
HAL Id: hal-03372208
https://hal.science/hal-03372208v1

Submitted on 10 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Runtime of the Compact Genetic Algorithm on
Jump Functions

Benjamin Doerr

To cite this version:
Benjamin Doerr. The Runtime of the Compact Genetic Algorithm on Jump Functions. Algorithmica,
2021, 83 (10), pp.3059-3107. �10.1007/s00453-020-00780-w�. �hal-03372208�

https://hal.science/hal-03372208v1
https://hal.archives-ouvertes.fr

ar
X

iv
:1

90
8.

06
52

7v
2

 [
cs

.N
E

]
 1

1
Ju

l 2
02

0

The Runtime of the Compact Genetic
Algorithm on Jump Functions∗

Benjamin Doerr
Laboratoire d’Informatique (LIX)

CNRS

École Polytechnique
Institut Polytechnique de Paris

Palaiseau
France

July 14, 2020

Abstract

In the first and so far only mathematical runtime analysis of an
estimation-of-distribution algorithm (EDA) on a multimodal problem,
Hasenöhrl and Sutton (GECCO 2018) showed for any k = o(n) that
the compact genetic algorithm (cGA) with any hypothetical popula-
tion size µ = Ω(ne4k + n3.5+ε) with high probability finds the opti-
mum of the n-dimensional jump function with jump size k in time
O(µn1.5 log n).

We significantly improve this result for small jump sizes k ≤
1
20 lnn − 1. In this case, already for µ = Ω(

√
n log n) ∩ poly(n) the

runtime of the cGA with high probability is only O(µ
√
n). For the

smallest admissible values of µ, our result gives a runtime of O(n log n),

∗Extended version of results that appeared at GECCO 2019 [Doe19c] and FOGA
2019 [Doe19b]. It contains as new result the Ω(µ

√
n + n logn) lower bound. All other

results have been significantly rewritten, both to polish the arguments and to give a more
unified treatment of the two previous works. In this process, the GECCO 2019 results
were extended to subjump functions, the FOGA 2019 results were extended to superjump
functions – two natural extensions of the jump functions class. This work was supported
by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-
0056-LMH, LabEx LMH, in a joint call with Gaspard Monge Program for optimization,
operations research and their interactions with data sciences.

1

http://arxiv.org/abs/1908.06527v2

whereas the previous one only shows O(n5+ε). Since it is known that
the cGA with high probability needs at least Ω(µ

√
n) iterations to

optimize the unimodal OneMax function, our result shows that the
cGA in contrast to most classic evolutionary algorithms here is able
to cross moderate-sized valleys of low fitness at no extra cost.

For large k, we show that the exponential (in k) runtime guarantee
of Hasenöhrl and Sutton is tight and cannot be improved, also not by
using a smaller hypothetical population size. We prove that any choice
of the hypothetical population size leads to a runtime that, with high
probability, is at least exponential in the jump size k. This result
might be the first non-trivial exponential lower bound for EDAs that
holds for arbitrary parameter settings.

To complete the picture, we show that the cGA with hypo-
thetical population size µ = Ω(log n) with high probability needs
Ω(µ
√
n+n log n) iterations to optimize any n-dimensional jump func-

tion. This bound was known for OneMax, but, as we also show, the
usual domination arguments do not allow to extend lower bounds on
the performance of the cGA on OneMax to arbitrary functions with
unique optimum.

As a side result, we provide a simple general method based on par-
allel runs that, under mild conditions, (i) overcomes the need to specify
a suitable population size and still gives a performance close to the one
stemming from the best-possible population size, and (ii) transforms
EDAs with high-probability performance guarantees into EDAs with
similar bounds on the expected runtime.

1 Introduction

Estimation-of-distribution algorithms (EDAs) [LL02, PHL15] are a partic-
ular class of evolutionary algorithms. Whereas typical classic evolutionary
algorithms evolve a population of (hopefully good) solutions, EDAs evolve
a probabilistic model of the search space, that is, a probability distribution
over the set of all solutions. The target is to obtain distributions that allow
to easily sample good solutions for the optimization problem regarded.

While the mathematical analysis of classical evolutionary algorithms
(EAs) has produced a plethora of insightful results, see, e.g., [NW10, AD11,
Jan13, DN20], the rigorous understanding of EDAs is much less developed,
see, e.g., the recent survey [KW20a]. Obviously, this is due to the highly com-
plex stochastic processes that describe the runs of such algorithms. In con-
sequence, despite significant efforts and deep results [Dro06, SW19, LSW18],
not even the runtime of the compact genetic algorithm (cGA) on the

2

OneMax benchmark function is fully understood (here we would argue that
the cGA is the simplest EDA and that the unimodal OneMax function,
counting the number of ones in a bit string, is the easiest optimization prob-
lem with unique global optimum). It is therefore not surprising that many
questions which are well-understood for EAs are only started to be under-
stood for EDAs.

One such question is how EDAs optimize objective functions that are
not unimodal. In the first and, prior to this work, only runtime analysis of
an EDA on a multimodal problem, Hasenöhrl and Sutton [HS18] regard the
optimization time of the cGA on the jump function class. These functions are
unimodal apart from having a valley of low fitness of scalable size k around
the global optimum. For a sufficiently large constant C and any constant ε >
0, they show [HS18, Theorem 3.3] that the cGA with hypothetical population
size µ ≥ max{Cne4k, n3.5+ε}1 with probability 1 − o(1) finds the optimum
of any jump function with jump size k = o(n) in O(µn1.5 log n) generations
(which is also the number of fitness evaluations, since the cGA evaluates only
two search points in each iteration).

This result is remarkable in that it shows that the cGA with the right
choice of µ and for k ≥ 6 is more efficient on jump functions than most evo-
lutionary algorithms, which have a runtime of at least Ω(nk); see Section 2.3.

1.1 An Improved Upper Bound for Small Jump Sizes

When the jump size k is small, the runtime guarantee given by Hasenöhrl and
Sutton [HS18] is still relatively large. We note that even when choosing the
smallest possible population size µ = n3.5+ε, the runtime guarantee becomes
at least Ω(n5+ε). While clearly a polynomial runtime, and thus efficient in
the classic complexity theory view, this is a runtime that is not practical in
many applications. Also, this runtime guarantee is weaker than the O(nk)
bound for simple mutation-based EAs such as the (1 + 1) EA when k ≤ 5.
Hence one could feel that the result of Hasenöhrl and Sutton shows the
superiority of EDAs rather for problem instances for which both the runtime
of typical EAs and the performance guarantee for the cGA are prohibitively
large. In a similar vein, one has to question if a practitioner would run the
cGA with a hypothetical population size of more than n3.5 when solving a
problem defined over bit strings of length n.

Our first main result is that these potential weaknesses of the cGA
are not real and that the cGA performs in fact much better than what the

1In the paper, this is stated as minimum of the two terms, but from the proofs it is
clear that it should be the maximum.

3

previous work shows. We prove rigorously that the cGA with hypothetical
population size µ ≥ K

√
n log n, K a sufficiently large constant, and µ poly-

nomially bounded in n, with high probability2 optimizes any n-dimensional
jump function with jump size k ≤ 1

20
lnn − 1 in only O(µ

√
n) iterations.

Hence we both improve the runtime guarantee in terms of n and we enlarge
the range of admissible values for µ. For the smallest admissible population
size µ = Θ(

√
n logn), we obtain a runtime guarantee of O(n logn).

From a broader perspective our result yields that the cGA (and we expect
similar results to hold for other EDAs) does not suffer from moderate-size
valleys of low fitness. We recall that Sudholt and Witt [SW19] have shown
that the cGA with any hypothetical population size (polynomial in n) with
high probability needs Ω(µ

√
n) iterations to optimize theOneMax function.

Hence our result shows that adding a valley of low fitness to the OneMax

function does not worsen the asymptotic performance of the cGA as long as
the fitness valley has a width of at most 1

20
lnn− 1.

On the technical side, our work makes some arguments of [HS18] more
rigorous. In particular, we observe that the progress of the cGA cannot
be estimated by taking the progress one would have when no fitness valley
were present and correcting this estimate by inverting the progress with the
probability that a search point is sampled in the fitness valley. This argu-
ment ignores the stochastic dependencies between the absolute value of the
progress and the event that a solution in the fitness valley is sampled. These
dependencies are real and have, in fact, a negative impact on the progress as
discussed in more detail before Lemma 17.

We note that the approach of intentionally ignoring some dependencies
to make a mathematical analysis tractable, often called mean-field analysis,
is common in some scientific areas, most notably statistical physics, and has
also been used in evolutionary computation, e.g., [DZ20c]. This approach,
however, needs an additional justification, e.g., via specific experiments, why
the omission of the dependencies should not change the matter substantially.
In any case, such mean-field approaches do not lead to results fully proven
with mathematical rigor. In this sense, we hope that our work also provides
methods that help in future analyses of EDAs on multimodal optimization
problems.

2that is, with probability 1 − o(1), where the asymptotics is in n for a fixed k (which
might be a function of n)

4

1.2 An Exponential Lower Bound

When k is larger, say k = ω(logn), then the runtime guarantee given
in [HS18] is exponential in k, simply because µ has to be at least expo-
nential in k to fulfill the assumptions of the result. It is clear that with an
exponential hypothetical population size, the runtime must be exponential
as well (for the sake of completeness, we shall make this elementary argu-
ment precise in Lemma 1). What is not immediately clear is if by choosing
a smaller hypothetical population size the cGA can optimize jump functions
more efficiently.

Our second main result is a negative answer to this question. In The-
orem 22 we show that, regardless of the hypothetical population size, the
runtime of the cGA on a jump function with jump size k with high prob-
ability is at least exponential in k. Interestingly, not only our result is a
uniform lower bound independent of the hypothetical population size, but
our proof is also “uniform” in the sense that it needs case distinctions neither
w.r.t. the hypothetical population size nor w.r.t. the different reasons for the
lower bound. Here we recall that the existing runtime analyses, see, e.g.,
again [Dro06, SW19, LSW18], find two reasons why an EDA can be ineffi-
cient. (i) The hypothetical population size is large and consequently it takes
long to move the frequencies into the direction of the optimum. (ii) The
hypothetical population size is small and thus, in the absence of a strong
fitness signal, the random walk of the frequencies brings some frequencies
close to the boundaries of the frequency spectrum (this effect is known as
genetic drift, see [DZ20b] for a recent discussion and relatively precise quan-
tification); from there they are hard to move back into the game.

We avoid such potentially tedious case distinctions via an elegant drift
argument on the sum of the frequencies. Ignoring some technicalities here,
we show that, regardless of the hypothetical population size, the frequency
sum overshoots a value of n− 1

4
k only after an expected number of exp(Ω(k))

iterations. However, in an iteration where the frequency sum is below n −
1
4
k, the optimum is sampled only with probability exp(−Ω(k)). These two

arguments prove our lower bound of order exp(Ω(k)).

1.3 A Lower Bound for Small Jump Sizes

Since the exponential lower bound just discussed is not very strong for small
jump sizes k, we also prove a lower bound of Ω(µ

√
n + n logn) for the per-

formance of the cGA with hypothetical population size µ = Ω(log n) on any
jump function. This lower bound was shown before for the OneMax func-
tion [SW19]. While it is not surprising that the cGA is not more efficient

5

on jump functions than on OneMax, this is not trivial to show. As we
also observe in Section 6, a result like “OneMax is an easiest function with
a unique global optimum”, which is true for many other evolutionary algo-
rithms, cannot be proven with the usual arguments for the cGA. In fact, we
currently have no indication that such a result is true for the cGA, nor do
we have a counter-example.

1.4 Expected Runtimes of EDAs vs. Bounds with High

Probability

As a side result, triggered by the fact that we “only” show an upper bound
that holds with high probability, but not a bound on the expected runtime,
we provide in Section 2.4 a general approach to transform an EDA using
a population size parameter µ into an algorithm that does not require the
specification of such a parameter, but has a performance similar to the one
of the EDA with optimally chosen parameter. This performance guarantee
also holds for the expected runtime, even if for the EDA only a with-high-
probability runtime guarantee is known.

2 Preliminaries

2.1 The Compact Genetic Algorithm

The compact genetic algorithm (cGA) is an estimation-of-distribution al-
gorithm (EDA) proposed by Harik, Lobo, and Goldberg [HLG99] for the
maximization of pseudo-Boolean functions F : {0, 1}n → R. Being a uni-
variate EDA, it develops a probabilistic model described by a frequency vector
f ∈ [0, 1]n. This frequency vector describes a probability distribution on the
search space {0, 1}n. If X = (X1, . . . , Xn) ∈ {0, 1}n is a search point sampled
according to this distribution—we write

X ∼ Sample(f)

to indicate this—then we have Pr[Xi = 1] = fi independently for all i ∈
[1..n] := {1, . . . , n}. In other words, the probability that X equals some
fixed search point y is

Pr[X = y] =
∏

i:yi=1

fi
∏

i:yi=0

(1− fi).

In each iteration, the cGA updates this probabilistic model as follows.
It samples two search points x1, x2 ∼ Sample(f), computes the fitness of

6

both, and defines (y1, y2) = (x1, x2) when x1 is at least as fit as x2 and
(y1, y2) = (x2, x1) otherwise. Consequently, y1 is the better search point of
the two (if not both have the same fitness). We then define a preliminary
frequency vector by f ′ := f + 1

µ
(y1− y2), where µ is an algorithm parameter

called hypothetical population size. This definition ensures that, when y1 and
y2 differ in some bit position i, the i-th preliminary frequency moves by a
step of 1

µ
into the direction of y1i , which we hope to be the right direction

since y1 is the better of the two search points. The hypothetical population
size µ controls how strong this update is.

To avoid a premature convergence, we ensure that the new frequency
vector is in [1

n
, 1− 1

n
]n by capping too small or too large values at the corre-

sponding boundaries. More precisely, for all ℓ ≤ u and all r ∈ R we define

minmax(ℓ, r, u) := max{ℓ,min{r, u}} =

ℓ if r < ℓ

r if r ∈ [ℓ, u]

u if r > u

and we lift this notation to vectors by reading it component-wise. Now the
new frequency vector is minmax(1

n
1n, f

′, (1− 1
n
)1n).

This iterative frequency development is pursued until some termination
criterion is met. Since we aim at analyzing the time (number of iterations)
it takes to sample the optimal solution (this is what we call the runtime of
the cGA), we do not specify a termination criterion and pretend that the
algorithm runs forever.

The pseudo-code for the cGA is given in Algorithm 1. We shall use the
notation given there frequently in our proofs. For the frequency vector ft
obtained at the end of iteration t, we denote its i-th component by fi,t or,
when there is no risk of ambiguity, by fit. We shall frequently argue with
the sum of the frequencies, which can be written as ‖ft‖1 :=

∑n
i=1 |fit| since

the frequencies are non-negative. With a slight abuse of notation, we
extend this common notation also to preliminary frequency vectors f ′ and
thus write ‖f ′‖1 :=

∑n
i=1 f

′
it, when there is not danger of confusion. Where

there could be a chance of a critical misunderstanding, we use the much less
common notation

∑

[v] :=
∑n

i=1 vi to denote the sum of the entries of an
n-dimensional vector v ∈ R

n.
Well-behaved frequency assumption: For the hypothetical popula-

tion size µ, we take the common assumption that any two frequencies that
can occur in a run of the cGA differ by a multiple of 1

µ
. We call this the

well-behaved frequency assumption. This assumption was implicitly already
made in [HLG99] by using even µ in all experiments (note that the hypothet-
ical population size is denoted by n in [HLG99]). This assumption was made

7

Algorithm 1: The compact genetic algorithm (cGA) to maximize a
function F : {0, 1}n → R.

1 t← 0;
2 ft = (1

2
, . . . , 1

2
) ∈ [0, 1]n;

3 repeat

4 x1 ← Sample(ft);
5 x2 ← Sample(ft);
6 if F(x1) ≥ F(x2) then (y1, y2)← (x1, x2) else (y1, y2)← (x2, x1);
7 f ′

t+1 ← ft +
1
µ
(y1 − y2);

8 ft+1 ← minmax(1
n
1n, f

′
t+1, (1− 1

n
)1n);

9 t← t+ 1;

10 until forever ;

explicit in [Dro06] by requiring µ to be even. Both works do not use the fre-
quencies boundaries 1

n
and 1− 1

n
, so an even value for µ ensures well-behaved

frequencies.
For the case with frequency boundaries, the well-behaved frequency as-

sumption is equivalent to (1− 2
n
) being an even multiple of the update step

size 1
µ
. In this case, nµ = (1 − 2

n
)µ ∈ 2N and the set of frequencies that can

occur is
F := Fµ := { 1

n
+ i

µ
| i ∈ [0..nµ]}. (1)

This assumption was made, e.g., in the papers [FKKS17] (see the last para-
graph of Section II.C) and [LSW18] (see the paragraph following Lemma 2.1)
as well as in the proof of Theorem 2 in [SW19].

A trivial lower bound: We finish this subsection on the cGA with
the following very elementary remark, which shows that the cGA with hy-
pothetical population size µ with probability 1 − exp(−Ω(n)) has a run-
time of at least min{µ

4
, exp(Θ(n))} on any F : {0, 1}n → R with a unique

global optimum (and also on all functions with a sufficiently small exponen-
tial number of optima). This shows, in particular, that the cGA with the
parameter value µ = exp(Ω(k)) used to optimize jump functions with gap
size k ∈ ω(logn) ∩ o(n) in time exp(O(k)) in [HS18] cannot have a runtime
better than exponential in k.

Lemma 1. Let α, β ≥ 0 be constants such that αβ < 4
3
. Let F : {0, 1}n → R

have at most αn optima. The probability that the cGA generates an optimum
of F in T = min{µ

4
, βn} iterations is at most 2(αβ 3

4
)n = exp(−Ω(n)).

Proof. By the definition of the cGA, the frequency vector f used in iteration
t = 1, 2, 3, . . . satisfies f ∈ [1

2
− t−1

µ
, 1
2
+ t−1

µ
]n. Consequently, the probability

8

that a fixed one of the two search points which are generated in this iteration
is a fixed solution, is at most (1

2
+ t−1

µ
)n. For t ≤ µ

4
, this is at most (3

4
)n. Hence

by a simple union bound (over time and the global optima), the probability
that an optimum is generated in the first T = min{µ

4
, βn} iterations, is at

most 2αnT (3
4
)n ≤ 2(αβ 3

4
)n = exp(−Ω(n)).

