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INVARIANT SUBMANIFOLDS
OF CONFORMAL SYMPLECTIC DYNAMICS

MARIE-CLAUDE ARNAUD:,;,˝ & JACQUES FEJOZ˚,˚˚,˝

Abstract. We study invariant manifolds of conformal symplec-
tic dynamical systems on a symplectic manifold pM, ωq of dimen-
sion ě 4. This class of systems is the 1-dimensional extension
of symplectic dynamical systems for which the symplectic form is
transformed colinearly to itself.

In this context, we first examine how the ω-isotropy of an invari-
ant manifold N relates to the entropy of the dynamics it carries.
Central to our study is Yomdin’s inequality, and a refinement ob-
tained using that the local entropies have no effect transversally
to the characteristic foliation of N .

When pM, ωq is exact and N is isotropic, we also show that
N must be exact for some choice of the primitive of ω, under the
condition that the dynamics acts trivially on the cohomology of
degree 1 of N . The conclusion partially extends to the case when
N has a compact one-sided orbit.

We eventually prove the uniqueness of invariant submanifolds N
when M is a cotangent bundle, provided that the dynamics is iso-
topic to the identity among Hamiltonian diffeomorphisms. In the
case of the cotangent bundle of the torus, a theorem of Shelukhin
allows us to conclude that N is unique even among submanifolds
with compact orbits.
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1. Introduction

Let pM2d, ωq be a symplectic manifold. Symplectic dynamical sys-
tems (so-called conservative dynamical systems) form a class of infinite
codimension. We will study conformal symplectic dynamics, a now
classical extension of symplectic dynamics1 where the symplectic form
may change in its own direction:

Definition 1.

‚ A diffeomorphism f : M ý is conformal symplectic if f˚ω “
aω for some a ą 0 (conformality ratio).2

‚ A complete vector field X on M is conformal symplectic if
LXω “ αω, where LX is the Lie derivative, for some α P R
(conformality rate).3

Such dynamics encapsulate mechanical systems whose friction force
is proportional to velocity, in which case a ă 1 or α ă 0.

In this paper we will focus on the non-symplectic case, i.e. a ‰ 1
and α ‰ 0. Of course, time reversal changes a in 1{a and α in ´α.

For such a dynamics, the volume form ω^d is monotonic. So if such
a dynamics exists on M, M cannot be closed and has infinite volume.
Moreover, when the dynamics is given by a vector field X, the symplec-
tic form satisfies ω “ 1

α
LXω “ d

`

1
α
iXω

˘

and is exact. Hence conformal
vector fields exist only on exact symplectic manifolds. Yet this is not

1Vaisman [20] and others have defined local conformal symplectic structures on a
manifold M. There is a corresponding notion of dynamics preserving the structure,
thus extending our setting.

2As Libermann noticed [10]: if f˚ω “ aω for some smooth function a, aω being
closed we have da ^ ω “ 0, which implies, if M has dimension ě 4, that a is
constant.

3Then the flow pϕtq of X is conformal symplectic and ϕ˚t ω “ eαtω.
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the case for conformal diffeomorphisms (see an example in Proposition
2).

Also, if a vector field X is conform symplectic of conformality rate
α and if Z is the Liouville vector field associated with the 1-form
λ “ ´ 1

α
ixω i.e., iZω “ λ, then X ` αZ is symplectic. Thus con-

formal symplectic vector field form a 1-dimensional extension of the
space of symplectic vector fields. When pM, ωq is exact, there exists
a 1-parameter subgroup C of the set of conform symplectic diffeomor-
phims such that the group of conform symplectic diffeomorphisms is
tf ˝ g; pf, gq P CˆSu where S is the set of symplectic diffeomorphisms.
When M is not exact, let R be the subgroup of R˚` of conformal ratios
of conformal symplectic diffeomorphisms of M. This subgroup can be
trivial, e.g. when M is compact (all conform symplectic diffeomor-
phism are symplectic).

Questions. Can R be strictly between t1u and R˚`? Assuming that
R “ R˚`, does there exist a continuous 1-parameter family of conform
symplectic diffeomorphisms indexed by its conformal ratio in R˚`?

An important case is that of cotangent bundles pM “ T ˚Q, ω “
´dλq, where Q is a manifold and λ is the canonical Liouville 1-form.
A continuous-time example is the flow expptZλqpq, pq “ pq, e

´tpq of the
Liouville vector field Zλ defined by iZλp´dλq “ λ and a discrete-time
example is f “ expZλ : pq, pq ÞÑ pq, apq, a “ e´1. These two examples
of conformal symplectic dynamics have a very simple behaviour:

‚ there is a global attractor A;
‚ the ω-limit set of every orbit is a point of A.

More generally, consider a discounted Tonelli vector field X on T ˚Q
of negative rate α; by definition it satisfies iXω “ dH ` αλ for some
Hamiltonian H which is superlinear in the fiber direction and whose
Hessian in the fiber direction is positive definite. It has been shown
that the flow of such a vector field has a global attractor [12].

In the general setting, many natural questions are open, for example:

Questions. Which conditions ensure the existence of a global attrac-
tor? And provided that the global attractor exists (necessarily having
zero volume), what can be said of its size?

As a first step, in this article we focus on the case of invariant sub-
manifolds (with a digression on the case of submanifolds with compact
orbit), although the study of dissipative twist maps proves that there
can exist invariant subsets that are not submanifolds [9].
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First, we explore the isotropy of invariant submanifolds. This ques-
tion is akin to its analogue in symplectic dynamics, where both neg-
ative and positive results have been proven in particular for invariant
tori carrying minimal quasiperiodic flows.

We start by providing an example where an invariant submanifold
is a hypersurface and hence non-isotropic (Propositions 1 and 2 in sec-
tion 2). There exist similar examples due to McDuff, [13] and Geiges
[4, 5], but our example is somewhat more explicit. We do not know if
a similar example exists on a cotangent bundle. An even more diffi-
cult question is to determine whether such submanifolds may exist for
discounted Tonelli flows on cotangent bundles. In this case and when
dimM ě 4, the global attractor never separates M and hence cannot
be a hypersurface.

In turn, we show some positive results regarding the isotropy of in-
variant submanifolds. If the invariant submanifold is a surface, isotropy
follows from a simple argument using the growth of the area. In higher
dimension, a first result follows from Yomdin’s theory [22, 7]. Propo-
sition 4 of section 2 states that if a smooth4 conformal diffeomorphism
f : M ý with conformality rate a has an invariant smooth subman-
ifold N Ă M such that the topological entropy of f|N is less than
| logpaq|, then N is isotropic.

But Yomdin’s proof can be improved in the setting of diffeomor-
phisms which are conform with respect to a presymplectic form. Here,
we prove that the so-called local entropies have no effect on the volume
growth transversally to the characteristic foliation of N (section 3). It
follows that if a conformal symplectic C3-diffeomorphism of confor-
mality ratio a has an invariant C3-manifold on which ω has constant
rank 2` and such that the entropy of f|N is smaller than ` | log a|, N
is isotropic. In particular, if an invariant submanifold carries a mini-
mal dynamics (every orbit is dense) with zero entropy, it is isotropic
(corollary 2).

This new result assumes less regularity than the former one (C3

instead of smooth in Proposition 4) but requires that the symplectic
form restricted to the submanifold has constant rank.

A related result is [2, 2.2.1], where the authors prove that if a C1

conformal dynamics has a C1 invariant torus on which the dynamics
is C1 conjugate to a rigid rotation, then this torus is isotropic. This
results is a direct consequence of Proposition 4. Corollary 2 of section
3 doesn’t imply this result because our result require more regularity,

4Smooth means C8.
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and on the other hand our result applies when a C3 dynamics is C0

conjugated to a transitive rotation.

Second, we examine the question of exactness. In this purpose, in
section 4 we assume that pM, ω “ ´dλq is exact. Define the Liouville
class of an isotropic embedding in M as the cohomology class of the
form induced by λ. The embedding is called exact when this class
vanishes. The action of conform symplectic diffeomorphisms on Liou-
ville classes depends on a notion of exactness for the diffeomorphisms
themselves. Let f : M ý be a conformal symplectic diffeomorphism
of ratio a. The form f˚λ´ aλ is closed.

