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INVARIANT SUBMANIFOLDS
OF CONFORMAL SYMPLECTIC DYNAMICS

MARIE-CLAUDE ARNAUD#° & JACQUES FEJOZ***:°

ABSTRACT. We study invariant manifolds of conformal symplec-
tic dynamical systems on a symplectic manifold (M,w) of dimen-
sion > 4. This class of systems is the 1-dimensional extension
of symplectic dynamical systems for which the symplectic form is
transformed colinearly to itself.

In this context, we first examine how the w-isotropy of an invari-
ant manifold N relates to the entropy of the dynamics it carries.
Central to our study is Yomdin’s inequality, and a refinement ob-
tained using that the local entropies have no effect transversally
to the characteristic foliation of N.

When (M,w) is exact and N is isotropic, we also show that
N must be exact for some choice of the primitive of w, under the
condition that the dynamics acts trivially on the cohomology of
degree 1 of N. The conclusion partially extends to the case when
N has a compact one-sided orbit.

We eventually prove the uniqueness of invariant submanifolds A/
when M is a cotangent bundle, provided that the dynamics is iso-
topic to the identity among Hamiltonian diffeomorphisms. In the
case of the cotangent bundle of the torus, a theorem of Shelukhin
allows us to conclude that A is unique even among submanifolds
with compact orbits.
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1. INTRODUCTION

Let (M?? w) be a symplectic manifold. Symplectic dynamical sys-
tems (so-called conservative dynamical systems) form a class of infinite
codimension. We will study conformal symplectic dynamics, a now
classical extension of symplectic dynamicﬂ where the symplectic form
may change in its own direction:

Definition 1.

e A diffeomorphism f : M < is conformal symplectic if f*w =
aw for some a > 0 (conformality ratio)ﬂ

e A complete vector field X on M is conformal symplectic if
Lxw = aw, where Ly is the Lie derivative, for some o € R
(conformality rate)

Such dynamics encapsulate mechanical systems whose friction force
is proportional to velocity, in which case a < 1 or a < 0.

In this paper we will focus on the non-symplectic case, i.e. a # 1
and a # 0. Of course, time reversal changes @ in 1/a and « in —a.

For such a dynamics, the volume form w”¢ is monotonic. So if such
a dynamics exists on M, M cannot be closed and has infinite volume.
Moreover, when the dynamics is given by a vector field X, the symplec-
tic form satisfies w = iL xw =d (éz Xw) and is exact. Hence conformal

vector fields exist only on exact symplectic manifolds. Yet this is not

Vaisman [20] and others have defined local conformal symplectic structures on a
manifold M. There is a corresponding notion of dynamics preserving the structure,
thus extending our setting.

2As Libermann noticed [10]: if f*w = aw for some smooth function a, aw being
closed we have da A w = 0, which implies, if M has dimension > 4, that a is
constant.

3Then the flow () of X is conformal symplectic and ¢*w = e**w.
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the case for conformal diffeomorphisms (see an example in Proposition
7).

Also, if a vector field X is conform symplectic of conformality rate
«a and if Z is the Liouville vector field associated with the 1-form
A= —éixw ie, izw = A, then X + aZ is symplectic. Thus con-
formal symplectic vector field form a 1-dimensional extension of the
space of symplectic vector fields. When (M, w) is exact, there exists
a l-parameter subgroup C of the set of conform symplectic diffeomor-
phims such that the group of conform symplectic diffeomorphisms is
{fog;(f,g) € C xS} where S is the set of symplectic diffeomorphisms.
When M is not exact, let R be the subgroup of R* of conformal ratios
of conformal symplectic diffeomorphisms of M. This subgroup can be
trivial, e.g. when M is compact (all conform symplectic diffeomor-
phism are symplectic).

Questions. Can R be strictly between {1} and R%? Assuming that
R = R?%, does there exist a continuous 1-parameter family of conform
symplectic diffeomorphisms indexed by its conformal ratio in R%?

An important case is that of cotangent bundles (M = T*Q,w =
—d)\), where Q is a manifold and A is the canonical Liouville 1-form.
A continuous-time example is the flow exp(tZy)(q,p) = (¢, e 'p) of the
Liouville vector field Z, defined by iz, (—dA) = A and a discrete-time
example is f = exp Zy : (¢,p) — (q,ap), a = e~!. These two examples
of conformal symplectic dynamics have a very simple behaviour:

e there is a global attractor A,
e the w-limit set of every orbit is a point of A.

More generally, consider a discounted Tonelli vector field X on T*Q
of negative rate a; by definition it satisfies ixw = dH + a\ for some
Hamiltonian H which is superlinear in the fiber direction and whose
Hessian in the fiber direction is positive definite. It has been shown
that the flow of such a vector field has a global attractor [12].

In the general setting, many natural questions are open, for example:

Questions. Which conditions ensure the existence of a global attrac-
tor? And provided that the global attractor exists (necessarily having
zero volume), what can be said of its size?

As a first step, in this article we focus on the case of invariant sub-
manifolds (with a digression on the case of submanifolds with compact
orbit), although the study of dissipative twist maps proves that there
can exist invariant subsets that are not submanifolds [9].
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First, we explore the isotropy of invariant submanifolds. This ques-
tion is akin to its analogue in symplectic dynamics, where both neg-
ative and positive results have been proven in particular for invariant
tori carrying minimal quasiperiodic flows.

We start by providing an example where an invariant submanifold
is a hypersurface and hence non-isotropic (Propositions (1] and [2in sec-
tion [2)). There exist similar examples due to McDuff, [13] and Geiges
[, 5], but our example is somewhat more explicit. We do not know if
a similar example exists on a cotangent bundle. An even more diffi-
cult question is to determine whether such submanifolds may exist for
discounted Tonelli flows on cotangent bundles. In this case and when
dim M > 4, the global attractor never separates M and hence cannot
be a hypersurface.

In turn, we show some positive results regarding the isotropy of in-
variant submanifolds. If the invariant submanifold is a surface, isotropy
follows from a simple argument using the growth of the area. In higher
dimension, a first result follows from Yomdin’s theory [22, [7]. Propo-
sition [4] of section [2 states that if a smoothf] conformal diffeomorphism
f+ M © with conformality rate a has an invariant smooth subman-
ifold N/ = M such that the topological entropy of fijx is less than
|log(a)|, then N is isotropic.

But Yomdin’s proof can be improved in the setting of diffeomor-
phisms which are conform with respect to a presymplectic form. Here,
we prove that the so-called local entropies have no effect on the volume
growth transversally to the characteristic foliation of N (section . It
follows that if a conformal symplectic C3-diffeomorphism of confor-
mality ratio a has an invariant C®-manifold on which w has constant
rank 2¢ and such that the entropy of fy is smaller than ¢|logal, N
is isotropic. In particular, if an invariant submanifold carries a mini-
mal dynamics (every orbit is dense) with zero entropy, it is isotropic
(corollary [2)).

This new result assumes less regularity than the former one (C3
instead of smooth in Proposition |4)) but requires that the symplectic
form restricted to the submanifold has constant rank.

A related result is [2, 2.2.1], where the authors prove that if a C*
conformal dynamics has a C' invariant torus on which the dynamics
is C'! conjugate to a rigid rotation, then this torus is isotropic. This
results is a direct consequence of Proposition [d Corollary 2] of section
doesn’t imply this result because our result require more regularity,

4Smooth means C®.
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and on the other hand our result applies when a C® dynamics is C°
conjugated to a transitive rotation.