2.2 Runtime Analysis for the cGA

In this subsection, we briefly describe the relevant previous runtime analyses
for the cGA. For simplicity, we shall always assume that the hypothetical
population size is at most polynomial in the problem size n, that is, that
there is a constant c such that µ ≤ nc. This is justified, among others, by
Lemma 1, which shows that a super-polynomial hypothetical population size
immediately leads to a super-polynomial runtime on any objective function
with at most αn optima, where α can be any constant less than 4

3
.

The first to conduct a rigorous runtime analysis for the cGA was Droste
in his seminal work [Dro06]. He regarded the cGA without frequency bound-
aries, that is, he just took ft+1 := f ′

t+1 in our notation. He showed that this
algorithm with µ ≥ n1/2+ε, ε > 0 any positive constant, finds the optimum
of the OneMax function defined by

OneMax(x) = ‖x‖1 =
n
∑

i=1

xi

for all x ∈ {0, 1}n with probability at least 1
2
in O(µ

√
n) iterations [Dro06,

Theorem 8].
Droste also showed that this cGA for any objective function F with

unique optimum has an expected runtime of Ω(µ
√
n) when conditioning

on no premature convergence [Dro06, Theorem 6]. It is easy to see that
his proof of the lower bound can be extended to the cGA with frequency
boundaries, that is, to Algorithm 1. For this, it suffices to deduce from his
drift argument the result that the first time Tn/4 that the frequency distance

D =
∑n

i=1(1− fit) is less than
n
4
satisfies E[Tn/4] ≥

√
2
4
µ
√
n. Since the prob-

ability to sample the optimum from a frequency distance of at least n
4
is at

most exp(−n
4
), see Lemma 9, the algorithm with high probability does not

find the optimum before time Tn/4.
Around ten years after Droste’s work, Sudholt and Witt [SW19] showed

that the O(µ
√
n) upper bound also holds for the cGA with frequency bound-

aries. There (but the same should be true for the cGA without boundaries)
a hypothetical population size of µ = Ω(

√
n logn) suffices (recall that Droste

required µ = Ω(n1/2+ε)). The technically biggest progress with respect to

9

upper bounds most likely lies in the fact that the analysis in [SW19] also
holds for the expected optimization time, which means that it also includes
the rare case that frequencies reach the lower boundary (see our discus-
sion of the relation of expectations and tail bounds for runtimes of EDAs
in Section 2.4). Sudholt and Witt also show that the cGA with frequency
boundaries with high probability (and thus also in expectation) needs at least
Ω(µ
√
n+n logn) iterations to optimize OneMax. While the Ω(µ

√
n) lower

bound could have been also obtained with methods similar to Droste’s (in
Lemma 15 we do something very similar), the innocent-looking Ω(n log n)
bound is surprisingly difficult to prove.

Not much is known for hypothetical population sizes below the order of√
n. It is clear that then the frequencies will reach the lower boundary of

the frequency range, so working with a non-trivial lower boundary like 1
n

is necessary to prevent premature convergence. The recent lower bound
Ω(µ1/3n) valid for µ = O(

√
n

logn log logn
) of [LSW18] indicates that already a

little below the
√
n regime significantly larger runtimes occur, but with no

upper bounds this regime remains largely not understood.
We refer the reader to the recent survey [KW20a] for more results on the

runtime of the cGA on classic unimodal test functions like LeadingOnes

and BinVal. Interestingly, nothing was known for multimodal functions
before the recent work of Hasenöhrl and Sutton [HS18] on jump functions,
which we discussed already in the introduction.

The general topic of lower bounds on runtimes of EDAs remains largely
little understood. Apart from the lower bounds for the cGA on OneMax

discussed above, the following is known. Krejca and Witt [KW20b] prove a
lower bound for the UMDA on OneMax, which is of a similar flavor as the
lower bound for the cGA of Sudholt and Witt [SW19]: For λ = (1 + β)µ,
where β > 0 is a constant, and λ polynomially bounded in n, the expected
runtime of the UMDA on OneMax is Ω(µ

√
n + n logn). For the binary

value function BinVal, Droste [Dro06] and Witt [Wit18] together give a
lower bound of Ω(min{n2, µn}) for the runtime of the cGA. Apart from
these sparse results, we are not aware of any lower bounds for EDAs. Of
course, the black-box complexity of the problem is a lower bound for any
black-box algorithm, hence also for EDAs, but these bounds are often lower
than the true complexity of a given algorithm. For example, the black-
box complexities of OneMax, LeadingOnes, and jump functions with
jump size k ≤ 1

2
n − nε, ε > 0 any constant, are Θ(n

logn
) [DJW06, AW09],

Θ(n log logn) [AAD+19], and Θ(n
logn

) [BDK16], respectively.

10

2.3 Runtime Results for Jump Functions

To complete the picture, we briefly describe some typical runtimes of evo-
lutionary algorithms on jump functions. We recall that the n-dimensional
jump function with jump size k ≥ 1 is defined by

Jumpnk(x) =

{

‖x‖1 + k if ‖x‖1 ∈ [0..n− k] ∪ {n},
n− ‖x‖1 if ‖x‖1 ∈ [n− k + 1 .. n− 1].

Hence for k = 1, we have a fitness landscape identical to the one of OneMax

apart from all fitness values being larger by one. For larger values of k, we
still have a fitness landscape identical to OneMax apart from constant shifts
when only regarding the lowest n−k fitness levels of the OneMax function,
however, now there is a fitness valley (“gap”)

Gnk := {x ∈ {0, 1}n | n− k < ‖x‖1 < n} (2)

consisting of the k − 1 highest sub-optimal fitness levels of the OneMax

function.
This valley is hard to cross via standard-bit mutation with mutation

rate 1
n
. Consequently, as proven in the classic paper [DJW02], the (1 + 1) EA

has an expected optimization time of at least nk on Jumpnk(x). This
lower bound also holds for the (µ+ λ) EA for all values of µ and λ as well
as, more surprisingly, for the (µ, λ) EA for large ranges of the population
sizes [Doe20a]. By using larger mutation rates or a heavy-tailed mutation
operator, a kΘ(k) runtime improvement for the runtime of the (1 + 1) EA can
be obtained [DLMN17], but the runtime remains Ω(nk) for k constant (and
this is also true for the variation of the heavy-tailed mutation rate proposed
in [FQW18]). The runtime stemming from the optimal mutation rate can
be automatically obtained (apart from constant factors) via a self-adjusting
choice of the mutation rate [RW20].

Asymptotically better runtimes can be achieved when using crossover,
though this is harder than expected. The first work in this direction [JW02],
among other results, could show that a simple (µ+ 1) genetic algorithm us-
ing uniform crossover with rate pc = O(1

kn
) obtains an O(µn2k3 + 22kp−1

c)
runtime when the population size is at least µ = Ω(k logn). A shortcom-
ing of this result, already noted by the authors, is that it only applies to
uncommonly small crossover rates. Using a different algorithm that first al-
ways applies crossover and then mutation, a runtime of O(nk−1 logn) was
achieved by Dang et al. [DFK+18, Theorem 2]. For k ≥ 3, the logarithmic
factor in the runtime can be removed by using a higher mutation rate. With
additional diversity mechanisms, the runtime can be further reduced up to

11

O(n logn+ 4k), see [DFK+16]. In the light of this last result, the insight
stemming from the previous work [HS18] and ours is that the cGA appar-
ently without further modifications supplies the necessary diversity to obtain
a runtime of O(n logn + 2O(k)).

With a three-parent majority vote crossover, among other results, a run-
time of O(n logn) could be obtained via a suitable island model for all k =

O(n
1

2
−ε) [FKK+16]. Via a hybrid genetic algorithm using as variation opera-

tors only local search and a deterministic voting crossover, an O(n) runtime
for m = O(logn) was obtained in [WVHM18]. Via a different voting mecha-
nism, an O(n logn) runtime was obtained even form as large as O(n) [RA19].
With the right static or heavy-tailed parameters, the (1 + (λ, λ)) GA opti-
mizes jump functions in time roughly n(k+O(1))/2 [ADK20, AD20], however,
when using the parameterization developed for OneMax [DDE15], then
several self-adjusting versions of the (1 + (λ, λ)) GA cannot beat mutation-
based EAs as shown in [FS20].

Finally, we note that runtimes of O(n
(

n
k

)

) and O(k log(n)
(

n
k

)

) were shown
for the (1 + 1) IAhyp and the (1 + 1) Fast-IA artificial immune systems,
respectively [COY17, COY18].

2.4 Expected Runtimes versus Guarantees with High

Probability

We note that our main upper bound result as well as the previous one [HS18]
for this problem give runtime bounds that hold with high probability, that
is, with probability 1 − o(1). However, we do not show a bound on the
expected runtime. Let us quickly argue what the differences are, why we
chose to prove a high-probability statement, and how to transform EDAs
with high-probability guarantees into EDAs with guarantees on the expected
runtime. We note that Wegener [Weg05, Section 3] with different arguments
also suggests to prefer high-probability guarantees over expected runtimes.

For most evolutionary algorithms a high-probability guarantee can easily
be turned into a bound on the expected runtime. If we know that a cer-
tain algorithm from any initial state finds the optimum in time T with at
least constant probability, then by splitting time into consecutive segments
of length T we see that after time γT the probability that the algorithm has
not succeeded is at most exp(−Ω(γ)). Consequently, the runtime is stochas-
tically dominated (see Section 3.2 for the definition of this notation) by T
times a geometric random variable with constant success rate, and conse-
quently, the expected runtime is O(T). The same argument gives a scalable

12

tail bound of type “for all γ > 1, the probability that the runtime is more
than γT is at most exp(−Ω(γ)).”

For EDAs, it is usually much harder to show a good performance for any
initial situation since there are some states which are particularly unfavorable
(usually when all frequencies are close to the wrong boundary value). This
does not rule out that the expected runtime and the time that is obtained
with high probability are of the same order, but proving the bound on the
expected runtime needs stronger arguments. The analysis of the expected
runtime of the cGA on OneMax in [SW19] is an example for such a result.

This additional proof complexity raises the question if this effort is justi-
fied if the hardest part is dealing with states of the algorithm that are rarely
reached (in [SW19] with probability O(n−c) only, where c can be any positive
constant). While we think that it was very valuable that the work [SW19]
showed how to compute expected runtimes for EDAs, we feel that such re-
sults are not always needed, both because of the difficulty to obtain such
results and because, in some sense, they are a mildly unnatural remedy to
the deeper problem.

As said, the main reason why guarantees for the expected runtime of an
EDA can be difficult to show is that the EDA with small probability can
end up in a state from which the optimum is hard to reach. When in such a
state, however, instead of spending much time to leave the unfavorable state,
it would be more efficient and more natural to simply restart the algorithm
and have a new good chance for a fast optimization process. While we
cannot expect the algorithm to detect that it is in an unfavorable state,
the following simple parallel-run strategy under mild assumptions can do
this automatically. More precisely, via suitable parallel runs we obtain an
expected runtime that is only a logarithmic factor above the runtime the EDA
would have with high probability when using the optimal population size.
Hence this approach both obtains expected runtimes and optimizes the value
of the parameter µ. We note that the “noise-oblivious scheme” proposed
in [FKKS17, Algorithm 4] can also be used to optimize the parameter µ,
however only under the much stronger assumption that the runtime (or an
upper bound, which influences the runtime of the scheme) is known. In this
case, a simple restart scheme with multiplicatively increasing µ values does
the job.

We now proceed with detailing our parallel-run strategy. In the remain-
der, we shall assume the following.

General assumption: Let A be an EDA (or any other randomized search
heuristic) with a parameter µ and let P be a problem instance we want to
solve. We assume that there are unknown values µ̃ and T such that A with

13

any parameter value µ ≥ µ̃ solves P in time µT with probability at least 3
4
.

For this situation, we proposed the following strategy.

Parallel EDA runs with exponentially growing population size:

We propose the following strategy to solve P via parallel runs of A with
different parameter values. We start with no process running. In round
i = 1, 2, . . . of our strategy, we let all running processes (which are process
1 to i − 1) use a computational budget of 2i−1; further, we start process i
with parameter µ = 2i−1 and let it use a budget of

∑i−1
j=0 2

j. These processes
can be run in parallel or sequentially in any order. The pseudocode for this
strategy is given in Algorithm 2.

Algorithm 2: The parallel-run cGA to maximize a function f :
{0, 1}n → R

1 Initialize process 1 with population size µ = 1 and run it for one
generation;

2 for i = 2, 3, . . . do
3 Run processes 1, . . . , i− 1 each for another 2i−1 generations;
4 Initialize process i with population size µ = 2i−1 and run it for

∑i−1
j=0 2

j generations;

Analysis: We observe that at the end of round i, processes 1 to i are running
and have each spent a budget of

∑i−1
j=0 2

j = 2i − 1 up to this point in time.

Consequently, the total budget spent in the first i rounds is less than i2i.
Note that after round i0 := 1 + ⌈log2 µ̃⌉ + ⌊log2 T ⌋, the process started

with parameter value µ = µ0 := 2⌈log2 µ̃⌉ ≥ µ̃ has started and has used a time
budget of

i0−1
∑

j=0

2j ≥
i0−1
∑

j=⌈log2 µ̃⌉
2j = µ0

⌊log2 T ⌋
∑

j=0

2j ≥ µ0T.

Consequently, with probability 3
4
this process has found the optimum at

that time. With the same type of computation, we see that after round
i0+ j, the process with parameter value µ = 2jµ0 is finished with probability
3
4
. Consequently, the round in which we find the solution is stochastically

dominated (see Section 3.2) by i0−1 plus a geometric distribution (on 1, 2, . . .)
with success rate 3

4
. The expected time taken by this strategy to solve P thus

14

is at most

∞
∑

i=i0

(

1

4

)i−i0 (3

4

)

i 2i =
3

4
2i0

∞
∑

j=0

2−j(j + i0) = 3 · 2i0−1(i0 + 1)

using the well-known equality
∑∞

j=0 j 2
−j = 2. We continue estimating the

expected runtime of our parallel-run strategy by

3 · 2i0−1(i0 + 1) ≤ 6µ̃T (log2(µ̃T) + 3) =: Tpar.

We note that if the values of µ̃ and T were known in advance, then restarting
the EDA with µ = µ̃ and with a budget of T until the problem is solved would
immediately give an algorithm with expected runtime at most T ∗ = 4

3
µ̃T .

This is the best-possible expected runtime that can be deduced from our
assumptions. Consequently, our parallel-run strategy with its O(T ∗ log T ∗)
expected runtime obtains the optimal expected runtime apart from a loga-
rithmic factor.

In summary, we have shown the following result.

Theorem 2. Under the general assumptions made above, with i0 := 1 +
⌈log2 µ̃⌉+⌊log2 T ⌋, the parallel run strategy described above has the following
performance.

• The expected time until P is solved is at most

3 · 2i0−1(i0 + 1) ≤ 6µ̃T (log2(µ̃T) + 3) = 9
2
T ∗(log2(

3
4
T ∗) + 3),

where T ∗ = 4
3
µ̃T is the best expected runtime that can be achieved via

restarts of A under the general assumptions.

• For all j = 0, 1, 2, . . ., the probability that a runtime of 2i0+j(i+ j) does
not suffice to solve P, is at most 4−j−1.

We remark that a logarithmic factor performance loss over the optimal
strategy (requiring the precise values of µ̃ and T) is not a lot compared
to what can be lost by choosing a wrong algorithm parameter, in partic-
ular, when the parameter is hard to guess. We note here that the recent
work [LSW18] suggests that already for the simple OneMax function, the
hypothetical population size has a non-obvious influence on the runtime:
Sufficiently small values give an O(n logn) runtime, in a middle regime the
runtime increases to Ω̃(n7/6) before dropping again to O(n logn) and then
increasing linearly with µ. In the light of such results, a logarithmic overhead
for automatically finding a near-optimal rate appears to be a good trade-off.

15

Finally, we remark without further proof that when our general assump-
tion is fulfilled with some failure probability p instead of 1

4
, then tail proba-

bilities in the second item of Theorem 2 are of order pj+1 instead of (1
4
)j+1.

This could potentially be interesting when the performance of A is strongly
concentrated so that the general assumptions hold with some p = o(1). We
also note that our strategy could be adjusted to deal with smaller success
probabilities than 3

4
, either by increasing the µ value by a smaller factor than

2 or by having several processes using the same µ value. We spare the details.
Finally, we note that recently a similar approach was proposed in [DZ20a].

The main difference to ours is that runs where stopped after a time that
was based on a mathematical analysis of when genetic drift could become
problematic. From the implementation point of view, in this approach the
runs with different values of µ can be conducted one after the other. From the
theoretical perspective, this approach has the advantage that with the right
choice of the hyperparameters the Θ(log(µ̃T)) factor in the runtime bound of
Theorem 2 can be saved. The experimental results in [DZ20a] suggest that
their approach is superior when the hyperparameters are chosen suitably,
which is however non-trivial. We note that here that there is a general
agreement in the community that genetic drift leads to an undesired behavior
of the EDA. Genetic drift can lead to catastrophic runtimes (compare the
results of [LN19, DK20b]), but not always does ([LN17, Wit19] show that
the UMDA already with a population size of Θ(logn) and thus clearly in the
genetic drift regime can optimize OneMax in the for this algorithm best
known runtime O(n logn)).

3 Technical Tools

In this section, we collect a number of technical results that will be used in our
main proofs. These include standard arguments like elementary estimates,
Chernoff bounds, and drift theorems, as well as original arguments for the
analysis of the cGA which might be of general interest such as a tool to
quantify the effect of frequencies being capped at the boundaries (Lemma 8),
an upper and a lower bound for the probability of sampling the optimum
given the ℓ1-distance between the current frequency vector and the optimum
(Lemma 9 and 10), an estimate for the time taken to sample a search point
close to the current frequency vector, and a lower bound on the probability
to sample two different search points in one iteration (Lemma 12).

