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TRANSITIONS OF ZONAL FLOWS IN A TWO-LAYER QUASI-GEOSTROPHIC OCEAN

MODEL

MICKAEL D. CHEKROUN, HENK DIJKSTRA, TAYLAN ŞENGÜL, AND SHOUHONG WANG

Abstract. We consider a 2-layer quasi-geostrophic ocean model where the upper layer is forced by a steady

Kolmogorov wind stress in a periodic channel domain, which allows to mathematically study the nonlinear

development of the resulting flow. The model supports a steady parallel shear flow as a response to the
wind stress. As the maximal velocity of the shear flow (equivalently the maximal amplitude of the wind

forcing) exceeds a critical threshold, the zonal jet destabilizes due to baroclinic instability and we numerically

demonstrate that a first transition occurs. We obtain reduced equations of the system using the formalism of
dynamic transition theory and establish two scenarios which completely describe this first transition. The generic

scenario is that two modes become critical and a Hopf bifurcation occurs as a result. Under an appropriate set of
parameters describing midlatitude oceanic flows, we show that this first transition is continuous: a supercritical

Hopf bifurcation occurs and a stable time periodic solution bifurcates. We also investigate the case of double

Hopf bifurcations which occur when four modes of the linear stability problem simultaneously destabilize the
zonal jet. In this case we prove that, in the relevant parameter regime, the flow exhibits a continuous transition

accompanied by a bifurcated attractor homeomorphic to S3. The topological structure of this attractor is

analyzed in detail and is shown to depend on the system parameters. In particular, this attractor contains
(stable or unstable) time-periodic solutions and a quasi-periodic solution.
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1. Introduction

Baroclinic instability is among the most important geophysical fluid dynamical instabilities playing a crucial
role in the dynamics of atmospheres and oceans. In particular, this instability mechanism is the dominant process
in atmospheric dynamics shaping the cyclones and anticyclones that dominate weather in mid-latitudes, as well
as the mesoscale ocean eddies that play various roles in oceanic dynamics and the transport of heat of salt [26].
Much is known on the linear stability of zonal jets in a horizontally unbounded ocean in the quasi-geostrophic
(QG) flow regime. Classical models, such as the continuously stratified Eady model [9] and the two-layer Phillips
model [20], have lead to a detailed understanding of the mechanism of baroclinic instability of a zonal jet in
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the inviscid case. Long waves destabilize the zonal jet with maximum growth rates occurring for perturbations
having wavelengths on the order of the Rossby deformation radius, typically 50− 100 km for the mid-latitude
ocean [25].

In case linear friction is included in the two-layer model, the neutral curve has a minimum at (kc, µc) where
kc is the critical wavenumber and µc the critical value of the control parameter (e.g. the maximum speed of
the zonal jet). The nonlinear development of these perturbations has been extensively analyzed in the weakly
nonlinear case [19, 21, 29, 13]. In the regime |k − kc| = O(ε) and |µ − µc| = O(ε2), [27] showed that on a
long time scale T = ε2t and large spatial scale X = ε(x − cgt), where cg is the group velocity of the waves
at criticality, the complex amplitude A of the wave packet destabilizing the jet satisfies a Ginzburg-Landau
equation, written as

∂A

∂T
= γ1A+ γ2

∂2A

∂X2
− γ3A|A|2,

where the γi are complex constants. [27] also showed that the fixed point solution of this equation can become
unstable to sideband instabilities. Subsequent analysis has shown [7] that upgradient momentum transport can
occur due to the self-interaction of the instabilities leading to rectification of the zonal jet.

In reality, the ocean basins are zonally bounded by continents and the midlatitude zonal jets are part of the
gyre system, for example the subpolar gyre and subtropical gyre in the North Atlantic, forced by the surface
wind stress through Ekman pumping [18]. The problem of baroclinic instability of such non-parallel flows is
much more complicated and has so far only been tackled numerically. When the wind-forced QG equations are
discretized, the linear stability problem for the gyre flow results in a large-dimensional generalized eigenvalue
problem, typically of dimension 104. There are many results for the one-layer single- and double-gyre flows
(for an overview, see chapter 5 of [5]), but in this case there is no baroclinic instability. There are relatively
few results for the two-layer case. In [6], it was shown that in the two-layer case the double-gyre flow becomes
unstable through a sequence of Hopf bifurcations. The perturbation flow patterns at criticality are ‘banana-
shaped’, locally resembling those of baroclinic instability in the Philips model. Stable periodic orbits result
from these Hopf bifurcations, typically given rise to meandering motion of the gyre boundary.

As an intermediate, more analytically tractable case, we consider here the baroclinic instability of a zonal jet
for a two-layer QG model in a zonally periodic channel. In this case, the properties of the bounded geometry
are somehow represented, as the patterns of the unstable modes are restricted by the periodicity of the channel,
so a sequence of Hopf bifurcations is expected just as in the more realistic gyre case. In addition, parallel flow
solutions exist in the zonally periodic channel which simplifies the linear stability problem substantially such
that a more detailed nonlinear analysis, akin to that in the horizontally unbounded case, can be performed.
The parallel flow can also be connected to the surface wind stress, as in the full gyre case, but at the expense of
adding an additional linear friction term to the upper layer vorticity equation; for more details, see Section 2
below.