Second, we examine the question of exactness. In this purpose, in
section 4| we assume that (M,w = —d\) is exact. Define the Liouville
class of an isotropic embedding in M as the cohomology class of the
form induced by A. The embedding is called exact when this class
vanishes. The action of conform symplectic diffeomorphisms on Liou-
ville classes depends on a notion of exactness for the diffeomorphisms
themselves. Let f : M “© be a conformal symplectic diffeomorphism
of ratio a. The form f*\ — aX is closed.

Definition 2. The diffeomorphism f is A\ conformal exact symplectic
(CES) if f*A —al is exact. It is Hamiltonian if f is the time-one map
of the flow of a non autonomous conformal Hamiltonian vector field X,
(meaning that ix,w = oy A + dH, for all t).

This definitions depend of the chosen primitive of the symplectic
form. We prove in appendix [B]that there is always a choice of primitive
for which f is exact. Alternatively, we also show that f is symplectically
conjugate to a diffeomorphism which is exact with respect to the initial
A. Hence we state our results for exact conformal symplectic dynamics
(see section {4 for more comprehensive statements).

Our main result here is that if f is an exact conform symplectic
diffeomorphism and if S is a strongly f-invariant submanifold (in the
sense that j o f(S) = j(S) and f acts trivially on H'(5(S),R)), j is
exact.

When L is a Lagrangian submanifold that is H—isotopicﬂ to a graph in
M =T*Q and fis CS isotopicﬁ to Id 4, we obtain the same conclusion
when assuming only that the orbit of £ is bounded. For example, the
submanifolds that are H-isotopic to the zero section and contained in
an attractor satisfy this hypothesis.

Question. Is it possible to obtain similar results without assuming
that the Lagrangian submanifold is H-isotopic to a graph? On other
manifolds?

Third, in section 6, we raise the question of the uniqueness of a
invariant Lagrangian submanifolds in a cotangent bundle (7*Q, —d\).
Indeed, let f: T*Q O be a CES diffeomorphism that is CH isotopi(ﬂ to

5By H-isotopic, we mean isotopic among Hamiltonian diffeomorphisms.

6By CS isotopic, we mean isotopic among conform symplectic diffeomorphisms.

7By CH-isotopic, we naturally mean isotopic among conformally Hamiltonian
diffeomorphisms
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Idpxo. We show that there exists at most one submanifold of 7% Q that
is H-isotopic to the zero section and invariant by f. Key to the proof is
the Viterbo distance of Lagrangian submanifolds which are H-isotopic
to the zero section, and the fact that this distance is monotonic with
respect to the action of f.

A recent result of Shelukhin even allows us to show the following. Let
[ T*T™ © be a CES diffeomorphism that is CH-isotopic to Idpspn.
Then there exists at most one submanifold £ which is H-isotopic to the
zero section and such that

U f¥(L£) is relatively compact.
keZ
Hence when it exists, £ is invariant by f.

For discounted Tonelli flows, it was known that there is at most
one invariant exact Lagrangian graph because this corresponds to the
unique weak KAM solution [I2]. But we give in Section [7|an example of
such a dynamics with an invariant H-isotopic to a graph submanifold
that is not a graph, hence even in this case our uniqueness result is
new.

2. IsoTrROPY

The so-called Mané example [11] (see subsection shows that any
flow defined on a closed manifold Q can be achieved as the restriction
of a Tonelli conformal Hamiltonian flow to the zero section of T*Q. In
this case, the zero section is an invariant Lagrangian submanifold.

The following example, which is very similar to an example of [5],
is key to this section. It shows that a closed submanifold which is
invariant by a conformal symplectic dynamics may be non w-isotropic.
In the remaining of the section, we will give some general conditions
under which the submanifold must be w-isotropic.

Proposition 1. There exists a conformal symplectic vector field X
on a 4-dimensional symplectic manifold (M,w),with a 3-dimensional
invariant submanifold L (hence L is not isotropic).

Moreover, the submanifold L is the global attractor for the flow (¢;)
of X, (pyr) is conjugate to the suspension of an Anosov automorphism
of T? with 2-dimensional stable and unstable foliations, and (rz) is

transitive with entropy equal to |a|, where a is the conformality rate of
X.

Remarks 3. (1) In our example, £ is coisotropic, but it is easy
to extend this example to an invariant submanifold which is
neither isotropic nor coisotropic. Indeed, let Y be a conformal
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symplectic vector field on a symplectic manifold (N, w’) with
a periodic orbit 4. Then the sum X @Y admits £ x v as an
invariant submanifold that is neither isotropic nor coisotropic
in M x N if dim N > 4.

(2) The submanifold £ is the maximal (among compact subsets)
attractor of the dynamics.

(3) Replacing the vector field X by bX for b € R, we can achieve
any positive value for the entropy.

Questions. We don’t know if it is possible to build a non-isotropic
example on a cotangent bundle endowed with its usual symplectic form
or, even stronger, if a similar example exists on such a manifold among
Tonelli flows.

Proof of Proposition [l We consider an Anosov automorphism A : T? ©

induced by a matrix z Z) € SL(2,7) with eigenvalues 0 < A\_ < 1 <

Ay = /\i_ and eigenvectors v4. An example of such an automorphism
is A(z,y) = (2x + y,z + y), with eigenvalues \_ = %5 < 1 and

Following [1], we define a suspension of the diffeomorphism T by
using the following relation on T? x R (writing & = (z,¥)):

V(€ 2) e T? xR, (£,2) ~ F(€,2) := (A€, 2 — 1).

Denote by a4 the linear forms on R? such that ai(vt) = 1 and
at(vy) = 0. Observe that ay 0 A = Aiay. Rescale the forms a4
in the z-direction in order to get F-invariant forms on T? x R: define

B(&2) = (As) ax(9),
so that
F*8: = () oz 0 A= (M) ax = Be.
Hence p4 is F-invariant and defines a 1-form on the quotient manifold
N = (T? x R)/ ~. We use the same notation for these 1-forms. Then
(1) dBy =In Ay dz A By

We consider the vector field X = (0,0,1) on A. The lift of its flow to
T? x R is defined by
CDt(ga Z) = (ga Z+ t)

hence the first return map to {z = 0} is ®1(£,0) = (AL, 0) and is
conjugate to A. The flow (®,) is a suspension of A and has the same
Lyapunov exponents as A.
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We endow the manifold M = N x R with the 1-form
A=p35_+sB4
where s is the R-coordinate. We define €2 = dA. By , we have
Q=df_+dsn By +sdfy =dzn(InA_B_+slnA,fy) +ds A Sy

Thus Q"2 = 2InA_dz A B4 Ads A By #+ 0 and Q is a symplectic form.
We define on M the vector field Y = X + 2In A_0s. Its flow is

hi(€28) = (Bil€,2), (A-)™s).
Hence A x {0} is the global attractor for (¢;). We have

Ui =dz A (s () 8+ ()™ A (A) B )+

(A)*ds A (M) By
As A_\+ =1, we finally obtain
YFQ = ALQ.
O

There are also examples of conformal symplectic diffeomorphisms on
a non-exact symplectic manifold that have a non-isotropic invariant
submanifold on which the restricted dynamics is Anosov.

