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Clonal plants can represent a substantial proportion of species in floras and plant 2 

communities. Because they share several functions that are not present in nonclonal plants, 3 

the differences in their proportions are likely to scale up as community and ecosystem 4 

differences. 5 

Clonal reproduction is provided by specialised organs which directly or indirectly affect other 6 

plant traits. Clonal growth organs usually serve for the storage of carbohydrates and buildup 7 

of the bud bank, both necessary for resprouting in recurrently disturbed habitats. These 8 

storage organs (to an unknown but potentially important degree) affect global carbon cycling. 9 

Clonal growth leads to increased plant size in the horizontal dimension and to a different 10 

degree of ramet aggregation that influences exploration of soil resources, pollination, and 11 

biotic interactions.  12 

Clonal growth serves as a reproductive insurance mechanism that further affects plant 13 

demography and possible evolutionary rates. 14 
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A longstanding research divide exists in plant ecology: studies either examine specifically plant 21 

clonality or are focused on all plants generally but considering them being nonclonal. This gap 22 

cascades into a lack of knowledge about the similarities and differences between clonal and 23 

nonclonal plants. We aim to bridge this gap by identifying areas that would benefit from 24 

incorporating clonal strategies and dynamics into one integrated research platform. These fields 25 

are: i) response to habitat productivity, ii) interactions among neighbours, iii) response to 26 

disturbance, and iv) population structure and evolution. We are convinced that this would provide 27 

valuable insights into the eco-evolutionary dynamics of all plants. 28 

 29 

 30 

Introduction 31 

 32 

An overwhelming portion of plant ecological research focuses solely on aboveground parts. 33 

As a result, our understanding of belowground plant functions is lagging behind the aboveground 34 

compartment [1, 2]. While the study of root acquisitive functions (and fine roots as acquisitive 35 

organs; see Glossary) has made recent large advances [3], nonacquisitive organs such as 36 

storage roots, rhizomes, and bulbs, have still been given little attention, despite their almost 37 

ubiquitous presence [4]. These organs provide functions that are common to all plants, such as 38 

the storage of carbohydrates and buds, but also enable functions limited to only some plants, 39 

namely clonal growth. The ability to multiply clonally separates plants into two groups: 40 

nonclonal plants that multiply only by seed, and clonal plants that can also multiply by vegetative 41 

growth. However, clonality does not only affect reproductive mode, it is also involved directly or 42 

indirectly in many aspects of plant life and function. 43 
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There has been a long tradition of research on plant clonality (see [5] for a recent 44 

overview), but it has largely remained restricted to a small group of researchers that are focused 45 

exclusively on clonals and only use a few model species, otherwise ignoring nonclonal plants. 46 

Consequently, we do not have enough comparative information about key differences and 47 

similarities between clonal and nonclonal species. Therefore, it is no surprise that functional 48 

syntheses incorporating all plants have largely ignored the clonal/nonclonal dichotomy or have 49 

pigeonholed clonality as a special, if not exotic feature, important only for a narrow range of 50 

ecological functions (but see [6]).  51 

Here, we draw a roadmap aimed at bridging this research divide (i.e. clonal-and nonclonal-52 

oriented), by showing that although it is not universal, clonality is a widespread feature of plants 53 

(Box 1, 2) and that modifies or determines many essential plant functions and processes, such as 54 

i) response to productivity, ii) interactions among neighbours, iii) response to disturbance, and iv) 55 

population structure and evolution (Table 1 – Key Table). We provide examples where taking 56 

clonality and its absence into account may substantially affect the way we look at plants, making 57 

our understanding of plant functional differentiation more complete and finally allowing deeper 58 

insights into plant eco-evolutionary dynamics. 59 

 60 

Clonality along the productivity gradients 61 

 62 

One key gradient that shapes plant form and function is associated with habitat productivity 63 

and the related plant economics spectrum [7, 8]. It was primarily defined for leaves, wherein thin, 64 

short-lived, acquisitive leaves with low protection against herbivory and high photosynthetic 65 

rates are found at the fast end of the spectrum, whereas leaves with contrasting features are 66 
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positioned at the slow end [9]. In addition to the leaf economics spectrum, this productivity 67 

gradient determines biomass allocation strategies (i.e. biomass investment to organs that acquire 68 

different resources), this is typically described as the root/shoot ratio [10, 11]. Plants in highly 69 

productive environments (i.e. those characterised by high competition for light) tend to invest 70 

preferentially into stems and leaves, while plants growing in nutrient-limited environments 71 

primarily increase allocation to fine roots that promote belowground resource acquisition [12].  72 