Definition 2. The diffeomorphism f is λ conformal exact symplectic
(CES) if f˚λ´ aλ is exact. It is Hamiltonian if f is the time-one map
of the flow of a non autonomous conformal Hamiltonian vector field Xt

(meaning that iXtω “ αt λ` dHt for all t).

This definitions depend of the chosen primitive of the symplectic
form. We prove in appendix B that there is always a choice of primitive
for which f is exact. Alternatively, we also show that f is symplectically
conjugate to a diffeomorphism which is exact with respect to the initial
λ. Hence we state our results for exact conformal symplectic dynamics
(see section 4 for more comprehensive statements).

Our main result here is that if f is an exact conform symplectic
diffeomorphism and if S is a strongly f -invariant submanifold (in the
sense that j ˝ fpSq “ jpSq and f acts trivially on H1pjpSq,Rq), j is
exact.

When L is a Lagrangian submanifold that is H-isotopic5 to a graph in
M “ T ˚Q and f is CS isotopic6 to IdM, we obtain the same conclusion
when assuming only that the orbit of L is bounded. For example, the
submanifolds that are H-isotopic to the zero section and contained in
an attractor satisfy this hypothesis.

Question. Is it possible to obtain similar results without assuming
that the Lagrangian submanifold is H-isotopic to a graph? On other
manifolds?

Third, in section 6, we raise the question of the uniqueness of a
invariant Lagrangian submanifolds in a cotangent bundle pT ˚Q,´dλq.
Indeed, let f : T ˚Q ý be a CES diffeomorphism that is CH isotopic7 to

5By H-isotopic, we mean isotopic among Hamiltonian diffeomorphisms.
6By CS isotopic, we mean isotopic among conform symplectic diffeomorphisms.
7By CH-isotopic, we naturally mean isotopic among conformally Hamiltonian

diffeomorphisms
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IdT˚Q. We show that there exists at most one submanifold of T ˚Q that
is H-isotopic to the zero section and invariant by f . Key to the proof is
the Viterbo distance of Lagrangian submanifolds which are H-isotopic
to the zero section, and the fact that this distance is monotonic with
respect to the action of f .

A recent result of Shelukhin even allows us to show the following. Let
f : T ˚Tn ý be a CES diffeomorphism that is CH-isotopic to IdT˚Tn .
Then there exists at most one submanifold L which is H-isotopic to the
zero section and such that

ď

kPZ

fkpLq is relatively compact.

Hence when it exists, L is invariant by f .
For discounted Tonelli flows, it was known that there is at most

one invariant exact Lagrangian graph because this corresponds to the
unique weak KAM solution [12]. But we give in Section 7 an example of
such a dynamics with an invariant H-isotopic to a graph submanifold
that is not a graph, hence even in this case our uniqueness result is
new.

2. Isotropy

The so-called Mañé example [11] (see subsection 7.1) shows that any
flow defined on a closed manifold Q can be achieved as the restriction
of a Tonelli conformal Hamiltonian flow to the zero section of T ˚Q. In
this case, the zero section is an invariant Lagrangian submanifold.

The following example, which is very similar to an example of [5],
is key to this section. It shows that a closed submanifold which is
invariant by a conformal symplectic dynamics may be non ω-isotropic.
In the remaining of the section, we will give some general conditions
under which the submanifold must be ω-isotropic.

Proposition 1. There exists a conformal symplectic vector field X
on a 4-dimensional symplectic manifold pM, ωq,with a 3-dimensional
invariant submanifold L (hence L is not isotropic).

Moreover, the submanifold L is the global attractor for the flow pϕtq
of X, pϕt|Lq is conjugate to the suspension of an Anosov automorphism
of T2 with 2-dimensional stable and unstable foliations, and pϕt|Lq is
transitive with entropy equal to |α|, where α is the conformality rate of
X.

Remarks 3. (1) In our example, L is coisotropic, but it is easy
to extend this example to an invariant submanifold which is
neither isotropic nor coisotropic. Indeed, let Y be a conformal
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symplectic vector field on a symplectic manifold pN , ω1q with
a periodic orbit γ. Then the sum X ‘ Y admits L ˆ γ as an
invariant submanifold that is neither isotropic nor coisotropic
in MˆN if dimN ě 4.

(2) The submanifold L is the maximal (among compact subsets)
attractor of the dynamics.

(3) Replacing the vector field X by bX for b P R, we can achieve
any positive value for the entropy.

Questions. We don’t know if it is possible to build a non-isotropic
example on a cotangent bundle endowed with its usual symplectic form
or, even stronger, if a similar example exists on such a manifold among
Tonelli flows.

Proof of Proposition 1. We consider an Anosov automorphismA : T2 ý

induced by a matrix

ˆ

a b
c d

˙

P SLp2,Zq with eigenvalues 0 ă λ´ ă 1 ă

λ` “
1
λ´

and eigenvectors v˘. An example of such an automorphism

is Apx, yq “ p2x ` y, x ` yq, with eigenvalues λ´ “
3´
?

5
2

ă 1 and

λ` “
3`
?

5
2
ą 1.

Following [1], we define a suspension of the diffeomorphism T by
using the following relation on T2 ˆ R (writing ξ “ px, yq):

@pξ, zq P T2
ˆ R, pξ, zq „ F pξ, zq :“ pAξ, z ´ 1q.

Denote by α˘ the linear forms on R2 such that α˘pv˘q “ 1 and
α˘pv¯q “ 0. Observe that α˘ ˝ A “ λ˘α˘. Rescale the forms α˘
in the z-direction in order to get F -invariant forms on T2 ˆ R: define

β˘pξ, zq “
`

λ˘
˘z
α˘pξq,

so that

F ˚β˘ “
`

λ˘
˘z´1

α˘ ˝ A “
`

λ˘
˘z
α˘ “ β˘.

Hence β˘ is F -invariant and defines a 1-form on the quotient manifold
N “ pT2 ˆ Rq{ „. We use the same notation for these 1-forms. Then

(1) dβ˘ “ lnλ˘ dz ^ β˘.

We consider the vector field X “ p0, 0, 1q on N . The lift of its flow to
T2 ˆ R is defined by

ĂΦtpξ, zq “ pξ, z ` tq

hence the first return map to tz “ 0u is Φ1pξ, 0q “ pAξ, 0q and is
conjugate to A. The flow pΦtq is a suspension of A and has the same
Lyapunov exponents as A.
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We endow the manifold M “ N ˆ R with the 1-form

Λ “ β´ ` sβ`

where s is the R-coordinate. We define Ω “ dΛ. By (1), we have

Ω “ dβ´ ` ds^ β` ` sdβ` “ dz ^ plnλ´β´ ` s lnλ`β`q ` ds^ β`.

Thus Ω^2 “ 2 lnλ´dz ^ β` ^ ds^ β` “ 0 and Ω is a symplectic form.
We define on M the vector field Y “ X ` 2 lnλ´Bs. Its flow is

ψtpξ, z, sq “ pΦtpξ, zq,
`

λ´
˘2t
sq.

Hence N ˆ t0u is the global attractor for pψtq. We have

ψ˚t Ω “dz ^
´

lnλ´.
`

λ´
˘t
β´ `

``

λ´
˘2t
.s
˘

lnλ`.
`

λ`
˘t
β`

¯

`

`

λ´
˘2t
ds^

`

λ`
˘t
β`.

As λ´λ` “ 1, we finally obtain

ψ˚t Ω “ λt´Ω.

�

There are also examples of conformal symplectic diffeomorphisms on
a non-exact symplectic manifold that have a non-isotropic invariant
submanifold on which the restricted dynamics is Anosov.

Proposition 2. There exists a conformal symplectic diffeomorphism f
on a 6-dimensional symplectic manifold pM, ωq,with a 4-dimensional
invariant submanifold L (hence L is not isotropic).

Moreover, the submanifold L is the global attractor for f , f|L is conju-
gated to a hyperbolic automorphism of T4 with 2-dimensional stable and
unstable foliations, and f|L is transitive with entropy equal to ´ log a,
where a is the conformality ratio of f .

Question. In our example we have a “
´

3`
?

5
2

¯2

. In fact we can

replace this number by the square of the largest eigenvalue of any
Anosov automorphism of T2. We don’t know if we can achieve other
constants by a conformal symplectic diffeomorphisms of the same sym-
plectic manifold.