16

3.1 Standard Tools

The following estimate seems well-known (e.g., it was used in [JJW05] with-
out proof or reference). Gießen and Witt [GW17, Lemma 3] give a proof via
estimates of binomial coefficients and the binomial identity. A more elemen-
tary proof can be found in [Doe20c, Lemma 1.10.37].

Lemma 3. Let X ∼ Bin(n, p). Let k ∈ [0..n]. Then

Pr[X ≥ k] ≤
(

n

k

)

pk.

We regularly use the following well-known multiplicative Chernoff bounds,
which can be derived from [Hoe63], see, e.g., Theorems 1.10.1 and 1.10.5
together with Section 1.10.1.8 in [Doe20c].

Theorem 4. Let X1, . . . , Xn be independent random variables taking values
in [0, 1]. Let X =

∑n
i=1Xi. Let µ+ ≥ E[X] and µ− ≤ E[X]. Let δ ≥ 0 and

δ̃ ∈ [0, 1]. Then

Pr[X ≥ (1 + δ)µ+] ≤ exp

(

− min{δ2, δ}µ+

3

)

,

Pr[X ≤ (1− δ̃)µ−] ≤ exp

(

− δ̃2µ−

2

)

.

A direct consequence of these Chernoff bounds are the following esti-
mates, which state that the OneMax fitness of a search point sampled from
Sample(f) is close to the expected OneMax fitness ‖f‖1. Since we mostly
need such results for frequency vectors close to (1, . . . , 1), we formulate this
result in terms of distances to the maximum value n.

Lemma 5. Let f ∈ [0, 1]n, D := n− ‖f‖1, D− ≤ D ≤ D+, x ∼ Sample(f),
and d(x) := n− ‖x‖1. Then for all δ ≥ 0 and δ̃ ∈ [0, 1], we have

Pr[d(x) ≥ (1 + δ)D+] ≤ exp(−1
3
min{δ2, δ}D+),

Pr[d(x) ≤ (1− δ̃)D−] ≤ exp(−1
2
δ̃2D−).

Proof. The random variable n − ‖x‖1 can be written as a sum n − ‖x‖1 =
∑n

i=1Zi =: Z of n independent binary random variables Z1, . . . , Zn such that
Pr[Zi = 1] = 1 − fi. By definition, E[Z] = D. The claims follow directly
from Theorem 4.

17

We need the lemma above in particular to argue that the probability
to sample a search point in the gap region of the Jump function is small.
For the Jumpnk function, we observe that when D := n − ‖f‖1 is at least
2k, then the probability that x ∼ Sample(f) lies in the gap, that is, satisfies
n−k < ‖x‖1 < n, is e−Ω(k). This result is sufficient for our purposes. We note
that we could also obtain a low constant probability for sampling in the gap
when D ≥ k +Ω(

√
k) with large implicit constant. In [HS18, Lemma 3.2], a

gap probability of at most 1− 1√
2
≤ 0.293 is claimed already when D ≥ k+ c

for c a sufficiently large constant and k = o(n), but we are skeptical that this
is true. Note that when f = n−k−c

n
1n, then X = n−‖x‖1 with x ∼ Sample(f)

follows a binomial distribution with parameters n and k+c
n
. Hence if k is large

compared to c, then Pr[X < k] = Pr[X < E[X]− c] ≈ 1
2
.

At one point, in the proof of Lemma 19, we need an additive Chernoff
bound not only for the sum of independent random variables, but also for all
partial sums. Such bounds are less known despite the fact that many classical
Chernoff bounds hold equally well in this more demanding fashion. The
following result is from Hoeffding [Hoe63, Theorem 2 together with (2.17)].
It can also be found in [Doe20c], Theorems 1.10.9 and 1.10.31.

Theorem 6. Let X1, . . . , Xn be independent random variables such that for
all i ∈ [1..n], the variable Xi takes values in some interval [ai, bi] and has
expectation E[Xi] = 0. Then for all λ ≥ 0, we have

Pr

[

∃j ∈ [1..n] :

j
∑

i=1

Xi ≥ λ

]

≤ exp

(

− 2λ2

∑n
i=1(bi − ai)2

)

,

Pr

[

∃j ∈ [1..n] :

j
∑

i=1

Xi ≤ −λ
]

≤ exp

(

− 2λ2

∑n
i=1(bi − ai)2

)

.

Finally, we state the additive drift theorem of He and Yao [HY01] (see also
the recent survey [Len20]), which allows to translate an expected progress
(or bounds on it) into bounds for expected hitting times.

Theorem 7. Let S ⊆ R≥0 be finite and 0 ∈ S. Let X0, X1, . . . be a random
process taking values in S. Let δ > 0. Let T = inf{t ≥ 0 | Xt = 0}.

(i) If for all t ≥ 0 and all s ∈ S \ {0} we have E[Xt −Xt+1 | Xt = s] ≥ δ,

then E[T] ≤ E[X0]
δ

.

(ii) If for all t ≥ 0 and all s ∈ S \ {0} we have E[Xt −Xt+1 | Xt = s] ≤ δ,

then E[T] ≥ E[X0]
δ

.

18

3.2 Tools for the Analysis of the cGA

In this section, we prove a number of general arguments for the analysis of
the cGA. Since we expect that they are helpful for other runtime analyses of
EDAs, we fix no general notation apart from the one defined in Algorithm 1
(at the price of occasionally restating a notation).

We recall the notation of stochastic domination, which will be used sev-
eral times in this work. For two random variables X and Y , not necessarily
defined over the same probability space, we say that Y stochastically domi-
nates X , written as X � Y , if for all λ ∈ R we have

Pr[X ≥ λ] ≤ Pr[Y ≥ λ].

Stochastic domination is a strong way of saying that Y is not smaller than
X . It implies that E[X] ≤ E[Y]. We refer to [Doe19a] for more details.

Boundary effects: When, in the notation of Algorithm 1, the current
frequency vector ft is such that fit ∈ { 1n , 1 − 1

n
} for some i ∈ [1..n], then

it may happen that f ′
t+1 /∈ [1

n
, 1 − 1

n
] and consequently ft+1 does not satisfy

the nice relation ft+1 = ft +
1
µ
(y1 − y2). The following lemma quantifies

these discrepancies. We here recall the common definition that for an n-
dimensional vector x and a subset L ⊆ [1..n] of its index set, x|L denotes the
restriction of x to L, that is, the vector (xℓ)ℓ∈L.

Lemma 8. Let P = 2 1
n
(1 − 1

n
). Let t ≥ 0. Using the notation given in

Algorithm 1, consider iteration t+1 of a run of the cGA started with a fixed
frequency vector ft ∈ [1

n
, 1− 1

n
]n.

(i) Let L = {i ∈ [1..n] | fit = 1
n
}, ℓ = |L|, and M = {i ∈ L | x1

i 6= x2
i }.

Then |M | ∼ Bin(ℓ, P) and

‖ft+1‖1 − ‖f ′
t+1‖1 � ‖(ft+1)|L‖1 − ‖(f ′

t+1)|L‖1 � 1
µ
|M | � 1

µ
Bin(n, 2

n
).

(ii) Let L = {i ∈ [1..n] | fit = 1− 1
n
}, ℓ = |L|, and M = {i ∈ L | x1

i 6= x2
i }.

Then |M | ∼ Bin(ℓ, P) and

‖f ′
t+1‖1 − ‖ft+1‖1 � ‖(f ′

t+1)|L‖1 − ‖(ft+1)|L‖1 � 1
µ
|M | � 1

µ
Bin(n, 2

n
).

Proof. By symmetry, it suffices to prove the first part. For an i ∈ L, we have
Pr[x1

i 6= x2
i] = 2 1

n
(1 − 1

n
) = P . Since the bits of x1 and x2 were sampled

independently, we have |M | ∼ Bin(ℓ, P).
By the well-behaved frequency assumption and the fact that f ′

t+1 = ft +
1
µ
(y1 − y2) for binary vectors y1 and y2, we can have f ′

i,t+1 < 1
n
and thus

19

fi,t+1 > f ′
i,t+1 only when fit =

1
n
and x1

i 6= x2
i , that is, when i ∈ M . This

shows ‖ft+1‖1 − ‖f ′
t+1‖1 � ‖(ft+1)|L‖1 − ‖(f ′

t+1)|L‖1.
Since fi,t+1 > f ′

i,t+1 implies fi,t+1 = f ′
i,t+1 +

1
µ
, we also have ‖(ft+1)|L‖1 −

‖(f ′
t+1)|L‖1 � 1

µ
|M | � 1

µ
Bin(n, 2

n
).

Sampling a particular solution: The following two elementary es-
timates give an upper and a lower bound on the probability to sample a
particular search point x∗. Note that the quantity D = ‖x∗ − f‖1 is our
usual distance measure D = n− ‖f‖1 when x∗ = (1, . . . , 1).

Lemma 9. Let x∗ ∈ {0, 1}n. Let f ∈ [0, 1]n and D = ‖x∗ − f‖1. Let
x ∼ Sample(f). Then Pr[x = x∗] ≤ exp(−D).

Proof. The probability to sample x∗ is

n
∏

i=1

(1− |x∗
i − fit|) ≤

n
∏

i=1

exp(−|x∗
i − fit|)

= exp

(

−
n
∑

i=1

|x∗
i − fit|

)

= exp(−‖x∗ − f‖1) = exp(−D).

To ease reading, we formulate the following estimate only for x∗ =
(1, . . . , 1), but it is clear that by symmetry analoguous statements hold for
arbitrary x∗ (when ‖x∗ − f‖∞ ≤ 1− c).

Lemma 10. Let 0 < c < 1, f ∈ [c, 1]n, and D = n − ‖f‖1. Let x ∼
Sample(f). Then Pr[x = (1, . . . , 1)] ≥ cD/(1−c).

Proof. For i ∈ [1..n], let αi :=
1−fi
1−c

. Then fi = αic + (1− αi)1 is the unique
representation of fi as convex combination of c and 1. Since the logarithm
is concave, we have

log fi = log(αic+ (1− αi)1) ≥ αi log c+ (1− αi) log 1 = log(cαi).

Since the logarithm is monotonically increasing, this inequality implies
fi ≥ cαi . Consequently,

Pr[x = (1, . . . , 1)] =

n
∏

i=1

fi ≥
n
∏

i=1

cαi = c
∑n

i=1
αi = c(n−‖f‖1)/(1−c).

20

Time to sample a search point when close: We use the above lower
bound on the probability to sample (1, . . . , 1) to prove the following result. It
shows that when µ is large enough and Dt := n−‖ft‖1 is small enough, then
regardless of the fitness function we sample the search point (1, . . . , 1) quickly
with high probability. The main argument is that when µ is sufficiently large,
then Dt stays small sufficiently long.

Lemma 11. Let µ be at least
√
n, but polynomially bounded in n. Consider

a run of the cGA with hypothetical population size µ on an arbitrary fitness
function. Assume that at some time t0, we have Dt0 := n − ‖ft0‖1 ≤ 1

10
lnn

and ft0 ∈ [1
3
, 1]n. Then with probability at least 1 − n−ω(1), the search point

(1, . . . , 1) is sampled in the next
Dt0

µ

2 ln(n)2
iterations.

Proof. We first argue that if at some time t we have Dt ≤ ln(n)2, then
Pr[Dt+1 ≥ Dt +

2
µ
ln(n)2] ≤ n−ω(1). By Lemma 5, we have

Pr[d(xj) ≥ 2 ln(n)2] ≤ exp(−1
3
ln(n)2) = n−ω(1)

for j = 1, 2. Consequently, with probability 1−n−ω(1), we have both ‖x1‖1 >
n − 2 ln(n)2 and ‖x2‖1 > n − 2 ln(n)2. Now regardless of how x1 and x2

are sorted into (y1, y2), less than 2 ln(n)2 frequencies are decreased in the
frequency update of this iteration. We conclude that Dt+1 < Dt +

2
µ
ln(n)2.

Let L = ⌊ Dt0

(2/µ) ln(n)2
⌋. By a union bound, with probability

1− Lnω(1) ≥ 1− nω(1),

we have Dt+1 ≤ Dt +
2
µ
ln(n)2 in all iterations t = t0, . . . , t0 + L − 1 that

start with Dt ≤ 2Dt0 . Let us condition on this in the following. Then by
induction, we have Dt ≤ Dt0 + (t − t0)

2
µ
ln(n)2 ≤ 2Dt0 throughout these L

iterations.
Note that L = O(µ

log(n)
), hence throughout this period we also have fit ≥

1
3
− 1

µ
L ≥ 0.32 (assuming n to be sufficiently large) for all i ∈ [1..n]. By

Lemma 10, the probability that a fixed search point sampled in this period
equals (1, . . . , 1), is at least

0.322Dt0
/0.68 ≥ 0.320.2 ln(n)/0.68

= exp(0.2 ln(n) ln(0.32)/0.68) ≥ n0.2 ln(0.32)/0.68 =: q.

Since 0.2 ln(0.32)/0.68 > −0.34 and L = Ω(µ
log(n)2

), the probability that

(1, . . . , 1) is not sampled in this period is at most

(1− q)2L ≤ exp(−2qL) ≤ exp(−n0.2 ln(0.32)/0.68 · Ω(µ
ln(n)2

)) ≤ exp(−Ω(n0.16)).

21

Sampling search points with different 1-norm: To argue that the
cGA makes at least some small progress, we shall use the following blunt
estimate for the probability that two bit strings x, y ∼ Sample(f) sampled
from the same product distribution have a different distance from the all-
ones string (and, by symmetry, from any other string, but this is a statement
which we do not need here).

Lemma 12. Let n ∈ N, m ∈ [n
2
..n], and f ∈ [1

n
, 1 − 1

n
]m. Let x1, x2 ∼

Sample(f) be independent. Then Pr[‖x1‖1 6= ‖x2‖1] ≥ 1
16
.

Proof. For all v ∈ R
m and a, b ∈ [1..m] with a ≤ b we use the abbreviation

v[a..b] :=
∑b

i=a vi. We first argue that by symmetry, we can assume that
f[1..m] ≤ m

2
. Indeed, let f[1..m] >

m
2
and assume the claim shown for the case

that f[1..m] ≤ m
2
. Let f̄ = 1m− f and x̄1, x̄2 ∼ Sample(f̄) independent. Then

Pr[‖x1‖1 = ‖x2‖1] =
m
∑

i=0

Pr[‖x1‖1 = i = ‖x2‖1]

=
m
∑

i=0

Pr[‖x1‖1 = i] · Pr[‖x2‖1 = i]

=

m
∑

i=0

Pr[‖x̄1‖1 = m− i] · Pr[‖x̄2‖1 = m− i]

=
m
∑

i=0

Pr[‖x̄1‖1 = m− i = ‖x̄2‖1]

= Pr[‖x̄1‖1 = ‖x̄2‖1] ≤ 15
16
,

where the last estimate follows from our assumption and the fact that f̄[1..m] ≤
m
2
. This shows the claim for f and justifies that in the remainder, we assume

f[1..m] ≤ m
2
.

Without loss of generality, we may further assume that fi ≤ fi+1 for all
i ∈ [1..m− 1]. We have f⌊m/4⌋ ≤ 2

3
as otherwise

f[1..m] ≥ f[⌊m/4⌋+1..m] >
2
3
(m− ⌊m

4
⌋) ≥ 2

3
· 3
4
m = m

2
,

contradicting our assumption.
Let ℓ be minimal such that f[1..ℓ] ≥ 1

8
. Since ℓ ≤ n

8
≤ m

4
, we have fℓ ≤ 2

3

and thus f[1..ℓ] ≤ 1
8
+ 2

3
= 19

24
.

22

For j ∈ {0, 1} let qj = Pr[x1
[1..ℓ] = j] = Pr[x2

[1..ℓ] = j]. We compute

Pr[‖x1‖1 6= ‖x2‖1]
≥ Pr[x1

[1..ℓ] = x2
[1..ℓ] ∧ x1

[ℓ+1..n] 6= x2
[ℓ+1..n]]

+ Pr[x1
[1..ℓ] 6= x2

[1..ℓ] ∧ x1
[ℓ+1..n] = x2

[ℓ+1..n]]

= Pr[x1
[1..ℓ] = x2

[1..ℓ]] Pr[x
1
[ℓ+1..n] 6= x2

[ℓ+1..n]]

+ Pr[x1
[1..ℓ] 6= x2

[1..ℓ]] Pr[x
1
[ℓ+1..n] = x2

[ℓ+1..n]]

≥ min{Pr[x1
[1..ℓ] = x2

[1..ℓ]],Pr[x
1
[1..ℓ] 6= x2

[1..ℓ]]}Pr[x1
[ℓ+1..n] 6= x2

[ℓ+1..n]]

+ min{Pr[x1
[1..ℓ] = x2

[1..ℓ]],Pr[x
1
[1..ℓ] 6= x2

[1..ℓ]]}Pr[x1
[ℓ+1..n] = x2

[ℓ+1..n]]

≥ min{Pr[x1
[1..ℓ] = x2

[1..ℓ]],Pr[x
1
[1..ℓ] 6= x2

[1..ℓ]]}
≥ min{q20 + q21, 2q0q1} = 2q0q1,

the latter by the inequality of the arithmetic and geometric mean. Using
Bernoulli’s inequality, we estimate coarsely

q0 =

ℓ
∏

i=1

(1− fi) ≥ 1− f[1..ℓ],

q1 =

ℓ
∑

i=1

fi
∏

j∈[1..ℓ]\{i}
(1− fi) ≥ f[1..ℓ](1− f[1..ℓ]).

Since the function z 7→ z(1 − z)2 is unimodal in [0, 1], the minimum in any
subinterval of [0, 1] is necessarily found at a boundary of the interval. We
thus obtain

2q0q1 ≥ 2min{z(1− z)2 | z ∈ [1
8
, 19
24
]}

= 2min{z(1 − z)2 | z ∈ {1
8
, 19
24
}} = 219

24
(5
25
)2 ≥ 1

16
.

4 An Upper Bound for the Runtime of the

cGA on Jump Functions

In this section, we state precisely and prove our O(µ
√
n) upper bound for

the runtime of the cGA on jump functions with small jump size k. With the
smallest admissable hypothetical populations size µ = Θ(

√
n log n), it gives

a runtime guarantee of O(n logn). Our result includes the trivial case k = 1,
that is, the OneMax benchmark function, a result that was known before.