These textbook relationships generally consider all belowground organs to be responsible 73 

for resource acquisition. However, the specialised belowground clonal growth organs of clonal 74 

plants add further functional dimensions. They do not participate in resource acquisition, but in 75 

addition to clonal reproduction, these organs store and share resources among the rooting units 76 

that they connect [2]. This leads to three major consequences for economics and allocation 77 

relationships.  78 

First, storage organs divert a significant amount of resources which might otherwise be 79 

used for growth and competition for light [13]. Although the leaf economics spectrum has been 80 

expanded by incorporating other organs (e.g. roots; [7]) and functions into the plant economics 81 

spectrum, belowground storage organs have remained sidelined and their role in resource 82 

economy along the productivity gradient is essentially unknown [14]. Second, the occurrence of 83 

belowground storage organs confounds the use of the simple root/shoot ratio as a proxy of 84 

relative investment into nutrient- vs light-acquiring organs [10, 15]. Therefore, the available 85 

comparative data [16] cannot be interpreted as evidence for differential roles between light- and 86 

nutrient-acquiring investment. In particular, the lifespan of belowground storage organs and its 87 

link to the leaf economics spectrum is of key importance and may affect carbon sequestration and 88 

cycling globally [17, 18]. Third, in addition to resource storage (also present in many nonclonal 89 
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perennials), clonal organs are often involved in the horizontal transport of resources, including 90 

carbon and soil-borne nutrients [19, 20]. The extent of resource sharing in clonal plants depends 91 

on the lifespan of their clonal connections, which has been described in terms of the integrator 92 

and splitter strategies. Integrators (i.e. species with clonal connections maintained long after the 93 

new ramet has become established) are favoured in harsh and low-productivity environments 94 

whereas splitters (with short lifespan of connection) in benign conditions [20, 21, 22]. As plants 95 

transport limited resources (water, nutrients) or ameliorate stress (e.g. aeration of organs in 96 

waterlogged soil), such connections between different parts of a clone may equalise conditions 97 

over heterogeneous environments with potentially ecosystem-wide effects [17].  98 

Currently, we know very little about the role of storage and clonal growth organs in the 99 

plant economics spectrum as well as how traits of these organs vary along productivity gradients. 100 

While theoretical models have shown how resource storage may (or may not) contribute to 101 

fitness [23], there are almost no comparative studies showing differences in relative size or 102 

lifespan of storage organs across a number of species along productivity gradients [24, 25]. While 103 

the splitter-integrator continuum has been extensively studied, such studies seldom incorporate 104 

relevant trends and traits for nonclonal plants [22]. Therefore, we cannot identify general rules 105 

about the contribution of clonality (and its types) to fitness via translocation across different 106 

micro-environmental patches. Including clonal growth organs, their resource-sharing, and their 107 

storage capacities into a broader research on economics spectrum will fill gaps in understanding 108 

plant strategies in response to habitat productivity. 109 

 110 

Interactions among neighbours 111 

 112 
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Plants compete for many resources, especially light, water, and nutrients. Under productive 113 

and undisturbed conditions, competition for light along the vertical dimension takes precedence 114 

[26]. It is inevitably asymmetric and often leads to competitive exclusion. However, competitive 115 

exclusion by overtopping may be delayed or blocked by reducing vertical size differences [27]. 116 

After disturbance or in harsh environments, the vertical dimension may lose its importance and 117 

the success of individual species is then determined by the amount of space they can occupy in 118 

the horizontal dimension [28].  119 

This space occupation can be attained by generative reproduction or by clonal growth. Both 120 

these processes determine aggregation and mobility patterns in communities, but strongly differ 121 

in their outcomes. While seed dispersal is not directly controlled by the mother plant and 122 

typically follows an exponential or hyperbolic decay curve [29], clonal reproduction is more 123 

active and associated with species-specific fixed distances [30]. Distinct morphologies of 124 

individual species then determine their aggregation patterns, ranging from loose patches to 125 

densely packed aggregations of individuals (often termed the guerrilla-phalanx growth forms, 126 

another strategy scheme not suited to encompass nonclonal plants; [31]). Aggregation can be a 127 

way for plants to respond to environmental harshness ranging from intraspecific (namely clonal) 128 

to interspecific (facilitative) aggregations [32, 33]. 129 

Another important attribute of clonal reproduction can be parental support of offspring, 130 

which may last long into their maturity, and can contribute far greater access to resources than 131 

afforded by an increase in seed size by nonclonal plants. Resources stored in the seed are 132 

necessarily fixed and also lack the feedback mechanism, and thus versatility, present in clonal 133 

connections. Clonal growth is also often associated with density regulation of neighbouring 134 
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ramets from the same genetic individual (i.e. genet) [34] which reduces competition among them 135 

