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Abstract. Using a phase field model, we have investigated the role of plasticity on the morphological evolu-
tion of a precipitate during its diffusion-controlled dissolution, when submitted to shear loading. It is shown
that the plastic strain pattern in the matrix strongly influences the local dissolution rate and consequently
the final shape of the precipitate. Finally, it is demonstrated that for sufficiently fast and intense shear load-
ings, plasticity can induce splitting of the precipitate: this process could explain why small precipitates are
observed in shear bands in Ti alloys forged parts.

Keywords. Phase field, Plasticity, Morphology, Shape bifurcation, Dissolution, Titanium alloys.

1. Introduction

The influence of elasticity on diffusion controlled phase transformations at the solid state has
been extensively investigated. Besides its effect on thermodynamic equilibrium and its conse-
quence on phase diagrams [6], the role of elasticity on morphologies has been largely demon-
strated (e.g. [9, 13, 22, 27, 30] to cite a few works among many others). However, it has often been
claimed that at high homologous temperatures plasticity is likely to relax completely any elastic
contribution, such that the diffusive phase transformations can be investigated without account-
ing for mechanics. It is only recently, with the development of phase field models coupled with
continuum plasticity [2–5, 8, 10, 17–19, 25, 28], that it has become possible to show that the effect
of elasticity cannot be discarded even at high temperatures. Indeed, due to the fact that stress
relaxation is only partial, plasticity may increase the sizes of the microstructures without chang-
ing the nature of the shapes [10]. The impact of plasticity on the patterns formed by assemblies
of precipitates can be more spectacular [11, 12]. Moreover, plasticity has been shown to feature
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non trivial effects on kinetics, either promoting [2] or impeding [3] interface migration depend-
ing on the morphology and loading. Finally, when plasticity displays some viscous character, the
evolution is dependent on the ratio of time scales between visco-plasticity and diffusion [24].

Along this line, we address in the present work the possible role of plasticity on shape bifur-
cation of hard precipitates during mechanical loading at high temperatures, a feature that has
never been put into evidence although it can be of interest in hot working of two phase alloys.
Indeed, beside the interest for understanding such strong coupling between diffusion controlled
phase transformation and plasticity, our work aims at bringing some possible explanation for mi-
crostructure evolutions observed commonly during adiabatic shear banding in two-phase Ti al-
loys. It is indeed not clear whether the small precipitates observed in shear bands results from
the deformation process alone or from some partial dissolution due to the local temperature in-
crease. In particular, we will show that the concomitant actions of both plasticity and dissolution
are necessary for splitting precipitates into smaller ones. For that purpose, we have used a phase
field coupled with an isotropic plasticity model as proposed in [2], that is recalled briefly in the
following section. After providing the data and settings of the calculations, we analyze the process
of dissolution assisted by shear loading, and on the basis of this analysis, we propose a possible
new scenario for explaining the evolution of microstructures in adiabatic shear bands in Ti alloys.
Regarding notations, tensors of first, second and fourth rank are respectively denoted by u,ε∼
and C≈ .

2. Description of the model

Considering diffusion-controlled phase transformations in alloys, the basic fields describing the
microstructure are (i) the phase field φ(r, t ) discriminating the precipitate (α phase) and the
matrix (β phase), and (ii) the concentration c(r, t ) of an alloying species (here arbitrarily taken
as α-stabilizer, although the model can easily be extended to multicomponent alloys). Because
mechanics is involved, displacement vector field u(r, t ) is the third degree of freedom in the
model.

The evolution rates of φ and c are governed respectively by the Ginzburg–Landau time-
dependent equation and the diffusion equation, relating the rates to their corresponding driving
forces as follows:

∂φ

∂t
=−M

δF

δφ
(1)

∂c

∂t
=∇·

(
L∇δF

δc

)
(2)

where F is the total free energy which is the relevant thermodynamic potential in isothermal
conditions. δ denotes functional derivatives, and the mobilities M and L are strictly positive real
numbers (isotropy of the corresponding properties are assumed for simplicity). L can be related
to the interdiffusion coefficient D as follows L = D/(∂2 f /∂c2) where f is the free energy density,
so as to recover usual diffusion equations in the bulk phases. The stress tensor σ∼ , defined as the
functional derivative with respect to the strain tensor ε∼, fulfills mechanical static equilibrium:

∇·σ∼ =∇· δF

δε∼
= 0 (3)

in the absence of body forces. The free energy functional is decomposed into chemical Fch, elastic
Fel and plastic Fpl contributions.

F = Fch(c,φ)+Fel(φ,ε∼)+Fpl
(
φ,ε∼,Vint

)
(4)
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where Vint is the set of internal variables associated with material hardening. The chemical
contribution accounts for the bulk chemical free energy density f0 and the interface contribution
through the gradient squared of φ.