Proposition 2. There exists a conformal symplectic diffeomorphism f
on a 6-dimensional symplectic manifold (M,w),with a 4-dimensional
invariant submanifold L (hence L is not isotropic).

Moreover, the submanifold L is the global attractor for f, fc is conju-
gated to a hyperbolic automorphism of T* with 2-dimensional stable and
unstable foliations, and f|z is transitie with entropy equal to —loga,
where a is the conformality ratio of f.

5 In fact we can

replace this number by the square of the largest eigenvalue of any
Anosov automorphism of T?. We don’t know if we can achieve other
constants by a conformal symplectic diffeomorphisms of the same sym-
plectic manifold.

2
Question. In our example we have a = (M)

Proof. We consider the hyperbolic toral automorphism 7" : T? — T?
that is defined by T'(601,02) = (201 + 62,6, + 05). The associated linear

map has eigenvalues A\ = —3_2*/5 < land A7 = —3+2‘/5 > 1. Let p =
—*/52_1. The unstable direction is spanned by (1,p) and the stable one

by (1, —%). The topological entropy is —log A (see [§]).
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Then the product map F = (T,T) : (0y,0,,05,04) € T? x T? —
(T'(0y,6,),T(03,04)) has topological entropy equal to —2log A\. We en-
dow T* with the closed 2-form ) that is defined by

Q= (d(92 — pdGl) AN (d94 — pdeg)

Observe that the kernel of € is the direction of the unstable foliation.
Obviously, F*Q = A2Q. Now, we consider the subbundle

Mz{(@,r)eT4xR4;r2=pr1 and 7y = prs}

of T* x R* This bundle corresponds to the tangent bundle to the
unstable foliation in the identification of TT* with T* x R%.

We denote by 2, the closed 2-form on M that is equal to 7*(2 where
7:(0,r) e M — 6 e T*and by Qy the restriction of the usual sym-
plectic form df A dr of T*T* to M:

L] Ql = (d@g —pdel) VAN (d64 —pd93),
o Oy = §(dfo+ ;db1) A (dro+dry) + 5 (dOs+ 5dbs) A (dra+ drs).

Let then w = £ + €5 be the chosen symplectic form on M.
3
If we define f : M — M by f(0,r) = (T(0), (3"/5> r), then we

2
have

o ¥ = T FFQ = N\2Qy;

o [y =20 = N2,
So finally f : M — M is a conformal symplectic diffeomorphism such
that f*w = Aw and f*(T* x {0}) = T* x {0}, where T* x {0} is not
isotropic and the topological entropy of fira o) is —2log A. U

Given these counter-examples to isotropy, we start with the case of
an invariant surface (2-dimensional submanifold).

Proposition 3. If a closed C* surface L is invariant by a conformal
and non symplectic C* diffeomorphism of (M,w), L is w-isotropic.

Proof. We have f*w = aw for some a # 1. Let £ be an invari-
ant 2-dimensional submanifold of f. We choose a finite atlas A =
{(U;, ®;) }h1<icn of L. Endow £ with a Riemannian metric and define

” H _ |w(u,v)]|
Wilg,c0 = SUPzef u,veTo £\{0} Ta] o]
_ | D" (w)
ID®; 200 = SUPueT £\ {0} | Tl 2

Then, SU w is bounded over open subsets U of L:

o

N
<0 [ el D pudled
i—1 Y ®:i(Us)
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Now, let U be an open set of £ and n € Z. Since f"U is an open subset

of £ and
f w = a"f w,
fnU U

we see that SU w must be zero. Thus L is isotropic. U

If £ has any dimension, the same conclusion holds provided some
constraint on the topological entropy ent (fiz) of the dynamics carried
by L. Define the spectral radius of a self-map g as

1
rad (Dg) = limsup | Dg" | %.
n—+0o0
Proposition 4. Let f be a conformal diffeomorphism of a symplectic
manifold (M,w), i.e. such that f*w = aw with a €]0,1[. Let L be an
invariant closed submanifold. Assume one of the following hypothesis.

(1) The diffeomorphism f is smooth, L is smooth and

ent (fiz) < —log(a);
(2) The diffeomorphism f and L are C" for some r > 1 and

ent (fiz) + log™ (Rad(Dflzl)Q/T) < —log(a).
Then L is w-isotropic.

Proof. We assume that £ is invariant and not isotropic. There exists
a constant k& > 0 such that on £, we have |w| < k|vol| where vol is the
2-dimensional volume form induced by the Riemannian metric. We
choose in £ a small piece S of symplectic surface (whose tangent space
intersects the characteristic bundle of £ only in 0). Then w(f~"(S)) =
a "w(S) % 0 and then

limsup%log‘vol(f_”(S)) > Jﬂ%(log lw(f7(S))|-log k) = —log(a).

n—ao
The conclusion follows from Yomdin’s inequality, which we have re-
called in appendix [A] O

Remark 4. This statement implies in particular that if £ is an invari-
ant submanifold by a conformal flow (¢;) then

o if £ and (¢;) are C and if ¢y, is C' conjugate to a rotation
on a torus for some t + 0, then L is isotropic; indeed, in this
case, the entropy vanishes and the spectral radius of Df is 1.
A simpler proof of this statement is given in [2].

e if £ and (¢;) are smooth and if ¢y is C” conjugate to a rotation
on a torus for some t + 0, then £ is isotropic; indeed, in this
case, the entropy vanishes.
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3. ENTROPY

The purpose of this section is to improve regularity in Proposition [4l
We will start by giving an abstract result on a manifold endowed with
a form with constant rank and then we will give an application to
invariant submanifolds of conformal symplectic dynamics.

Let

e N be a compact Riemannian C? manifold and d its distance

e F be a C? foliation induced by a subbundle F' of TN of rank
p<n—1

e 2 be an (n—p)-form on N which induces a volume on subman-
ifolds transverse to F

e f be a C'-diffeomorphism of AN/ preserving F and such that

Q=060
for some b > 1.
Theorem 5. The topological entropy of f satisfies
ent f > Inb.

Proof. Key to the proof is the refined distance dz on N defined by

dr(z,y) = {

Lemma 1. There exist ¢ > 0 and K > 0 such that for every x,y e N
(3) d]:(l’,y) <€ :>df($ay) <Kd([l'f,y)

Replacing the Riemannian metric d by %d, we will asssume that
e=1

Proof of Lemma[]. We choose € > 0 that is strictly less than the radius
of injectivity of the metric d restricted to every leaf and introduce
D ={(z.y) e N x Nydr(z,y) <e}.

This set is closed and due to our choice of ¢, d# is continuous on D. If
we use the notation

oo if x and y are not on the same leaf
distance from x to y along their common leaf otherwise.

A ={(z,z);ze N},
then the continuous function %5 is bounded on the complement of every
neighbourhood of A in D.
The exponential maps for the Riemannian form ¢ and for the Rie-
mannian form gz restricted to the leaves are tangent along the tangent
bundle to the leaves, hence

lim d]:(xa y)

= 1.
(z,y)—>A d(fE,y)
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U

For every x € N/, let U™ be a submanifold through z of dimension
n — p, transverse to F. Let V, be a tubular neighborhood of U, of the
form

Vz = Uyeuz{z GN, d]:(yv Z) < ex}’

We choose U, and ¢, < 1 small enough so that ), has a product
structure. Furthermore, let

Wx = Uyeuz{z EN7 d]-‘(fU,Z) < ECC/2}

Let Fy, be the foliation induced on W, by F. (Due to the product
structure, leaves of Fyy, are of the form W, n L,, where L, is the leaf
through x of the foliation induced on V,.) The neighborhood W, has
the property that for any two points y and z of W,, if dx(y, z) < €,/2
then y and z must belong to the same leaf of Fy_; indeed, if y and 2
do not lie on the same leaf of Fy_, their distance must be > €, since
any path from y to z along a leaf of F runs twice across V,\W,.