Proof. We consider the hyperbolic toral automorphism T : T2 Ñ T2

that is defined by T pθ1, θ2q “ p2θ1 ` θ2, θ1 ` θ2q. The associated linear

map has eigenvalues λ “ 3´
?

5
2

ă 1 and λ´1 “ 3`
?

5
2

ą 1. Let p “
?

5´1
2

. The unstable direction is spanned by p1, pq and the stable one

by p1,´1
p
q. The topological entropy is ´ log λ (see [8]).
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Then the product map F “ pT, T q : pθ1, θ2, θ3, θ4q P T2 ˆ T2 ÞÑ

pT pθ1, θ2q, T pθ3, θ4qq has topological entropy equal to ´2 log λ. We en-
dow T4 with the closed 2-form Ω that is defined by

Ω “ pdθ2 ´ p dθ1q ^ pdθ4 ´ p dθ3q.

Observe that the kernel of Ω is the direction of the unstable foliation.
Obviously, F ˚Ω “ λ2 Ω. Now, we consider the subbundle

M “
 

pθ, rq P T4
ˆ R4; r2 “ pr1 and r4 “ pr3

(

of T4 ˆ R4. This bundle corresponds to the tangent bundle to the
unstable foliation in the identification of TT4 with T4 ˆ R4.

We denote by Ω1 the closed 2-form on M that is equal to π˚Ω where
π : pθ, rq P M ÞÑ θ P T4 and by Ω2 the restriction of the usual sym-
plectic form dθ ^ dr of T ˚T4 to M:

‚ Ω1 “ pdθ2 ´ p dθ1q ^ pdθ4 ´ p dθ3q;
‚ Ω2 “

1
5
pdθ2`

1
p
dθ1q^pdr2`

1
p
dr1q`

1
5
pdθ4`

1
p
dθ3q^pdr4`

1
p
dr3q.

Let then ω “ Ω1 ` Ω2 be the chosen symplectic form on M.

If we define f : M Ñ M by fpθ, rq “ pT pθq,
´

3´
?

5
2

¯3

rq, then we

have

‚ f˚Ω1 “ π˚F ˚Ω “ λ2Ω1;
‚ f˚Ω2 “

λ3

λ
Ω2 “ λ2Ω2.

So finally f : MÑM is a conformal symplectic diffeomorphism such
that f˚ω “ λ2ω and f˚pT4 ˆ t0uq “ T4 ˆ t0u, where T4 ˆ t0u is not
isotropic and the topological entropy of f|T4ˆt0u is ´2 log λ. �

Given these counter-examples to isotropy, we start with the case of
an invariant surface (2-dimensional submanifold).

Proposition 3. If a closed C1 surface L is invariant by a conformal
and non symplectic C1 diffeomorphism of pM, ωq, L is ω-isotropic.

Proof. We have f˚ω “ aω for some a ‰ 1. Let L be an invari-
ant 2-dimensional submanifold of f . We choose a finite atlas A “

tpUi,Φiqu1ďiďN of L. Endow L with a Riemannian metric and define
#

}ω}L,8 “ supxPL,u,vPTxLzt0u
|ωpu,vq|
}u} }v}

}DΦ´1
i }L,8 “ supuPTLzt0u

}DΦ´1
i puq}

}u}
.

Then,
ş

U
ω is bounded over open subsets U of L:

(2)

ˇ

ˇ

ˇ

ˇ

ż

U

ω

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

i“1

ż

ΦipUiq

}ω}L,8 }DΦ´1
i }

2
L,8.dLeb
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Now, let U be an open set of L and n P Z. Since fnU is an open subset
of L and

ż

fnU

ω “ an
ż

U

ω,

we see that
ş

U
ω must be zero. Thus L is isotropic. �

If L has any dimension, the same conclusion holds provided some
constraint on the topological entropy ent pf|Lq of the dynamics carried
by L. Define the spectral radius of a self-map g as

rad pDgq “ lim sup
nÑ`8

}Dgn}
1
n
8.

Proposition 4. Let f be a conformal diffeomorphism of a symplectic
manifold pM, ωq, i.e. such that f˚ω “ aω with a Ps0, 1r. Let L be an
invariant closed submanifold. Assume one of the following hypothesis.

(1) The diffeomorphism f is smooth, L is smooth and

ent pf|Lq ă ´ logpaq;

(2) The diffeomorphism f and L are Cr for some r ě 1 and

ent pf|Lq ` log`
´

RadpDf´1
|L q

2{r
¯

ă ´ logpaq.

Then L is ω-isotropic.

Proof. We assume that L is invariant and not isotropic. There exists
a constant k ą 0 such that on L, we have |ω| ď k|vol| where vol is the
2-dimensional volume form induced by the Riemannian metric. We
choose in L a small piece S of symplectic surface (whose tangent space
intersects the characteristic bundle of L only in 0). Then ωpf´npSqq “
a´nωpSq “ 0 and then

lim sup
nÑ8

1

n
log

ˇ

ˇ

ˇ
volpf´npSq

ˇ

ˇ

ˇ
ě lim

nÑ8

1

n

`

log |ωpf´npSqq|´log k
˘

“ ´ logpaq.

The conclusion follows from Yomdin’s inequality, which we have re-
called in appendix A. �

Remark 4. This statement implies in particular that if L is an invari-
ant submanifold by a conformal flow pϕtq then

‚ if L and pϕtq are C1 and if ϕt|L is C1 conjugate to a rotation
on a torus for some t “ 0, then L is isotropic; indeed, in this
case, the entropy vanishes and the spectral radius of Df is 1.
A simpler proof of this statement is given in [2].

‚ if L and pϕtq are smooth and if ϕt|L is C0 conjugate to a rotation
on a torus for some t “ 0, then L is isotropic; indeed, in this
case, the entropy vanishes.
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3. Entropy

The purpose of this section is to improve regularity in Proposition 4.
We will start by giving an abstract result on a manifold endowed with
a form with constant rank and then we will give an application to
invariant submanifolds of conformal symplectic dynamics.

Let

‚ N pnq be a compact Riemannian C2 manifold and d its distance
‚ F be a C2 foliation induced by a subbundle F of TN of rank
pď n´ 1

‚ Ω be an pn´pq-form on N which induces a volume on subman-
ifolds transverse to F

‚ f be a C1-diffeomorphism of N preserving F and such that

f˚Ω “ bΩ

for some b ą 1.

Theorem 5. The topological entropy of f satisfies

ent f ě ln b.

Proof. Key to the proof is the refined distance dF on N defined by

dFpx, yq “

#

8 if x and y are not on the same leaf

distance from x to y along their common leaf otherwise.

Lemma 1. There exist ε ą 0 and K ą 0 such that for every x, y P N
(3) dFpx, yq ă ε ñ dFpx, yq ď Kdpx, yq.

Replacing the Riemannian metric d by 1
ε
d, we will asssume that

ε “ 1.

Proof of Lemma 1. We choose ε ą 0 that is strictly less than the radius
of injectivity of the metric d restricted to every leaf and introduce

D “ tpx, yq P N ˆN ; dFpx, yq ď εu.

This set is closed and due to our choice of ε, dF is continuous on D. If
we use the notation

∆ “ tpx, xq;x P N u,
then the continuous function dF

d
is bounded on the complement of every

neighbourhood of ∆ in D.
The exponential maps for the Riemannian form g and for the Rie-

mannian form gF restricted to the leaves are tangent along the tangent
bundle to the leaves, hence

lim
px,yqÑ∆

dFpx, yq

dpx, yq
“ 1.
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�

For every x P N , let U pn´pqx be a submanifold through x of dimension
n´ p, transverse to F . Let Vx be a tubular neighborhood of Ux, of the
form

Vx “ YyPUxtz P N , dFpy, zq ă εxu.

We choose Ux and εx ă 1 small enough so that Vx has a product
structure. Furthermore, let

Wx “ YyPUxtz P N , dFpy, zq ă εx{2u.

Let FWx be the foliation induced on Wx by F . (Due to the product
structure, leaves of FWx are of the form Wx X Lx, where Lx is the leaf
through x of the foliation induced on Vx.) The neighborhood Wx has
the property that for any two points y and z of Wx, if dFpy, zq ă εx{2
then y and z must belong to the same leaf of FWx ; indeed, if y and z
do not lie on the same leaf of FWx , their distance must be ě εx since
any path from y to z along a leaf of F runs twice across VxzWx.