Fch(c,φ) =
∫

V
dV

[
f0(c,φ)+ε |∇φ|2] (5)

where ε is a positive real number. The bulk chemical free energy density is approximated by a
simple Landau polynomial with respect to φ:

f0(c,φ) = k

2

(
c − A(φ)

)2 +W φ2 (
1−φ)2 (6)

where A(φ) = ce
β
+ (ce

α − ce
β

)h(φ) and h(φ) = φ2(3− 2φ). ce
ψ is the equilibrium concentration of

phase ψ ∈α,β provided by the phase diagram at the relevant temperature, and W is the positive
height of the double well potential. It is worth noting that the curvature k is the same for both
phases, for the sake of simplicity. ε and W are related to the interface energyΛ and thickness δ:

ε= 3Λδ

Z
and W = 6ZΛ/δ (7)

with Z = ln[(1−θ)/θ] assuming that the interface is defined by values of φ ranging from θ to 1−θ
(in the present work θ = 0.05).

In the framework of linear elasticity, the elastic energy is as usual a quadratic function of the
elastic strain tensor ε∼

e:

Fel =
1

2

∫
V

dV ε∼
e : C≈ : ε∼

e (8)

where C≈ stands for the effective elastic moduli tensor, expressed as a mixture of the elasticity

tensors of the individual phases:

C≈ =C≈ β+
(
C≈ α−C≈ β

)
h(φ) (9)

According to the strain decomposition in the small strain framework, the total strain ε∼ is split into
three contributions:

ε∼ =
1

2

(∇u∼ +∇u∼
T )= ε∼e +ε∼?+ε∼p (10)

where ε∼
? is the stress-free strain or eigenstrain tensor, accounting for the change in lattice

structure from β to α. Based on the application of the Voigt homogenization scheme inside the
smooth interface zone as proposed in [2,24], the (visco)-elasto-plastic behaviour of each phase is
treated independently, where plastic strain and hardening state of α and β phases at a given time
are completely described by a finite number of local internal variables, defined at each point for
each phase. As shown in [2, 24], according to this scheme the eigenstrain reads:

ε∼
? =C≈

−1 :

[
C≈ β : ε∼

?
β
+∆C≈

?h(φ)

]
(11)

where ∆C≈
? = (C≈ α : ε∼

?
α
−C≈ β : ε∼

?
β

). For the sake of simplicity, it is assumed to be independent

of concentration and temperature. Hence, according to the Voigt homogenization scheme, the
plastic strain ε∼

p reads:

ε∼
p =C≈

−1 :

[
C≈ β : ε∼

p
β
+∆C≈

p h(φ)

]
(12)

where ∆C≈
p = (C≈ α : ε∼

p
α−C≈ β : ε∼

p
β

).

Still assuming that the elasto-plastic behaviour of each phase is treated independently, an
isotropic von Mises rate-independent plasticity without hardening (meaning that Fpl = 0 in
eq. (4), for the sake of simplicity) is used for both phases in order to define the corresponding
yield function:

gψ
(

s∼ψ

)
= J2

(
s∼ψ

)
−R0

ψ (13)
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4 Kais Ammar, Benoît Appolaire and Samuel Forest

where ψ = α,β, and s∼ψ and R0
ψ are respectively the deviatoric stress tensor and the initial yield

stress in phase ψ.
A Von-Mises criterion is adopted for both phases, where J2 =

√
3
2 s∼ψ:s∼ψ.

The Normality rule for plastic flow is adopted:

ε̇∼
p
ψ = λ̇ψn∼ψ, with n∼ψ = ∂gψ

∂σψ
(14)

As a result, two distinct plastic multipliers λ̇α and λ̇β are required in the theory. They are
determined independently for each phase using the consistency condition in rate–independent
elasto-plasticity.

3. Parameters and conditions for FE calculations

Eqs. (1)-(3) have been recast into balances of microforces, following [1, 16], and implemented in
the finite element software Z-Set [14], where balances and constitutive laws are separated. The
values of the parameters entering the model are reported in non-dimensional form in Table 1,
where length, time and energy scales are respectively the size L of the system (typically the
average distance between precipitates), diffusion time τ = M/k, and the curvature k of the
free energies with respect to concentration, which is chosen to be the same for both phases
(kα = kβ = k), see eq. (6). The rescaled quantities are denoted with tilde.

Table 1. Parameters in non-dimensional form.

ce
α 0.7 ce

β
0.3

Λ̃=Λ/(kL) 5×10−4 δ̃= δ/L 5×10−2

D̃α = Dατ/L2 1×10−4 D̃β = Dβτ/L2 1×10−4

Ẽα = Eα/k 14×1010 Ẽβ = Eβ/k 7×1010

να = νβ 0.3 R̃0
β
= R0

β
/k 50

ε∼
? 3×10−41∼

Although most of the values have been selected in order to comply at least qualitatively with
metallic alloys and in particular with Ti alloys, different quantities have been selected so as
to enhance the effects of the coupling between the α → β transformation and plasticity with
moderate strains in the validity range of the small strain framework.