(Box 3). 136 

Finally, an essentially technical yet key detail in plant competition concerns dominance. 137 

Dominant species (i.e. those accounting for the highest number of individuals or biomass in a 138 

community) are assumed to affect community-level processes more than subordinate species 139 

[35]. This assumption is used to scale up plant traits, typically collected at the individual plant 140 

level, to ecosystem functions, which is typically based on the proportions of individual species 141 

aboveground [36]. However, plant species strongly vary in their investment of biomass into 142 

belowground organs, and the clonal-nonclonal divide plays an important role. This implies that 143 

scaling up plant traits by aboveground plant dominance is improper, especially when plant 144 

belowground functions are the focus of the study and in open, seasonal, or disturbance-prone 145 

ecosystems that are characterised by species with large allocation into belowground 146 

nonacquisitive organs [4, 37]. This discrepancy may be ameliorated by investing larger effort to 147 

collecting information on belowground organs and traits. 148 

 149 

Clonality and disturbance  150 

 151 

Disturbance is another essential driver of plant strategies worldwide [38, 39]. It has been 152 

hypothesized that clonal plants are particularly common at intermediate disturbance levels [38], 153 

but this strongly depends on the disturbance regime in terms of both frequency and severity. The 154 

existing literature often distinguishes between seeders and resprouters: seeders (regenerating 155 

from seeds), and resprouters (i.e. plants that resprout after disturbance from specialised bud-156 

bearing organs) [38]. Clonal plants are typically resprouters, but currently available data do not 157 
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establish a clear relationship between resprouting and the degree of clonality a plant possesses, 158 

hence limiting possible generalisation. While experiments with temperate species have shown 159 

that clonal plants accumulate higher belowground biomass (in storage and/or bud-bearing organs) 160 

than nonclonals [40, 41], there are no comparative data on storage and bud banks in clonal and 161 

nonclonal plants available for the majority of disturbance-prone ecosystems.  162 

Further, simple quantification of plant investment into bud-bearing organs is not sufficient 163 

for assessing the cost of their formation. Loss of a bud is a loss of the outcome of a complex 164 

morphogenetic event and cannot be immediately replaced even if the necessary resources are still 165 

available. Consequently, such loss must be assessed with respect to the architectural constraints 166 

of a given plant. For example, stem-derived clonality provides the plant with a limited number of 167 

axillary buds and thus confers only a limited ability to survive disturbance, and therefore it is 168 

found mainly in grazed or mown systems. In contrast, root-derived clonality, with a potentially 169 

unlimited number of adventive buds, can be very successful under severe disturbance regimes 170 

like ploughing or landslides [42].  171 

Compared to the other topics, the disturbance-clonality relationship has been addressed 172 

more in-depth, making clear that clonality needs to be taken into account when building a 173 

comprehensive scheme of response to disturbance. Additional research on the morphological 174 

means of clonal and nonclonal bud-bearing organs and their relationship to specific disturbance 175 

regimes would be beneficial.  176 

 177 

Population structure and evolution 178 

 179 
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Plant species have remarkable diversity in their life histories, which partly corresponds to 180 

the changes of their bodies in response to productivity and disturbance gradients. This is reflected 181 

by the different relative roles of survival, reproduction, and growth in plant life cycles. Again, 182 

this simple scheme essentially excludes clonal growth, which can play a decisive role in both the 183 

growth and reproduction components of plant life cycles, with consequences on population 184 

structure, reproductive strategy, and diversification rates. 185 

First, clonal reproduction has a number of short-term ecological effects. It may serve to 186 

boost population growth rates under favourable conditions [43] and provide reproductive 187 

assurance to genetic individuals. Clonal plants thus have consistently lower investment into 188 