Ux

Fx

Fy “ Fz

x

y

z

Wx Vx

Figure 1. Construction of the finite covering of N

Let Wx1 , ..., WxI be a finite subcovering of N . Denote Wxi by Wi,
and let ε “ mini εxi{2. So, the following property holds:

(*) For every i “ 1, ..., I and y, z P Wi such that dFpy, zq ă ε, y
and z belong to the same leaf of the foliation FWi

induced by
F on Wi.

Moreover, since f´1 and F are continuous and f preserves F , there
exists η ă ε such that

(**) For every x, y P N such that dFpx, yq ă η, dFpf
´1x, f´1yq ă ε.
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According to Lebesgue covering lemma, there exists θ ă η{K such
that every ball of radius θ is inside at least one of the Wi’s.

Let pQjq1ďjďJ be a decomposition of N into cubes (or compact sub-
manifolds with boundaries) such that each cube is contained in a ball
of radius ă θ.

Let S be a submanifold of N of dimension n´ p, included into some
cube Qj and transverse to F . S must lie into some Wi. For any Wi

containing S, S meets each leaf of FWi
at isolated points. By narrowing

S, we may assume that S meets each leaf of FWi
at one point at most.

We claim that

(***) For every k and j1, ..., jk P t1, ..., Ju,

fkpSq X fk´1
pQj1q X ¨ ¨ ¨ XQjk

meets each leaf of any Wi containing Qjk at one point at most.

Let j P t1, ..., Ju. Then S 1 “ fpSq X Qj is also transverse to the
foliation. Let x, y P S 1 be on a common leaf of FWi

, with Qj Ă Wi0 .
Since such leaves have a diameter ă 1 (due to our choice εx ă 1),
using (3)8, we see that

dFpx, yq ď Kdpx, yq ď KdiamQj ď Kθ ď η.

Using (**), dFpf
´1x, f´1yq ă ε. But using (*), f´1x and f´1y belong

to the same leaf of FWi0
. So, by the constructing property of Wi0 ,

f´1x “ f´1y and x “ y. By induction, (***) holds.
If S ĂWi, we have

ˇ

ˇΩ
`

fkpSq X fk´1
pQj1q X ¨ ¨ ¨ XQjk

˘
ˇ

ˇ ď maxt|ΩpU1q|, ..., |ΩpUIq|u “M,

uniformly with respect to k. Let

Nk “ 7tpj1, ..., jkq, f
k
pSq X fk´1

pQj1q X ...XQjk ‰ Hu.

Then

bk |ΩpSq| ď NkM,

hence
1

k
lnNk ě

1

k
ln
|ΩpSq|
M

` ln b,

hence the wanted inequality. �

Now assume that ω is a presymplectic form9 of N of (even) rank
2`ě 2 and

f˚ω “ aω, a ą 1.

8Recall the metric was changed in order to have ε “ 1 in (3).
9A presymplectic form is a a closed 2-form with constant rank.
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The kernel of ω is a uniquely integrable subbundle F of corank 2`.
Setting Ω “ ω` and b “ a` brings us back to the prior setting.

Corollary 1. The topological entropy of f : N ý satisfies

ent f ě
rank pωq

2
ln a.

Let us now return to our usual setting, where pM, ωq is a symplectic
manifold.

Corollary 2. Let f : M ý be a C3 conformal symplectic diffeomor-
phism such that f˚ω “ aω with a ą 1. Suppose that N is an invariant
C3 submanifold such that the induced form ω|N on N has constant
rank. Then

ent f|N ě
rank pω|N q

2
ln a;

in particular, if the entropy of f|N vanishes, N is isotropic.

Note that if N is a compact submanifold such that f|N is minimal,10

ω|N has constant rank and so the corollary applies.

Proof. As N is C2, its tangent bundle is C1. Then Frobenius Theorem
applies to F “ kerω|N

11 and the characteristic foliation F exists. �

4. Liouville class of invariant submanifolds

In this section we assume that pM, ω “ ´dλq is an exact symplectic
manifold. The goal is to prove that, given a conformal dynamics, there
is only one Liouville class that an isotropic invariant submanifold may
have.

4.1. Action of conformal dynamics on Liouville classes.

Definition 6. Let j : S ãÑM be an isotropic embedding.
‚ Its Liouville class rjs P H1pS,Rq is the cohomology class of the

induced form j˚λ.
‚ It is exact if its Liouville class vanishes.

So, except if the submanifold is exact, its Liouville class depends on
the chosen embedding with a given image.

When M “ T ˚Q is the cotangent bundle of a closed manifold en-
dowed with its tautological 1-form λ and L is a Lagrangian subman-
ifold of T ˚Q that is homotopic to the zero section Z, the restriction

10By definition, it is minimal if every orbit is dense
11The infinitesimal integrability condition is well known: if X,Y are sections of

F and Z is a section of TN , 0 “ dωpX,Y, Zq “ ´ωprX,Y s, Zq, which shows that
rX,Y s itself is a section of F .
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to L of the canonical projection π : T ˚Q Ñ Q is a homotopy equiva-
lence between L and Q and induces an isomorphism between H1pL,Rq
and H1pQ,Rq. Denoting by jL : L ãÑ T ˚Q the canonical injection
defined by jLpxq “ x, the Liouville class of the submanifold L is the
cohomological class

rLs “
”

`

π|L
˘

˚

`

j˚Lλ
˘

ı

P H1
pQ,Rq.

In this case, we may thus update the definition of Liouville classes.

Definition 7. Let L be a Lagrangian submanifold of T ˚Q that is
homotopic to the zero section, the Liouville class rLs of L is the coho-
mology class on Q whose pull back by π|L is the cohomology class of
λ|TL.

The following straightforward proposition explains that the group
of conformal dynamics acts on the set of Liouville classes of isotropic
embeddings that are homotopic to a given isotropic embedding of a
given manifold S by homotheties (translations when the dynamics is
symplectic).

Proposition 5. Let f : M ý be a conformal diffeomorphism with
conformality ratio a. Then η “ f˚λ´ aλ is a closed 1-form.

Let j0 : S ãÑ M be an isotropic embedding. For every isotropic
embedding j : S ãÑ M that is homotopic to j0, the Liouville class of
the isotropic embedding f ˝ j : S ãÑM is

rf ˝ js “ arjs ` rj˚0 ηs.

Definition 8. A diffeomorphism f : M ý is λ conformal Hamiltonian
(CH) if there exists an isotopy pftqtPr0,1s such that f0 “ IdM, f1 “ f
and two functions H : r0, 1s ˆMÑ R and α : r0, 1s Ñ R such that

@pt, xq P r0, 1s ˆM, i 9ftpxq
ω “ αptqλ` BxHpt, xq.

Remark 9. A diffeomorphism f : M ý is conformal Hamiltonian if
and only if there exists an isotopy pftqtPr0,1s of CES diffeomorphisms
such that f0 “ IdM and f1 “ f .

Definition 10. The flow pϕtq associated to the vector field X on M
is λ conformal Hamiltonian if there exists α P R and H : MÑ R such
that iXω “ αλ` dH.

Remark 11. A flow is a flow of λ conformal exact symplectic diffeo-
morphisms if and only if it is λ conformal Hamiltonian.

To describe the behavior of Lagrangian submanifolds of T ˚Q that
are H-isotopic to a graph, we first need the following invariance result.
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Proposition 6. Let pLtq be an isotopy of Lagrangian submanifolds of
T ˚Q such that L0 “ Z. Then L1 is H-isotopic to a graph.

Corollary 3. Let pgtqtPr0,1s be an isotopy of conformal symplectic dif-
feomorphisms such that g0 “ IdT˚Q. Let L be a Lagrangian submanifold
of T ˚Q that is H-isotopic to a graph. Then g1pLq is H-isotopic to a
graph.
If moreover L is H-isotopic to the zero-section and the isotopy is con-
formal Hamiltonian, then g1pLq is H-isotopic to the zero-section.

Proof of Proposition 6. We will prove

Lemma 2. Assume that L is H-isotopic to the zero section and that
pLtqtPr´ε,εs is an isotopy of exact Lagrangian submanifolds such that
L0 “ L. Then there exists a neighbourhood N of 0 in r´ε, εs such that
for every t P N , Lt is H-isotopic to the zero section.