FIGURE 1. Construction of the finite covering of N/

Let W,,, ..., Wy, be a finite subcovering of A/. Denote W,, by W;,
and let € = min; €,,/2. So, the following property holds:

(*) For every i = 1,...,1 and y,z € W; such that dz(y,z) < €, y
and z belong to the same leaf of the foliation JFy, induced by
Foon W,.

Moreover, since f~! and F are continuous and f preserves F, there
exists 7 < € such that

(**) For every x,y € N such that dr(x,y) <n, de(f 'z, fly) <e.
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According to Lebesgue covering lemma, there exists § < n/K such
that every ball of radius # is inside at least one of the W;’s.

Let (Q;)1<j<s be a decomposition of N into cubes (or compact sub-
manifolds with boundaries) such that each cube is contained in a ball
of radius < 6.

Let S be a submanifold of A/ of dimension n — p, included into some
cube @); and transverse to F. § must lie into some W;. For any W;
containing S, S meets each leaf of Fy,, at isolated points. By narrowing
S, we may assume that & meets each leaf of Fyy, at one point at most.

We claim that

(***) For every k and ji, ..., jr € {1, ..., J},

FHS) n 1 Q) n - 0 Qg
meets each leaf of any W; containing ();, at one point at most.

Let j € {1,...,J}. Then & = f(S) n Q; is also transverse to the
foliation. Let z,y € &’ be on a common leaf of Fyy,, with Q; < W,,.
Since such leaves have a diameter < 1 (due to our choice €, < 1),

using ﬂ we see that
dr(z,y) < Kd(z,y) < Kdiam Q; < K0 <7

Using (**), d=(f'z, f~'y) < e. But using (*), f~'z and f~'y belong
to the same leaf of Fyy, . So, by the constructing property of W,
flx = f~ly and z = y. By induction, (***) holds.

If S €« W,, we have
’Q (fk(S) N fk_l(QJi) ARSRNA ij)’ < maX{‘Q(UIH? ) |Q(U[>|} = M,

uniformly with respect to k. Let

Nie = {01, 5a)s F(S) 0 fS7HQs) Mo 0 Qy # T

Then
v QS| < NpM,
hence
1 1. 1Q
ElnNk > Eln | ](\jﬂ + Inb,
hence the wanted inequality. 0

Now assume that w is a presymplectic formﬂ of N of (even) rank
20> 2 and

ffu=aw, a>1.

8Recall the metric was changed in order to have ¢ = 1 in .
9A presymplectic form is a a closed 2-form with constant rank.
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The kernel of w is a uniquely integrable subbundle F' of corank 2/.

Setting ) = w’ and b = a’ brings us back to the prior setting.

Corollary 1. The topological entropy of [ : N O satisfies

rank (w)
2

Let us now return to our usual setting, where (M, w) is a symplectic
manifold.

ent f > Ina.

Corollary 2. Let f : M D be a C? conformal symplectic diffeomor-
phism such that f*w = aw with a > 1. Suppose that N is an invariant

C? submanifold such that the induced form wy on N has constant

rank. Then
rank (wjy)

ent fin = In a;

in particular, if the entropy of fix vanishes, N is isotropic.

Note that if A is a compact submanifold such that fi is minimalﬂ
wyn has constant rank and so the corollary applies.

Proof. As N is C?, its tangent bundle is C*. Then Frobenius Theorem
applies to I' = kerw, NH and the characteristic foliation F exists. [

4. LIOUVILLE CLASS OF INVARIANT SUBMANIFOLDS

In this section we assume that (M,w = —d\) is an exact symplectic
manifold. The goal is to prove that, given a conformal dynamics, there
is only one Liouville class that an isotropic invariant submanifold may
have.

4.1. Action of conformal dynamics on Liouville classes.

Definition 6. Let j : S <— M be an isotropic embedding.

e Its Liouwville class [j] € H*(S,R) is the cohomology class of the
induced form j*A\.

e It is exact if its Liouville class vanishes.

So, except if the submanifold is exact, its Liouville class depends on
the chosen embedding with a given image.

When M = T*Q is the cotangent bundle of a closed manifold en-
dowed with its tautological 1-form A and £ is a Lagrangian subman-
ifold of T*Q that is homotopic to the zero section Z, the restriction

0By definition, it is minimal if every orbit is dense

HThe infinitesimal integrability condition is well known: if X,Y are sections of
F and Z is a section of TN, 0 = dw(X,Y,Z) = —w([X,Y], Z), which shows that
[X, Y] itself is a section of F'.
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to L of the canonical projection 7 : T*Q — O is a homotopy equiva-
lence between £ and Q and induces an isomorphism between H'(L, R)
and H'(Q,R). Denoting by j. : £ < T*Q the canonical injection
defined by jz(x) = x, the Liouville class of the submanifold £ is the
cohomological class

[£] = [(me) (V) | € H'(QR).
In this case, we may thus update the definition of Liouville classes.

Definition 7. Let £ be a Lagrangian submanifold of T*Q that is
homotopic to the zero section, the Liouville class [£] of £ is the coho-
mology class on @ whose pull back by 7. is the cohomology class of
Are.

The following straightforward proposition explains that the group
of conformal dynamics acts on the set of Liouville classes of isotropic
embeddings that are homotopic to a given isotropic embedding of a
given manifold & by homotheties (translations when the dynamics is
symplectic).

Proposition 5. Let f : M < be a conformal diffeomorphism with
conformality ratio a. Then n = f*\ —al is a closed 1-form.

Let jo : 8§ — M be an isotropic embedding. For every isotropic
embedding 7 : S — M that is homotopic to jo, the Liouville class of
the isotropic embedding foj:S — M is

Lf o 4] = aljl + Lign]-
Definition 8. A diffeomorphism f : M < is A conformal Hamiltonian

(CH) if there exists an isotopy (f)swefo,1] such that fo = Iduy, fr = f
and two functions H : [0,1] x M — R and « : [0,1] — R such that

V(t,z) € [0,1] x M, ij, yw = a(t)A + 0. H(t, z).

Remark 9. A diffeomorphism f : M © is conformal Hamiltonian if
and only if there exists an isotopy (f;)efo,1] of CES diffeomorphisms
such that fy =Idy and f; = f.

Definition 10. The flow () associated to the vector field X on M
is A conformal Hamiltonian if there exists « € R and H : M — R such
that ixw = a\ + dH.

Remark 11. A flow is a flow of A conformal exact symplectic diffeo-
morphisms if and only if it is A conformal Hamiltonian.

To describe the behavior of Lagrangian submanifolds of T*Q that
are H-isotopic to a graph, we first need the following invariance result.
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Proposition 6. Let (L;) be an isotopy of Lagrangian submanifolds of
T*Q such that Lo = Z. Then Ly is H-isotopic to a graph.