reproduction via seed than nonclonal plants [44, 45]. While species differ strongly both in the 189 

presence and magnitude of clonal reproduction, we only have limited data for the extent of this 190 

differentiation (see also Box 2). In particular, there is almost no demographic information on 191 

species with extensive clonal growth because these cannot be studied using simple marking-192 

based demographic techniques [46]. 193 

Second, the population structure of species that are capable of clonal growth is very 194 

different from that of nonclonal species because of the uncoupling of genetic and ecological 195 

individuals [43]. Although the overall genetic diversity of clonal species does not necessarily 196 

differ from that of nonclonal species, some clonal species may have many genetically identical 197 

ramets within a population – a situation that is otherwise found only in apomictic or highly 198 

autogamous species [47]. This phenomenon, amplified by the spatial aggregation of genetically 199 

identical ramets, may result in restricted pollen dispersal among genets [44, 47, 48] and have 200 

important consequences for autogamy, selection of floral traits, and display for pollinators (Fig. 1 201 

in [47]). These relationships have never been systematically explored, either by comparing clonal 202 
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and nonclonal species, or across different types of spatial organisations of clonal plants. 203 

Unfortunately, we also do not possess good estimates of genet lifespan in more than a few model 204 

plants [49]. Interestingly, both clonal growth and incompatibility are related to whole-genome 205 

duplication, and polyploid plants are more likely to be both self-compatible and clonal [50, 51], 206 

although links between these two patterns have not been addressed.  207 

Finally, clonal reproduction strongly extends generation time and thus may change rates of 208 

molecular evolution and speciation, similarly to plant size [52]. While it has rarely been 209 

systematically explored, clonality may contribute to explaining latitudinal or environmental 210 

gradients in plant diversity as clonal plants tend to prevail in cold and wet environments [25]. 211 

This may be one of the reasons for the slow evolution of aquatic angiosperms that have extensive 212 

clonal growth, although the comparison between resprouters and seeders in fire-prone areas does 213 

not support the same conclusion [53].  214 

Unfortunately, we do not possess good estimates of genet lifespan in more than a few 215 

model plants therefore we are in need of new methodological approaches in studying 216 

demographic parameters in clonal plants [44, 49, 54].  217 

 218 

Conclusions 219 

 220 

Existing evidence has shown that clonal species differ systematically from nonclonals in a 221 

number of features and as their proportion in different communities and biomes varies (Box 2), 222 

these functional differences likely scale up to affect community- and ecosystem-level dynamics. 223 

It has also become clear that despite its previous treatment in the literature, clonality is not a 224 

binary trait (i.e. presence or absence) and there is a large functionally relevant spectrum spanning 225 
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across different clonal strategies and species. Incorporating clonality into the mainstream plant 226 

ecology research platform requires a closer look at the functions that vary across clonal strategies, 227 

and identifying comparable functions in nonclonal plants so that all species can be placed into a 228 

general strategy scheme.  229 

Finally, we point out that one of the key reasons why clonality has been under-developed in 230 

plant ecology research at large, lies in the fact that it is inevitably tied to a whole-plant 231 

perspective, which is not easily incorporated into current approaches to plant functional 232 

differentiation (e.g. [8, 55]). Such approaches (be it trait-based comparative ecology, population 233 

ecology, or ecosystem ecology) have their strengths in reducing plant bodies and organs to simple 234 

functional traits applicable to any species. This means that dimensions of the plant life that are 235 

difficult to reduce to such a scheme are necessarily neglected. We believe that the inclusion of 236 

plant clonality into mainstream ecological research would capture better the essential feature of 237 

plant life (i.e. the hierarchical and modular structure of any individual; Box 3, [56]) and would 238 

add a whole-plant perspective that many of our studies have been lacking.  239 

  240 
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 393 

Glossary: 394 

Acquisitive organs: organs acquiring resources, namely leaves as photosynthesising organs that 395 

capture light and produce organic compounds using water, light, and CO2; and fine roots that 396 

capture water and mineral nutrients. They are characterised by high surface to volume ratios.  397 