Proof of Lemma 2. We use Weinstein tubular neighbourhood Theo-
rem, [21]. Let T be a symplectic tubular of L, i.e. there exists a
neighbourhood U of the zero section in T ˚L and a symplectic embed-
ding φ : U ãÑ T ˚Q with image T that is IdL on L. As Φ maps the
exact Lagrangian submanifold L of T ˚L onto the exact Lagrangian
submanifold L of T ˚Q, then Φ is exact symplectic.
This implies that every submanifold φ´1pLtq is exact Lagrangian. More-
over, there exists a neighbourhood N of 0 in r´ε, εs such that for every
t P N , φ´1pLtq is a graph. Hence this is the graph of an exact 1-form
dut.

Then φ´1pLtq is the image by the time-1 Hamiltonian flow of H “

´dut
dt
˝ π. Using a bump function, we can assume that H has support

in U , and then the time-1 map of the Hamiltonian H ˝ φ maps L onto
Lt.

�

We now prove Proposition 6. Let us firstly deal with the case when
all the Lts are exact. We introduce

tt P r0, 1s; @s P r0, ts, gspLq is H ´ isotopic to the zero sectionu.

Lemma 2 and the transitivity of the relation of H-isotopy imply that
this set is closed and open in r0, 1s, hence equal to r0, 1s.

Now we just assume that pLtq is an isotopy of Lagrangian subman-
ifolds of T ˚Q such that L0 “ Z. We choose an arc pηtqtPr0,1s of closed
1-forms on Q whose cohomology class rηts “ rLts is the Liouville class
of Lt. We denote by Tt : T ˚Q ý the symplectic diffeomorphisms such
that Ttppq “ p ` ηt ˝ πppq. Then L˚t “ T´tpLtq defines a homotopy of
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exact Lagrangian submanifolds of T ˚Q. A result of the first part of
the proof is that L˚t is H-isotopic to the zero section, i.e. there ex-
ists a H-isotopy pφtqtPr0,1s such that φ0 “ Id and φ1pZq “ L˚1 . Hence
L1 “ T1pL˚1q is H isotopic to the graph of η1 via the H-isotopy

pψtqtPr0,1s “ pT1 ˝ φt ˝ T
´1
1 qtPr0,1s.

�

Proof of Corollary 3. We assume that pgtqtPr0,1s is an isotopy of confor-
mal symplectic diffeomorphisms such that g0 “ IdT˚Q and that L is a
Lagrangian submanifold of T ˚Q that is H-isotopic to a graph. Then
there exist a closed 1-form η on Q and a H-isotopy phtqtPr0,1s such that
h0 “ IdT˚Q and L “ h1pgraphpηqq. We introduce the symplectic diffeo-
morphisms pTtqtPr0,1s of T ˚Q that are defined by Ttppq “ p` tη ˝ πpqq.
Then

pLtqtPr0,1s “ pgt ˝ ht ˝ TtpZqqtPr0,,1s
is a isotopy of Lagrangian submanifolds such that L0 “ Z and L1 “

g1pLq. A result of Proposition 6 is that g1pLq is H-isotopic to a graph.

If moreover L is H-isotopic to the zero-section and the isotopy is
conformal Hamiltonian, then all the maps gt ˝ ht ˝ Tt are conformal
Hamiltonian and thus every manifold Lt is exact Lagrangian. The
conclusion is a result of the second part of Proposition 6.

�

4.2. Liouville classes of invariant submanifolds. Let j0 : S ãÑM
be an isotropic embedding. We denote by J pj0q the set of isotropic
embeddings j : S ãÑM that are homotopic to j0.

A consequence of Proposition 5 is

Proposition 7. Let f : M ý be a conformal diffeomorphism. Let
j P J pj0q be an isotropic embedding which is strongly f -invariant in
the sense that
‚ jpSq “ f ˝ jpSq
‚ f acts trivially on H1pjpSq,Rq.
Then j may have only one Liouville class, that we denote by r`f pJ pj0qqs.
In particular, when f is CES, then r`f pJ pj0qqs “ 0 and j has to be ex-
act.

Proof. Let j : S ãÑ M be such an embedding. With the notations of
Proposition 5, we have

rf ˝ js “ arjs ` rj˚0 ηs.
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As f acts trivially on on H1pjpSq,Rq, we have rf ˝ js “ rjs and finally
rjs has to be the only fixed point of the homothety that maps rjs on
arjs ` rj˚0 ηs. �

As a consequence:

Proposition 8. Let f : M ý be a λ CES diffeomorphism. Then every
invariant isotropic submanifold S such that f|S acts trivially on H1pSq
is exact.

Corollary 4. Let X be a CS vector field on M with flow pϕtq. Let
j0 : S ãÑM be an isotropic embedding. We denote by J pj0q the set of
isotropic embeddings j : S ãÑM that are homotopic to j0. Then there
is only one Liouville class that we denote by r`XpJ qs, that an isotropic
embedding j P J pj0q such that

@t P R, ϕtpjpSqq “ jpSq

may have.
In particular, when X is CH, then r`XpJ qs “ 0.

Corollary 5. Let f : T ˚Q ý be a CS-diffeomorphism that is homo-
topic to IdT˚Q. Then there is only one Liouville class that we denote by
r`f s, that a homotopic to the zero sectionand f -invariant submanifold
may have.

Proof. Let j0 : Z ãÑ T ˚Q be the canonical injection of the zero-section.
We assume that L is an f -invariant submanifold that is H-isotopic to a
Lagrangian graph. Let j : L ãÑ T ˚Q be the canonical injection. With
the notations of Proposition 7, we have j P J pj0q.
Because
‚ π|L defines an homotopy equivalence between L and Q;
‚ π defines an homotopy equivalence between T ˚Q and Q;
‚ f is homotopic to IdT˚Q,
then f acts trivially on H1pL,Rq.
A result of Proposition 7 is that rjs “ r`f pJ pj0qqs, i.e. rLs “ r`f pJ pj0qqs.

�

5. Liouville class of Lagrangian submanifolds of T ˚Q
with compact orbits

The goal of this section is to prove that, given a conformal dynamics
on T ˚Q, there is only one Liouville class that a Lagrangian submanifold
with compact orbit may have.

We assume that M “ T ˚Q and that f : M ý is CS-isotopic to IdM.
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We suppose that j : Q ãÑ M is a Lagrangian embedding such that
jpQq “ L is H-isotopic to a graph and has compact orbit (for example
is contained in some compact attracting set).

Theorem 12. If f : M ý is a λ CES diffeomorphism that is CS-
isotopic to IdM and L is a Lagrangian submanifold that is isotopic to
the zero section among the Lagrangian submanifolds of T ˚Q such that
Ť

kPZ f
kpLq is relatively compact, then L is exact.

Corollary 6. Let f : M ý be a diffeomorphism that is CS-isotopic
to IdM and let L be a Lagrangian submanifold that is isotopic to the
zero section among the Lagrangian submanifolds such that

Ť

kPZ f
kpLq

is relatively compact, then rLs “ `f .

Corollary 7. Let pϕtq be the flow of the conformal symplectic vector
field X and let L be a Lagrangian submanifold that is isotopic to
the zero section among the Lagrangian submanifolds of T ˚Q such that
Ť

tPR ϕtpLq is relatively compact, then rLs “ `X .

Remark 13. We give a proof of Theorem 12 that uses the notion of
graph selector. If Q (as Tn) satisfies that every element ofH1pQ,Rqzt0u
contains a non-vanishing 1-form, we can give a simpler proof. Indeed,
in the proof, we are reduced to prove that if we have a sequence pLnq of
Lagrangian submanifolds such that rLns “ knrL0s tends to infinity as
n Ñ 8, then

Ť

nPN Ln is not relatively compact. If the 1-form η on Q
represents rL0s, then Ln and the graph of knη intersect. As η doesn’t
vanish, we can conclude.

Proof of Theorem 12. We endow Q with a Riemannian metric and de-
note by }.} the norm on TQ.
As f is CES and f˚λ´ aλ is exact, fk is also CES with

pfkq˚λ´ akλ “
k´1
ÿ

j“0

ak´j´1
pf jq˚pf˚λ´ aλq

is exact.
Suppose ad absurdum that rLs is not 0. Let η be a 1-form on Q
representing rLs. There is a loop γ : TÑ Q such that

ş

γ
η “ 0.