Corollary 3. Let (g;)iwc[o1] be an isotopy of conformal symplectic dif-
feomorphisms such that gy = Idrsg. Let L be a Lagrangian submanifold
of T*Q that is H-isotopic to a graph. Then ¢1(L) is H-isotopic to a
graph.

If moreover L is H-isotopic to the zero-section and the isotopy is con-
formal Hamiltonian, then g,(L) is H-isotopic to the zero-section.

Proof of Proposition [0 We will prove

Lemma 2. Assume that L is H-isotopic to the zero section and that
(Lt)te[-c,e 15 an isotopy of exact Lagrangian submanifolds such that
Lo = L. Then there exists a neighbourhood N of 0 in [—¢, €| such that
for every t € N, L, is H-isotopic to the zero section.

Proof of Lemma[4 We use Weinstein tubular neighbourhood Theo-
rem, [2I]. Let 7 be a symplectic tubular of £, i.e. there exists a
neighbourhood U of the zero section in T*L and a symplectic embed-
ding ¢ : U — T*Q with image T that is Id; on £. As & maps the
exact Lagrangian submanifold £ of T*L onto the exact Lagrangian
submanifold £ of T*Q, then ® is exact symplectic.

This implies that every submanifold ¢—*(£;) is exact Lagrangian. More-
over, there exists a neighbourhood N of 0 in [—¢, ] such that for every
te N, ¢~1(L;) is a graph. Hence this is the graph of an exact 1-form
duy.

Then ¢~ '(L;) is the image by the time-1 Hamiltonian flow of H =
—% o 7. Using a bump function, we can assume that H has support
in U, and then the time-1 map of the Hamiltonian H o ¢ maps £ onto
L.

O

We now prove Proposition [} Let us firstly deal with the case when
all the £;s are exact. We introduce

{t € [0,1];V¥s € [0,t], gs(L) is H — isotopic to the zero section}.

Lemma [2| and the transitivity of the relation of H-isotopy imply that
this set is closed and open in [0, 1], hence equal to [0, 1].

Now we just assume that (£;) is an isotopy of Lagrangian subman-
ifolds of T*Q such that £y = Z. We choose an arc (1;)«[o,1] of closed
1-forms on @ whose cohomology class [1;] = [£,] is the Liouville class
of £;. We denote by T; : T*Q O the symplectic diffeomorphisms such
that Ty(p) = p + n: o w(p). Then L = T_,(L;) defines a homotopy of



INVARIANT SUBMANIFOLDS 17

exact Lagrangian submanifolds of T%Q. A result of the first part of
the proof is that £} is H-isotopic to the zero section, i.e. there ex-
ists a H-isotopy (¢)we[o1] such that ¢g = Id and ¢(Z) = L}. Hence
Ly =Ti(LY) is H isotopic to the graph of 7, via the H-isotopy

(V4)ieon) = (Th o gr o0 T1_1)te[0,1]-
O

Proof of Corollary[3. We assume that (g;)sejo,1] is an isotopy of confor-
mal symplectic diffeomorphisms such that gy = Idr«o and that £ is a
Lagrangian submanifold of T*Q that is H-isotopic to a graph. Then
there exist a closed 1-form 7 on Q and a H-isotopy (h¢)sefo,1] such that
ho = Idp«g and £ = hy(graph(n)). We introduce the symplectic diffeo-
morphisms (7)o of 7% Q that are defined by T;(p) = p + tn o w(q).
Then

(»Ct)te[o,l] = (Qt ohyo Tt(Z))te[o,,u

is a isotopy of Lagrangian submanifolds such that £y = Z and £, =
91(L). A result of Proposition [6]is that g;(£) is H-isotopic to a graph.

If moreover £ is H-isotopic to the zero-section and the isotopy is
conformal Hamiltonian, then all the maps ¢; o h; o T} are conformal
Hamiltonian and thus every manifold £; is exact Lagrangian. The
conclusion is a result of the second part of Proposition [6]

O

4.2. Liouville classes of invariant submanifolds. Let j,: S — M
be an isotropic embedding. We denote by [J(jo) the set of isotropic
embeddings j : § — M that are homotopic to jj.

A consequence of Proposition [5] is

Proposition 7. Let f : M O be a conformal diffeomorphism. Let
Jj € J(jo) be an isotropic embedding which is strongly f-invariant in
the sense that

* j(8) = foj(S)

e [ acts trivially on H*(j(S),R).

Then j may have only one Liouville class, that we denote by [£¢(T (jo))]-
In particular, when f is CES, then [(;(J (jo))] = 0 and j has to be ex-
act.

Proof. Let j : § — M be such an embedding. With the notations of
Proposition [f, we have

[f o4l = alj] + [ign].
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As f acts trivially on on H'(j(S),R), we have [f o j] = [j] and finally
[7] has to be the only fixed point of the homothety that maps [j] on

alj] + [ignl. O
As a consequence:

Proposition 8. Let f : M D be a A CES diffeomorphism. Then every
inwvariant isotropic submanifold S such that fs acts trivially on H(S)
15 ezact.

Corollary 4. Let X be a CS vector field on M with flow (¢;). Let
Jo: S <= M be an isotropic embedding. We denote by J(jo) the set of
isotropic embeddings j : S — M that are homotopic to jo. Then there
is only one Liouville class that we denote by [(x(JT)], that an isotropic
embedding j € J (jo) such that

vt e R, ¢i(j(S)) = j(S)

may have.
In particular, when X is CH, then [{x(J)] = 0.

Corollary 5. Let f : T*Q O be a CS-diffeomorphism that is homo-
topic to Idp«g. Then there is only one Liouville class that we denote by
[£f], that a homotopic to the zero sectionand f-invariant submanifold
may have.

Proof. Let jg : Z2 < T*Q be the canonical injection of the zero-section.

We assume that £ is an f-invariant submanifold that is H-isotopic to a

Lagrangian graph. Let j : £ < T*Q be the canonical injection. With

the notations of Proposition [7, we have j € 7 (jo).

Because

e 7 defines an homotopy equivalence between £ and Q;

e 7 defines an homotopy equivalence between T*Q and Q;

e f is homotopic to Idr+g,

then f acts trivially on H'(L, R).

A result of Proposition[7is that [j] = [€4(T (jo))], i-e. [£] = [€4(T (jo))]-
O

5. LIOUVILLE CLASS OF LAGRANGIAN SUBMANIFOLDS OF T*Q
WITH COMPACT ORBITS

The goal of this section is to prove that, given a conformal dynamics
on T*Q, there is only one Liouville class that a Lagrangian submanifold
with compact orbit may have.

We assume that M = T*Q and that f : M < is CS-isotopic to Id .
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We suppose that j : @ — M is a Lagrangian embedding such that
j(Q) = L is H-isotopic to a graph and has compact orbit (for example
is contained in some compact attracting set).

Theorem 12. If f : M O is a A CES diffeomorphism that is CS-
1sotopic to Idag and L is a Lagrangian submanifold that is isotopic to
the zero section among the Lagrangian submanifolds of T*Q such that
Upez F5(L) is relatively compact, then L is exact.

Corollary 6. Let f : M © be a diffeomorphism that is CS-isotopic
to Idyq and let L be a Lagrangian submanifold that is isotopic to the
zero section among the Lagrangian submanifolds such that | J,., f*(L)
is relatively compact, then [L] = ;.