In order to enhance the variations of concentrations (commensurate with ce
α− ce

β
) associated

with curvature and strain/stress changes, the equilibrium concentrations are set arbitrarily to the
values in the middle of range [0;1]. Moreover, both phases are considered as elastically isotropic
for simplicity, with α twice stiffer than β, i.e. Eα = 2Eβ. This ratio is likely to be greater than the
real one [15], although there is a large scatter of the elastic moduli reported in the literature. But
this significant contrast has been chosen to promote the heterogeneity of strain and stress fields
in the dual phase microstructure even for moderate imposed strains. Finally, it can be noticed
that a very small and isotropic eigenstrain ε∼

? has been assigned to α so as to mimic α nodules in
Ti alloys [26] which generally do not feature any orientation relationships with the β matrix.

We have considered a L×L square domain composed of a singleα circular precipitate of initial
radius R0/L = ζ with ζ = 0.8, surrounded by the β matrix. The system has been discretized by a
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regular grid with 161×161 linear elements. The initial concentration in the precipitate has been
set at the equilibrium concentration (c0

α = ce
α), whereas β is undersaturated with c0

β
= 0.2 < ce

β

(non-dimensional initial supersaturation Ω0 = (c0
β
− ce

β
)/∆ce = 0.25, with ∆ce = ce

α − ce
β
= 0.4).

This situation corresponds to an instantaneous heating from some temperature in the α+β field
where the initial precipitate is at equilibrium up to some higher temperature still in the two-phase
domain.

At the boundaries, zero fluxes are imposed for φ and c, i.e. ∇c ·next = 0 and ∇φ ·next = 0 where
next are the normals to the system boundaries pointing outward. Moreover, the mechanical load
is applied by keeping the boundaries planar.

The loading sequences are as follows: (i) during ∆t̃ 1 = 1× 10−2, there is no load applied. (ii)
Then the imposed average shear strain 〈ε12〉 is increased linearly during ∆t̃ 2 = 1× 10−1, up to
some prescribed homogeneous shear E12. (iii) This shear is sustained for a duration sufficient for
the system to achieve an equilibrium state (under load). The loading sequences are shown in the
inset of Fig. 1 with stage (ii) differentiated with the grey vertical slab.

4. Results

Three finite element simulations have been performed. First, a reference calculation discarding
mechanics was performed. Then, two other calculations have been performed by mechanical
loading for ∆t̃ 2 = 1×10−1 up to E12 = 1×10−2 (shear rate 〈˜̇ε12〉 = 1×10−1), considering an elastic
behavior for both matrix and precipitate phases for the first case and an ideal isotropic plasticity
in β matrix for the second.

The time evolution of the precipitate fraction and the concentration field of the α precipitate
during the dissolution of the α precipitate are respectively shown in Fig. 1 and Fig. 2 for different
cases.

As expected, for pure chemical calculations the precipitate remains circular during the whole
dissolution with a decrease of the radius following a

p
t law at the beginning of the process. Then,

dissolution stops when the equilibrium phase fraction is reached. This equilibrium given by the
lever rule fe = Ω+πζ2(1−Ω) where Ω = (c0

β
− ce

β
(R̃))/∆ce is the undersaturation accounting for

the Gibbs–Thomson effect that changes the equilibrium concentrations at curved interfaces as
follows ce

ψ(R̃) = ce
ψ+Λ̃/(R̃∆ce ). Hence, considering the average concentration and the final radius,

the precipitate volume fraction at equilibrium is fα = 0.38 (upper horizontal dashed line in Fig. 1).
For the calculation where both phases are elastic, the precipitate dissolves totally during the

loading stage (ii), as shown in Figs. 1 and 2a-d (middle column). The precipitate displays rapidly
a nut shape with symmetry axes corresponding to the diagonals of the square system, with the
long (resp. short) axis along the upper (resp. lower) diagonal. Indeed, as shown in Fig. 3, the aspect
ratio l/L (short over long) of the precipitate decreases when the imposed shear strain increases
linearly during the loading step. When the load is sustained, the precipitate size is sufficiently
small so that the minimization of the interface energy drives the dissolution process: the aspect
ratio tends to increase sharply until complete disappearance of the precipitate.