As f is CS-isotopic to IdM and by transitivity of the relation of CS-
isotopy, fk is also CS-isotopic to IdM. Hence by Corollary 3, fkpLq is
H-isotopic to a graph. The submanifold L is H-isotopic to the graph of
η. A result of Proposition 5 is that fkpLq is H-isotopic to the graph of
akη. If we denote by pτtq : M ý the flow of symplectic diffeomorphisms
τtppq “ p` tηpπppqq, then τ´ak ˝ f

kpLq is H-isotopic to the zero section
and then admits a generating function and a graph selector that is (see
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e.g. [14] p 98 and references herein) a Lipschitz function uk : Q Ñ R
that is C1 on an open subset U0 of Q with full Lebesgue measure such
that

@q P U0, dukpqq P τ´ak ˝ f
k
pLq.

Using Fubini theorem, we find a loop γk that is C1 close to γ and such
that

‚ γk is smooth and isotopic to γ;
‚ for Lebesgue almost s P T, we have γkpsq P U0.

As uk ˝ γk is Lipschitz and then absolutely continuous, we have

0 “

ż

T

dpuk ˝ γkq

ds
psqds.

Because γkpsq P U0 for almost every s, we deduce

0 “

ż

T
dukpγkpsqq.γ

1
kpsqds

and because γk is homotopic to γ and η is closed,
ż

T

´

akηpγkpsqq ` dukpγkpsqq
¯

.γ1kpsqds “ ak
ż

γ

η

As the loops γk are C1-close to γ, there exists a constant K that is
a upper bound for all the }γ1kpsq}. Hence there is a subset Ek with
non-zero Lebesgue measure of T such that for every s P Ek, we have

(4) }akηpγkpsqq ` dukpγkpsq} ě
ak

2K

ˇ

ˇ

ˇ

ż

γ

η
ˇ

ˇ

ˇ
.

Moreover, for almost every s P T, we have

dukpγkpsqq P τ´ak ˝ f
k
pLq

i.e.

(5) akηpγkpsqq ` dukpγkpsqq P f
k
pLq.

We deduce from (4) and (5) that there is p P fkpLq such that }p} ě ak

2K
.

�

Proof of Corollary 6. Let pftqtPr0,1s be an isotopy of conformal symplec-
tic diffeomorphisms such that f0 “ IdM and f1 “ f . By Proposition
10, see Appendix B, we know that there is a diffeomorphism g : M ý

symplectically isotopic to IdM such that g ˝ f ˝ g´1 is λ CES. Then
phtq “ pg ˝ ft ˝ g

´1qtPr0,1s is an isotopy of conformal symplectic diffeo-
morphisms such that h0 “ IdM and h1 “ g ˝ f ˝ g´1 is λ CES.
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Let L be a Lagrangian submanifold of M that is H-isotopic to a
graph such that

Ť

nPZ f
npLq is relatively compact. As pgtq is a sym-

plectic isotopy, gpLq is H-isotopic to a graph and we can apply Theorem
12. We deduce that gpLq is exact.

As g is symplectic, there is a closed 1-form η on Q such that rπ˚ηs “
rg˚λ´ λs. Then the Liouville class of gpLq is

rLs “ rgpLqs ` rηs “ rηs.

As h1 “ g ˝ f ˝ g´1, the fixed point 0 of the action of h1 on the set of
Liouville classes is the image by g˚ of the fixed point of the action by
f on the Liouville classes. This means that r`f s “ rηs �

Question. Is the hypothesis on H-isotopy to the zero section neces-
sary?

6. Uniqueness

We work on the cotangent bundle pT ˚Q,´dλq of a closed orientable
manifold.
Viterbo introduced in the seminal paper [17], see also [19], the spectral
distance γ that is defined on the set of H-isotopic to the zero-section
Lagrangian submanifolds.
We will recall the main results of this theory and apply this to prove
that if two submanifolds L, L1 are H-isotopic to the zero section and if
pϕtq is a CH flow of T ˚Q, then

either γpϕtpLq, ϕtpL1qq
tÑ`8
ÝÝÝÝÑ `8 or γpϕtpLq, ϕtpL1qq

tÑ´8
ÝÝÝÝÑ `8.

Using a recent result due to Shelukhin, [15], we will deduce that for
certain manifolds Q, e.g. tori Tn, there is at most one H-isotopic to
the zero section submanifold whose orbit is compact and when it exists,
this submanifold is in fact invariant.

6.1. On Viterbo spectral distance γ. If L, L1 are H-isotopic to
the zero section submanifolds of T ˚Q, they have quadratic at infinity
generating functions S : Qˆ Rk Ñ R and S 1 : Qˆ Rk1 Ñ R.
We recall that a generating function S for L is such that

‚ if we use the notation pq, ξq P Q ˆ Rk, on ΣS “

´

BS
Bξ

¯´1

p0q, BS
Bξ

has maximal rank;
‚ the map jS : ΣS ãÑ T ˚Q defined by jSpq, ξq “

BS
Bq
pq, ξq is an

embedding and its image is L.

The generating function is quadratic at infinity is there exists a non-
degenerate quadratic form Q : Rk Ñ R such that outside a compact
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subset of Qˆ Rk, we have Spq, ξq “ Qpξq.
The function S a S 1 : M ˆ Rk ˆ Rk1 Ñ R is defined by

pS a S 1qpq, ξ, χq “ Spq, ξq ´ S 1pq, χq.

Observe that

LXL1 “ tBS
Bq
pq, ξq; dpSaS 1qpq, ξ, χq “ 0u “ t

BS 1

Bq
pq, χq; dpSaS 1qpq, ξ, χq “ 0u.

The function SaS 1 is not quadratic at infinity, but it satisfies conditions
of Proposition 1.6. of [18] that ensure that it can be replaced by such
a function, which we also denote by SaS 1. There exists a compact set
K Ă Qˆ Rk ˆ Rk1 such that

@pq, ξ, χq R K, pS a S 1qpq, ξ, χq “ Qpξ, χq

where Q is a non degenerate quadratic form on Rk ˆ Rk1 . We denote
by m its index. Moreover, there exist a, b P R such that

K X

´

tpS a S 1q ě bu Y tpS a S 1q ď au
¯

“ H.

For c P R, we denote by Ec and F c the sublevels

Ec “ tpq, ξ, χq; pS a S 1qpq, ξ, χq ď cu and F c
“ tpξ, χq;Qpξ, χq ď cu.

As (SaS 1qpq, ξ, χq and Qpξ, χq are equal on Ea and outside Eb, we have

@c Rsa, br, Ec “ Qˆ F c.

Hence, by Kunneth theorem [3], there is an isomorphism

K : HpF b,Fa
q bHpQq Ñ HpEb, Eaq.

AsQ is a non-degenerate quadratic form with indexm, we haveHppF b,Faq “

t0u for p “ m and HmpF b,Faq “ RC is one dimensional. We deduce
an isomorphism

T : RC bH˚
pQq Ñ H˚`m

pEb, Eaq.
Then, if α P H˚pQq is non-zero,

cpα, S a S 1q “ inftt P ra, bs, j˚t pC b αq “ 0u

where jt : pE t, Eaq Ñ pEb, Eaq is the inclusion. The number cpα, SaS 1q
is then a critical value of S aS 1 that continuously depend on S and S 1

for the uniform C0 distance.
Viterbo proved that cpα, S aS 1q depends only on L and L1 and not on
the choice of generating functions. It is then denoted by cpα,L,L1q.
If µ is the orientation class of Q, the distance γpL,L1q is defined by

γpL,L1q “ cpµ,L,L1q ´ cp1,L,L1q.
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Theorem 14. Let f : M ý be a CES diffeomorphism that is CH-
isotopic to IdT˚Q. Let L, L1 be two distinct submanifolds of T ˚Q which
are H-isotopic to the zero section, then

either γpfnpLq, fnpL1qq nÑ`8
ÝÝÝÝÑ `8

or γpf´npLq, f´npL1qq nÑ`8
ÝÝÝÝÑ `8.