Corollary 7. Let () be the flow of the conformal symplectic vector
field X and let L be a Lagrangian submanifold that is isotopic to
the zero section among the Lagrangian submanifolds of T*Q such that
Uier wi (L) is relatively compact, then [L] = lx.

Remark 13. We give a proof of Theorem [12| that uses the notion of
graph selector. If Q (as T") satisfies that every element of H'(Q, R)\{0}
contains a non-vanishing 1-form, we can give a simpler proof. Indeed,
in the proof, we are reduced to prove that if we have a sequence (L,,) of
Lagrangian submanifolds such that [£,] = k"[L] tends to infinity as
n — o0, then |, .y £n is not relatively compact. If the 1-form 7 on Q
represents [Lo], then £,, and the graph of k™7 intersect. As n doesn’t
vanish, we can conclude.

Proof of Theorem[14. We endow Q with a Riemannian metric and de-
note by |.| the norm on T'Q.
As fis CES and f*)\ — a) is exact, f* is also CES with

k—1
(FYX=afx =3 a" T ) (A - ad)
=0
is exact.
Suppose ad absurdum that [£] is not 0. Let n be a l-form on Q
representing [£]. There is a loop v : T — Q such that Sv n+ 0.

As f is CS-isotopic to Idy, and by transitivity of the relation of CS-
isotopy, f* is also CS-isotopic to Idy,. Hence by Corollary , E(L) is
H-isotopic to a graph. The submanifold £ is H-isotopic to the graph of
n. A result of Proposition [5|is that f*(£) is H-isotopic to the graph of
a*n. If we denote by (7;) : M © the flow of symplectic diffeomorphisms
7(p) = p +tn(m(p)), then 7_4 o f¥(L) is H-isotopic to the zero section
and then admits a generating function and a graph selector that is (see
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e.g. [14] p 98 and references herein) a Lipschitz function ug : @ — R
that is C'' on an open subset Uy of Q with full Lebesgue measure such
that

Yq € Uy, duy(q) € T_gr o fF(L).

Using Fubini theorem, we find a loop 7, that is C! close to 7 and such
that

e 7, is smooth and isotopic to ~;
e for Lebesgue almost s € T, we have vi(s) € Uy.

As uy, 0y is Lipschitz and then absolutely continuous, we have

d(ug © i)
0= LT(s)ds.

Because i (s) € Uy for almost every s, we deduce

0= f dui (y(5)) () ds

and because 7 is homotopic to v and 7 is closed,
J (akn(%(s)) + duk(Vk(S))).’y,;(S)ds = akf n
T vy

As the loops 7, are C'-close to 7, there exists a constant K that is
a upper bound for all the |v;(s)||. Hence there is a subset Ej with
non-zero Lebesgue measure of T such that for every s € Ej, we have

(@) o) + sl = 5] [ ]
Moreover, for almost every s € T, we have
duy(1i(5)) € T_gr 0 fH(L)
l.e.
(5) a*n(yi(s)) + dug(yi(s)) € fH(L).
We deduce from ([4]) and (f]) that there is p € f*(£) such that |p| > %
U

Proof of Corollary[6 Let (f;)icjo,1] be an isotopy of conformal symplec-
tic diffeomorphisms such that fy = Idy, and f; = f. By Proposition
[10], see Appendix [B], we know that there is a diffeomorphism g : M ©
symplectically isotopic to Idy, such that go f o ¢g~! is A CES. Then
(ht) = (g © fr © g )iefo,1] is an isotopy of conformal symplectic diffeo-
morphisms such that hy = Idy and hy = go fog!is A CES.
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Let £ be a Lagrangian submanifold of M that is H-isotopic to a
graph such that J, ., f"(£) is relatively compact. As (g;) is a sym-
plectic isotopy, g(L£) is H-isotopic to a graph and we can apply Theorem
[12l We deduce that g(L) is exact.

As g is symplectic, there is a closed 1-form 1 on Q such that [7%n]| =
[g*A — A]. Then the Liouville class of g(L£) is

[£] = [9(L)] + [n] = [n].

As hy = go fog !, the fixed point 0 of the action of h; on the set of
Liouville classes is the image by ¢* of the fixed point of the action by
f on the Liouville classes. This means that [{;] = [n] O

Question. Is the hypothesis on H-isotopy to the zero section neces-
sary?

6. UNIQUENESS

We work on the cotangent bundle (7% Q, —d\) of a closed orientable
manifold.
Viterbo introduced in the seminal paper [I7], see also [19], the spectral
distance v that is defined on the set of H-isotopic to the zero-section
Lagrangian submanifolds.
We will recall the main results of this theory and apply this to prove
that if two submanifolds £, £ are H-isotopic to the zero section and if
(1) is a CH flow of T*Q, then

either  v(@i(L), p1(L)) == +0 or y(@i(L), (L) > +0.

Using a recent result due to Shelukhin, [15], we will deduce that for
certain manifolds Q, e.g. tori T", there is at most one H-isotopic to
the zero section submanifold whose orbit is compact and when it exists,
this submanifold is in fact invariant.

6.1. On Viterbo spectral distance ~v. If £, £ are H-isotopic to
the zero section submanifolds of T*Q, they have quadratic at infinity
generating functions S : Q x R¥ >R and 5" : Q x R¥ — R.
We recall that a generating function S for £ is such that
-1
e if we use the notation (¢,&) € @ x R¥ on X¥g = (%) (0), %
has maximal rank;
e the map js : Xg — T*Q defined by js(q,§) = g—i(q,f) is an
embedding and its image is L.

The generating function is quadratic at infinity is there exists a non-
degenerate quadratic form @ : R¥ — R such that outside a compact
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subset of @ x R* we have S(q, &) = Q(€).
The function S© S’ : M x R¥ x R¥ — R is defined by

(S © Sl)(Q? 67 X) = S(Qa f) - Sl(Qa X)
Observe that

@S ’\S/
£L = {5 (0.6 d(S05) (0.6x) = 0} = (5,

The function S©S’ is not quadratic at infinity, but it satisfies conditions
of Proposition 1.6. of [I8] that ensure that it can be replaced by such
a function, which we also denote by S©.S’. There exists a compact set
K < Q x R* x R¥ such that

V(g,6,x) ¢ K, (S©5)(¢,€,x) = Q& x)

where @ is a non degenerate quadratic form on RF x R¥. We denote
by m its index. Moreover, there exist a,b € R such that

Kn({(ses)=bu{ses)<dq)-o.
For c € R, we denote by £° and F° the sublevels
E={(a.&x);(SO5)g,&x) <} and F°={(&x); Q& x) < c}.
As (S©5)(q,&, x) and Q(&, x) are equal on £ and outside £°, we have
Ve ¢la,b[,£¢ = Q x F°.
Hence, by Kunneth theorem [3], there is an isomorphism
K:H(F, FY® H(Q) — H(E" &™).

As Q is a non-degenerate quadratic form with index m, we have HP(F°, F¢) =
{0} for p + m and H™(F®, F*) = RC is one dimensional. We deduce

an isomorphism

(¢,x); d(S©5")(¢,€,x) = 0}.

T:RC® H*(Q) — H*™(&, &%).
Then, if a € H*(Q) is non-zero,
cla,S6S") = inf{t € [a,b], 7 (C ®a) F 0}

where j; : (E1,E%) — (€, E?) is the inclusion. The number c¢(a, SO S5’)
is then a critical value of S© S’ that continuously depend on S and S’
for the uniform C° distance.