Contrary to the elastic case, the precipitate in a matrix with plastic relaxation does not dissolve
totally and reaches stable size and shape on a time scale similar to the chemical case. As shown
in Fig. 1, the dissolution rate is the same as in the elastic case at the beginning of the loading.
Then, a deviation between both cases is observed at the middle of stage (ii). This difference in
the evolutions is also clearly visible in Fig. 2 when comparing snapshots of the microstructure at
same times. Starting from the same initial precipitate (top row), the shapes are already different
(second row) at the middle of the loading stage (ii), i.e. at the onset of the deviation between the
phase fraction curves (t̃ = 0.04): whereas the precipitate becomes elliptical in the elastic case, it
displays a lemon shape with flat sides connected by curved segments along the diagonals. It can

C. R. Physique — Online first
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Figure 1. Precipitate fraction vs time for chemical (dashed line), elastic (thin continuous
line) and plastic (thick continuous line) cases. Inset shows the average shear strain loading
sequence.

also be noticed that the concentration fields in α and β phases are more heterogeneous when
plastic relaxation is accounted for inβ. At the end of the loading stage (ii), the shapes in both cases
display sharper tips along the upper diagonal (third row), with a thinner and shorter precipitate
in the elastic case, in agreement with the phase fraction (Fig. 1). In both cases, the precipitates
are homogeneous in concentration when the β matrices are still heterogeneous. Finally, at the
end of stage (iii), when the precipitate has already disappeared in the elastic case, the precipitate
has kept the shape achieved at the end of stage (ii) with a smaller size in the plastic case. It is
worth stressing that the concentration fields are homogeneous in both phases, indicating that
chemical equilibrium has been achieved. Moreover, in the plastic case, the aspect ratio l /L in
Fig. 3 decreases almost linearly with time during the loading stage (ii), before stopping around
0.58 with a very slow evolution towards the equilibrium value ≈ 0.55.

For the plastic case, we have plotted in Fig. 4 snapshots of the cumulative plastic strain p
as well as the hydrostatic pressure taken here as one third of the trace of the stress tensor at
different times. Plastic relaxation starts in the first part of the loading stage (ii), with bands
forming approximately parallel to the system boundaries, in agreement with previous works
in nonlinear composites [7, 23]. They are more intense close to the precipitate tips along the
upper diagonal due to the asymmetrical shape of the precipitate (Fig. 4b). At the end of the
loading stage, the bands are thicker due to the dissolution of the precipitate, with “hot spots”
where p ≈ 2% along the upper diagonals. At the end of stage (iii), the four bands enclosing the
precipitate are thick with large “hot spots” (p ≈ 3%) along the upper diagonal. During the last
stage where the evolution of the precipitate is minor, small “hot spots” appear also along the
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(a)

(b)

(c)

(d)

Figure 2. Snapshots of the concentration field during the dissolution of theα precipitate in
the chemical (first column), elastic (middle column) and plastic (last column) cases at (a)
t̃ = 10−3, (b) t̃ = 4×10−2, (c) t̃ = 10−1, and (d) t̃ = 1; with t̃ = t/t f .
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Figure 3. Aspect ratio of the precipitate l /L vs. time for the chemical, elastic and plastic
cases.

lower diagonal. It is clear that the patterning of plasticity is tightly coupled to the microstructure
evolution. The pressure distribution is characterised by significant but realistic values with
maximal values concentrated at regions close to highly curved precipitate boundaries. These
locations are correlated with intense strain localization zones.

The shape evolutions can be understood by analyzing the evolution of the concentration
fields. Indeed, the local interface velocity is related to the difference of flows between α and β

phases as stated by the interface solute balance:

∆c v = D
(∇cβ−∇cα

) ·n (15)

with all quantities considered at theα/β interface,∆c = cα−cβ where n denotes the normal vector
pointing from α to β.

Hence, we have plotted the concentration profiles at different time steps in Fig. 5 (c to e
corresponding to the loading stage (ii)), along the left and right diagonals of the system drawn
respectively with red and blue lines in the upper left snapshot. The elastic and plastic cases are
plotted with dashed and continuous lines respectively.

It can be noted that the concentration field becomes rapidly heterogeneous in α and β. At
the beginning of the shear loading (t̃ = 3.0× 10−2, Fig . 5a), the concentrations are higher than
in the bulks, such that diffusion in α and β phases promotes the dissolution according to the
interfacial solute balance eq. (15) (∇cα ·n > 0 and ∇cβ ·n < 0). The circular symmetry is slightly
broken as illustrated by the differences between the left and right profiles corresponding to the
two diagonals. The gradients are steeper along the lower diagonal (right) in agreement with the
shape evolutions ensuing from a faster dissolution along this diagonal. Moreover, the plastic case
is more asymmetrical than the elastic case, with slightly higher interfacial concentrations. It can
also be noticed that the interface concentrations are higher than the equilibrium concentrations
at flat interfaces (horizontal dashed lines at 0.3 and 0.7 for respectively β and α). Finally, due to
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(a) t̃ = 10−3 (b) t̃ = 4×10−2 (c) t̃ = 10−1 (d) t̃ = 1

Cumulative plastic strain

Hydrostatic pressure (MPa).