Corollary 8. Let f : M ý be a CES diffeomorphism that is CH-
isotopic to IdT˚Q. Then there exists at most one H-isotopic to the zero
section submanifold of T ˚Q that is invariant by f .

Proof of Theorem 14. This is direct application of the following result
of which we provide a proof.

Lemma 3. Let L, L1 be two H-isotopic to the zero section subman-
ifolds of T ˚Q. Let pφtq be an isotopy of exact conformal symplectic
diffeomorphisms of T ˚Q such that φ0 “ IdT˚Q and φ˚t ω “ aptqω. Then

γpφtpLq, φtpL1qq “ aptqγpL,L1q.

Proof. As the distance γ continuously depends on the generating func-
tions, we only need to prove the results for submanifolds L and L1 whose
intersections are all transverse. In this case, there is only a finite num-
ber of critical points and critical values for S a S 1. If x, y P L X L1,
we denote by ∆px, y,L,L1q the difference of the corresponding critical
values of S a S 1, i.e.

∆px, y,L,L1q “
´

S ˝ j´1
S pyq´S

1
˝ j´1

S1 pyq
¯

´

´

S ˝ j´1
S pxq´S

1
˝ j´1

S1 pxq
¯

.

Then if η1 is a path in L joining x to y and η2 a path in L1 joining y
to x, the difference of the two corresponding critical values of S aS 1 is

∆px, y,L,L1q “
ż

η1_η2

λ.

We can always choose η1 and η2 that are homotopic with fixed ends.
Then, if D is a disc with boundary η1 _ η2, we have

∆px, y,L,L1q “
ż

D
ω.

The intersection points of φtpLq and φtpL1q are the points φtpxq with
x P LX L1. For x, y in LX L1, we have

∆pφtpxq, φtpyq, φtpLq, φtpL1qq “
ż

ΦtpDq
ω “ aptq

ż

D
ω “ aptq∆px, y,L,L1q.

Hence t ÞÑ 1
aptq

´

cpµ, φtpLq, φtpL1qq´ cp1, φtpLq, φtpL1qq
¯

is a continuous

map that takes its values in a fixed finite set, it has to be constant. �
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�

6.2. An application of a result due to Shelukhin.

Theorem 15. Let f : T ˚Tn ý be a CES diffeomorphism that is CH-
isotopic to IdT˚Tn. Then there exists at most one H-isotopic to the zero
section submanifold L such that

ď

kPZ

fkpLq is relatively compact.

Hence when it exists, L is invariant by the f .

Proof. In [15], Shelukhin defines a notion of string-point invertible man-
ifold. The tori Tn are examples of such manifolds. His result implies

Theorem (Shelukhin,[15]). Let g be a Riemannian metric on Tn. Then
there exists a constant Cpgq such that for all exact Lagrangian submani-
folds L0, L1 contained in the unit codisk bundle D˚pgq Ă T ˚Tn, we have
γpL0,L1q ď Cpgq.

The Liouville vector field Zλ that is defined by iZλω “ λ satisfies

LZλω “ dλ “ ´ω.

Hence its flow pϕλt q is conformal symplectic with
´

ϕλt

¯

˚
ω “ e´tω and

even exact conformal symplectic because it preserves the zero section
(and then the zero Liouville class). We have seen in Lemma 3 that ϕλt
alters the distance γ up to the scaling factor e´t.
Observe also that this flow is a homothety the fiber direction: ϕλt ppq “
e´tp. Hence the image of the unit codisk bundle D˚pgq by ϕt is the
codisk bundle D˚e´tpgq with radius e´t.
Let us introduce the following notation for K Ă T ˚Tn.

δgpKq “ mintr ě 0;K Ă D˚r pqqu.

Finally, we have that for every H-isotopic to the zero section subman-
ifolds L, L1 of T ˚Tn,

(6) γpL,L1q ď 2CpgqmaxtδgpLq, δgpL1qu.

If now L and L1 are two distinct H-isotopic to the zero section subman-
ifolds of T ˚Tn and f : T ˚Tn ý is a CES diffeomorphism that is CH
isotopic to IdT˚Tn , we deduce from Theorem 14 that

either γpfnpLq, fnpL1qq nÑ`8
ÝÝÝÝÑ `8

or γpf´npLq, f´npL1qq nÑ`8
ÝÝÝÝÑ `8.
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By (6), one of the two sets
ď

kPZ

fkpLq;
ď

kPZ

fkpL1q.

is not relatively compact. We deduce that there is at most one L
H-isotopic to the zero section such that

ď

kPZ

fkpLq is relatively compact.

When L is H-isotopic to the zero-section, fpLq is also H-isotopic to
the zero-section because f is CH-isotopic to IdT˚Tn , see Corollary 3.
Moreover, the orbits of L and fpLq coincide. This implies that L “

fpLq.
�

7. Examples

7.1. Mañé example. This example was introduced by Mañé in the
conservative Hamiltonian setting, [11]. It can be extended to the con-
formal symplectic setting. For every vector field X of a closed manifold
Q, it provides a conformal Hamiltonian Tonelli flow of T ˚Q such that
the zero section is invariant and the flow restricted to this zero section
is conjugated to the flow of X.

Let Q be a closed manifold endowed with a Riemannian metric,
T ˚Q is endowed with its tautological 1-form λ and the symplectic form
ω “ ´dλ. We denote by }.} the norm on the fibers of T ˚Q that is dual
to the Riemanninan norm of Q and by pq a point of T ˚Q above q P Q.

If X is a vector field on Q, we denote by pX the 1-form on Q that
is dual to X via the Riemannian scalar product. We define the Hamil-
tonian

HXppqq “
1

2
}pq ` pXpqq}

2
´

1

2
}pXpqq}

2.

Since the zero-section Z “ tp “ 0u is contained in the zero-energy
level and is Lagrangian, Z is invariant by the Hamiltonian flow of HX .
The restriction to Z of the vector field is dual via ω to the derivative
of H in the fiber direction, so if we denote by 7 : T ˚qM Ñ TqM the
duality that is defined by the Riemannian metric, we have

9q|Z “ 7
`

p` pXpqq
˘

|Z “ 7pXpqq “ Xpqq.

Hence on the zero-section, the vector field is X.
In the conformal Hamiltonian setting, we add α times the Liouville

vector field to the Hamiltonian vector field XH of H, for some α P R.
Since the Liouville vector field vanishes on Z, the dynamics remains
conjugate to X.
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x

y

Remark 16. The global attractor may differ from the zero section.
For example, X may have an attractive fixed point whose unstable
manifold is not contained in the Z, in which case the global attractor
is not a submanifold either.

7.2. An example of a Tonelli Hamiltonian that has an invariant
Lagrangian submanifold that is not a graph. The example we are
about to describe is inspired by an example of Le Calvez [9].

Let β ą 0 be a positive number and let α P pβ, 2βq. On T ˚R “ R2,
let H be the quadratic Tonelli Hamiltonian

Hpx, yq “ y2
´ βxy.

Consider the sum of the Hamiltonian vector field of H and of α times
the Liouville vector field ´y By:

(7)

#

9x “ ´βx` 2y

9y “ pβ ´ αqy.

The matrix of this linear system is

ˆ

´β 2
0 β ´ α

˙

. Hence

ˆ

1
0

˙

is an

eigenvector for the eigenvalue ´β and

ˆ

1
β ´ α

2

˙

is an eigenvector for

the eigenvalue β ´ α. As α P pβ, 2βq, p0, 0q is an attracting fixed point

and the line R
ˆ

1
0

˙

is the strong stable eigenspace. Every solution

that is not contained in an eigenspace is contained in a curve whose
equation is

x “
2

2β ´ α
y `K|y|

β
α´β

where K “ 0, and then is not a graph if xp0q.yp0q ą 0.
Let us choose two large real numbers B ą A ą 0 and let V : R Ñ

r´1, 0s be a function with support in r´B,Bs such that V|r´A,As “ ´1,
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Vr´B,´As is non-increasing and V|rA,Bs is non-decreasing. Then we add
V pxq to Hpx, yq and the equations become

(8)

#

9x “ ´βx` 2y

9y “ ´V 1pxq ` pβ ´ αqy.