23

Our results are true not only for jump functions, but for the larger class
of all functions that (apart from a uniform additive constant) agree with
OneMax on {0, 1}n\Gnk and that have (1, . . . , 1) as an optimum (recall that
Gnk was defined to be the gap region of Jumpnk, see (2)). This observation
is interesting in its own right, e.g., it yields that our result also holds for the
plateau functions defined in [AD18]. It also helps us formulating the proofs
in a more concise manner since we can now assume that k is sufficiently large
(since a jump function with small jump parameter k′ is included in this larger
class for all k ≥ k′).

To make things precise, for all n ∈ N and k ≥ 1 we define the class of
subjump functions with jump size k as the class of all functions F : {0, 1}n →
R such that there is a K ∈ N such that

• F(x) = ‖x‖1 +K if ‖x‖1 ∈ [0..n− k] ∪ {n},

• F(x) ≤ n+K if ‖x‖1 ∈ [n− k + 1..n− 1]

for all x ∈ {0, 1}n. Here the prefix sub is to be understood in the sense that
these functions are seen as at most as hard as the true jump function with
jump size k or that, if F is a jump function, its jump size is at most k. It is
not to be understood in the sense that a subjump functions is pointwise less
or equal to the corresponding jump function (which is not true).

As said before, subjump functions have an optimum at (1, . . . , 1), but
there could be others in the gap region Gnk. We continue to call Gnk the gap
even though this is not for all subjump functions a fitness valley. We note
that the class of subjump functions with jump size k includes all subjump
functions with jump size smaller than k, in particular, all jump functions
with smaller jump size and thus also the OneMax function (to ensure this
property, we needed the additional variable K in the definition).

Without further details, we note that many previously proven upper
bounds for runtimes on jump functions are also valid for subjump functions.
However, this might not be true for results that heavily exploit the particular
structure of the true jump functions, say the symmetry of the set of local
optima, such as the results on crossover-based algorithms.

The main result of this section is the following runtime guarantee for
subjump functions.

Theorem 13. Let k ≤ 1
20
ln(n)− 1. For a sufficiently large constant cµ, let

µ ≥ cµ
√
n ln(n), but polynomially bounded in n. Then the cGA with frequency

boundaries (Algorithm 1) with hypothetical population size µ with probability
1−o(1) finds the optimum of any n–dimensional subjump function with jump
size k in time O(µ

√
n). This time is O(n logn) when µ = Θ(

√
n ln(n)).

24

We start by giving a rough overview of the proof in the following subsec-
tion and then state the formal proof in the two subsequent subsections.

4.1 Proof Overview

We now give a brief overview of our runtime analysis and show how the
different partial results work together. We leave it to the reader to read this
section now or after the presentation of the partial results (or twice).

In our analysis, we roughly distinguish three phases of the optimization
process. The first phase, analyzed in Lemma 16, lasts until for the first
time the frequency distance Dt := n− ‖ft‖1 is O(logn) with a large implicit
constant. During this phase, by Lemma 5 and a union bound, with high
probability we will never sample a solution in the gap. Consequently, we can
pretend that we are optimizing the OneMax function and use our analysis
of Lemma 15, which reuses arguments of the classic result by Droste [Dro06]
including Lemma 14.

The second phase, analyzed in Lemma 18, then lasts until we have a Dt

value of less than 2k (or less than some constant in the case of a very small k).
In this phase, we use the drift computed in Lemma 17. We profit from the
fact that in this phase we only need to obtain a moderate decrease of Dt and
apply the additive drift theorem (Theorem 7(i)) with the smallest drift that
can occur in this phase, which is Ω(1

µ
). Since this phase is so short, a simple

Markov bound suffices to show that the phase ends with high probability in
due time.

Once we have reached a Dt value of O(k), we have a reasonable chance to
sample the optimum as shown in Lemma 11. Since in this third phase sam-
ples in the gap occur frequently, we have less control over Dt, in particular,
we cannot exhibit an expected decrease of Dt. We therefore pessimistically
estimate Dt as if Dt would always increase, which gives (apart from the
boundary effects described in Lemma 8) an increase of |‖x1‖1−‖x2‖1|. Since
Dt is small, these increases are small as well, as again ensured by Lemma 5.
With this observation, we can argue that we have a Dt value of O(k) for
almost µ iterations, which together with Lemma 10 shows that we sample
the optimum with high probability.

All the arguments above need that the frequencies are bounded away from
the lower boundary of 1

n
, more precisely, that they are Ω(1) at all times. In

the first two phases, we ensure this via Lemma 19, our general result for
random processes that are not Markov processes. To this aim, we estimate
the probabilities of certain frequency changes by adjusting this data from the
OneMax process (Lemma 20, taken from Sudholt and Witt [SW19]) via a
pessimistic estimate of the negative influence of search points sampled in the

25

gap. For the third phase, the fact that this phase only last o(µ) iterations
implies that frequencies change by at most o(1), hence the Ω(1) lower bound
remains intact.

4.2 Proof Ingredients

In this section, we prove separately the main arguments needed in our fi-
nal proof. We also state some known results on how the cGA optimizes
OneMax.

The following result is a weaker form of what was shown in the proof
of Lemma 5 in [Dro06]. The result of Lemma 5 in [Dro06], bounding the
expected progress instead of showing that a certain progress can be observed
with constant probability, is not sufficient for our purposes, see the discussion
below.

Lemma 14 ([Dro06]). There is a constant C > 0 such that the following
holds. Let n ∈ N and D ∈ N. Let f ∈ [1

3
, 1]n such that ‖f‖1 ≤ n −D. Let

x1, x2 ∼ Sample(f) independent. Then

Pr
[

∣

∣‖x1‖1 − ‖x2‖1
∣

∣ ≥ 1
5

√
D
]

≥ C.

We use this lemma to now conduct a (partial) runtime analysis of the
cGA on OneMax. Such an analysis is helpful for our purposes since the
optimization process of the cGA on a subjump function is identical to the
one on the OneMax function as long as no search point in the gap region
is sampled.

Our analysis on OneMax differs from Droste’s analysis of the cGA on
OneMax [Dro06, Theorem 8] in several respects. First, we aim at a guar-
antee that holds with high probability. For this reason, we cannot use the
approach via additive drift, and this is the reason why we need Lemma 14
instead of Lemma 5 from [Dro06].

We note that Droste’s drift argument is also not perfectly complete. In
each of his Θ(n) relatively short phases, he uses additive drift to estimate
from the expected progress the time to reach the phase target, but he ignores
the fact that his expected progress also takes into account progress beyond
the phase target. This could lead to an overestimation of the progress. This
problem does not occur in the additive drift theorem as stated in Theorem 7,
since there the process lives in the non-negative numbers and the process
target is zero. We have no doubt, though, that this technical gap can be
fixed with additional arguments.

We regard the cGA with non-trivial boundaries, which requires addi-
tional arguments as the capping of the frequencies can change the drift of

26

the frequency sum (albeit by not a lot, as our proof shows). We note that
without these extra arguments, our proof also applies to the setting without
boundaries.

We only regard the time needed to reach a frequency vector with constant
distance to the all-ones vector. We note that our analysis can be extended
to also give a bound for the time to sample an optimal solution, but we do
not need such a result (and in fact, such a result is implied by our main
result). Also, a simplified version of our proof would apply to the cGA
without boundaries.

Lemma 15. Let C be the constant from Lemma 14. Consider a run of
the cGA with µ ≥ log2 n on the OneMax benchmark function. Let Dt :=
n − ‖ft‖1 for all t. Let K be a sufficiently large constant. Let T be the first
time that Dt ≤ K or that there is an i ∈ [1..n] with fit <

1
3
. Then

Pr

[

T ≥ 10(2 +
√
2)

C
µ
√
n

]

= exp(−Ω(µ)).

We formulated the result above in the slightly cumbersome manner of
giving a time guarantee for the event of reaching a near-optimal frequency
vector or reaching a frequency below 1

3
. By Lemma 19 we will be able to rule

out the latter event via a simple union bound over the failure probabilities.
This approach is technically simpler than conditioning on the frequencies to
not go below 1

3
and then working in the conditional probability space.

Proof of Lemma 15. Define D′
t := n − ‖f ′

t‖1 for all t ≥ 1. For i = 1, 2, . . .
let di = 2−in. Without loss of generality, we may assume that K = 2−ℓ−1n
for some ℓ ∈ N. Note that ℓ ≤ log2 n. We say that the optimization process
enters Phase i (and thus leaves its current phase) when for the first time
Dt ≤ di. Note that we stay in Phase i even when after entering this phase
Dt increases beyond di. Note further that, by definition, the process starts in
Phase 1. We also say that the current phase ends when a frequency reaches
a value below 1

3
.

We analyze the time spend in each Phase i ≤ ℓ (when assuming that all
frequencies are at least 1

3
at the start of the phase) and show that this time,

with probability at least 1− exp(−Ω(µ)), is at most Ti = ⌈20 1
C
µ
√

di+1⌉. Let
t′ be the iteration in which the process enters Phase i. To ease the argument,
we now consider exactly Ti iterations. In case the phase ends earlier, we
shall from that point on regard an artificial process, with a slight abuse of

27

notation also denoted by Dt and D′
t, that satisfies the conditions

Pr[D′
t+1 = Dt − 1

5µ

√

di+1 | Dt] = C,

Pr[D′
t+1 = Dt | Dt] = 1− C,

Pr[Dt+1 = D′
t+1 | D′

t+1] = 1.

Such an artificial extension of a process was, to the best of our knowledge,
in the theory of evolutionary algorithms first used in [DHK11].

When all frequencies are at least 1
3
, by Lemma 14 we have Pr[|‖x1‖1 −

‖x2‖1| ≥ 1
5

√
Dt] ≥ C. Since we have ‖y1‖1 ≥ ‖y2‖1 when optimiz-

ing OneMax, we have that D′
t+1 with probability at least C satisfies

D′
t+1 ≤ Dt − 1

5µ

√
Dt ≤ Dt − 1

5µ

√

di+1. We call this a success. Note that
the probability for a success is at least C regardless of what happened before
in this phase. Consequently, in Ti iterations, we not only have an expected
number of at least 20µ

√

di+1 successes, but, using the multiplicative Chernoff
bounds (Theorem 4) and the fact that “sequential independence” suffices for
Chernoff bounds to be admissible (Lemma 11 in [DJ10] or Section 1.10.2.1
in [Doe20c]), we also have at least 10µ

√

di+1 successes with probability at

least 1−exp(−5
2
µ
√

di+1). Note that with probability one we have D′
t+1 ≤ Dt,

again because ‖y1‖1 ≥ ‖y2‖1.
By Lemma 8 (ii), we have Dt+1 � D′

t+1 +
1
µ
Bin(n, 2

n
), again regardless

of what happened in earlier iterations. Consequently, the total number of
times we increase Dt by 1

µ
due to reaching an upper frequency boundary

can be estimated by a sum of Tin independent binary random variables with
success probability 2

n
. Hence the expectation of this number is at most 2Ti ≤

40 1
C
µ
√

di+1 + 2 and, by Theorem 4, with probability at least 1− exp(2Ti

3
) ≥

1− exp(−40
3

1
C
µ
√

di+1) this number is at most 4Ti = 80 1
C
µ
√

di+1 + 4.
Taking these two observations together, we see that with probability

1− exp

(

−5
2
µ
√

di+1

)

− exp

(

−40
3

1

C
µ
√

di+1

)

= 1− exp (−Ω(µ)) ,

we have

Dt′+Ti
≤ Dt′ − 10µ

√

di+1 · 1
5µ

√

di+1 +
1
µ
(80 1

C
µ
√

di+1 + 4)

= Dt′ − 2di+1 +
80
C

√

di+1 +
4
µ
.

Since K = 2−ℓ−1n ≤ di+1 was chosen sufficiently large, we can assume that
−2di+1 +

80
C

√

di+1 +
4
µ
≤ −di+1 and thus Dt′+Ti

≤ Dt′ − di+1, that is, Dt′+Ti

belongs to a later phase already. Consequently, we have that with probability
at least 1− exp(−Ω(µ)), at most Ti rounds are spend in Phase i.

28

We finally show our claim first by noting that there are only O(logn)
phases, hence with probability at least 1 − O(logn) exp(−Ω(µ)) = 1 −
exp(−Ω(µ)) no phase takes longer than the desired Ti iterations, and sec-
ond by computing

ℓ
∑

i=1

Ti ≤ ℓ+
ℓ
∑

i=1

20
1

C
µ
√
2−(i+1)n ≤ 10

C
µ
√
n

∞
∑

i=0

(2−1/2)i

=
10

C
µ
√
n

1

1− 2−1/2
=

10(2 +
√
2)

C
µ
√
n.

Lemma 15 can be extended to give a time bound for subjump function
as long as the target distance from the optimum is sufficiently large.

Lemma 16. Let C be the constant from Lemma 14 and let Cµ be any con-
stant. Consider a run of the cGA with µ = ω(logn) and µ ≤ nCµ on a
subjump function F with jump size k ≤ 1

20
lnn. Let Dt := n − ‖ft‖1 for

all t. Let K = (8Cµ + 12) lnn. Then with probability 1 − O(1
n
), there is a

t ≤ T := 10(2+
√
2)

C
µ
√
n such that Dt ≤ K or fit <

1
3
for some i ∈ [1..n].

Proof. We regard the modified optimization process where we start with a
run of the cGA on F , but change the fitness function to OneMax when for
the first time Dt ≤ K. Clearly, this modified process satisfies our claim if
and only if the original process on F does.

We now couple the modified process to the optimization process of the
cGA with same µ value on theOneMax function. We construct this coupling
as follows. For each t = 1, 2, . . . and each j ∈ [1..2] we let rtj ∈ [0, 1]n be
a vector chosen uniformly at random. If ft is the frequency vector of the
modified or the OneMax process, then the j-th sample xtj ∈ {0, 1}n in
iteration t of this process is defined by xtj

i = 1 if and only if rtji ≤ fit. Clearly,
the two (marginal) processes defined this way are identically distributed to
the two processes we wanted to couple. More interestingly, the two processes
in the coupling are identical up to the point where the modified subjump
process samples a search point in the gap region and thus before it changed
the fitness to OneMax. If we denote the probability of this event happening
within the first T iterations by p, then by Lemma 15 and a union bound
over the two failure probabilities, we have that with probability at least
1 − (exp(−Ω(µ)) + p), within T iterations the modified process has reached
a Dt value of at most K or has reached a frequency below 1

3
.

Hence it remains to show that p is sufficiently small. For this we note that
by Lemma 5, the probability that in the modified subjump process before

29

the switch to the OneMax fitness a particular search point xtj lies in the
gap, is at most

Pr[d(xtj) ≤ k] ≤ Pr[d(xtj) ≤ 1
2
Dt] ≤ exp(−1

8
Dt) ≤ exp(−1

8
K) ≤ n−Cµn−1.5,

where we wrote d(xtj) := n−‖xtj‖ as earlier in this work. By a union bound,
p ≤ 2Tn−Cµn−1.5 = O(1

n
).

We now analyze the drift in Dt when we are that close to the gap that
we cannot assume anymore that we never sample a search point in the gap.
We recall the definition of the gap by

G := Gnk := {x ∈ {0, 1}n | n− k < ‖x‖1 < n}
and we further define G+ := G ∪ {(1, . . . , 1)}.

A difficulty here, which was not treated fully rigorously in [HS18,
Lemma 3.1], is that the event Gt that x

1 or x2 lie in the gap and the random
variable |‖x1‖1 − ‖x2‖1| are not independent. Consequently, the estimate
E[Dt − Dt+1 | Dt] =

1
µ
|‖x1‖1 − ‖x2‖1|(1 − 2 Pr[Gt]) is not correct. In fact,

the correlation is indeed not in our favor. When |‖x1‖1 − ‖x2‖1| is large,
the probability that a search point in the gap was sampled (and thus the
frequency update is done in the unwanted direction) is higher. We solve this
difficulty by computing an estimate for |‖x1‖1 − ‖x2‖1| conditional on that
at least one of the search points lies in the gap.

Lemma 17. Let µ be arbitrary (but, as always in this work, satisfying the
well-behaved frequency assumption). Let k ∈ [1..1

2
n − 1]. Consider an iter-

ation t of the cGA optimizing a subjump function with jump size k started
with a frequency vector ft such that Dt := n−‖ft‖1 ≥ 2k and ft ∈ [1

3
, 1− 1

n
]n.

Then
E[µDt − µDt+1] ≥ 1

5
C
√

Dt − 6Dt exp(−1
8
Dt)− 2,

where C is the constant from Lemma 14.

Proof. From the definition of the cGA, we note that when x1 and x2 are both
not in G+, then D′

t+1 := n − ‖f ′
t+1‖1 satisfies D′

t+1 = Dt − 1
µ
|‖x1‖1 − ‖x2‖1|

as if we were optimizing OneMax. In all other cases, we have D′
t+1 ≤

Dt +
1
µ
|‖x1‖1 − ‖x2‖1|. Consequently,

E[µDt − µD′
t+1]

≥ Pr[x1, x2 /∈ G+]E[|‖x1‖1 − ‖x2‖1| | x1, x2 /∈ G+]

− Pr[{x1, x2} ∩G+ 6= ∅]E[|‖x1‖1 − ‖x2‖1| | {x1, x2} ∩G+ 6= ∅]
= E[|‖x1‖1 − ‖x2‖1|]
− 2 Pr[{x1, x2} ∩G+ 6= ∅]E[|‖x1‖1 − ‖x2‖1| | {x1, x2} ∩G+ 6= ∅].

30

When the frequencies are all at least 1
3
, we conclude from Lemma 14 that

E[|‖x1‖1 − ‖x2‖1|] ≥ 1
5
C
√
Dt.