Figure 4. Snapshots of cumulative plastic strain and hydrostatic pressure during shear
loading at rate 〈 ˙̃ε12〉 = 0.1

the initial undersaturation of the β matrix, the concentration gradients are steeper in β and are
likely to drive the dissolution process at this stage.

During stage (ii), elastic and plastic cases exhibit different evolutions of the concentration
profiles. First, at the middle of the loading stage t̃ = 7.5 × 10−2 (Fig. 5b), when the size of the
precipitates are still similar, the asymmetry becomes much stronger in the plastic case. Whereas
concentration gradients are still in a configuration promoting dissolution in the elastic case,
the plastic case features two different behaviors depending on the diagonal. Hence, along the
upper diagonal, one can observe the inversion of ∇cα (i.e. ∇cα ·n < 0) and the drastic lowering
of |∇cβ|. Quantitatively, (∇cβ−∇cα) ·n ≈ 0 such that the interface along the upper diagonal does
not migrate any longer. On the contrary, the profiles along the lower diagonal remain favorable
to the dissolution with ∇cα ·n > 0 and ∇cβ ·n < 0. As the shear load increases (Fig. 5c-e), in the
elastic case, the concentration in the α precipitate increases continuously as well as the interface
concentration in β. Consequently, the gradients increase such that the dissolution rate increases
with time to end up with the total disappearance of the precipitate at the end of stage (ii). In the
plastic case, the asymmetry between the profiles along the diagonal decreases during stage (ii).
When the profile evolves only slowly and slightly along the upper diagonal, so that the interface
migration is negligible, the profiles become flatter along the lower diagonal with an enrichment
of the β matrix, so that dissolution along this diagonal slows down progressively. At the end of
stage (iii), the profiles in the plastic case are flat in the bulks with concentrations higher than the
equilibrium concentrations for flat interfaces (Fig. 5e).
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Figure 5. Concentration profiles along the left and right diagonals at different time steps in
the elastic (dashed line) and plastic (continuous line) cases. The plot axis is drawn in the upper
right snapshot by the red and blue lines, respectively for left and right diagonals. Equilibrium
concentrations ce

α = 0.7 and ce
β
= 0.3 of flat interfaces are plotted with dashed horizontal lines.

the differences between the left and right profiles corresponding to the two diagonals. The gradients
are steeper along the lower diagonal (right) in agreement with the shape evolutions ensuing from
a faster dissolution along this diagonal. Moreover, the plastic case is more asymmetrical than the
elastic case, with slightly higher interfacial concentrations. It can also be noticed that the interface
concentrations are higher than the equilibrium concentrations at flat interfaces (horizontal dashed
lines at 0.3 and 0.7 for respectively β and α). Finally, due to the initial undersaturation of the β ma-
trix, the concentration gradients are steeper in β and are likely to drive the dissolution process at this
stage.
During stage (ii), elastic and plastic cases exhibit different evolutions of the concentration profiles.
First, at the middle of the loading stage t̃ = 6.5×10−2 (Fig. 5c), when the size of the precipitates are
still similar, the asymmetry becomes much stronger in the plastic case. Whereas concentration gradi-
ents are still in a configuration promoting dissolution in the elastic case, the plastic case features two
different behaviors depending on the diagonal. Hence, along the upper diagonal, one can observe the
inversion of ∇cα (i.e. ∇cα ·n < 0) and the drastic lowering of |∇cβ|. Quantitatively, (∇cβ−∇cα)·n ≈ 0
such that the interface along the upper diagonal does not migrate any longer. On the contrary, the
profiles along the lower diagonal remain favorable to the dissolution with ∇cα ·n > 0 and ∇cβ ·n < 0.
As the shear load increases (Fig. 5d-g), in the elastic case, the concentration in the α precipitate
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Figure 5. Concentration profiles along the left and right diagonals at different time steps
in the elastic (dashed line) and plastic (continuous line) cases. The plot axis is drawn in the
upper left snapshot by the red and blue lines, respectively for left and right half-diagonals.
Equilibrium concentrations ce

α = 0.7 and ce
β
= 0.3 of flat interfaces are plotted with dashed

horizontal lines.
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Figure 6. Time evolution of the concentrations in β at the interfaces crossing respectively
the left (red) and right (blue) half-diagonals, in the plastic case.

The previous analysis suggests that the interfacial concentrations are a key parameter control-
ling the shape evolutions through the concentration fields. Indeed, we have mentioned that the
amplitude and sign of the solute flows are driven by the evolution of these concentrations. Thus,
we have determined the interfacial concentrations by extrapolating the bulk profiles (typically
close to φ= 0.05 or 0.95) into the diffuse interface and extracting the values at ϕ= 0.5.

