the similarity can then be defined as the angle (or rather its cosine)448

between [P] and [P′]:449

cos(θPP′) =
[P] · [P′]

||[P]|| · ||[P′]||
(17)

with ||[P]|| the standard euclidean 2-norm of [P]. If [P] and [P′] are proportional, cos(θPP′) = 1. This quantity is450

extracted from Z-set computations using tools developed by Lacourt et al. (2020).451

The evolution of the similarity indicator cos(θ) to the reference strain fields L=−1, L= 0, L= 0.9 is plotted452

in figure 7. The three reference strain fields are not orthogonal, so significant overlap between the indicators is453

possible. As strain fields at L =−1 and L = 0.9 are similar (cos(θ) = 0.85), their similarity indicator shows454

comparable behavior. However the evolution of the indicator for L = 0 is reversed. The three ductility zones455

defined earlier are apparent on the figure. For the LLEMZ L ∈ [−1,0.7], the contributions of L =−1 and L = 0.9456

are high and almost constant whereas the contribution of L = 0 is lower but increasing. On the contrary, in the457
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SMZ [−0.7,0.5], strain fields are predominantly linked with L = 0 and little with L =−1 or L = 0.9. In the last458

zone, HLEMZ, above L = 0.5, the similarity to the L = 0 strain field decreases, whereas L =−1 and L = 0.9459

contributions are higher. Notice however that the L =−1 similarity indicator is high at L = 0.5 and decreases460

with L, unlike the L = 0.9 indicator. For L' 0.5, the situation is close to that of L =−1, whereas at very high L,461

another mechanism could come into play, especially the competition between two perpendicular strain bands462

observed earlier at very high L. Around the ductility zone boundaries, strain fields quickly change from one463

mode to the other. This competition between modes could explain the cusps in strain at failure observed at zone464

boundaries.465
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Fig. 7: For the R1 microstructure, similarity between the coalescence p field at varying L (T = 1 is fixed) and
three reference p fields obtained at L =−1, L = 0, L = 0.9.
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4.3 Dispersion due to microstructure sampling466

In the previous two sections, two random microstructures were considered and the evolution of coalescence-467

related quantities with respect to loading conditions were studied, showing significant differences when compared468

to the unit cell. Rather than choosing fixed microstructures and varying T and L, another approach is to treat Ec,469

fc and σc as random variables (depending on the microstructure), and study their statistics.470

N = 20 microstructures with 27 voids and initial porosity f0 = 6% ( f0 is not a random variable) were471

randomly and independently generated. Each of them was subjected to the same loading conditions (T,L) ∈472

{(1,−1), (1,−0.5), (1,0.5), (1.5,−0.5)}. The results for Ec, fc and σc are shown in figure 8 as box plots, and473

are compared to the values for the unit cell. A strong relative dispersion is present for all loading cases: the474

ratio of the standard deviation to the average is 34%, 59%, 55% and 62% respectively. This indicates a strong475

influence of the microstructure on the coalescence behavior. The results from unit cells do not represent well476

the behavior of the multiple void cells, and lead for instance to an overestimation of the stress at coalescence.477

Dispersion also depends on the loading conditions: for T = 1, the case L =−1 shows lower interquartile range478

than the cases L = ±0.5. This can be linked to the proximity of zone boundaries for the latter cases, as Ec479

was shown to vary sharply near those boundaries. Moreover, and especially for L = 0.5, some microstructures480

coalesce in tensile mode whereas others coalesce in shear mode (compare for instance the strain fields of R1481

and R2 in figure 6); the possibility of different coalescence modes may increase dispersion. At higher triaxiality482