For the contribution when search points are in G+, we first note that the
second bound of Lemma 5 (with δ = 1

2
and D− = Dt) and Dt ≥ 2k yield

Pr[x1 ∈ G+] ≤ Pr[d(x1) ≤ 1
2
Dt] ≤ exp(−1

8
Dt).

Then, exploiting the symmetry between x1 and x2, counting the case x1, x2 ∈
G+ twice, and using again 1

2
Dt ≥ k, we compute

Pr[{x1, x2} ∩G+ 6= ∅]E[|‖x1‖1 − ‖x2‖1| | {x1, x2} ∩G+ 6= ∅]
≤ 2 Pr[x1 ∈ G+]E[|‖x1‖1 − ‖x2‖1| | x1 ∈ G+]

≤ 2 Pr[x1 ∈ G+]
(

E[|‖x1‖1 − n| | x1 ∈ G+] + E[|n− ‖x2‖1|]
)

≤ 2 Pr[x1 ∈ G+] (k +Dt)

≤ 2 exp(−1
8
Dt)(

1
2
Dt +Dt) = 3 exp(−1

8
Dt)Dt.

In summary, we have

E[µDt − µD′
t+1] ≥ 1

5
C
√

Dt − 6Dt exp(−1
8
Dt).

By Lemma 8, we further have E[µDt+1 − µD′
t+1] ≤ 2. Consequently,

recalling that the linearity of expectation holds also for dependent random
variables, we have

E[µDt − µDt+1] = E[µDt − µD′
t+1]− E[µDt+1 − µD′

t+1]

≥ 1
5
C
√

Dt − 6Dt exp(−1
8
Dt)− 2.

From Lemma 17, we obtain the following coarse estimate for the time to
reach a frequency distance Dt below 2k (or at least below some constant).

Lemma 18. Let k ∈ [1..n
2
− 1]. Consider a run of the cGA with arbitrary

hypothetical population size µ (satisfying the well-behaved frequency assump-
tion) and started with a fixed frequency vector f0 instead of the usual initial-
ization f0 = (1

2
, . . . , 1

2
). For all t ≥ 0, let Dt := n− ‖ft‖1. Let D′′ ≥ 2k and

at least some sufficiently large constant (depending on the constant C from
Lemma 14). Let T be the first time t that this run reaches a frequency vector
ft with Dt < D′′ or that there is a frequency fit that is less than 1

3
. Then

E[T] ≤ µD0.

31

Proof. Based on the run of the cGA, we define a random process D̃t as
follows. If for some s ∈ [0..t] we have Ds < D′′ or there is an i ∈ [1..n]
with fis < 1

3
, then D̃t = 0. Otherwise, we let D̃t = Dt. In other words,

the process (D̃t) agrees with (Dt) while (Dt) is at least D′′ and there is no
frequency below 1

3
, and then is constant zero.

By Lemma 17 and using our assumption that D′′ is a large absolute
constant, we have E[D̃t− D̃t+1] ≥ 1

µ
whenever Dt ≥ D′′ and ft ∈ [1

3
, 1]n, that

is, we have E[D̃t − D̃t+1 | D̃t > 0] ≥ 1
µ
for all t ≥ 0.

Since T = inf{t ≥ 0 | D̃t = 0}, the additive drift theorem (Theorem 7(i))
yields E[T] ≤ D0

1/µ
.

We end this section of preliminary results with an argument showing that
the frequencies stay away from the lower boundary for a decent amount of
time. On the formal level, this argument will be used to argue that at the
times T estimated on Lemmas 16 and 18, we have the desired small Dt value
and not the case that a frequency went below 1

3
. On the intuitive level, this

argument is necessary for two reasons. On the one hand, as can be seen from
the proof or via simple counter-examples, a lower bound for the probability
of sampling the optimum such as Lemma 10 is not anymore true if arbitrarily
small frequencies are allowed. On the other hand, small frequencies support
that the two offspring sampled in one iteration agree in the corresponding
bit. In this case, no change of the frequency is possible, which slows down
the progress and rules out progress guarantees such as Lemma 17.

A guarantee that all frequencies stay away from the lower boundary in
a run of the cGA on jump functions was also given in [HS18, Lemma 2.4].
Unfortunately, the proof appears not complete to us. It seems to us that the
main technical prerequisite of this result, Lemma 2.2 in [HS18] with a proof
of a little over one page in the condensed proceedings style, is not correct
for two reasons. Since the proof of Lemma 2.2 never refers to the frequency
boundaries, it is not clear if it is applicable for the cGA with these boundaries.
Rather, a frequency vector having one entry fit =

1
n
and another one fjt =

1− 1
n
seems to be a counter-example (note that the frequency vector is called

pt instead of ft in [HS18]). However, also for the case without boundaries
counter-examples seem to exist for all values of µ, e.g., the frequency vector
ft = (1

100
, 1
2
).

We did not see how to repair the otherwise elegant argument via the
Azuma-Hoeffding inequality. For this reason, using a sequence of elementary
reductions, we argue that the true random process of a frequency, which
is not a Markov process when regarding one frequency in isolation, can be
pessimistically replaced by a fair random walk on an unbounded frequency

32

domain. For the analysis of the latter, classic Chernoff bounds can be used.
This general approach was also taken in [Dro06], however in the easier situ-
ation that there are no frequency boundaries (apart from the trivial bound-
aries, which are absorbing). For this reason, some additional arguments are
necessary in our situation.

Lemma 19. Let µ be arbitrary (except that it satisfies the well-behaved fre-
quency assumption). Let ε > 0. Let Z0, Z1, . . . be any random process on Fµ

(defined in (1)) such that

(i) Z0 =
1
2
,

(ii) for all t = 0, 1, . . . such that Zt ≥ 1
2
− ε there are numbers pt, qt, rt ∈

[0, 1], depending on Z0, Z1, . . . , Zt, such that pt + qt + rt = 1 and

Pr[Zt+1 = Zt | Z0, . . . , Zt] = pt,

Pr[Zt+1 = Zt +
1
µ
| Z0, . . . , Zt] = qt,

Pr[Zt+1 = Zt − 1
µ
| Z0, . . . , Zt] = rt.

We further assume that qt ≥ rt when Zt 6= 1− 1
n
.

Then for all T ∈ N,

Pr[∃t ∈ [0..T] : Zt <
1
2
− ε] ≤ 2 exp

(

−µ
2ε2

2T

)

.

Proof. For the ease of the argument, we can without loss of generality assume
that condition (ii) also holds when Zt <

1
2
− ε. We conduct a sequence of

reductions to a fair unbiased random walk on an infinite line. We first observe
that we can assume pt = 0 for all t. The event Zt+1 = Zt that the process
does not move only slows down the process in the sense that it visits fewer
states, and thus is less likely to approach the lower boundary.

We now argue that w.l.o.g. we can assume that qt = rt = 1
2
for all

t ∈ [0..T − 1] except in the cases Zt ∈ { 1n , 1 − 1
n
}. To make this argument

formal, we inductively modify qt and rt in the time interval t ∈ [0..T − 1].
The modified process will be denoted by (Z̃t)t=0,...,T and described via q̃t and
r̃t, t ∈ [0..T − 1], which again are functions of Z̃0, . . . , Z̃t. We start with (Z̃t)
being a copy of (Zt). We denote by

Pit := Pr[∃s ∈ [t..T] : Zs <
1
2
− ε | Zt = i],

P̃it := Pr[∃s ∈ [t..T] : Z̃s <
1
2
− ε | Z̃t = i]

33

the “failure probabilities” of both processes given a particular starting point
and time.

Assume that (Z̃t) is such that for some t0 ∈ [1..T] we have that for all
s ∈ [t0..T − 1]

(i) q̃s = r̃s = 1
2
regardless of Z̃0, . . . , Z̃s (except in the boundary cases

Z̃s ∈ { 1n , 1− 1
n
});

(ii) Pis ≤ P̃is for all i ∈ Fµ.

Note that our initial copy (Z̃t) satisfies these conditions for t0 = T . We
now modify (Z̃t) so that the new process satisfies these conditions already
for t0 − 1. To this end, let (Z ′

t, q
′
t, r

′
t) be a copy of (Z̃t, q̃t, r̃t) expect that we

define q′t0−1 = r′t0−1 = 1
2
(except in the boundary cases Z ′

t0−1 ∈ { 1n , 1 − 1
n
}).

Since from time t0 on (Z ′
t) equals (Z̃t), we have P

′
is = P̃is ≥ Pis for all i ∈ Fµ.

Since further from time t0 on (Z ′
t) and (Z̃t) are a fair random walks with

reflecting boundaries, a simple coupling argument shows P ′
i−1/µ,t0

≥ P ′
i+1/µ,t0

for all i ∈ Fµ \ { 1n , 1− 1
n
}. From this, r̃t0−1 ≤ q̃t0−1, and r̃t0−1 + q̃t0−1 = 1, we

obtain for all i ∈ Fµ \ { 1n , 1− 1
n
} that

P ′
i,t0−1 =

1
2
P ′
i−1/µ,t0 +

1
2
P ′
i+1/µ,t0

≥ r̃t0−1P
′
i−1/µ,t0

+ q̃t0−1P
′
i+1/µ,t0

= P̃i,t0−1 ≥ Pi,t0 .

In the boundary cases, we trivially have P ′
1/n,t0−1 = 1 = P1/n,t0−1 and

P ′
1−1/n,t0−1 = P ′

1−1/n−1/µ,t0
= P̃1−1/n−1/µ,t0 ≥ P1−1/n−1/µ,t0 = P1−1/n,t0−1. This

proves our claim. An elementary induction gives a process (Z̃t) that satisfies
(i), (ii) above from t0 = 0 on. This process, then, is a simple unbiased ran-
dom walk with reflecting boundaries. From (ii) we see that such an unbiased
random walk is not better than the original process (Zt) in terms of avoiding
to go below 1

2
− ε.

Hence we can now assume that (Zt) is an unbiased random walk on Fµ

with reflecting boundaries. We shall show that

Pr[∃t ∈ [0..T] : Zt /∈ [1
2
− ε, 1

2
+ ε]] ≤ 2 exp

(

−µ
2ε2

2T

)

.

Being interested in the event that the process reaches a state outside
[1
2
− ε, 1

2
+ ε] at least once, we can also drop the boundary conditions and as-

sume that we have Zt+1 ∈ {Zt− 1
µ
, Zt+

1
µ
} uniformly at random at all times t.

We can now rewrite the Zt as follows. Let X1, . . . , XT be independent ran-
dom variables uniformly distributed on {− 1

µ
, 1
µ
}. Define Z ′′

t := 1
2
+
∑t

i=1Xt

34

for all t ∈ [0..T]. Then (Z0, . . . , ZT) and (Z ′′
0 , . . . , Z

′′
T) are identically dis-

tributed. Consequently, we can apply to (Zt) and (Z ′′
t) the additive Chernoff

bound in the sharper version working also for partial sums, Theorem 6, and
obtain

Pr[∃t ∈ [0..T] : Zt /∈ [1
2
− ε, 1

2
+ ε]]

= Pr[∃t ∈ [0..T] : |Zt −E[Zt]| > ε]

≤ 2 exp

(

− 2ε2

T (2
µ
)2

)

= 2 exp

(

−µ
2ε2

2T

)

.

To apply Lemma 19, we need a deeper understanding of the random pro-
cess describing a single frequency. For this, we build on the following estimate
of the expected change of a frequency that is not affected by the boundaries
in the OneMax process. This result was proven in [SW19, Lemma 3].

Lemma 20. Let µ be arbitrary (but satisfying the well-behaved frequency
assumption). Consider a run of the cGA optimizing OneMax. Consider
an iteration starting with a frequency vector ft. Let i ∈ [1..n] be such that
1
n
+ 1

µ
≤ fit ≤ (1− 1

n
)− 1

µ
. Then

E[fi,t+1 − fit] ≥
2

11

fit(1− fit)

µ

(

∑

j 6=i

fjt(1− fjt)

)−1/2

.

From Lemmas 19 and 20, we now obtain the following lower bound guar-
antee for the frequencies in the optimization process on subjump functions.
Regarding the restriction k ≥ 17, we recall that a subjump function with
jump size smaller than 17 also is a subjump function with jump size 17. The
lemma thus applies also to these (in a suitable manner). We could have alter-
natively formulated the lemma for all k and defined D′′ = max{2k + 1, 35}.

Lemma 21. Let k ∈ [1..n] be arbitrary. Consider the run of the cGA with
hypothetical population size µ on a subjump function with jump size k ≥ 17.
Let Dt = n−‖ft‖1 for all t. Let D′′ = 2k+1 and T ′′ = inf{t ≥ 0 | Dt ≤ D′′}.
Then for all T ∈ N, with T ′′′ := min{T ′′, T}, we have

Pr[∃i ∈ [1..n]∃t ∈ [0..T ′′′] : fit <
1
3
] ≤ 2n exp

(

− µ2

72T

)

.

35

Proof. Consider some time t such that ft ∈ [1
3
, 1]n and Dt ≥ D′′. Consider a

fixed bit i ∈ [1..n] such that fit 6= 1− 1
n
. If we were optimizing the OneMax

function, then by Lemma 20,

Pr[fi,t+1 = fit +
1
µ
]− Pr[fi,t+1 = fit − 1

µ
]

= µE[fi,t+1 − fit]

≥ 2

11
fit(1− fit)

(

∑

j 6=i

fjt(1− fjt)

)−1/2

≥ 2

11
fit(1− fit) (Dt)

−1/2 .

Regardless of whether we optimize OneMax or a subjump function, the
events fi,t+1 = fit+

1
µ
and fi,t+1 = fit− 1

µ
can only occur when the two search

points sampled in this iteration satisfy x1
i 6= x2

i . The definition of fi,t+1 in
the subjump case differs from the OneMax case at most when at least one
of x1 and x2 lie in the gap Gnk. Hence the following coarse correction of the
above estimate is valid for the optimization of subjump functions of jump
size k.

Pr[fi,t+1 = fit +
1
µ
]− Pr[fi,t+1 = fit − 1

µ
]

≥ 2
11
fit(1− fit) (Dt)

−1/2 − Pr[(x1
i 6= x2

i) ∧ ({x1, x2} ∩Gnk 6= ∅)].

We now estimate this correction term. We note that

Pr[(x1
i 6= x2

i) ∧ ({x1, x2} ∩Gnk 6= ∅)]
= Pr[x1

i 6= x2
i] · Pr[{x1, x2} ∩Gnk 6= ∅ | x1

i 6= x2
i].

By symmetry and the union bound, we have

Pr[{x1, x2} ∩Gnk 6= ∅ | x1
i 6= x2

i] ≤ 2 Pr[x1 ∈ Gnk | x1
i 6= x2

i].

Conditional on x1
i 6= x2

i , the bit string x1 is sampled from Sample(ft), how-
ever, conditional on the i-th bit being zero or one. In either case, to have
x1 ∈ Gnk, we need that D̃ =

∑

j 6=i(1 − x1
j) is at most k ≤ 1

2
(Dt − 1), where

we recall that Dt ≥ D′′ = 2k + 1. Since E[D̃] = Dt − (1 − fit) ≥ Dt − 1,
by Lemma 5 with δ = 1

2
this event happens with probability at most

exp(−1
8
(Dt − 1)). Together with Pr[x1

i 6= x2
i] = 2fit(1− fit), we obtain

Pr[fi,t+1 = fit +
1
µ
]− Pr[fi,t+1 = fit − 1

µ
]

≥ 2
11
fit(1− fit) (Dt)

−1/2 − 2fit(1− fit) exp(−1
8
(Dt − 1)),

36

which is non-negative since Dt ≥ D′′ = 2k + 1 ≥ 35.
Consequently, the process (fit)t satisfies the assumptions of Lemma 19 up

to time T ′′. If T ′′ < T , we artificially extend the process (for the following
argument only) by setting fit = fiT ′′ for all t ∈ [T ′′ + 1..T]. We apply
Lemma 19 to this extended process and obtain that up to time T , the i-th
frequency is always at least 1

3
with probability 1 − 2 exp(− µ2

72T
). With a

union bound over the n frequencies, we have ft ∈ [1
3
, 1]n up to time T with

probability at least 1−2n exp(− µ2

72T
) in the extended process, and up to time

T ′′′ in the true process.

4.3 Proof of Theorem 13

We are now ready to formulate the full proof of our main upper bound result.

Proof of Theorem 13. To allow the reader to easily check that all implicit
constants can be chosen in a way that they give the claimed result, we make
these constants explicit in the following proof, but note that for most of them
it just suffices to choose them sufficiently large.

We consider the optimization of a subjump function F : {0, 1}n → R

with jump size k ≤ 1
20
ln(n) − 1. Without loss of generality, we can assume

that k ≥ 17.3

Let µ ≥ cµ
√
n ln(n) for a constant cµ to be defined in a moment. As-

sume further that for some constant Cµ we have µ ≤ nCµ . Without loss of
generality, we assume that Cµ ≥ 1.

Consider a run of the cGA with hypothetical population size µ on F . Let
Dt := n− ‖ft‖1 for all t ≥ 0.

Let D′ := CD′ lnn, where CD′ ≥ 8Cµ + 12 is a constant. Let T ′ be the
first time that Dt ≤ D′ or that there is a frequency fit that is less than 1

3
.

By Lemma 16, with probability at least 1−O(1
n
) we have T ′ ≤ 10(2+

√
2)

C
µ
√
n,

where C is the constant from Lemma 14.
Let D′′ := max{2k + 1, CD′′}, where CD′′ is a sufficiently large constant

(that depends only on the constant C from Lemma 14). Let T ′′ be the first
time that Dt < D′′ or that there is a frequency fit that is less than 1

3
. By

Lemma 18, we have E[T ′′− T ′] = O(µ logn). Hence a simple Markov bound
gives T ′′ ≤ T ′ + µn0.4 lnn with probability 1−O(n−0.4).

Finally, let cT := 10(2+
√
2)

C
+ 1 and assume that cµ ≥ 144cT . Using our as-

sumption that k ≥ 17, we first invoke Lemma 21 with T = cTµ
√
n and obtain

3In fact, we could just assume that k = ⌊ 1

20
ln(n)⌋− 1, but we find it more insightful to

present the proof in a way that the arguments are adjusted to the true value of k (assuming
it to be at least 17).