As the support of V 1 is in r´B,´As Y rA,Bs, the two vector fields are
equal in the complement of pr´B,´AsY rA,BsqˆR. As V 1

|r´B,´As ď 0,
the orbit on the x-axis for x ď ´B is pushed to the half plane y ą 0
and then coincides with an orbit of (7) which tends to p0, 0q. In the
same way, the orbit that coincides with the x-axis for x ě B tends to
p0, 0q at `8 with an incursion into the half-plane y ă 0. Hence the
union of these two orbits and tp0, 0qu is an invariant curve Γ for (8)
that is not a graph.

Now, let us choose D ą C ą B. Le X : R Ñ R a vector field such
that

‚ @x P r´D`C
2
,´Bs Y rB, C`D

2
s, Xpxq “ ´βx;

‚ Xp´Dq “ XpDq “ 0 and all the derivatives of X are the same
at ´D and D;

‚ p´D,´Bs (resp. rB,Dq) is a piece of unstable manifold of the
equilibrium ´D (resp. D).

Then X defines also a vector field on the circle CD “ r´D,Ds{D „ ´D.
Let HX be the Hamiltonian that is associated to X on T ˚R “ R2 via
the Mañé construction

HXpx, yq “
1

2
ypy ` 2Xpxqq.

Let us eventually define

Kpx, yq “ p1´ ηpxqqHXpx, yq ` ηpxq
`

Hpx, yq ` V pxq
˘

“
1´ ηpxq

2
ypy ` 2Xpxqq ` ηpxq

`

y2
´ βxy ` V pxq

˘

,

where η : R Ñ r0, 1s is a bump function with support in r´C,Cs that
is equal to 1 on r´B,Bs. K also defines a Hamiltonian function on the
annulus CD ˆ R and, since

B2K

By2
px, yq “ p1´ ηpxqq ` 2ηpxq ě 1

hence K is Tonelli.
Note the following:

‚ pr´D,´Bs Y rB,Dsq ˆ t0u is in the zero level of K and then is
locally invariant by the Hamiltonian flow of K and also by the
conformal Hamiltonian flow pBK

By
,´BK

Bx
´ αyq;
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‚ K|r´B,BsˆR “ pH ` V q|r´B,BsˆR.

Finally, the vector field pBK
By
,´BK

Bx
´ αyq has an invariant curve that is

not a graph, which is the union of pr´D,´Bs Y rB,Dsq ˆ t0u and the
part of Γ that is between x “ ´B and x “ B.

Appendix A. Yomdin’s inequality

Let L be a a compact Riemannian Cr manifold, S Ă L be a compact
Cr submanifold of dimension s and f : L ý be a Cr-diffeomorphism
(r ě 1). (The general statement does not require f to be invertible.)

Define the logarithmic volume growth of f|S as

logvol pf|Sq “ lim sup
nÑ`8

1

n
log |vol pfnpSq| ,

where vol is the s-dimensional Riemannian volume, and

rad pDfq “ lim sup
nÑ`8

}Dfn}1{n8 , }Df}8 “ sup
x
}Dfx}.

Theorem 17 (Yomdin [22], Gromov [7]).

logvol pf|Sq ď ent pfq ` log`
`

rad pDfqs{r
˘

(where log` t “ maxp0, log tq).
In particular, if L and f are smooth,

logvol pf|Sq ď ent pf|Sq ď ent f.

Appendix B. Conformal Dynamics are exact

We assume that pM, ω “ ´dλq is an exact symplectic manifold. We
prove that every conformal dynamics is symplectically conjugate to a
CES dynamics.

Our first result explains that every conformal dynamics on an exact
symplectic manifold is exact conformal with respect to some primitive
of the symplectic form.

Proposition 9. Let f : M ý be a (CS) diffeomorphism that is homo-
topic to IdM and such that f˚ω “ aω. Then there exists a primitive
λ1 of ´ω, namely

λ1 “
1

1´ a
pλ´ f˚λq

such that f is λ1 CES. Hence is j : S ãÑM is an isotropic embedding
such that jpSq is f invariant, jpSq is λ1 exact.
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Proof of Proposition 9. We denote η “ f˚λ ´ aλ. Then dη “ ´f˚ω `
aω “ 0 and so η is closed. Observe that

λ´
1

1´ a
η “

1

1´ a

`

λ´ f˚λq “ λ1,

so λ1 is a primitive of ´ω.
We have

f˚λ1 ´ aλ1 “ η ´
1

1´ a

`

f˚η ´ aη
˘

.

Because f is homotopic to IdM, f˚η ´ η is exact and

f˚λ1 ´ aλ1 “
1

1´ a

`

η ´ f˚η
˘

.

is exact. The conclusion comes from Proposition 8 for the 1-form λ1

instead of λ.
�

Proposition 10. Let f : M ý be a conformal symplectic diffeomor-
phism that is homotopic to IdM and such that f˚ω “ aω with a ą 0 and
a “ 1. Then η “ f˚λ´ aλ is a closed 1-form, there exists a symplecti-
cally isotopic to IdM diffeomorphism g : M ý such that g˚λ´λ` 1

1´a
η

is exact and then g ˝ f ˝ g´1 is λ CES.

Proof. We denote η “ f˚λ ´ aλ. Then dη “ ´f˚ω ` aω “ 0 and so
η is closed. We denote by λ1 the primitive of ω that was defined in
Proposition 9.

Lemma 4. There exists a symplectic vector field X with flow pgtq such
that g˚1λ´ λ1 is exact.

Proof. We consider the vector field X that is defined by iXω “
1

1´a
η.

As η is closed, X is symplectic.
Then we have

LXλ “ ´iXω ` d
`

iXλ
˘

“ ´
1

1´ a
η ` d

`

iXλ
˘

.

If we denote by r.s the cohomology class, this gives

rLXλs “ ´
1

1´ a
rηs

i.e.
drg˚t λ´ λs

dt
“ ´

1

1´ a
rg˚t ηs.

We deduce that for all t we have g˚t λ´λ`
t

1´a
η is exact. In particular,

g˚1λ´ λ1 is exact.
�
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We now consider F “ g1 ˝ f ˝ g
´1
1 . We have

F ˚λ “
`

g´1
1

˘˚
˝ f˚ ˝ g˚1 pλq “

`

g´1
1

˘˚
˝ f˚

`

λ1 ` ν1

˘

where ν1 is exact by lemma 4. By Proposition 9, ν2 “ f˚λ1 ´ aλ1 is
exact and we have

F ˚λ “
`

g´1
1

˘˚`

aλ1 ` ν2 ` f
˚ν1

˘

“ aλ`
`

g´1
1

˘˚`

´ aν1 ` ν2 ` f
˚ν1

˘

.

�

Proposition 11. Let X be a conformal symplectic vector field on M
such that LXω “ αω with α P R˚. The 1-form ξ “ iXω ` αλ is closed.
There exists a symplectically isotopic to IdM diffeomorphism g : M ý

such that g˚λ´λ` 1
α
ξ is exact. Then g˚X is λ conformal Hamiltonian.

Proof. We have dξ “ LXω ´ αω hence ξ is closed.

Lemma 5. There exists a primitive λ1 of ´ω, namely

λ1 “ λ´
1

α
ξ “ ´

1

α
iXω,

such that X is λ1 Hamiltonian.

Proof. We have

iXω ` αλ1 “ iXω ` αλ´ ξ “ 0

is exact. �

Lemma 6. There exists a symplectic vector field Y with flow pψtq such
that ψ˚1λ´ λ1 is exact.

Proof. We consider the vector field Y that is defined by iY ω “
1
α
ξ. As

ξ is closed, Y is symplectic. Then we have

LY λ “ ´iY ω ` d
`

iY λ
˘

“ ´
1

α
ξ ` d

`

iY λ
˘

.

We deduce that the flow pψtq of Y satisfies

d

dt
rψ˚t λ´ λs “ ´

1

α
rξs.

Hence ψ˚1λ´ λ1 “ ψ˚1λ´ λ`
1
α
ξ is exact.

�

We denote g “ ψ1. Let us prove that g˚X is λ conformal Hamilton-
ian. Because g is symplectic, we have

ig˚Xω “ g˚
`

iXω
˘

“ g˚pξ ´ αλq.

Because g˚λ ´ λ1 is exact, g˚
`

ξ ´ αλ
˘

` αλ is exact and ig˚Xω ` αλ
is exact and so g˚X is conformal Hamiltonian.

�
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