T = 1.5,L =−0.5, the dispersion is reduced for Ec and fc when compared to T = 1,L =−0.5 but the relative483

dispersion is not. This is due to the overall effect of coalescence appearing earlier at high triaxiality. Besides, the484

interquartile range for σc is comparable for both triaxiality levels.485

The previous results dealt with a small number of loading conditions. In order to determine an effective486

model of coalescence in random multiple-void cells for all loading conditions, the T−L space should be explored487

more extensively, while still keeping a large enough set of microstructure realizations. As in section 4.1, multiple488

simulations were carried out for T ∈ [0.7,1.1] and L ∈ [−1,1] on five random microstructures among which R1489

and R2 (keeping 20 realizations would have been computationally too expensive). The same loading conditions490

were tested for each microstructure. The results for Ec are shown in figure 9. The minimal, maximal and average491

values are first plotted for T = 1. In agreement with the preceding results, significant relative dispersion is492

present, and its extent depends on L: dispersion is particularly strong near L = 0.5, whereas it is negligible493

for L = 0 (all the microstructures agree on almost immediate localization for generalized shear). Despite the494

dispersion, the overall aspect of the Ec curve, as described in the previous section, and its decomposition in495
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Fig. 8: Dispersion of strain, porosity and stress at coalescence for different loading conditions, when considering
multiple (N=20) random populations of 27 defects (? : comparison with the results for unit cell)

ductility zones, are still observable. An interpolation by Gaussian Process Regression of the results in the T −L496

space is also proposed, based on the average value of the five microstructures at each loading conditions. The497

aspect is similar to that of figure 5.498
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5 Discussion499

In this section, we discuss the significance of the results presented up to now, and assess how representative the500

results are and how far they can be generalized. First we compare the failure indicator proposed in section 3501

to Wong and Guo’s (2015) coalescence criterion, in order to interpret the difference between unit and random502

cells. The dispersion due to the random microstructures is then statistically studied with increasingly large void503

populations. Finally the influence of a work-hardening material is also addressed.504

5.1 Interpretation of the proposed failure indicator505

In order to better understand the failure mechanism identified by the δ indicator and the observed difference506

between the unit cells and the random microstructures, the δ indicator is compared to another failure criterion507

reported in the literature. We focus on Wong and Guo’s (2015) energy-based coalescence indicator, although508

Zhu, Ben Bettaieb, et al.’s (2020) and Dæhli et al.’s (2020) approach with Rice’s (1976) criterion could also be509

useful. According to the former indicator, coalescence is associated to concentration of the plastic deformation510

in the ligament whereas elastic unloading takes place elsewhere. Therefore coalescence can be detected by511

monitoring the evolution of the plastic Ẇp and elastic Ẇe work rates and the onset corresponds to the minimum512

of the ratio Ẇe/Ẇp.513

For our cells, the corresponding work rates can be computed by the following equations:

Ẇp =
∫

V
σvm ṗdV (18)

Ẇtot =V0 S̄∼ : ˙̄F∼ (19)

Ẇe = Ẇtot −Ẇp (20)

The plastic power can be computed either on the cell (with voids) or more easily on the matrix, since stress514

is zero in the voids. The total power, sum of the plastic and elastic parts, can be computed by only using515

macroscopic quantities, according to the results of homogenization theory (Besson, Cailletaud, et al., 2009).516

The figure 10 compares the failure onsets, as determined by the δ and the energy-based criteria, with respect517

to L, for the unit cell and the microstructure R1. For the unit cells, the energy criterion identifies a coalescence518

onset for all the simulations, and the trend is typical of Ec vs. L curves in the literature (for instance Zhu,519

Ben Bettaieb, et al. (2020)). Moreover the two criteria yield similar values of Ec, except for L = 0 where the520

δ -criterion predicts early failure as previously. The situation is more complex for the random microstructure. For521
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the extension mode zones of the curves, the two criteria also yield very similar results, so they can be thought to522

represent the same failure mechanism. On the other hand, the energy-based criterion fails to activate in the SMZ,523

so no coalescence is detected, according to Wong and Guo’s (2015) definition. The evolution of the power ratio524