Bud bank: a pool of dormant buds borne by belowground storage organs from which the plant 398 

regrows after seasonal rest or after the damage of aboveground parts. 399 

Clonality: the ability of one genetic individual (genet) to produce more than one physically 400 

independent rooting unit (ramet) during its lifespan. The degree of clonal multiplication differs 401 

among species so that some of them can grow clonally but rarely do so (Potential clonality) while 402 

others multiply regularly and clonality is a regular part of their life cycle (Functional clonality). 403 
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Clonal growth organs: organs through which vegetative multiplication takes place. They are 404 

usually placed belowground and have different morphologies depending on the participation of 405 

stems (e.g. rhizomes), leaves (e.g. bulbs), and roots (e.g. root-sprouting).  406 

Genet: the term denotes all ramets descending from one zygote irrespectively of their physical 407 

connections.  408 

Nonacquisitive organs: organs providing resource storage, clonal multiplication, lateral spread, 409 

and bud bank that often connect aboveground stems and roots, but do not participate directly in 410 

acquiring resources. They are characterised by low surface to volume ratios. 411 

Phalanx-guerrilla growth forms: horizontal distances between ramets of one clone vary 412 

strongly, ranging from tightly packed ramets (phalanx) to loose stands intermingled with other 413 

species (guerrilla). While intraspecific (and intragenotypic) interactions prevail in the phalanx 414 

strategy, interspecific interactions prevail in the guerrilla. The runner vs. clumper continuum 415 

denotes the same thing.  416 

Ramet: the term identifies the smallest potentially independent unit in clonal plants with its own 417 

shoot and root system. Ramets may (but do need not to) be linked by clonal growth organs 418 

(rhizomes, roots, or stolons); a set of linked ramets is usually called clone or clonal fragment.  419 

Storage organs: coarse organs of different morphological origin specialised for storing 420 

carbohydrates and building bud bank, generally located belowground. 421 

Splitter-integrator continuum: clonal connections between ramets of one clone strongly vary in 422 

their duration, ranging from long-lived (integrators) to short-lived (splitters) connections among 423 

ramets. While integrators can share resources over many years (up to tens), the ability to share 424 

resources in splitters is lost after a few weeks or months when the offspring ramet becomes 425 

mature. 426 
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Seeders and resprouters: strategies described in ecosystems with recurrent severe disturbance, 427 

usually fire. Seeders do not survive disturbance as adult plants and thus regenerate after 428 

disturbance only from seeds; in contrast, resprouters survive and resprout from bud bearing 429 

organs, often located belowground. 430 

 431 

Box 1. Phylogenetics of clonality in angiosperms.  432 

Clonality is widespread in all major clades of angiosperms. It shows marked phylogenetic 433 

clustering, although transitions between clonal and non-clonal forms have been fairly common 434 

(Figure I). Specifically, all monocots are at least potentially clonal [57] (although not all of them 435 

are clonal functionally, i.e. having clonality as a part of their life cycle). From the morphogenetic 436 

point of view, clonal growth is attained by two distinct processes, either by the formation of 437 

adventitious roots on stems (stem-derived clonality, i.e. stolons or rhizomes) or by forming 438 

adventitious buds on roots (root-derived clonality). Phylogenetic transition rates among stem-439 

derived clonality, root-derived clonality, and nonclonal forms show that both morphological 440 

types represent evolutionarily independent pathways for attaining clonal growth (Figure II). 441 

 442 

Figure I - Phylogenetic patterns of functional clonality in angiosperms showing large clusters of 443 

predominantly clonal species (e.g. monocots, rosids, Asterales) and also clusters where nonclonal 444 

forms prevail (fabids, Apiales). Red colour indicates the reconstructed probability of possessing 445 

clonal growth at a given node of the phylogenetic tree, covering 2909 angiosperm species of 446 

Central European flora. Estimate of Pagel’s lambda for clonality here is 0.815 (95.0% confidence 447 

interval: 0.774-0.849; lambda = 1 indicates full phylogenetic signal corresponding to the 448 

Brownian motion evolution, lambda = 0 indicates complete phylogenetic randomness). Clonality 449 
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evolution was estimated using stochastic character mapping of 50 simulated character histories 450 

based on a continuous-time reversible Markov model of clonality-nonclonality transitions. These 451 

histories were used to estimate the expected number of evolutionary transitions over the tree and 452 

to reconstruct probabilities of the trait occurrence on individual tree nodes. For the data and 453 

further details see [58].  454 

 455 

Figure II - Root-derived clonality and stem-derived clonality represent two evolutionarily 456 

independent pathways to attain clonal growth. Transitions between stem-derived clonality and 457 

nonclonal forms have been common, as well as between nonclonal plants and root-derived 458 