Viterbo proved that ¢(a, S©S’) depends only on £ and £ and not on
the choice of generating functions. It is then denoted by c(a, £, L').
If 1 is the orientation class of Q, the distance v(L£, L') is defined by

(L, L) =c(p, L, L) —e(1, L, L.
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Theorem 14. Let f : M < be a CES diffeomorphism that is CH-
isotopic to Idrxg. Let L, L' be two distinct submanifolds of T*Q which
are H-isotopic to the zero section, then

either  ~(f™(L), f*(£")) =25 o0
or A(fTL), fTL)) TS o,

Corollary 8. Let f : M < be a CES diffeomorphism that is CH-
1sotopic to Idpxo. Then there exists at most one H-isotopic to the zero
section submanifold of T*Q that is invariant by f.

Proof of Theorem[14. This is direct application of the following result
of which we provide a proof.

Lemma 3. Let £, L' be two H-isotopic to the zero section subman-
ifolds of T*Q. Let (¢;) be an isotopy of exact conformal symplectic
diffeomorphisms of T*Q such that ¢pg = Idr+g and ¢fw = a(t)w. Then

Y(0e(L), (L)) = a(t)y (L, L).

Proof. As the distance v continuously depends on the generating func-
tions, we only need to prove the results for submanifolds £ and £’ whose
intersections are all transverse. In this case, there is only a finite num-
ber of critical points and critical values for S&© S’. If x,y € L n L',
we denote by A(z,y, L, L") the difference of the corresponding critical
values of S© 9, i.e.

Alry, £,£) = (S0j5' W)~ 05 ) — (Seis (@) = 5 i (@),

Then if n; is a path in £ joining = to y and 7y a path in £ joining y
to x, the difference of the two corresponding critical values of S©& .S’ is

A(x,y, L, L) = J A.

nvn2
We can always choose 7, and 7, that are homotopic with fixed ends.
Then, if D is a disc with boundary n; v 75, we have

A(z,y, L, L) = f w.

D
The intersection points of ¢;(£) and ¢.(L') are the points ¢;(x) with
xeLlLnL' Forx yin L L' we have

A(Gu(x), du(y), &n(L), (L) = j L=l JD“ — a(t) Ay, £, ).

d

Hence t > s (c(u, G(L), (L) — c(1, do(L), gbt(ﬁ’))) is a continuous

map that takes its values in a fixed finite set, it has to be constant. [
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6.2. An application of a result due to Shelukhin.

Theorem 15. Let f : T*T" © be a CES diffeomorphism that is CH-
1sotopic to Idpstn. Then there exists at most one H-isotopic to the zero
section submanifold L such that

Ufk(ﬁ) is relatively compact.
keZ

Hence when it exists, L is invariant by the f.

Proof. In [15], Shelukhin defines a notion of string-point invertible man-
ifold. The tori T" are examples of such manifolds. His result implies

Theorem (Shelukhin,[I5]). Let g be a Riemannian metric on T™. Then
there exists a constant C(g) such that for all exact Lagrangian submani-
folds Ly, Ly contained in the unit codisk bundle D*(g) < T*T", we have
v(Lo, £1) < C(g).

The Liouville vector field Z that is defined by iz, w = A satisfies
Ly w=d\=—w.

Hence its flow (}) is conformal symplectic with (gpi‘) w = e 'w and
*

even exact conformal symplectic because it preserves the zero section
(and then the zero Liouville class). We have seen in Lemma [3| that ¢7
alters the distance v up to the scaling factor et

Observe also that this flow is a homothety the fiber direction: ¢} (p) =
e 'p. Hence the image of the unit codisk bundle D*(g) by ¢; is the
codisk bundle D* ,(g) with radius e~".

Let us introduce the following notation for K < T*T".
dy(K) = min{r > 0; K < D} (q)}.

Finally, we have that for every H-isotopic to the zero section subman-
ifolds £, £ of T*T™,

(6) (£, L) < 2C(g) max{dy(L), 64(L)}-

If now £ and £’ are two distinct H-isotopic to the zero section subman-
ifolds of T*T™ and f : T*T"™ © is a CES diffeomorphism that is CH
isotopic to Idp«rn, we deduce from Theorem [14] that

either ~(f™(L), fM(L")) =55 400

or (fTML), L)) B 4o,
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By (6], one of the two sets

Uriw;: ).

is not relatively compact. We deduce that there is at most one L
H-isotopic to the zero section such that

U f¥(L) is relatively compact.
keZ
When L is H-isotopic to the zero-section, f(L) is also H-isotopic to
the zero-section because f is CH-isotopic to Idz«rn, see Corollary [3
Moreover, the orbits of £ and f(£) coincide. This implies that £ =
7(£).
O

7. EXAMPLES

7.1. Mané example. This example was introduced by Mané in the
conservative Hamiltonian setting, [I1]. It can be extended to the con-
formal symplectic setting. For every vector field X of a closed manifold
Q, it provides a conformal Hamiltonian Tonelli flow of 7*Q such that
the zero section is invariant and the flow restricted to this zero section
is conjugated to the flow of X.

Let @ be a closed manifold endowed with a Riemannian metric,
T*Q is endowed with its tautological 1-form A and the symplectic form
w = —d\. We denote by |.| the norm on the fibers of T*Q that is dual
to the Riemanninan norm of Q and by p, a point of 7% Q above g € Q.

If X is a vector field on Q, we denote by px the 1-form on Q that
is dual to X via the Riemannian scalar product. We define the Hamil-
tonian ] ]

Hx(pg) = 5lpe + rx (9 = 5lpx(a)[*

Since the zero-section Z = {p = 0} is contained in the zero-energy
level and is Lagrangian, Z is invariant by the Hamiltonian flow of Hx.
The restriction to Z of the vector field is dual via w to the derivative
of H in the fiber direction, so if we denote by § : T/M — T, M the
duality that is defined by the Riemannian metric, we have

dz = (p + px(0)),z = tpx(a) = X(q).

Hence on the zero-section, the vector field is X.

In the conformal Hamiltonian setting, we add a times the Liouville
vector field to the Hamiltonian vector field Xy of H, for some « € R.
Since the Liouville vector field vanishes on Z, the dynamics remains
conjugate to X.
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Y

T

\

Remark 16. The global attractor may differ from the zero section.
For example, X may have an attractive fixed point whose unstable
manifold is not contained in the Z, in which case the global attractor
is not a submanifold either.

7.2. An example of a Tonelli Hamiltonian that has an invariant
Lagrangian submanifold that is not a graph. The example we are

about to describe is inspired by an example of Le Calvez [9].
Let 3 > 0 be a positive number and let a € (3,28). On T*R = R?
let H be the quadratic Tonelli Hamiltonian

H(z,y) = y* — Bry.

Consider the sum of the Hamiltonian vector field of H and of o times
the Liouville vector field —y 0,

T =—pxr+2y
y=(8-a)y.

(7)

. - . (P 2 1Y\ .
The matrix of this linear system is ( 0 B-a) Hence ) 18 an

eigenvector for the eigenvalue —f and 3 i o | 18 an eigenvector for
2
the eigenvalue f — . As a € (5,20), (0,0) is an attracting fixed point

and the line R (1) is the strong stable eigenspace. Every solution
that is not contained in an eigenspace is contained in a curve whose
equation is
2
e 20 — «
where K # 0, and then is not a graph if 2(0).y(0) > 0.
Let us choose two large real numbers B > A > 0 and let V : R —
[—1,0] be a function with support in [—B, B] such that Vjj_4 4] = —1,

_B_
y+ Kly|=-7
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V|-B,—4] is non-increasing and V|j4 p] is non-decreasing. Then we add
V(z) to H(x,y) and the equations become

T =—px+ 2y
¥ {y — V(&) + (B-ay.