Ẇe/Ẇp for the unit and the R1 cells, at L =−1 and L ' 0.2 (in the SMZ for R1), is shown on the figure 11a:525

contrary to the unit cell and the L =−1 case for R1, the L = 0.2 does not show any minimum of the power ratio.526

In all simulations, the elastic power does not become negative because, unlike Wong and Guo’s (2015) unit527

cell, our microstructures do not possess large void-free regions, in which an elastic unloading can take place.528

Moreover the simulations also differ by the evolution of porosity (fig. 11b): unlike the other three cases, the529

random microstructure with L = 0.25 does not show any acceleration of void growth during failure, which is530

typically observed for coalescence. This comparison shows that the δ criterion acts as a coalescence indicator531

in the LLEMZ and the HLEMZ, and correctly predicts failure in the SMZ according to another mechanism:532

localization along 45◦ bands in shear. As failure should happen quickly in the SMZ for a von Mises matrix, the533

results obtained for the δ indicator appear more accurate than those for a pure coalescence criterion.534
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Fig. 10: Comparison of the coalescence onset, as determined by the δ -indicator and the energy-based criterion.
All computations at triaxiality T = 1. The hatched zones correspond to simulations for which no minimum of
Ẇe/Ẇp was observed, and therefore no coalescence was identified by the energy-based criterion.

The existence of the three ductility zones and the lower ductility in the SMZ could actually be due to535

boundary conditions. As noted previously, two evolutions of Ec with respect to L are reported in the literature:536

in Barsoum and Faleskog (2011), Dunand and Mohr (2014), and Wong and Guo (2015), strain at coalescence is537
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Fig. 11: Comparison of the evolution of power ratio Ẇe/Ẇp (left) and of porosity f (right), for the unit and R1
cells in two loading cases: T = 1,L =−1 and T = 1,L = 0.25

minimal for L = 0 whereas it increases almost linearly for Zhu, Engelhardt, et al. (2018) and Zhu, Ben Bettaieb,538

et al. (2020). The difference between these two groups of studies is that the former consider a shear stress539

component in equation (13). Several loading conditions therefore correspond to the same triaxiality and Lode540

parameter, and the reported strain at coalescence is the minimum value over all tests at a given (T,L) couple.541

Coalescence therefore happens earlier than in the absence of shear stress, and this might lead to different542

responses, as pointed by Zhu, Ben Bettaieb, et al. (2020). Another point of view is that the cubic unit cells have543

an anisotropic localization behavior. Although the cubic cell paves space when periodic boundary conditions544

are enforced, the axes parallel to the sides of the cube remain privileged, and the response of the homogenized545

material displays anisotropy. As localization bands should be compatible with the periodic boundary conditions,546

they are always parallel or around 45◦ to one face of the cube (Coenen et al., 2012). Adding a shear stress547

component amounts to changing the principal loading directions relatively to the cube, and coalescence occurs548

when the most favorable band activates.549

In the present study, shear stress was not considered but for the random microstructures, it was shown550

that coalescence can happen either by a localization band perpendicular (corresponding to the LLEMZ and551

HLEMZ) or oriented at 45◦ to the main loading axis (for the SMZ). Therefore the random microstructures appear552

softer than the unit cells in that they allow several localization band orientations. The resulting response of the553

cell is then due to a competition between a limited number of coalescence modes (instead of the theoretical554

infinity of orientations considered by Barsoum and Faleskog (2011) for instance). The LLEMZ and the HLEMZ555
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correspond then to the evolution shown by Zhu, Engelhardt, et al.’s (2018) study, whereas the response of556

random microstructures in the SMZ near L = 0 is closer to that of unit cells in Barsoum and Faleskog (2011)’s557

study.558

5.2 Influence of the number of voids559

The microstructures considered in the above sections were composed of 27 voids. A small number of voids560

allows to investigate the effect of a cluster of pores whereas a sufficiently large number can provide results561

for an effective homogenized material. As pointed by Morin, Leblond, Benzerga, and Kondo (2016), the562

homogenization theory does not stricto sensu apply to coalescence, which takes place in a small area in the563

immediate vicinity of voids.564

For computational homogenization with a volume element (VE) approach, random microstructures should565

contain enough voids to reduce the uncertainty due to sampling and limit the influence of boundary conditions566