clonality. Root-derived clonality appeared almost exclusively in nonclonal species as an 459 

alternative pathway to attain clonal growth [58]. The low frequency of transitions between stem- 460 

and root-derived clonality indicates that both types are alternative solutions to the same selective 461 

force acting on non-clonal species. Transitions were estimated using simulated stochastic 462 

character histories based on the continuous Markov chain rate matrix estimated from 2909 463 

angiosperm species of Central European flora. The frequency of transitions is expressed relative 464 

to the total number of transitions in the tree. Line width is proportional to the transition 465 

probability; transitions with zero relative frequency are indicated by the dotted line. For the data 466 

and further details see [58]. 467 

 468 

Box. 2. Participation of clonal species in floras and communities.  469 

Clonal species are more common in wetter, colder and more disturbed environments. This can be 470 

shown both by large regional (Figure I) and local (Figure II) differences in the proportion of 471 

clonal plants, which reflect structure of species pools as well as of ecological filters.  472 
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 473 

Figure I - Proportion of clonal species in different floras of the world, showing a consistent 474 

increasing trend in participation of clonal species towards higher latitudes and altitudes. Numbers 475 

indicate the total number of species analysed; stars indicate the number of species in a larger 476 

region when the number of species analysed was not available. It is to be noted that individual 477 

surveys [59-65] do not necessarily work with the identical definition of clonality, potentially 478 

adding some noise to the data. To exemplify this, we are showing Central European data using 479 

two definitions of clonality: "potential" clonality, i.e. including all species that have the potential 480 

to grow clonally, and "functional" clonality, i.e. including only species that regularly have clonal 481 

growth as a part of their life cycle. 482 

 483 

Figure II - Participation of clonal species in different vegetation types in one region (Czech 484 

Republic), showing a steep increase of clonal species proportion towards community types with 485 

higher water availability or moderate disturbance. It is based on a stratified set of 20486 486 

vegetation records from the Czech National Phytosociological Database [66], classified into 487 

vegetation types using EUNIS habitat classification. Participation is expressed as the proportion 488 

of clonal species out of all species in records of the given vegetation types; error bars indicate 489 

95% confidence intervals. Numbers indicate the total number of each vegetation type records. 490 

Modified from [67].  491 

 492 

Box 3. Plant architecture of clonal and nonclonal plants. 493 

Analysing architecture (Figure I) helps to elucidate plant response to the environment [68]. For 494 

example, plants respond to light limitation by adjusting their architecture and occupation strategy 495 
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in both clonal and nonclonal plants [69, 70]. As shown for the clonal shrub Z. americanum 496 

(Figure II), shoots are produced at regular intervals (Fig. 2) on long horizontal roots and they die 497 

if growing in the dense shade (Fig. 2 C) or develop into ramets with a complex structure (Fig. 2 498 

B). When the clone is developing in the understory, horizontal roots linking ramets senesce and 499 

trigger new taproots (Fig. 2 D) emitting radially horizontal roots and resetting soil exploration in 500 

all directions. Soil exploration in the horizontal dimension stops when it comes to contact with 501 

another clone from the same species (but not from other plant species) suggesting a chemical 502 

signaling responsible for this ‘root shyness’ between clones. This example illustrates important 503 

parts of clonal strategies: radial colonisation, exploration of suitable patches, and limitation of 504 

intraspecific competition.  505 

 506 

Figure I – Plant structure is based on the repetition of different levels of structural units, from 507 

phytomeres to growth and architectural units, to branch complexes. The complexity of the 508 

structure is shown by highlighting module (yellow), foliage of largest structural unit (purple), and 509 

rooting unit (beige) in nonclonal (1, 2, 4) and clonal plants (3, 5, 6, 7). In the simplest case, the 510 

genet is also a module and the rooting unit (e.g. annual herb: 2) but the clone can also be 511 

composed of several modules (e.g. rhizomatous forb: 6). In more complex structures, the module 512 

can be integrated into a larger structural unit that can correspond to a distinct rooting unit, 513 

therefore a genet (e.g. tree and shrub: 1, 4) or can be part of an even larger clone (e.g. multi-514 

stemmed shrub: 5, root sprouting shrub: 7). In some plants, modules can include several rooting 515 

units, ramets (e.g. creeping herb: 3). 516 

 517 
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Figure II – Clone structure of Zanthoxylum americanum in open (left) and shaded environments 518 