We have plotted in Fig. 6 the concentration in β at the interfaces crossing the upper (red)
and lower (blue) diagonals respectively, in the plastic case. It must be stressed that the small
irregularities observed in the curves should be attributed to some numerical problems but rather
to the sensitivity of the extraction method to the order and support of the extrapolation from the
bulks. After a transient regime, shorter than t̃ = 10−2 during the load free stage (i), the interface
concentration reaches its equilibrium value accounting for the Gibbs–Thomson effect, i.e. with a
value slightly above 0.3 increasing with the local curvature. When the shear load is applied, the
concentrations at the two different interfaces increase with different rates that do not involve
only the change in local curvatures. Indeed, whereas the interface crossing the lower diagonal
is flatter than the interface crossing the upper diagonal (Fig. 2b last column), its concentration
increases the fastest. When the concentration of the sharper tips (red) with the slow migration
rate increases continously, with a sudden deceleration around t̃ ≈ 0.04, the evolution of the
concentration on the flatter sides (blue) displays a maximum by the end of stage (ii). Then, during
stage (iii) the concentrations at both interfaces converge slowly towards the same value of about
0.38.

To understand these evolutions, we have proceeded as in [4, 10] by comparing the interfa-
cial concentrations with their expressions at a sharp interface in local equilibrium, account-
ing for mechanics. Following [29], these concentrations can be obtained using the equilibrium
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conditions holding at a coherent sharp interface:

∆µ= 0 (16)

∆ω= Ecoh −Λκ (17)

where ∆ denotes as previously the difference between the α and β sides of the interface (i.e.
∆A = Aα − Aβ for any A), µ = ∂ f /∂c the diffusion potential, ω = f −µc the grand potential, κ
the local curvature (positive for convex α), and Ecoh =σβ :∆ε the coherence energy, representing
the elastic energy necessary to keep both lattices coherent across the interface [20,21]. It is worth
noting that eqs. (16)-(17) reduce to the usual equality of the chemical potentials between both
phases when elasticity and curvature can be neglected.

As introduced in the phase field model Section 2, the free energy densities f can be split into
chemical and elastic contributions. Because it is assumed that the elastic energy does not depend
on c, the diffusion potentials are independent of stress and the grand potential can be rewritten
asω= fch+ fel−µc. Then, expanding eqs. (16)-(17) to first order in c with respect to the chemical
equilibrium holding at flat interfaces (where the right-hand side of eq. (17) is null), one obtains:

∆

(
∂µch

∂c

(
c − ce))= 0 (18)

∆

(
−ce ∂µch

∂c

(
c − ce)+ fel

)
= Ecoh −Λκ (19)

Using the fact that the curvatures of f with respect to c (i.e. ∂µch/∂c) are the same for α and β,
eqs. (18)-(19) become:

ce
α− ce

β =∆ce

cψ− ce
ψ = Ẽ + Λ̃κ̃

∆ce ∀ ψ ∈ {α,β}
(20)

where the non-dimensional mechanical contribution to the change in the interfacial concentra-
tions reads:

Ẽ = ∆ fel −Ecoh

k
(21)

We have shown in [3] that this expression still holds when plastic strain is accounted for, and
that plastic strain directly contributes to the change in the local equilibrium through the jump
of strain ∆ε∼ across the interface. It must be emphasized that the presence of the coherency term
discard any simple explanations based only on the distribution of the elastic energy density.

Following the same procedure as for the interfacial concentrations, we have extrapolated all
the quantities involved in eq. (21) in the bulks near the interface up to φ = 0.5, namely ∆ fel and
Ecoh to determine the evolution of the mechanical contribution Ẽ . In this way, we have checked
that the evolution of the interfacial concentrations (Fig. 6) can be explained by the modification of
the local equilibrium by elasto-visco-plasticity. Although the extraction method of the interfacial
quantities is not robust enough to verify precisely eq. (20), we have checked that the order of
magnitude of the variations are consistent with this expression. Fig. 7 shows the evolution with
respect to time of the two contributions ∆ fel/k and Ecoh/k in insets as well as the resulting Ẽ .
First, it can be noticed that the variations of the coherence energy are larger than the variations
of the jump in elastic energy. Moreover, the coherence energy is almost always negative, thus
contributing positively to the mechanical term Ẽ (eq. (21)). Second, two very different behaviors
are observed at the two kinds of interfaces, crossing the upper (red) and lower (blue) diagonals,
corresponding respectively to the tips and to the rounded sides (Fig. 2 last column). At the “red”
interface, both ∆ fel and Ecoh evolve in the same direction during the loading stage (ii), with a
first increase from negative values to positive ones, followed by large drops to negative values.
Consequently, the evolution of Ẽ displays two steps during stage (ii): a first drop to around zero
when plastic “hot spots” are not visible yet ahead of the tips (Fig. 4b), followed by a large increase
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Figure 7. Time evolution of the mechanical energy contribution to the interfacial local
equilibrium at interfaces crossing respectively the left (blue) and right (red) diagonals (see
inset in Fig. 6), in the plastic case.