(as there is no intrinsic length scale, the size of the VE is only determined by the number of voids it contains).567

However the computation power required to simulate large cells with many voids, which lead to FEM problems568

with millions of degrees of freedom, is prohibitive if carried on dozens of loading conditions and microstructures.569

This problem is in part mitigated by the use of periodic boundary conditions: Kanit et al. (2003) showed570

that homogenized properties converge faster with VE size in this case than with kinematic or static uniform571

boundary conditions. Their study dealt however with elasticity and the extrapolation to coalescence properties572

is not possible yet. Hure (2021), who carried out simulations of cells with random voids up to coalescence,573

compared cells with different number of voids (up to 64) and reported that the maximum stress reached during574

the simulation stabilizes with the number of voids (indicating the existence of a representative volume element),575

but the stress at coalescence still shows dispersion between realizations. However only five simulations were576

performed for each number of voids, which is limiting for a statistical analysis of dispersion.577

In a complementary approach, we compare the strain at coalescence results for cells with different numbers578

of voids: 27, 64, 125. All cells are generated with the process described in section 2.1 and their porosity is579

always 6%; the meshing parameters are however adapted so that the ratio between void radius and maximum580

element size remains constant for all cells. There are typically 2×105, 6×105 and 1×106 nodes for meshes581

of cells embedding 27, 64 and 125 voids respectively. As the computational cost of the simulations increases582

with the number of voids, we only considered two loading conditions T = 1,L =−1 and T = 1,L =−0.5 and a583

smaller number of 125-void cells than the twenty 27-void cells already used in section 4.3. Examples of p fields584
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after coalescence for a microstructure with 125 voids (fig. 12) display very complex localization paths between585

voids, but still show a principal direction parallel to or at 45◦ from the faces.586

Dispersion results are shown in figure 13. For the T = 1, L = −1 case, dispersion is comparable for the587

three types of cells: a Brown-Forsythe test (Brown and Forsythe, 1974) was carried out to verify the equality of588

variances for the 27, 64 and 125-void groups of cells (this test and the following one use the Scipy implementation589

(Virtanen et al., 2020)). The statistical p-value is 0.19 so the hypothesis of equal variances cannot be rejected.590

The mean failure strain is significantly lower for 64 and 125-void cells than for 27-void cells, as proven by a591

one-way ANalysis Of VAriance (Heiman, 2001) between the three groups (p-value of 0.002). However for the592

T = 1,L =−0.5 loading case, the dispersion is significantly lower for the 64-void cell (Brown-Forsythe test593

between the three groups: p-value of 0.026). The average failure strain seems to decrease with the number of594

voids (an ANOVA test could not be performed due to the unequal variances)595

Therefore failure seems to begin earlier for cells with more voids. This could be explained by the higher596

probability of a favorable path for a localization bands when the number of voids grows. Variance remains high597

for all groups of cells, but it is possible that the number of voids reduces dispersion. The simulations evidence598

that the size of the volume element can exert an influence on the failure results. The above simulations therefore599

extend Hure’s (2021) study with the results from larger and more numerous cells (allowing a statistical analysis)600

and are in agreement with his findings. More simulations at an even higher number of voids could be carried out601

to reinforce the statistical significance of the previous conclusions.602

5.3 Influence of material behavior603

The results previously described hold for a perfectly plastic material. However hardening can mitigate the

effects of softening due to void growth, and delay coalescence. We here consider two other types of material

behavior characterised by their flow stress functions R(p) replacing the constant R0 used for perfect plasticity in

equation (4):