As the support of V' is in [-B, —A] u [A, B], the two vector fields are
equal in the complement of ([—B, —A] U [A, B]) xR. As Vj_p <0,
the orbit on the z-axis for x < —B is pushed to the half plane y > 0
and then coincides with an orbit of which tends to (0,0). In the
same way, the orbit that coincides with the z-axis for x > B tends to
(0,0) at +oo with an incursion into the half-plane y < 0. Hence the
union of these two orbits and {(0,0)} is an invariant curve I' for
that is not a graph.
Now, let us choose D > C' > B. Le X : R — R a vector field such
that
o Vre [_DTJrca _B] o [B> %]7‘){(%) = —ﬁilf;
e X(—D) = X(D) =0 and all the derivatives of X are the same
at —D and D;
e (—D,—B] (resp. [B, D)) is a piece of unstable manifold of the
equilibrium —D (resp. D).
Then X defines also a vector field on the circle Cp = [—-D, D]/D ~ —D.
Let Hyx be the Hamiltonian that is associated to X on T*R = R? via
the Mané construction

Hx(,y) = Jy(y + 2X(2).
Let us eventually define
K(x,y) = (1 —n(x)Hx(2,y) +n(z)(H(z,y) + V(2))

1 —nz
= L2 49X () 4 () (47 By + V().
where 1 : R — [0, 1] is a bump function with support in [—C, C] that
is equal to 1 on [—B, B|. K also defines a Hamiltonian function on the
annulus Cp x R and, since
’K
a_yg(xuy) = (1 =n()) +2n(z) =1
hence K is Tonelli.
Note the following;:

e ([-D,—B]u|[B,D]) x {0} is in the zero level of K and then is

locally invariant by the Hamiltonian flow of K and also by the

conformal Hamiltonian flow (%—I;, —%—I; —ay);
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* Ki-pnxr = (H + V) |[-5,B]xR-

Finally, the vector field (%—I;, —%—f — ay) has an invariant curve that is
not a graph, which is the union of ([—D,—B] u [B, D]) x {0} and the

part of I' that is between x = —B and = = B.

APPENDIX A. YOMDIN’S INEQUALITY

Let £ be a a compact Riemannian C” manifold, S < £ be a compact
C" submanifold of dimension s and f : £ © be a C7"-diffeomorphism
(r = 1). (The general statement does not require f to be invertible.)

Define the logarithmic volume growth of fis as

1
logvol (fis) = limsup — log [vol (f"(S)],

n—+oo T

where vol is the s-dimensional Riemannian volume, and

rad (D f) = limiup D" 1D flle = sup | Dfe].
n——+0o T

Theorem 17 (Yomdin [22], Gromov [7]).
logvol (fis) < ent (f) + log* (rad (D f)*")

(where log™ t = max(0,logt) ).
In particular, if L and f are smooth,

logvol (fis) < ent (fis) <ent f.

APPENDIX B. CONFORMAL DYNAMICS ARE EXACT

We assume that (M,w = —d\) is an exact symplectic manifold. We
prove that every conformal dynamics is symplectically conjugate to a
CES dynamics.

Our first result explains that every conformal dynamics on an exact
symplectic manifold is exact conformal with respect to some primitive
of the symplectic form.

Proposition 9. Let f : M O be a (CS) diffeomorphism that is homo-
topic to Idy, and such that f*w = aw. Then there exists a primitive
A1 of —w, namely
1 %
M= (= )
such that f is Ay CES. Hence is j : § — M 1is an isotropic embedding
such that j(S) is f invariant, j(S) is A\, ezact.
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Proof of Proposition[d We denote n = f*\ —aX. Then dn = —f*w +
aw = 0 and so 7 is closed. Observe that

1 1
)\ — f—
11— an
SO A is a primitive of —w.
We have

(A= f*2) = A,

1—a

1
A —a\ zn——l_a(f*n—an).

Because f is homotopic to Idy, f*n — n is exact and
1
A—aN = ——(n— f'n).
J*A —ah 1—a(77 f 77)

is exact. The conclusion comes from Proposition [8] for the 1-form A;
instead of \.
O

Proposition 10. Let f : M O be a conformal symplectic diffeomor-
phism that is homotopic to Id g and such that f*w = aw with a > 0 and
a+1. Thenn = f*\—al is a closed 1-form, there exists a symplecti-
cally isotopic to Idxq diffeomorphism g : M O such that g* A — A+ ﬁ
is exact and then go fog~!is A\ CES.

Proof. We denote n = f*\ —a). Then dn = —f*w + aw = 0 and so
71 is closed. We denote by A; the primitive of w that was defined in
Proposition [0

Lemma 4. There ezists a symplectic vector field X with flow (g;) such
that gi A — A1 is exact.

Proof. We consider the vector field X that is defined by ixw = ﬁn.
As 7 is closed, X is symplectic.
Then we have

LX)\ = —’in + d(Zx)\) = —ﬁn + d(’lx)\)

If we denote by [.] the cohomology class, this gives

1
[LxA] = 1= a[n]
i.e. AN — ]
g: - _ 1 *

We deduce that for all ¢ we have g/ A\ — A+ 1Tta77 is exact. In particular,
giA — A1 is exact.
O
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We now consider F' = gy o f o g;*. We have

F*x=(g7")" o ffogi(N) = (a") o f* (M + 1)
where v is exact by lemma [d By Proposition [0, v, = f*\; — a); is
exact and we have
F*\ = (gfl)*(a)\l + e+ ffrr) = a\ + (gfl)*( —avy + s + ff1).
O
Proposition 11. Let X be a conformal symplectic vector field on M
such that Lxw = aw with a € R*. The 1-form £ = ixw + aX is closed.

There exists a symplectically isotopic to Idng diffeomorphism g : M
such that g* A\ — A+ éé is exact. Then g* X is A conformal Hamiltonian.

Proof. We have d¢ = Lxw — aw hence £ is closed.

Lemma 5. There exists a primitive \y of —w, namely

1 1

/\1 = /\ — —f = ——in,

! a
such that X is \y Hamiltonian.
Proof. We have

Ixw+ad; =ixw+al—E&=0

is exact. O

Lemma 6. There exists a symplectic vector field Y with flow (i) such
that YA — A1 is exact.

Proof. We consider the vector field Y that is defined by iyw = %5 . As
¢ is closed, Y is symplectic. Then we have

Ly)\ = —iyw + d(ly)\) = —éﬁ + d(ly)\)

We deduce that the flow () of Y satisfies
d 1
—[iN = A = ——[£].
ZlUEr =X = —~[¢]
Hence YiA — Ay = YA — A + éé is exact.
O
We denote g = ;. Let us prove that ¢*X is A conformal Hamilton-
ian. Because ¢ is symplectic, we have
Ggt xW = G (ixw) = g.(& — al).

Because g*\ — \; is exact, g. (£ — a>\) + a is exact and ig«xw + a)
is exact and so ¢g*X is conformal Hamiltonian.

O
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