when the “hot spots” intensify (Fig. 4c). Hence, these two steps can explain the evolution of the
interfacial concentration. When t̃ / 0.04, the increase of cβ can be attributed to the combined
effect of Ẽ and curvature with the appearance of the nut shape with tips along the upper diagonal
(Fig. 4b). Then the sudden slowdown is likely due to Ẽ < 0 that cancels the curvature term
although the tips sharpen significantly (Fig. 4c). Finally, when Ẽ has increased again sufficiently,
it takes over and the increase of cβ accelerates again. During stage (iii), all contributions evolve
only slightly and slowly. It can be observed that the tips do not sharpen any longer and the
slight increase of the interface concentrations can be attributed to the slight plastic relaxation
at constant shear load. At the “blue” interface, the coherence energy Ecoh remains negative and
always overcomes the jump in elastic energy density ∆ fel. This is why the evolution of Ẽ follows
mainly that of −Ecoh, with a steep increase in the first half of stage (ii), followed by a progressive
slowdown. Finally, during stage (iii) all evolutions are slow and moderate resulting in a slight
decrease of Ẽ . As for the “red” interface, the overall evolution of Ẽ can explain the evolution
of cβ: a steep increase at the beginning of stage (ii), followed by a slight decrease during stage
(iii), although the max of cβ is achieved before the end of stage (ii) whereas Ẽ is maximal at the
transition between stages (ii) and (iii).

In conclusion, this analysis has shown that the two different dissolution rates along the upper
and lower diagonals result from the particular pattern of plastic strain: the plastic case is not
a tempered elastic case, but plastic relaxation plays a significant role in the morphological
evolution of the precipitates in the particular situation investigated.

Finally, the previous calculations may give clues about what can happen in adiabatic shear
bands in Ti forged parts where globular precipitates are observed to be much smaller than
in other parts. Indeed, they are usually attributed to either the complete dissolution followed
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by nucleation of new small precipitates on defects, or the splitting of surviving precipitates.
Nonetheless, the splitting process is never explained and it is not clear how dissolution and
mechanics interact.

Using the previous calculation accounting for plasticity as a reference, we have considered
higher loading rates and a higher sustained shear (thereafter, referred to as cases 1 and 2 respec-
tively):

• 〈 ˙̃ε12〉 = 1 during ∆t̃ 2 = 10−2 up to E12 = 10−2;
• 〈 ˙̃ε12〉 = 10 during ∆t̃ 2 = 10−3 up to E12 = 10−2.

Indeed, we can expect that increasing the shear magnitude will enhance dissolution, and that
increasing the shear rates, the time scale of mechanics will compete with the time scale of
diffusion.

In Fig. 8, we have plotted snapshots of concentration and accumulated plastic strain during
the dissolution, for the first rate 〈˜̇ε12〉 = 1. Because the loading rate is larger than in the reference
case, the second snapshot at t̃ = 0.015 is already in stage (iii). This second snapshot exhibits
the same shape evolution as in the reference case, the precipitate adopting a lemon shape with
tips along the upper diagonal. The overall pattern of cumulative plastic strain is similar to the
reference case, with two sets of bands aligned with the system boundaries and more intense
close to the tips. Due to the higher sustained shear load, p reaches higher values with respect
to Fig. 4. Contrary to the reference case, p extends also off the horizontal and vertical bands,
along the two diagonals in the matrix. At the same time, the heterogeneity in concentration is
more pronounced with rich regions close to the interfaces oriented in the same direction as the
upper diagonal. Nonetheless, comparing Fig. 8b and Fig. 2b (last column), the difference seems
only to be quantitative rather than qualitative. This is why, the elongated shape at t̃ = 0.1 can
appear as unexpected. In fact, this shape results from the same differentiated dissolution as in the
reference case, i.e. fast dissolution along the lower diagonal and pinning of the interfaces along
the upper diagonal by the particular configuration of solute profiles. Plastic patterning remains
qualitatively similar to earlier times, with bands slightly thicker and more intense. Then, the
dissolution continues along the lower diagonal only so that the precipitate pinches off (Fig. 8c)
to finally split into two precipitates (Fig. 8d). It is worth noticing that the pattern of cumulative
plastic strain remains almost the same during this process (t̃ ≥ 0.1): the size of the square with no
plastic strain is related to the most distant interfaces along the upper diagonal. Nonetheless, very
thin plastic bands can be observed at the center of the system.