R(p) = R′0 +K pn (power law hardening) (21)

R(p) = R∞− (R∞−R′0)exp(−bp) (saturating exponential) (22)

with R′0 = 350 MPa, R∞ = 500 MPa, K = 343.5 MPa, n = 0.58, b = 10 or b = 200. The different yield functions604

are shown in figure 14a.605
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Fig. 12: Cumulative plastic strain fields after coalescence for a microstructure with 125 voids
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Fig. 13: Dispersion in the strain at coalescence for cells containing 27, 64, 125 voids, in two loading cases

For the R1 microstructure, at fixed T = 1 and varying L, a comparison of the strain at coalescence Ec606

between the three hardening behaviors is shown in figure 14b. On the one hand, for the power law hardening607

and the slow saturating exponential hardening b = 10, no central SMZ is observed (except a sudden drop near608

L = 0), and the evolution is quite similar to that observed for unit cells in section 4.1. On the other hand, if609

hardening saturates more rapidly, as for b = 200, the same response as in the perfectly plastic matrix case is610
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obtained. Therefore, hardening seems able to prevent the change of coalescence mode for intermediate values of611

L, at least if it does not saturate too quickly so as to provide a stabilization effect throughout the deformation612

process.613
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Fig. 14: Comparison of different hardening behaviors. (a): yield function for each hardening type. (b): Compari-
son of the Ec−L curves for each hardening type on the microstructure R1. All computations at fixed triaxiality
T = 1.

6 Conclusion614

In the present study, random microstructures made of identical spherical voids within an elastoplastic matrix were615

generated, and simulated at constant stress triaxiality and Lode parameter with periodic boundary conditions.616

The FEM simulations were carried out in a large strain framework up to coalescence. The major findings are the617

following:618

1. Failure was identified using an indicator based on the loss of full rank of the average deformation gradient619

rate, while taking into account the response in case of homogeneous deformation. The results of this indicator620

are consistent with other indicators reported by the literature but better captures shear dominated localization621

modes.622

2. Random microstructures show two failure modes, that differ by the orientation of the localization band:623

perpendicular to the main loading axis for an extension mode, or oriented around 45◦ for a shear mode.624
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Unlike unit and lattice cells, the shear mode is not limited to the immediate neighborhood of L = 0. The625

competition between these two modes leads to a non-smooth evolution of the strain at coalescence with626

respect to the Lode parameter, showing three zones on the Ec−L curve, with reduced ductility near L = 0.627

The difference between unit cells and random microstructures is reduced when the matrix is no more628

perfectly plastic, due to a stabilizing effect of hardening. However, the response with respect to T is similar629

for unit cells and random microstructures.630

3. When applying the same loading state to microstructures with similar characteristics, a significant dispersion631

is found in the results (up to 60% of relative dispersion for strain at coalescence). This strong dispersion is632

also found in simulations with a higher number of voids.633

If a model expressing coalescence quantities with respect to loading conditions is desired, using unit cells634

therefore appears to misrepresent the effective behavior of a material with a complex void distribution, with635

differences in the general evolution and oversight of the statistical aspects. Care should therefore be taken when636

applying results on unit cells to more complex applications.637

The present work could be extended in several ways. Firstly larger population sizes will be considered638

based on parallel computing, in order to improve the statistical representativeness of the presented results.639

Secondly a broader description of the mechanisms of coalescence in random microstructures will be reached by640

adding a macroscopic shear stress component to the loading state, so as to explore a greater variety of loading641

paths. Moreover the link between the proposed coalescence indicator and strain localization criteria such as642

macroscopic or local loss of ellipticity will also be investigated. Finally this work can be the basis to develop643

and calibrate an effective damage and plasticity model for materials containing randomly distributed pores. Hure644

(2021) proposed an example of such a homogenized model, but a new model could integrate the effects of the645