37

that up to time T ′′′ = min{T ′′, T}, all frequencies are at least 1
3
with prob-

ability 1 − 2n exp(− µ2

72T
) ≥ 1 − 2n exp(− µ

72cT
√
n
) ≥ 1 − 2n exp(− cµ

72cT
lnn) =

1− O(1
n
) by choice of cµ.

Putting these three arguments together, we see that with probability
1 − O(1

n
) − O(n−0.4) − O(1

n
) = 1 − O(n−0.4), there is a time t = O(µ

√
n)

such that Dt ≤ D′′ ≤ 1
10
ln(n) and ft ∈ [1

3
, 1]n. By Lemma 11, we now find

the optimum in O(µ
logn

) iterations with probability 1 − n−ω(1). This shows

that the total runtime is O(µ
√
n) with probability 1 − O(n−0.4) − n−ω(1) =

1− O(n−0.4).

Let us remark that we did not try to optimize the implicit constants, nor
did we try to find the largest constant Ck such that the O(n logn) runtime
guarantee holds for all k ≤ Ck ln(n) − 1. We further note that all but one
argument in the above proof, by choosing the constants right, would give
a success probability of 1 − n−c, where c can be any constant. This is not
true for the Markov bound argument in the analysis of the time to reach a
Dt value of at most D′′. Without further details, we note that also for this
phase an arbitrary inverse-polynomial failure probability could be obtained
with stronger methods.

Finally, we note that by taking k = 1, our result also applies to the
OneMax function.

4.4 General Insights From This Proof

Our result that the cGA can cross small fitness valleys at no extra cost,
whereas many EAs pay an Ω(nk) price for this, raises the question why these
algorithms differ that significantly. From our proof, we obtain the following
insight.

To ease the presentation, we take as point of comparison the simple
(1 + 1) EA, but as discussed earlier, similar behaviors are observed for many
other mutation-based EAs. Again, when talking about the cGA, we measure
the progress via the frequency distance Dt = n−‖ft‖, which is the expected
fitness distance of a sample. For the (1 + 1) EA, naturally, we regard the
Hamming distance d(xt) = n−OneMax(xt) of the current solution xt from
the optimum.

We observe that both algorithms easily reach a distance of O(k). For
the cGA this is “only” O(k) and for the (1 + 1) EA this is exactly k, but
this difference is not important. The important difference is that from such
a state, the (1 + 1) EA samples the optimum only with probability O(n−k),
whereas the cGA does so with probability exp(−Ω(k)), at least when ft ∈
[1
3
, 1]n.

38

A first observation is that the cGA samples solutions with higher variance.
This is easiest visible from Lemma 14, which implies that with constant
probability the distance d(y) of a sample y is Ω(

√
Dt) away from the expected

distance E[d(y)] = Dt.
For the (1 + 1) EA, the sampling variance is much smaller. Since the

number of bits that are flipped in a mution follows a binomial distribution
with parameters n and 1

n
, which is asymptotically a Poisson distribution

with parameter λ = 1, we see that larger fitness changes can only occur with
relatively small probability (e.g., a super-constant fitness change happens
only with probability o(1), a fitness change of δ happens with probability at
most δ−Ω(δ)).

The reason for this low sampling variance of the (1 + 1) EA, obviously, is
the small mutation rate of 1

n
usually employed. However, raising the mutation

rate does not solve the problem and, in fact, creates new problems. When
using a larger mutation rate, then the expected OneMax fitness of the
offspring gets worse. If x is a search point with distance d(x) = k = O(logn)
and y is obtained from x via standard-bit mutation with mutation rate p,
then the expected distance of y from the optimum is E[d(y)] = d(x)+pn(1−
2d(x)/n).

Clearly, worsening the expected quality of the offspring can only make
sense if there is a clear gain from this. Unfortunately, there is no such gain.
Indeed, when using a larger mutation rate p, then the expected distance d(y)
has a larger variance. However, this variance mostly works into the wrong
direction. When not only looking at the first or second moment, but at the
precise distribution, then we see that the distance gain or loss is distributed
as d(x) − d(y) ∼ −Xn−k,p + Xk,p, where Xn−k,p and Xk,p are independent
random variables following binomial laws with parameters (n − k, p) and
(k, p), respectively. Consequently, a positive gain can only stem from the
Xk,p part, which (unless p is ridiculously large) again has a small variance
since k is small.

In summary, we see that regardless of how we set the mutation rate, the
(1 + 1) EA only with relatively small probability reduces the distance by a
larger amount. This is caused by a generally small sampling variance when p
is small, say p = 1

n
, or by the fact that the distribution of the distance change

is highly asymmetric in the way that true distance reductions are unlikely
(when p is larger).

For the cGA, things are different. Assuming for simplicity a frequency
vector ft = (1− 2k

n
)1n, then the fitness gain of a sample y over the expectation

is distributed like Dt − d(y) ∼ Xn, 2k
n
, where again Xn, 2k

n
denotes a random

variable following a binomial law with parameters n and 2k
n
. While this dis-

39

tribution is not perfectly symmetric, it is not too strongly concentrated in
both directions and thus allows larger improvements with reasonable prob-
ability, in particular, sampling the optimum with probability exp(−O(k)).
This substantially different way how solutions are sampled seems to be the
key to the significantly better performance of the cGA on jump functions.

5 An Exponential Lower Bound

We now prove that the cGA, regardless of the value of the parameter µ,
optimizes jump functions in a time that is at least exponential in the jump
size k.

As for our upper bound result, also this lower bound is valid for a broader
class of functions. We say that a function F : {0, 1}n → R is a superjump
function with jump size k if it has a unique global maximum x∗ and for all
r ∈ [1..k − 1] and x, y ∈ {0, 1}n with H(x, x∗) = r and H(y, x∗) = r + 1 we
have F(x) < F(y); here we recall the definition

H(x, y) := {i ∈ [1..n] | xi 6= yi}

of the Hamming distance between the bit strings x and y of length n. In
other words, F has a unique global maximum and is fully deceptive in a
ball of radius k around this optimum: search points closer to the optimum
have a lower fitness. Clearly, all jump functions with jump size k or larger
are superjump functions with jump size k. Also, by arbitrarily modifying a
jump function outside the gap region and in a way that the global optimum
remains the unique global optimum, we obtain superjump functions.

We now show the following result.

Theorem 22. There are constants α1, α2 > 0 such that for any n sufficiently
large and any k ∈ [1..n], regardless of the hypothetical population size µ,
the runtime of the cGA on any superjump function with jump size k with
probability 1 − exp(−α1k) is at least exp(α2k). In particular, the expected
runtime is exponential in k.

We note that we intentionally prove a runtime bound that holds with high
probability. The reason is that, as discussed in Section 2.4, EDAs may with
small probability reach states from which they find it very hard to reach the
optimum. Such a situation could lead to a very high expected runtime even
when the EDA with high probability is very efficient. For that reason, lower
bounds that hold with high probability are particularly desirable for EDAs.
Needless to say, a lower bound that holds with high probability immediately
implies an asymptotically identical lower bound on the expected runtime.

40

We also note that the cGA is treating all bit-positions and the two bit
values zero and one in a symmetric fashion (this property was called unbi-
ased in [LW12]). Consequently, in any runtime analysis of the cGA on a
pseudo-Boolean function we can assume that (1, . . . , 1) is an optimum. Since
further the actions of the cGA do not depend on absolute fitness values, but
only on relative ones (this property was called ranking-based in [DW14]), its
performance is invariant under monotonic rescalings of the fitness function.
For this reason, it suffices to regard superjump functions that agree with the
jump function of jump size k on all search points x with ‖x‖1 ≥ n− k (and
thus also have (1, . . . , 1) as unique global optimum). To ease the presenta-
tion, we shall take this assumption in the remainder without further notice.
This also allows us to continue to use the definition

Gnk := {x ∈ {0, 1}n | n− k < ‖x‖1 < n}

of the gap.
Before stating the formal proof, we briefly describe the main proof argu-

ments on a more intuitive level. As in the previous section, we will regard
the stochastic process Dt := n−‖ft‖1, that is, the distance between the sum
of the frequencies and its ideal value n. Our general argument is that this
process with probability 1 − exp(−Ω(k)) stays above 1

4
k for exp(Ω(k)) iter-

ations. In each iteration with Dt ≥ 1
4
k, the probability that the optimum is

sampled is only exp(−Ω(k)), see Lemma 9. Hence there is a T = exp(Ω(k))
such that with probability 1 − exp(−Ω(k)), the optimum is not sampled in
the first T iterations.

The heart of the proof is an analysis of the process (Dt). It is intuitively
clear that once the process is below k, then often the two search points
sampled in one iteration both lie in the gap region, which gives Dt a positive
drift (that is, a decrease of the average frequency). To turn this drift away
from the target (a small Dt value) into an exponential lower bound on the
runtime, we consider the process

Yt = exp(cmin{1
2
k −Dt,

1
4
k}),

that is, an exponential rescaling of Dt. Such a rescaling has recently also
been used in [ADY19]. We note that the usual way to prove exponential
lower bounds is the negative drift theorem of Oliveto and Witt [OW12]. We
did not immediately see how to use it for our purposes, though, since in
our process we do not have very strong bounds on the one-step differences.
E.g., when Dt = 1

2
k, then the underlying frequency vector may be such

that Dt+1 ≥ Dt +
√
k happens with constant probability. We also note that

after the submission of this work, a negative multiplicative drift theorem

41

was proposed [Doe20b], which would be applicable to our setting as well. It
would, however, not greatly simplify the proof as the main work, estimating
the drift of the process (Yt), would still be needed.

We shall show that the process Yt has at most a constant point-wise drift,
more precisely, that

E[Yt+1 − Yt | Yt = y] ≤ 2 (3)

holds for all y < Ymax := exp(c
4
k). From this statement, the lower bound ver-

sion of the additive drift theorem (Theorem 7(ii)) would immediately show
that the expected time to reach a Dt value of k

4
or less is at least exponen-

tial in k. However, since we aim at a runtime bound that holds with high
probability, we take a different (and, in fact, more elementary) route. We
regard the process (Ỹt) which is identical to Y until Y first reaches Ymax and
then stays constant at Ymax. This process satisfies E[Ỹt+1 − Ỹt] ≤ 2 for all
times t. From this and Ỹ0 = Y0 < 1 we obtain E[Ỹt] ≤ 1 + 2t. Hence for
T = exp(Ω(k)) sufficiently small, we have

E[ỸT]

Ymax

= exp(−Ω(k))

and a simple Markov bound argument is enough to show that
Pr[ỸT = Ymax] = exp(−Ω(k)). Note that ỸT < Ymax is equivalent to Yt < Ymax

for all t ∈ [0..T].
The main work in the following proof is showing (3). The difficulty here is

hidden in a small detail. When Dt ∈ [1
4
k, 3

4
k], and this is the most interesting

case (case 2 in the formal proof), then we have ‖f ′
t+1‖1 ≤ ‖ft‖ whenever the

two search points sampled lie in the gap region, and hence with probability
1−exp(−Ω(k)); from Lemma 12 we obtain, in addition, a true decrease, that
is, ‖f ′

t+1‖1 ≤ ‖ft‖− 1
µ
, with constant probability. This progress of f ′

t+1 over ft
would be perfectly fine for our purposes. Hence the true difficulty arises from
the capping of the frequencies into the interval [1

n
, 1 − 1

n
], that is, from the

fact that the new frequency vector is ft+1 := minmax(1
n
1n, f

′
t+1, (1 − 1

n
)1n).

This appears to be a minor problem, among others, because only a capping
at the lower bound 1

n
can have an adverse effect on our process, and there

are at most O(k) frequencies sufficiently close to the lower boundary. Things
become difficult due to the exponential scaling, which can let rare events still
have a significant influence on the expected change of the process.

We now make these arguments precise and prove Theorem 22. We recall
that, while the theorem refers to arbitrary superjump functions with jump
size k, we can always assume that we regard a fitness function that agrees
with the classic jump function with parameter k on all search points x with
‖x‖1 ≥ n− k, including the unique global optimum (1, . . . , 1).

42

Proof. Since we are aiming at an asymptotic statement, we can assume in
the following that n is sufficiently large.

To ease the presentation of the main part of the proof, let us first give a
basic argument for the case of small k and then assume that k ≥ w(n) for
some function w : N→ N with limn→∞w(n) =∞.

We first note that with probability f 2
it + (1 − fit)

2 ≥ 1
2
, the two search

points x1 and x2 generated in the t-th iteration agree in the i-th bit, which
in particular implies that fi,t+1 = fit. Hence with probability at least 2−T ,
this happens for the first T iterations, and thus fit =

1
2
for all t ∈ [0..T]. Let

us call such a bit position i idle.
Note that the events of being idle are independent for all i ∈ [1..n].

Hence, taking T = ⌊1
2
log2 n⌋, we see that the number X of idle positions

has an expectation of E[X] ≥ n2−T ≥ √n, and by a simple Chernoff bound
(Theorem 4), we have Pr[X ≥ 1

2

√
n] ≥ 1− exp(−Ω(√n)).

Conditional on having at least 1
2

√
n idle bit positions, the probability that

a particular search point sampled in the first T iterations is the optimum is
at most 2−

1

2

√
n. By a simple union bound argument, the probability that

at least one of the search points generated in the first T iterations is the
optimum is at most 2T2−

1

2

√
n = exp(−Ω(√n)). In summary, we have that

with probability at least 1 − exp(−Ω(√n)), the runtime of the cGA on any
function with unique optimum (and in particular any superjump function)
is greater than T = 1

2
log2 n. This implies the claim of this theorem for any

k ≤ C log log n, where C is a sufficiently small constant, and, as discussed
above, n is sufficiently large.

With this, we can now safely assume that k = ω(1). Since k ≤ n and our
result is invariant under constant-factor changes of k, we can assume that
k ≤ n

320
.

Let Dt := n − ‖ft‖1 = n −∑n
i=1 fit be the distance of the sum of the

frequencies from the ideal value n.
Our intuition (which will be made precise) is that the process (Dt) finds

it hard to go significantly below k because there we will typically sample
individuals in the gap, which leads to a decrease of the sum of frequencies
(when the two individuals have different distances from the optimum). To
obtain an exponential lower bound on the runtime, we suitably rescale the
process by defining, for a sufficiently small constant c,

Yt = min{exp(c(1
2
k −Dt)), exp(

1
4
ck)} = exp(cmin{1

2
k −Dt,

1
4
k}).

Observe that Yt attains its maximal value Ymax = exp(1
4
ck) precisely when

Dt ≤ 1
4
k. Also, Yt ≤ 1 for Dt ≥ 1

2
k.

To argue that we have Dt >
1
4
k for a long time, we now show that for

all y < Ymax the drift E[Yt+1 − Yt | Yt = y] is at most constant. To this

43

aim, we condition on a fixed value of ft, which also determines Dt. We treat
separately the two cases that Dt ≥ 3

4
k and that 3

4
k > Dt >

1
4
k.

Case 1: Assume first that Dt ≥ 3
4
k. By Lemma 5, with probability

1− exp(−Ω(Dt)) ≥ 1− exp(−Ω(k)), the two search points x1, x2 sampled in
iteration t+ 1 both satisfy

∣

∣‖xi‖1 − ‖ft‖1
∣

∣ = |d(xi)−Dt| < 1
18
Dt ≤ 1

6
(Dt − 1

2
k). (4)

Here and in the following, when writing Ω(k) we mean that there is a positive
constant C, independent of n, k, and c, such that the expression is at least Ck.
Let us call A the event described in (4). In this case, we argue as follows.
We recall the notation

∑

[v] :=
∑n

i=1 vi to denote the sum of the elements
of an n-dimensional vector v and we recall further that, with a slight abuse
of notation, we defined ‖f ′‖1 :=

∑

[f ′] for intermediate frequency vectors f ′.
Let {y1, y2} = {x1, x2} such that F(y1) ≥ F(y2). Then

‖f ′
t+1‖1 =

∑

[

ft +
1
µ
(y1 − y2)

]

=
∑

[

ft +
1
µ
(y1 − ft)− 1

µ
(y2 − ft)

]

≤
∑

[

ft

]

+ 1
µ

∣

∣

∣

∑

[

y1 − ft

]
∣

∣

∣
+ 1

µ

∣

∣

∣

∑

[

y2 − ft

]
∣

∣

∣

= ‖ft‖1 + 1
µ

∣

∣‖x1‖1 − ‖ft‖1
∣

∣ + 1
µ

∣

∣‖x2‖ − ‖ft‖1
∣

∣

≤ n−Dt + 2 1
µ
1
6
(Dt − 1

2
k)

≤ n−Dt + 21
6
(Dt − 1

2
k)

= n− 2
3
Dt − 1

6
k ≤ n− 2

3
· 3
4
k − 1

6
k ≤ n− 2

3
k.

We still need to consider the possibility that fi,t+1 > f ′
i,t+1 for some i ∈

[1..n]. By Lemma 8, not conditioning on A, we have that ‖ft+1‖1−‖f ′
t+1‖1 �

1
µ
Bin(ℓ, P) � Bin(ℓ, P) for some ℓ ∈ [1..n] and P = 2 1

n
(1− 1

n
).

Let us call B the event that ‖ft+1‖1 − ‖f ′
t+1‖1 < 1

6
k. Note that A ∩ B

implies ‖ft+1‖1 < n− 1
2
k and thus Yt+1 ≤ 1. By Lemma 3 and the estimate

(

a
b

)

≤ (ea
b
)b, we have

Pr[¬B] ≤
(

ℓ
1
6
k

)

P k/6 ≤
(

12eℓ

kn

)k/6

≤ k−Ω(k).

We conclude that the event A∩B holds with probability 1−exp(−Ω(k));
in this case Yt ≤ 1 and Yt+1 ≤ 1. In all other cases, we bluntly estimate
Yt+1 − Yt ≤ Ymax. This gives

E[Yt+1 − Yt] ≤ (1− exp(−Ω(k))) · 1 + exp(−Ω(k))Ymax.

44

By choosing the constant c in the definition of (Yt) sufficiently small and
taking n sufficiently large, we have E[Yt+1 − Yt] ≤ 2.