The evolution of the microstructure during the second intense shear loading with the fastest
rate 〈˜̇ε12〉 = 10 is plotted in Fig. 9. In this case, the shape at t̃ = 0.015 is different from the previous
cases. Smooth corners, visible at about 30° from the upper diagonal, separate the interface into
two parts: segments with normal vectors closer to the lower diagonal with large solute gradients;
segments with normal vectors closer to the upper diagonal with vanishing solute gradients. The
corresponding cumulative plastic strain displays a pattern similar to case 1, with more intense
values and additional bands at 45°. As shown in Fig. 8c, contrary to case 1, dissolution is not the
fastest along the lower diagonal but next to the smooth corners. This process results in splitting
the initial precipitate into three parts. The precipitate at the center features a shape reminiscent
of the reference case. It displays a very high concentration and is surrounded by an enriched
zone coming from the fast dissolution process, that will drive its complete dissolution. The two
other precipitates display asymmetrical shapes with the longest axis along the lower diagonal.
The configuration of the solute field in the matrix with almost no gradient oriented normal to
their interfaces explains why they will survive (Fig. 8d). The complete dissolution of the central
precipitate is fast so that only thin and slight plastic bands enclosing it have time to develop.

To understand why increasing the shear load and the shear rate promotes the splitting of
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Figure 8. Snapshots of concentration, cumulative plastic strain and hydrostatic pressure
during intense shear loading at rate 〈 ˙̃ε12〉 = 1.

precipitates, it is important to have in mind the analysis based on the solute balance eq. (15)
and the local equilibrium condition eqs. (20)-(21).

• First, increasing the shear load increases locally the concentration at the interfaces mak-
ing significant angles with the lower diagonal, but does not change the situation at the
interfaces crossing the upper diagonal. Indeed, the pattern of plastic relaxation remains
qualitatively the same with a major localization along the upper diagonal, responsible
for the pinning of the neighboring interfaces. Thus, the differential dissolution is not
changed with respect to the reference case.

• Second, increasing sufficiently the shear rate implies that diffusion becomes too slow to
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Figure 9. Snapshots of concentration, cumulative plastic strain and hydrostatic pressure
during intense shear loading at rate 〈 ˙̃ε12〉 = 10.

mitigate the concentration gradients enhanced by the change in the interfacial concen-
trations. Hence, contrary to the reference case, dissolution in the direction of the lower
diagonal can proceed to completion and splits the precipitate.

With these calculations, we have shown that the production of small precipitates from large
ones is possible by plasticity-assisted dissolution provided that the ratio of the loading time scale
over the diffusion time scale is lowered. The precise value of the critical ratio beyond which split-
ting is possible has not been determined because it is very dependent on the configuration con-
sidered. Further work is obviously needed to obtain more quantitative information, in particu-
lar by considering 3D, different spatial distributions and more complex loadings. Moreover, it
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is likely that work-hardening, plasticity within the precipitates, and anisotropy associated with
crystal plasticity, which were not considered in the present work, will definitely play a role. These
considerations also bring the question of inheritance of plastic activity and dislocation harden-
ing. Indeed, in the case of growth some aspects of this question have been addressed in [4] and
have been shown to change the morphological evolutions.

5. Conclusion

We have investigated the influence of plasticity on the dissolution of precipitates at high temper-
atures in the case of shear loading. We have shown that plasticity is able to stabilize precipitates
that dissolve completely when only elasticity is accounted for. Moreover, we have deeply investi-
gated the process giving rise to the nut shapes, whose symmetry reflects those of the precipitate
arrangement and loading. In particular, we have demonstrated that plasticity modifies the local
equilibrium at the interface and consequently the local dissolution rate. In the investigated con-
figuration, strong localization of plastic strain in the matrix tends to pin the neighboring inter-
face so that the initial circular symmetry is broken. It remains to analyse more in detail the rela-
tive contributions of various terms in the driving force responsible for precipitate evolution. They
include the impact of heterogeneous elasticity, of phase transformation eigenstrain and of plastic
eigenstrain tensors. Preliminary calculations have shown that different non isotropic shapes can
be obtained depending on these different contributions to the driving force.

Finally, we have studied intense and rapid shear loadings. When diffusion is not sufficiently
fast to homogenize the concentration field generated by the change in interfacial concentrations
associated with mechanics, dissolution that proceeds at different rates along the interface leads
to the splitting of the initial precipitate into several ones. Hence, our work may give clues about
the process explaining the presence of small precipitates in adiabatic shear bands in forged parts
in titanium alloys, although further work is needed to obtain more quantitative predictions.
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