Lode parameter and the dispersion. However simulating enough loading cases and with sufficient statistical646

representativeness to completely explore the space of parameters is computationally expensive, especially as the647

effect of initial porosity should be taken into account. Therefore a strategy to construct a surrogate model with648

as reduced a number of required simulations as possible should be developed.649
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A About the δ indicator654

This appendix provides several complements about the δ indicator. Its expression is first derived by computing the homogeneous655

deformation of Green matrix. An example of application is then presented. Finally a sensitivity analysis regarding the threshold656

coefficients is carried out.657

A.1 Derivation of the expression for δ658

Consider a perfectly plastic volume element (neglecting here the elasticity) which deforms homogeneously when subjected to the659

loading conditions (13). In order to simply represent the porous nature of the cell, the material behavior will obey Green’s (1972)660

isotropic yield criterion (also used by Fritzen, Forest, Kondo, et al. (2013)):661

f (σ∼) = σeq−R0

σeq =

√
3
2

σ∼
dev : σ∼

dev +C(trσ∼)
2

(23)

with C a constant (C = 0 corresponds to a von Mises material, and for C = 1/2, there is no lateral contraction of the cube in tension).662

The other equations in equations (4) are unchanged, but they are applied here to macroscopic quantities.663

As the material behavior is isotropic, F̄∼ stays diagonal in the diagonalizing basis of σ∼ . Then F̄∼ can be written as:664

F̄∼ =


1+ vt 0 0

0 b2(t) 0

0 0 b3(t)

 (24)

where b2 and b3 are functions to be determined. As D̄∼ = sym( ˙̄F∼ F̄∼
−1

), and F̄∼ is diagonal, D̄∼ can be written as:665

D∼ = Ḟ∼F∼
−1 = diag

(
ε̇

1+ ε̇t
,

ḃ2

b2
,

ḃ3

b3

)
(25)

For a perfectly plastic Green material, the behavior law in (4) reads:666

D∼ =
ṗ

σeq

(
3
2

σ∼
dev +C(trσ∼)1∼

)
=

ṗ
σeq

(
3
2

σ∼ +(C− 1
2
)(trσ∼)1∼

)
(26)

D∼ is diagonal so there are three constants α1, α2 and α3 such that:

D∼ = diag(α1, α2, α3) (27)

α1 +α2 +α3 =
3Ctrσ∼

σeq
. (28)
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Combining (25) and (28) yields the system:

ε̇

1+ ε̇t
= ṗα1 (29)

ḃ2 = ṗα2b2 (30)

ḃ3 = ṗα3b3 (31)

The plastic multiplier is then ṗ = ε̇/α1
1+ε̇t and the differential equations can be solved with the initial conditions b2(0) = 1, b3(0) = 1:667

b2 = (1+ ε̇t)α2/α1 b3 = (1+ ε̇t)α3/α1 (32)

Finally,668

det
(
Ḟ∼
)
= ε̇ ḃ2ḃ3 = ε̇

3 α2α3

α2
1

(1+ ε̇t)
α2+α3

α1
−2

= ε̇
3 α2α3

α2
1

(1+ ε̇t)−3−3C trσ
σeqα1 (33)

The function comparing the behavior of det
(
Ḟ∼
)

should and the homogeneous plastic deformation case is then:669

δC(t) = ε̇
−3(1+ ε̇t)3−3C trσ

σeqα1 det
(

˙̄F∼
)

(34)

The δ criterion used throughout the article is recovered by setting C = 0, which corresponds to the simplified case of a von Mises670

material. In this case, the criterion depends no more on the applied σ∼ .671

The evolution of δ for a simulation with T = 1 and L =−1 (coalescence in uniaxial strain state) is shown in figure 15, for two672

values of C: 0 and 1/2. For both values of C, the vanishing of δC is simultaneous with the stabilization of transverse displacement.673