Case 2: Assume now that 3
4
k > Dt >

1
4
k. Let x1, x2 be the two search

points sampled in iteration t+1 and let y1, y2 be such that {y1, y2} = {x1, x2}
and F(y1) ≥ F(y2). By Lemma 5 again, we have k > n− ‖xi‖1 > 0 with
probability 1 − exp(−Ω(k)) for both i ∈ {1, 2}. Let us call this event A.
Note that if A holds, then both offspring lie in the gap region. Consequently,
‖y1‖1 ≤ ‖y2‖1 and thus ‖f ′

t+1‖1 ≤ ‖ft‖1.
Let L = {i ∈ [1..n] | fit = 1

n
}, ℓ = |L|, and M = {i ∈ L | x1

i 6= x2
i } as in

Lemma 8. Note that by definition, Dt ≥ (1 − 1
n
)ℓ, hence from Dt <

3
4
k and

n ≥ 4 we obtain ℓ < k.
Let B0 be the event that |M | = 0, that is, x1

|L = x2
|L. Note that in this

case, we have ft+1 ≤ f ′
t+1 (component-wise) and thus

‖ft+1‖1 ≤ ‖f ′
t+1‖1 = ‖ft + 1

µ
(y1 − y2)‖1 = ‖ft‖1 + 1

µ
(‖y1‖1 − ‖y2‖1).

By Lemma 8, Bernoulli’s inequality, and ℓ ≤ k, we have

Pr[B0] = (1− 2 1
n
(1− 1

n
))ℓ ≥ 1− 2ℓ

n
≥ 1− 2k

n
.

Since ℓ < k ≤ n
320

< n
2
, by Lemma 12, we have ‖x1

|[n]\L‖1 6= ‖x2
|[n]\L‖1 with

probability at least 1
16
. This event, called C in the following, is independent

of B0. We have

Pr[A ∩B0 ∩ C] ≥ Pr[B0 ∩ C]− Pr[A] ≥ (1− 2k
n
) 1
16
− exp(−Ω(k)).

If A∩B0∩C holds, then ‖ft+1‖1 ≤ ‖f ′
t+1‖1 ≤ ‖ft‖1− 1

µ
. If A∩B0∩C holds,

then we still have ‖ft+1‖1 ≤ ‖f ′
t+1‖1 ≤ ‖ft‖1.

Let us now, for j ∈ [1..ℓ], denote by Bj the event that |M | = j, that
is, that x1

|L and x2
|L differ in exactly j bits. By Lemma 8 again, we have

Pr[Bj] = Pr[Bin(ℓ, P) = j].
The event A ∩ Bj implies ‖ft+1‖1 ≤ ‖f ′

t+1‖1 + j
µ
≤ ‖ft‖1 + j

µ
and occurs

with probability Pr[A ∩Bj] ≤ Pr[Bj] = Pr[Bin(ℓ, P) = j].

45

Taking these observations together, we compute

E[Yt+1] = Pr[A]E[Yt+1 | A]

+
ℓ
∑

j=1

Pr[A ∩ Bj]E[Yt+1 | A ∩Bj]

+ Pr[A ∩B0 ∩ C]E[Yt+1 | A ∩B0 ∩ C]

+ Pr[A ∩B0 ∩ C]E[Yt+1 | A ∩B0 ∩ C]

≤ exp(−Ω(k))Ymax (5)

+
ℓ
∑

j=1

Pr[Bin(ℓ, P) = j] Yt exp(
cj
µ
)

+ Pr[Bin(ℓ, P) = 0] Yt

− (1
16
(1− 2k

n
)− exp(−Ω(k)))Yt(1− exp(− c

µ
)).

We note that the second and third term amount to YtE[exp(cZ
µ
)], where

Z ∼ Bin(ℓ, P). Writing Z =
∑ℓ

i=1 Zi as a sum of ℓ independent binary
random variables with Pr[Zi = 1] = P , we obtain

E[exp(cZ
µ
)] =

ℓ
∏

i=1

E[exp(cZi

µ
)] = (1− P + P exp(c

µ
))ℓ.

By assuming c ≤ 1 and using the elementary estimate ex ≤ 1 + 2x valid for
x ∈ [0, 1], see, e.g., Lemma 1.4.2(b) in [Doe20c], we have

1− P + P exp(c
µ
) ≤ 1 + 2P (c

µ
).

Hence with P ≤ 2
n
, µ ≥ 1, and ℓ ≤ n

320
, we obtain

E[exp(cZ
µ
)] ≤ (1 + 2P (c

µ
))ℓ ≤ exp(2P (c

µ
)ℓ) ≤ exp(4c

320µ
) ≤ 1 + c

40µ
,

again by using ex ≤ 1 + 2x. The second and third term of (5) thus add up
to at most (1 + c

40
)Yt.

In the first term of (5), we again assume that c is sufficiently small to
ensure that exp(−Ω(k))Ymax = exp(−Ω(k)) exp(1

4
ck) ≤ 1. Recalling that k ≤

n
320

and assuming k sufficiently large (since k = ω(1) and n is large), we finally
estimate in the last term 1

16
(1−2k

n
)−exp(−Ω(k)) ≥ 1

20
and, more interestingly,

1 − exp(− c
µ
) ≥ c

µ
(1 − 1

e
) using the estimate e−x ≤ 1 − x(1 − 1

e
) valid for all

x ∈ [0, 1], which stems simply from the convexity of the exponential function.
With these estimates we obtain

E[Yt+1] ≤ 1 + (1 + c
40µ

)Yt − 1
20
(1− 1

e
) c
µ
Yt ≤ 1 + Yt

46

and thus E[Yt+1 − Yt] ≤ 1.
In summary, we have now shown that for all y < Ymax and at all times t

the process (Yt) satisfies E[Yt+1−Yt | Yt = y] ≤ 2. We note that Y0 ≤ 1 with
probability one. For the sake of the argument, let us artificially modify the
process from the point on when it has reached a state of at least Ymax. So we
define (Ỹt) by setting Ỹt = Yt, if Yt < Ymax or if Yt ≥ Ymax and Yt−1 < Ymax,
and Ỹt = Ỹt−1 otherwise. In other words, (Ỹt) is a copy of (Yt) until it reaches
a state of at least Ymax and then does not move anymore. With this trick,
we have E[Ỹt+1 − Ỹt] ≤ 2 for all t.

A simple induction and the initial condition Ỹ0 ≤ 1 shows that
E[Ỹt] ≤ 2t+ 1 for all t. In particular, for T = 1

2
exp(1

8
ck) − 1, we have

E[YT] ≤ exp(1
8
ck) and, by Markov’s inequality,

Pr[ỸT ≥ Ymax] ≤
exp(1

8
ck)

Ymax
= exp(−1

8
ck).

Hence with probability 1 − exp(−1
8
ck), we have ỸT < Ymax. We now

condition on this event. By construction of (Ỹt), we have Yt < Ymax, equiv-
alently Dt > 1

4
k, for all t ∈ [0..T]. If Dt > 1

4
k, then by Lemma 9 the

probability that a sample generated in this iteration is the optimum, is
at most exp(−1

4
k). Assuming c ≤ 1 again, we see that the probability

that the optimum is generated in one of the first T iterations, is at most
2T exp(−1

4
k) ≤ exp(1

8
ck) exp(−1

4
k) = exp(−1

8
k). This shows the claim.

6 An Ω(n logn) Lower Bound

With the exponential lower bound proven in the previous section, the runtime
of the cGA on jump functions is well understood, except that the innocent
looking lower bound Ω(n log n), matching the corresponding upper bound for
k ≤ 1

20
lnn − 1 and optimal choice of µ, is still missing. Since Sudholt and

Witt [SW19] have proven an Ω(n log n) lower bound for the simple unimodal
function OneMax, which for many EAs is known to be one of the easiest
functions with unique global optimum [DJW12, Sud13, Wit13, Doe19a], it
would be very surprising if this lower bound would not hold for jump func-
tions as well.

In this section, we first argue why, unlike for many other algorithms, it is
hard to show that a lower bound on the runtime of the cGA on OneMax ex-
tends to a lower bound for any other function with unique optimum. We then
analyze in detail the proof of the Ω(n log n) lower bound forOneMax [SW19]
and argue that the same arguments can be applied in the case of jump func-
tions (but not superjump functions).

47

6.1 Domination Arguments Fail

The true reason why OneMax is the easiest optimization problem for many
evolutionary algorithmsA, implicit in all such proofs and explicit in [Doe19a],
is that when comparing a run of A on OneMax and on some other function
F with unique global optimum, then at all times the Hamming distance
between the current-best solution and the optimum in the OneMax process
is stochastically dominated by the same quantity in the other process. This
follows by induction and a coupling argument from the following key insight
(here formulated for the (1 + 1) EA only).

Lemma 23. Let F : {0, 1}n → R be some function with unique global
optimum x∗ and let OneMax be the n-dimensional OneMax function
with unique global optimum y∗ = (1, . . . , 1). Let x, y ∈ {0, 1}n such that
H(x, x∗) ≥ H(y, y∗), where H(·, ·) denotes the Hamming distance. Consider
one iteration of the (1 + 1) EA optimizing F , started with x as parent indi-
vidual, and denote by x′ the parent in the next iteration. Define y′ analogously
for OneMax and y. Then H(x′, x∗) � H(y′, y∗).

As a side remark, note that the lemma applied in the special case F =
OneMax shows that the intuitive rule “the closer a search point is to the
optimum, the shorter is the optimization time when starting from this search
point” holds for optimizing OneMax via the (1 + 1) EA.

We now show that a statement like Lemma 23 is not true for the cGA.
Since the states of a run of the cGA are the frequency vectors f , the natural
extension of the Hamming distance quality measure above is the ℓ1-distance
d(f, x∗) = ‖f − x∗‖1 =

∑n
i=1 |fi− x∗

i |. Note that for x∗ = (1, . . . , 1), we have
d(f, x∗) = n − ‖f‖1, the distance measure regarded in many of the other
proofs in this work.

Lemma 24. Let n be even. We consider running the cGA with hypothetical
population size µ = n. Then there are a fitness function F : {0, 1}n → R with
unique global optimum x∗ = (1, . . . , 1) and frequency vectors f, g ∈ (Fµ)

n

such that the following holds. Let f̃ be the frequency vector obtained after
one iteration of optimizing F via the cGA started with frequency vector f .
Let g̃ be the frequency vector obtained after one iteration running the cGA
on OneMax (with unique global optimum y∗ := x∗) started with g. Then
d(f, x∗) ≥ d(g, y∗), but d(f̃ , x∗) 6� d(g̃, y∗).

Proof. Let F be any subjump function with jump size k ≤ n
4
. Let f = 1

2
1n.

Let g ∈ [0, 1]n be such that half the entries of g are equal to 1
n
+ 1

µ
= 2

n
and

the other half are equal to 1− 1
n
− 1

µ
= 1− 2

n
.

48

We obviously have d(f, x∗) ≥ d(g, y∗), since both numbers are equal to n
2
.

Since with probability 1 − exp(−Ω(n)), both search points sampled in the
jump process have between n

4
and 3

4n
ones, their jump fitnesses equal their

OneMax fitnesses. Consequently, we may apply Lemma 5 from [Dro06] (or,
with one more argument, Lemma 14) and see that E[d(f̃ , x∗)] ≤ n

2
−Ω(1

µ

√
n).

For the OneMax process started in g, however, denoting the two search
points generated in this iteration by x1 and x2, we have

E[‖g − g̃‖1] =
n
∑

i=1

1
µ
Pr[x1

i 6= x2
i] = n · 1

µ
· 2 · 2

n
(1− 2

n
) ≤ 4

n
.

From this and d(g̃, y∗) = ‖g̃−y∗‖1 = ‖g̃−g+g−y∗‖1 ≥ ‖g−y∗‖1−‖g̃−g‖1,
we obtain

E[d(g̃, y∗)] ≥ d(g, y∗)− 4
µ
= n

2
− O(1

µ
).

Since thus E[d(f̃ , x∗)] ≤ E[d(g̃, y∗)], we cannot have d(f̃ , x∗) � d(g̃, y∗).

We note that a second imaginable domination result is also not true,
namely that, roughly speaking, the frequency vector arising from one iter-
ation started with a better initial frequency vector dominates the result of
starting with a worse initial frequency vector. More precisely, we have the
following.

Lemma 25. Let µ be an arbitrary hypothetical population size for all cGAs
considered here. There are frequency vectors f, g ∈ (Fµ)

n with f ≤ g (com-
ponentwise) such that the following holds. Let F be any subjump function
with jump size at most n

2
(including the OneMax function). Let f̃ be the

frequency vector resulting from optimizing F for one iteration with the cGA
started with frequency vector f . Let g̃ be the frequency vector resulting from
optimizing OneMax for one iteration with the cGA started with frequency
vector g. Then we do not have f̃i � g̃i for all i ∈ [1..n].

Proof. Let f = (1
2
, 1
n
, . . . , 1

n
) and g = 1

2
1n. Clearly, f ≤ g.

When performing one iteration of the cGA on F started with f , and
denoting the two samples by x1 and x2 and their quality difference in all
but the first bit by ∆ = ‖x1

|[2..n]‖1 − ‖x2
|[2..n]‖1, then the argument that with

probability 1− exp(−Ω(n)) this iteration equals an iteration with OneMax

as objective function shows that the resulting frequency vector f̃ satisfies

Pr[f̃1 =
1
2
+ 1

µ
]

≥ Pr[x1
1 6= x2

1](
1
2
Pr[∆ /∈ {−1, 0}] + Pr[∆ ∈ {−1, 0}])− exp(−Ω(n))

= Pr[x1
1 6= x2

1](
1
2
+ 1

2
Pr[∆ ∈ {−1, 0}])− exp(−Ω(n)). (6)

49

Since Pr[∆ ∈ {−1, 0}] ≥ Pr[‖x1
|[2..n]‖1 = ‖x2

|[2..n]‖1 = 0] = (1 − 1
n
)2(n−1) ≥ 1

e2
,

we have Pr[f̃1 =
1
2
+ 1

µ
] ≥ 1

4
+ 1

4e2
− exp(−Ω(n)).

When starting the iteration with g, the resulting frequency vector g̃
satisfies an equation analogous to (6), but now ∆ is the difference of two
binomial distributions with parameters n − 1 and 1

2
. Hence, we have

Pr[∆ ∈ {−1, 0}] = O(n−1/2), see, e.g., [Doe20c, Lemma 1.4.13] for this
elementary estimate, and thus Pr[g̃1 = 1

2
+ 1

µ
] = 1

4
+ o(1), disproving that

f̃1 � g̃1.

In summary, the richer mechanism of building a probabilistic model of the
search space in the cGA (as opposed to using a population in EAs) makes
is hard to argue that OneMax is the easiest function for the cGA. This,
in particular, has the consequence that lower bounds for the runtime of the
cGA onOneMax cannot be easily extended to other functions with a unique
global optimum.

6.2 Imitating the OneMax Proof

Above, we have seen that a simple, general argument why a lower bound
for the runtime of the cGA on OneMax should extend to jump functions
appears hard to find. For this reason, we now analyze the proof of the lower
bound given in [SW19] and observe, fortunately, that its main arguments
apply equally well to jump functions. Since the full proof in [SW19] is rela-
tively long, namely more than twelve pages, we apologize to the reader that
we cannot give a self-contained version of the proof, but that instead we only
argue why the arguments given in [SW19] remain valid in our case.

We show the following result, which is independent from the jump size k.
This result, in particular, shows that our upper bound of Theorem 13 is
asymptotically tight. We note that this result is proven only for jump func-
tions, but not also for superjump functions. This is due to the fact that the
lower bound in [SW19] is only proven for OneMax and not for all functions
with unique global optimum.

Theorem 26. Let c > 0 be an arbitrary constant. Let C be a constant that
is sufficiently large compared to c. Let µ ≥ C logn and µ ≤ nc. Then with
probability 1− o(1), the runtime of the cGA with hypothetical population size
µ on any n-dimensional jump function is at least Ω(µ

√
n+ n log n).

Proof. When k is Ω(n), then Theorem 22 gives a lower bound of exp(Ω(n))
with high probability. For this reason, we can now conveniently assume that
k ≤ κn for an arbitrarily small constant κ > 0.

50

As announced, we argue that the main arguments of the proof of the
corresponding result in [SW19], Theorem 8, remain valid. The proof of this
Theorem 8 mostly consists of Lemma 10 to 15 (in [SW19]). There is nothing
to show for Lemma 10 as it refers only to iterations in which a fixed bit is
performing a random-walk step (in which the fitness function is irrelevant).
Lemma 11 is a statement on sums of independent random variables and does
not refer to the cGA at all. In Lemma 12, a lower bound on the probability
of a non-random-walk step is given. Informally speaking, a non-random-walk
step for a particular bit means that in this iteration, the particular bit has an
influence on how the two offspring are sorted before the frequency update.
Since two search points have the same OneMax value if and only if they
have the same objective value w.r.t. some jump function, this probability for
a non-random-walk step is the same for OneMax and the jump function.
Lemma 13, while formulated in the language of the cGA, is a statement
on independent parallel unbiased random walks. The basic argument in
the proof of Lemma 14 is that when nε frequencies have reached the lower
boundary, then with high probability at least one of them will not move
for Ω(n log n) iterations, simply because the two offspring generated in each
iteration always agree in this bit. The claim of Lemma 15 includes that
Ω(n) frequencies stay in the interval [1

6
, 5
6
] for a given time frame T . To

sample a search point in the gap, since k is sufficiently small, at least a
constant fraction of these bits have to be sampled as one. By a simple
Chernoff bound (Theorem 4), this happens only with probability exp(−Ω(n))
in one iteration. Since Lemma 15 gives a statement with probability 1 −
poly(n)2−Ω(min{µ,n}) only, the probabilities of sampling a search point in the
gap do not affect the failure probability of poly(n)2−Ω(min{µ,n}). The main
proof of Theorem 8 consists mostly of applications of these intermediate
results. Only the last two paragraphs discuss what happens after the time
frame T , which was analyzed in Lemma 15. These two paragraphs, however,
again only use general properties of the cGA that are independent of the
particular fitness function.4 In summary, all arguments given in the proof
of Theorem 8 in [SW19] are equally valid for the optimization of a jump
function with k ≤ κn instead of the OneMax function. This proves our
claim.