(right). Ramets (B; green arrows or fully drawn) and small shoots (C) are regularly spaced along 519 

horizontal roots (light brown) emitted from a single taproot (A; dark brown). When the clone 520 

grows in the understory, horizontal roots frequently senesce, triggering development of secondary 521 

taproots (D) (4). 522 

 523 

 524 

 525 



Outstanding questions: 1 

What is the role of storage organs in the plant economics spectrum? Are conservative and 2 

acquisitive trait strategies related to clonal growth, and to the abundance and mass of bud-3 

bearing and storage organs? 4 

How do the main costs and benefits associated with clonality change with key environmental 5 

gradients, such as productivity and disturbance? 6 

In there a general pattern of how clonal and nonclonal strategies differ in species interactions 7 

such as competition or facilitation in plant communities? Do such differences affect species 8 

coexistence and persistence in communities?  9 

How does clonality affect population dynamics, seed reproduction, and population genetics? 10 

Do clonal plants have different evolutionary rates than nonclonal plants? 11 

What is the role of clonal growth, bud-bearing and storage organs in ecosystem functioning 12 

(e.g. soil carbon cycling and storage, protection against erosion)? 13 

How can we devise a general plant strategy scheme for all plants and incorporate key 14 

functions provided by clonality? How do we account for the different morphological means 15 

(such as stem- and root-derived) and strategies (such as phalanx and guerrilla or splitter and 16 

integrator) of clonality?  17 

 18 

Outstanding Questions
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Table 1. Contrasting features of clonal and nonclonal plants.  1 

Organisational level  Functions & 

processes 

Clonal plants Nonclonal plants Available data 

Individual  

 

 
 

 

 

 

 

Resource 

allocation 

Large biomass 

investment in 

storage and/or 

clonal growth 

organs 

Low biomass 

investment into 

storage organs 

(except resprouting 

nonclonals) 

Rare 

Resource 

acquisition 

Rooting over a 

large area but with 

little resource 

foraging 

Deep rooting and 

with marked 

resource foraging 

Rare 

Resource 

sharing 

Translocation of 

resources among 

rooting units 

forming a clone, 

specialisation of 

rooting units for 

obtaining abundant 

resources 

No possibility of 

resource sharing 

(among rooting 

units) apart from 

mycorrhizas, no 

specialisation of 

rooting units for 

obtaining limiting 

resources 

Rich (for 

clonal plants 

only) 

Population 

 

 
 

 

 

 

 

Reproduction Vegetative and 

generative 

Only generative Rich 

Natural 

selection 

Decoupling of 

genetic and 

physiological and 

functional 

individuals 

Genetic 

corresponds to a 

physiological 

individual 

Rare 

Regeneration 

after 

disturbance 

Vegetative and 

generative 

Mostly generative  Rich 

Regeneration 

niche 

Can establish in 

dense vegetation, 

large parental 

provisioning 

Dependent on 

canopy gaps, small 

parental 

provisioning 

Moderate 

Competition In vertical and 

horizontal 

directions 

Mainly vertical 

direction 

Rare 
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Community  

 

Coexistence Alleviation of 

competition by 

mobility (guerrilla 

strategy) or 

aggregation and 

clonal integration 

(phalanx strategy) 

Negative density 

dependence 

Rare 

Facilitation Aggregated rooting 

units (phalanx) may 

serve as nurse 

plants 

Only cushion 

plants  

Rare 

Evolvability Slow Fast Unknown 

Dominance Aboveground 

abundance is not a 

good proxy for 

belowground 

abundance 

Aboveground 

abundance is a 

good proxy for 

abundance 

belowground 

(except resprouting 

nonclonals) 

Rare 

Carbon cycling Continuous litter 

input belowground 

thanks to exudation, 

senescing rhizomes 

and roots 

Continuous carbon 

input belowground 

through exudation 

and senescing roots 

Moderate 

(only for 

exudates and 

senescing 

roots) 

Ecosystem  

 

Environment 

homogenisation  

Translocation of 

resources in the 

horizontal direction 

through ramets 

forming a clone 

Water and nutrients 

uplift from deep 

soil layers thanks 

to deep rooting 

Moderate 

(only for non-

clonal) 

Aeration of 

waterlogged 

soils 

Aeration through 

rhizomes and roots 

Aeration through 

roots 

Unknown 
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