However the sharp drop of δC allows a more precise numerical determination of the onset of coalescence than the more progressive674

stabilization of the transverse strain. For C = 1/2, δ1/2 is approximately constant at the beginning of the simulation, so that the675

hypothesis of homogeneous flow in a Green volume element (taking into account the porosity) well represents the overall behavior676

of the cell with a von Mises matrix. However, with C = 0, δ0 does not depend anymore on the stress state, while still keeping the677

sudden drop of δC necessary for the determination of the coalescence onset.678
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Fig. 15: Detection of failure through simple extension criterion (stabilization of the transverse strain) or vanishing
of δ function. Microstructure R1 under the loading condition T = 1, L =−1
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A.2 Sensibility analysis regarding the threshold coefficients679

Finally we verify that the δ indicator is a reliable indicator of failure by assessing its sensitivity to the choice of the empirically680

chosen threshold values. As the equation (16) shows, the determination of the onset of coalescence relies on two thresholds: a relative681

one A, which compares the current value of δ to its maximum, and an absolute one B mostly active in shear-like conditions. The682

values for those were chosen as A = 0.05 and B = 0.005 but a robust indicator should not be too sensitive to these values.683

Figure 16 compares the effect of different A and B values on the Ec−L curve (common triaxiality T = 1, microstructure R1). At684

constant B, the effect of A is only visible in the HLEMZ and the LLEMZ, and generally negligible. At constant A, B only affects685

the coalescence strain values in the SMZ. Although a change in B can modify the strain by 0.05, the global aspect of the curve is686

preserved. The determination of failure by the indicator therefore appears robust with respect to changes in the coefficients.687
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Fig. 16: Effect of varying threshold conditions for the failure indicator on the Ec−L curve. All simulations on
the R1 microstructure, at T = 1.

B Effect of different meshing parameters and boundary conditions688

In this section, we review the simulation hypotheses and assess their influence on the results presented up to now, showing therefore689

how representative the results are and how far they can be generalized. First we verify that finite element discretization effects can be690

neglected, and investigate the effect of different boundary conditions.691

B.1 Effect of the meshing parameters692

All the simulations described up to now were carried out on meshes of cells with the same meshing parameter. To determine693

the influence of mesh size on coalescence results, the same microstructure R1 was meshed with different meshing parameters694

hcell/r0 ∈ {1.25,1,0.875,0.625} (with the notation of section 2.1). The maximum element size near the voids is also adapted to keep695

the ratio hcell/hvoid = 5 constant. The same loading condition T = 1, L =−1 is applied to the four meshes. Figure 17 shows that696
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stress values during the simulations differ between the meshes, but the relative difference between the finest and coarsest meshes is697

about 5%, which remains acceptable. The onset of coalescence Ec which is our main quantity of interest, is almost identical between698

the meshes, at Ec = 0.33±1%. Therefore the influence of mesh refinement for random microstructure cells appear limited (although699

there was only a ratio of 2 between the element sizes of the coarsest and the finest mesh), which justifies the value hcell = 0.08700

adopted throughout this study.701
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Fig. 17: Cauchy stress during the simulation for several meshes of the R1 random microstructure with different
meshing parameters. Loading condition: T = 1,L =−1

B.2 Effect of the boundary conditions702

We here investigate the influence of boundary conditions. The results from section 4 are first compared to those obtained with different703

boundary conditions. Namely we investigate the influence of conditions on the average gradient, and of planar faces conditions. The704

consistency of results at L =−1 is also checked by a comparison with simulations on axisymmetric cells.705

The conditions imposed on the average gradient F̄∼ to prevent rigid body motion are first investigated. In section 2.3 we imposed706

F̄∼ symmetric, as for Ling et al. (2016). However another reasonable choice would be to fix some degrees of freedom at the vertices of707

the cubic cell, as depicted in figure 18, which is the standard method for boundary value problems. A vertex is already fixed in order708

to prevent translations, but by fixing two degree of freedom on a second one, and a last one on a third vertex, all rotations are fixed.709