4To be very precise, the argument that a frequency at the lower boundary leaves this
boundary only with probability O(n−3/2) in one iteration is not correct, but the authors
of [SW19] convinced us that also with the correct estimate of O(1n) and setting the implicit
constants right, at least

√
n frequencies remain at the lower boundary at the end of the

first T iterations. This is enough to apply Lemma 14.

51

We note that the proof above (and thus our result) applies not only to
jump functions, but to all functions where Theorem 22 can be employed
and, more interestingly, to all functions that agree with OneMax on all
search point x with n

6
≤ ‖x‖1 ≤ 5n

6
. This restriction is necessary to use the

arguments of [SW19]. Overcoming this restriction is most likely non-trivial.
It would most likely immediately imply a general lower bound of Ω(n log n)
for the runtime of the cGA on any function with unique global optimum,
which is a major open problem in the field.

7 Conclusion

This study (including the preliminary versions [Doe19b, Doe19c]) is, to the
best of our knowledge, after [HS18] only the second mathematical analysis of
an EDA on a multimodal optimization problem. Our two main results are

(i) that the cGA can optimize jump functions with logarithmic jump sizes
in asymptotically the same efficiency as the simple OneMax function;
it thus does not suffer from the fitness valleys present in these objective
functions;

(ii) an exp(Ω(k)) lower bound for the runtime of the cGA on jump functions
with jump size k, regardless of the hypothetical population size µ. This
result shows, in particular, that the corresponding upper bound by
Hasenöhrl and Sutton [HS18] cannot be improved by running the cGA
with a hypothetical population size that is sub-exponential in k.

The obvious question arising from this work is whether similar results
hold for other EDAs and other optimization problems, or whether this result
is a particularity of the cGA and jump functions. Natural candidates for
other EDAs could be the UMDA, for which several rigorous runtime results
exist, see [KW20a], and the significance-based cGA [DK20a], which might
profit from using only the three frequencies 1

n
, 1

2
, and 1− 1

n
. Candidates for

optimization problems leading to a multimodal fitness landscape include the
maximum matching problem [GW03, GW04] or the minimum vertex cover
problem [OHY09, JOZ13].

We also proved an Ω(n log n) lower bound for jump functions in Section 6,
and did so by arguing that this lower bound is witnessed in the OneMax

process at a time up to which the cGA most likely has not sampled a search
point that lies in the gap of a jump function. For this reason, the proof
of [SW19] extends to jump functions as well. This argument was sufficient
for our purposes, but left the real (and most likely very difficult) question

52

untouched, namely if Ω(n log n) is a lower bound for the cGA optimizing any
function with unique global optimum. We do not dare to speculate what is
the answer.

References

[AAD+19] Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola
Doerr, Kasper Green Larsen, and Kurt Mehlhorn. The query
complexity of a permutation-based variant of Mastermind. Dis-
crete Applied Mathematics, 260:28–50, 2019.

[AD11] Anne Auger and Benjamin Doerr, editors. Theory of Random-
ized Search Heuristics. World Scientific Publishing, 2011.

[AD18] Denis Antipov and Benjamin Doerr. Precise runtime analysis
for plateaus. In Parallel Problem Solving From Nature, PPSN
2018, Part II, pages 117–128. Springer, 2018.

[AD20] Denis Antipov and Benjamin Doerr. Runtime analysis of a
heavy-tailed (1 + (λ, λ)) genetic algorithm on jump functions.
In Parallel Problem Solving From Nature, PPSN 2020. Springer,
2020. To appear.

[ADK20] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. The
(1 + (λ, λ)) GA is even faster on multimodal problems. In Ge-
netic and Evolutionary Computation Conference, GECCO 2020,
pages 1259–1267. ACM, 2020.

[ADY19] Denis Antipov, Benjamin Doerr, and Quentin Yang. The effi-
ciency threshold for the offspring population size of the (µ, λ)
EA. In Genetic and Evolutionary Computation Conference,
GECCO 2019, pages 1461–1469. ACM, 2019.

[AW09] Gautham Anil and R. Paul Wiegand. Black-box search by elim-
ination of fitness functions. In Foundations of Genetic Algo-
rithms, FOGA 2009, pages 67–78. ACM, 2009.

[BDK16] Maxim Buzdalov, Benjamin Doerr, and Mikhail Kever. The un-
restricted black-box complexity of jump functions. Evolutionary
Computation, 24:719–744, 2016.

53

[COY17] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. On the
runtime analysis of the Opt-IA artificial immune system. In Ge-
netic and Evolutionary Computation Conference, GECCO 2017,
pages 83–90. ACM, 2017.

[COY18] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. Fast artifi-
cial immune systems. In Parallel Problem Solving from Nature,
PPSN 2018, Part II, pages 67–78. Springer, 2018.

[DDE15] Benjamin Doerr, Carola Doerr, and Franziska Ebel. From black-
box complexity to designing new genetic algorithms. Theoretical
Computer Science, 567:87–104, 2015.

[DFK+16] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S.
Krejca, Per Kristian Lehre, Pietro S. Oliveto, Dirk Sudholt, and
Andrew M. Sutton. Escaping local optima with diversity mecha-
nisms and crossover. In Genetic and Evolutionary Computation
Conference, GECCO 2016, pages 645–652. ACM, 2016.

[DFK+18] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S.
Krejca, Per Kristian Lehre, Pietro S. Oliveto, Dirk Sudholt, and
Andrew M. Sutton. Escaping local optima using crossover with
emergent diversity. IEEE Transactions on Evolutionary Com-
putation, 22:484–497, 2018.

[DHK11] Benjamin Doerr, Edda Happ, and Christian Klein. Tight
analysis of the (1+1)-EA for the single source shortest path
problem. Evolutionary Computation, 19:673–691, 2011.

[DJ10] Benjamin Doerr and Daniel Johannsen. Edge-based represen-
tation beats vertex-based representation in shortest path prob-
lems. In Genetic and Evolutionary Computation Conference,
GECCO 2010, pages 759–766. ACM, 2010.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the
analysis of the (1+1) evolutionary algorithm. Theoretical Com-
puter Science, 276:51–81, 2002.

[DJW06] Stefan Droste, Thomas Jansen, and Ingo Wegener. Upper and
lower bounds for randomized search heuristics in black-box op-
timization. Theory of Computing Systems, 39:525–544, 2006.

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multi-
plicative drift analysis. Algorithmica, 64:673–697, 2012.

54

[DK20a] Benjamin Doerr and Martin S. Krejca. Significance-based
estimation-of-distribution algorithms. IEEE Transactions on
Evolutionary Computation, 2020. To appear.

[DK20b] Benjamin Doerr and Martin S. Krejca. The univariate marginal
distribution algorithm copes well with deception and epistasis.
In Evolutionary Computation in Combinatorial Optimization,
EvoCOP 2020, pages 51–66. Springer, 2020.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy
Nguyen. Fast genetic algorithms. In Genetic and Evolutionary
Computation Conference, GECCO 2017, pages 777–784. ACM,
2017.

[DN20] Benjamin Doerr and Frank Neumann, editors. Theory of
Evolutionary Computation—Recent Developments in Dis-
crete Optimization. Springer, 2020. Also available at
https://cs.adelaide.edu.au/∼frank/papers/TheoryBook2019-selfarchived.pdf .

[Doe19a] Benjamin Doerr. Analyzing randomized search heuristics via
stochastic domination. Theoretical Computer Science, 773:115–
137, 2019.

[Doe19b] Benjamin Doerr. An exponential lower bound for the runtime of
the compact genetic algorithm on jump functions. In Founda-
tions of Genetic Algorithms, FOGA 2019, pages 25–33. ACM,
2019.

[Doe19c] Benjamin Doerr. A tight runtime analysis for the cGA on jump
functions: EDAs can cross fitness valleys at no extra cost. In Ge-
netic and Evolutionary Computation Conference, GECCO 2019,
pages 1488–1496. ACM, 2019.

[Doe20a] Benjamin Doerr. Does comma selection help to cope with local
optima? In Genetic and Evolutionary Computation Conference,
GECCO 2020, pages 1304–1313. ACM, 2020.

[Doe20b] Benjamin Doerr. Lower bounds for non-elitist evolutionary al-
gorithms via negative multiplicative drift. In Parallel Problem
Solving From Nature, PPSN 2020. Springer, 2020. To appear.

[Doe20c] Benjamin Doerr. Probabilistic tools for the analysis of random-
ized optimization heuristics. In Benjamin Doerr and Frank Neu-
mann, editors, Theory of Evolutionary Computation: Recent

55

https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.pdf

Developments in Discrete Optimization, pages 1–87. Springer,
2020. Also available at https://arxiv.org/abs/1801.06733.

[Dro06] Stefan Droste. A rigorous analysis of the compact genetic algo-
rithm for linear functions. Natural Computing, 5:257–283, 2006.

[DW14] Benjamin Doerr and Carola Winzen. Ranking-based black-box
complexity. Algorithmica, 68:571–609, 2014.

[DZ20a] Benjamin Doerr and Weijie Zheng. A parameter-less compact
genetic algorithm. In Genetic and Evolutionary Computation
Conference, GECCO 2020, pages 805–813. ACM, 2020.

[DZ20b] Benjamin Doerr and Weijie Zheng. Sharp bounds for genetic
drift in estimation-of-distribution algorithms. IEEE Transac-
tions on Evolutionary Computation, 2020. To appear.

[DZ20c] Benjamin Doerr and Weijie Zheng. Working principles of binary
differential evolution. Theoretical Computer Science, 801:110–
142, 2020.

[FKK+16] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Samadhi Nal-
laperuma, Frank Neumann, and Martin Schirneck. Fast building
block assembly by majority vote crossover. In Genetic and Evo-
lutionary Computation Conference, GECCO 2016, pages 661–
668. ACM, 2016.

[FKKS17] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and An-
drew M. Sutton. The compact genetic algorithm is efficient
under extreme Gaussian noise. IEEE Transactions on Evolu-
tionary Computation, 21:477–490, 2017.

[FQW18] Tobias Friedrich, Francesco Quinzan, and Markus Wagner. Es-
caping large deceptive basins of attraction with heavy-tailed
mutation operators. In Genetic and Evolutionary Computation
Conference, GECCO 2018, pages 293–300. ACM, 2018.

[FS20] Mario Alejandro Hevia Fajardo and Dirk Sudholt. On the choice
of the parameter control mechanism in the (1+(λ, λ)) genetic al-
gorithm. In Genetic and Evolutionary Computation Conference,
GECCO 2020, pages 832–840. ACM, 2020.

56

https://arxiv.org/abs/1801.06733

[GW03] Oliver Giel and Ingo Wegener. Evolutionary algorithms and
the maximum matching problem. In Symposium on Theoreti-
cal Aspects of Computer Science, STACS 2003, pages 415–426.
Springer, 2003.

[GW04] Oliver Giel and IngoWegener. Searching randomly for maximum
matchings. Electronic Colloquium on Computational Complexity
(ECCC), (076), 2004.

[GW17] Christian Gießen and Carsten Witt. The interplay of population
size and mutation probability in the (1 + λ) EA on OneMax.
Algorithmica, 78:587–609, 2017.

[HLG99] Georges R. Harik, Fernando G. Lobo, and David E. Goldberg.
The compact genetic algorithm. IEEE Transactions on Evolu-
tionary Computation, 3:287–297, 1999.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical Associa-
tion, 58:13–30, 1963.

[HS18] Václav Hasenöhrl and Andrew M. Sutton. On the runtime dy-
namics of the compact genetic algorithm on jump functions.
In Genetic and Evolutionary Computation Conference, GECCO
2018, pages 967–974. ACM, 2018.

[HY01] Jun He and Xin Yao. Drift analysis and average time complexity
of evolutionary algorithms. Artificial Intelligence, 127:51–81,
2001.

[Jan13] Thomas Jansen. Analyzing Evolutionary Algorithms – The Com-
puter Science Perspective. Springer, 2013.

[JJW05] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On
the choice of the offspring population size in evolutionary algo-
rithms. Evolutionary Computation, 13:413–440, 2005.

[JOZ13] Thomas Jansen, Pietro S. Oliveto, and Christine Zarges. Ap-
proximating vertex cover using edge-based representations. In
Foundations of Genetic Algorithms, FOGA 2013, pages 87–96.
ACM, 2013.

[JW02] Thomas Jansen and Ingo Wegener. The analysis of evolutionary
algorithms – a proof that crossover really can help. Algorithmica,
34:47–66, 2002.

57

[KW20a] Martin Krejca and Carsten Witt. Theory of estimation-of-
distribution algorithms. In Benjamin Doerr and Frank Neu-
mann, editors, Theory of Evolutionary Computation: Recent De-
velopments in Discrete Optimization, pages 405–442. Springer,
2020. Also available at https://arxiv.org/abs/1806.05392.

[KW20b] Martin S. Krejca and Carsten Witt. Lower bounds on the
run time of the Univariate Marginal Distribution Algorithm on
OneMax. Theoretical Computer Science, 832:143–165, 2020.

[Len20] Johannes Lengler. Drift analysis. In Benjamin Doerr and Frank
Neumann, editors, Theory of Evolutionary Computation: Recent
Developments in Discrete Optimization, pages 89–131. Springer,
2020. Also available at https://arxiv.org/abs/1712.00964.

[LL02] Pedro Larrañaga and José Antonio Lozano, editors. Estimation
of Distribution Algorithms. Genetic Algorithms and Evolution-
ary Computation. Springer, 2002.

[LN17] Per Kristian Lehre and Phan Trung Hai Nguyen. Improved run-
time bounds for the univariate marginal distribution algorithm
via anti-concentration. In Genetic and Evolutionary Computa-
tion Conference, GECCO 2017, pages 1383–1390. ACM, 2017.

[LN19] Per Kristian Lehre and Phan Trung Hai Nguyen. On the limita-
tions of the univariate marginal distribution algorithm to decep-
tion and where bivariate EDAs might help. In Foundations of
Genetic Algorithms, FOGA 2019, pages 154–168. ACM, 2019.

[LSW18] Johannes Lengler, Dirk Sudholt, and Carsten Witt. Medium
step sizes are harmful for the compact genetic algorithm. In Ge-
netic and Evolutionary Computation Conference, GECCO 2018,
pages 1499–1506. ACM, 2018.

[LW12] Per Kristian Lehre and Carsten Witt. Black-box search by un-
biased variation. Algorithmica, 64:623–642, 2012.

[NW10] Frank Neumann and Carsten Witt. Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their Computa-
tional Complexity. Springer, 2010.

[OHY09] Pietro S. Oliveto, Jun He, and Xin Yao. Analysis of the
(1+1)-EA for finding approximate solutions to vertex cover

58

https://arxiv.org/abs/1806.05392
https://arxiv.org/abs/1712.00964

problems. IEEE Transactions on Evolutionary Computation,
13:1006–1029, 2009.

[OW12] Pietro S. Oliveto and Carsten Witt. Erratum: Simplified drift
analysis for proving lower bounds in evolutionary computation.
CoRR, abs/1211.7184, 2012.

[PHL15] Martin Pelikan, Mark Hauschild, and Fernando G. Lobo. Es-
timation of distribution algorithms. In Janusz Kacprzyk and
Witold Pedrycz, editors, Springer Handbook of Computational
Intelligence, pages 899–928. Springer, 2015.

[RA19] Jonathan E. Rowe and Aishwaryaprajna. The benefits and lim-
itations of voting mechanisms in evolutionary optimisation. In
Foundations of Genetic Algorithms, FOGA 2019, pages 34–42.
ACM, 2019.

[RW20] Amirhossein Rajabi and Carsten Witt. Self-adjusting evolution-
ary algorithms for multimodal optimization. In Genetic and
Evolutionary Computation Conference, GECCO 2020, pages
1314–1322. ACM, 2020.

[Sud13] Dirk Sudholt. A new method for lower bounds on the running
time of evolutionary algorithms. IEEE Transactions on Evolu-
tionary Computation, 17:418–435, 2013.

[SW19] Dirk Sudholt and Carsten Witt. On the choice of the update
strength in estimation-of-distribution algorithms and ant colony
optimization. Algorithmica, 81:1450–1489, 2019.

[Weg05] Ingo Wegener. Simulated annealing beats Metropolis in combi-
natorial optimization. In Automata, Languages and Program-
ming, ICALP 2005, pages 589–601. Springer, 2005.

[Wit13] Carsten Witt. Tight bounds on the optimization time of a ran-
domized search heuristic on linear functions. Combinatorics,
Probability & Computing, 22:294–318, 2013.

[Wit18] Carsten Witt. Domino convergence: why one should hill-climb
on linear functions. In Genetic and Evolutionary Computation
Conference, GECCO 2018, pages 1539–1546. ACM, 2018.

[Wit19] Carsten Witt. Upper bounds on the running time of the univari-
ate marginal distribution algorithm on OneMax. Algorithmica,
81:632–667, 2019.

59

[WVHM18] Darrell Whitley, Swetha Varadarajan, Rachel Hirsch, and Anir-
ban Mukhopadhyay. Exploration and exploitation without mu-
tation: solving the jump function in Θ(n) time. In Parallel
Problem Solving from Nature, PPSN 2018, Part II, pages 55–
66. Springer, 2018.

60

	1 Introduction
	1.1 An Improved Upper Bound for Small Jump Sizes
	1.2 An Exponential Lower Bound
	1.3 A Lower Bound for Small Jump Sizes
	1.4 Expected Runtimes of EDAs vs. Bounds with High Probability

	2 Preliminaries
	2.1 The Compact Genetic Algorithm
	2.2 Runtime Analysis for the cGA
	2.3 Runtime Results for Jump Functions
	2.4 Expected Runtimes versus Guarantees with High Probability

	3 Technical Tools
	3.1 Standard Tools
	3.2 Tools for the Analysis of the cGA

	4 An Upper Bound for the Runtime of the cGA on Jump Functions
	4.1 Proof Overview
	4.2 Proof Ingredients
	4.3 Proof of Theorem 13
	4.4 General Insights From This Proof

	5 An Exponential Lower Bound
	6 An (n logn) Lower Bound
	6.1 Domination Arguments Fail
	6.2 Imitating the OneMax Proof

	7 Conclusion