This can be reformulated as:710

F̄12 = F̄13 = F̄23 = 0 (35)

i.e. F̄∼ is an upper triangular matrix. Due to the mixed conditions imposed by the macroscopic spring element, the results from the711

symmetric F̄∼ case cannot be easily transposed to the triangular F̄∼ case. These two choices lead to distinct proportional loading path712

classes and should therefore be compared.713
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Fig. 18: Conditions on average deformation gradient obtained by fixing some degrees of freedom on vertices of
the cubic cell.

On the microstructure R1, at fixed triaxiality T = 1, simulations were performed for several Lode parameters to compare the714

two sets of conditions on F̄∼ (figure 19a). The evolution of Ec is close between the two types of conditions, and the same ductility715

zones can be identified for the triangular gradient condition. However, in that case, cusps seem to be less pronounced than for a716

symmetric gradient; this may be due to the different treatment of shear components by the two conditions. Therefore the influence of717

the conditions on F̄∼ remains limited.718
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(a) Conditions on the average deformation gradient.
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(b) Periodic and parallel faces boundary conditions

Fig. 19: Influence of boundary conditions on the response of the cell. All computations at triaxiality T = 1.

We then compare the effects of periodic and parallel faces boundary conditions. Parallel faces conditions mean that the cubic cell719

retains parallel flat faces throughout the computation (for instance all the points on the x0 = 0 face have the same x-displacement).720

This condition is more constraining than periodic boundary conditions. As the comparison in figure 19b shows, the two types721

of conditions lead to qualitatively different responses. For the parallel faces, no separation between three ductility zones can be722

seen (except near L = 0) and the response of the random microstructure is closer to that typical of the unit cell. Moreover no723

decrease of ductility near L = 0 is observed for the unit cell. Results for the unit cell differ between the parallel faces and periodic724
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boundary conditions, because in the periodic case, faces are allowed not to remain strictly parallel and planar. On the contrary,725

boundary conditions made of parallel sides strongly hinder the shear mode failure and only the extension mode remains possible.726

The competition between these two modes tends to postpone failure (see the cusps on figure 4). Therefore, the reduced competition727

between modes may explain an earlier coalescence for parallel unit cells. The preceding results show that boundary conditions exert728

a strong influence on the response of the cell.729

Finally, the consistency of results obtained at T = 1 is checked. As this type of loading is axisymmetric, a computation with a 2D730

axisymmetric unit cell was also performed for comparison. Such unit cells are frequent in ductile fracture studies (Morin, Leblond,731

and Benzerga (2015) for instance). The diameter and the height of the cylinder were chosen equal to Lcube. The porosity is still 6%,732

so the radius of the void was modified to 0.22Lcube. The boundary conditions for this cell differ slightly from those described in733

section 2.3: they are no more periodic and are replaced by straight edges conditions. Besides the virtual constant triaxiality element is734

not linked to the average deformation gradient but to the displacement of the top left node.735

Figure 20 compare results for the unit cell and the 2D axisymmetric cell at varying stress triaxiality for L =−1. In this type of736

loading, the unit cell was shown in section 4 to exhibit the same behavior as random microstructures, compatible with a Rice-Tracey737

evolution. At initial porosity f0 = 6%, the axisymmetric cell presents however a significantly higher exponent (in absolute value) for738

the evolution of Ec with respect to T . This effect seems due to the relatively high porosity in the axisymmetric cell: as depicted in739

figure 20, the evolution of Ec with respect to T for the low porosity f0 = 1% axisymmetric cell is much closer to the one predicted by740

Rice and Tracey.741
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Fig. 20: Evolution of the strain at coalescence with respect to T for the cubic and 2D axisymmetric unit cells for
porosity values f0 = 6% and 1% (constant Lode parameter L =−1).
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