The case specifically studied in the paper is the circulation set up by a time-independent Kolmogorov wind-
stress field (for k = 1, 2, . . .)

τx(y) = −τ τ0
kπ

cos kπ
y

Ly
; τy = 0

where τ0 is a characteristic mid-latitude wind-stress value. This wind stress forces an ocean enclosed in a
rectangular basin [0, 2Lx] × [−Ly, Ly] on the β-plane. The case k = 1 and k = 2 are often referred to as the
single- and double-gyre forcing. The stratification is modeled in terms of a two-layer system and the wind stress
only directly forces the upper layer. As a response to this wind stress, the system supports a basic shear flow
ψs. The amplitude τ that controls the wind-stress curl, or equivalently the maximal velocity of the shear flow
ψs is chosen as the bifurcation parameter.

We first perform a numerical linear stability analysis of this basic shear flow; for small values of τ , all
associated eigenvalues have negative real parts such that the jet is stable. When the aspect ratio of the channel
a = Ly/Lx is large, the eigenvalues remain in the left complex plane regardless of the value of τ . However, when
the aspect ratio gets small, the basic shear flow loses stability at a critical τ in the form of a pair of single or
double complex eigenvalues crossing the imaginary axis, giving rise to a Hopf or double Hopf bifurcation. We
next use the idea and method of the dynamic transition theory [15, 16], which is aimed to determine all the
local attractors near a transition. The approach comes with a classification of all transitions into three classes
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known as continuous, catastrophic and random types. In this way, our study extends previous results using
this approach on the single-layer barotropic case [24, 8], the two-layer case for constant zonal jet velocities [2]
and the barotropic Munk western boundary layer current profile case [10], to the zonally periodically bounded
two-layer case.

Using the center manifold reduction, we obtain reduced (ordinary differential equation, ODE) models de-
scribing this transition. From the coefficients of these ODEs, the transition numbers in dynamic transition
theory can be calculated. The case of a Hopf bifurcation is generic while the case of a double Hopf bifurcation
is degenerate and requires fine tuning of the aspect ratio to critical values where two pairs of eigenmodes with
consecutive wavenumbers cross the imaginary axis simultaneously. Under standard set of parameters describing
the midlatitude ocean, we perform numerical computations of the transition number for the forcing patterns
corresponding to k = 1, 2, 3 and the aspect ratios a ≥ 3. We find that in the parameter regimes we are
interested with, the Hopf bifurcation is supercritical and a stable limit cycle bifurcates. For the double Hopf
bifurcation, we find that after the corresponding transition takes place, the system exhibits a bifurcated local
attractor [15] near the basic shear flow which is homeomorphic to the 3D-sphere. The topological structure of
this attractor is analyzed and depending on the parameters, it is found to contain a combination of limit cycles
and a quasi periodic solution.

The paper is organized as follows. In section 2, the quasi-geostrophic model is presented. This is followed
by section 3 where the theory and numerical results for the linear stability problem (section 3.1), the Hopf
bifurcation case (section 3.2) and the double-Hopf bifurcation case (section 3.3) are presented. These results
are summarized and discussed in section 4. The appendix contains details on the proofs of the theorems and
on the numerical computations.

2. The model

We consider two layers of homogeneous fluids, each with a different and constant density ρ1 and ρ2 and with
equilibrium layer thicknesses H1 and H2, on a mid-latitude β-plane with Coriolis parameter is f = f0 + β0y.
The lighter fluid in layer 1 is assumed to lie on top of the heavier one in layer 2 so that the stratification is
statically stable, i.e., ρ1 < ρ2; bottom topography is neglected.

This flow can be modeled by the two-layer QG model [19] using the geostrophic stream function ψi and
the vertical component of the relative vorticity ζi in each layer (i = 1, 2). The quantities ψi and ζi are non-
dimensionalised by ULy and U/Ly, respectively, wind stress with τ0, length with Ly, and time with Ly/U ,
where U is a characteristic horizontal velocity. By choosing U = τ0/(ρ0β0LyH1), where ρ0 is a reference
density, the dimensionless equations on the domain (0, 2/a)× (−1, 1) become

(2.1)

[
∂

∂t
+ {ψ1, ·}

]
(∆ψ1 + F1(ψ2 − ψ1) + βy) = F1 − τβ sin kπy[

∂

∂t
+ {ψ2, ·}

]
(∆ψ2 + F2(ψ1 − ψ2) + βy) = −r2∆ψ2

where {f, g} = fxgy − fygx is the usual Jacobian operator and F1 represents the damping of upper layer
vorticity due to frictional processes (to be specified below). In the bottom layer, we include a linear (Ekman)
friction term −r2∆ψ2; in both layers, Laplacian friction terms are neglected due to the absence of continental
boundary layers making such terms much smaller than the other ones. The expressions for the dimensional
and dimensionless parameters, with their standard values at a latitude 45◦N, are given in Table 1.

For the boundary conditions, we assume periodicity in the x-direction and free-slip boundaries in the y-
direction. Hence, the conditions are

(2.2)

ψi |x=0= ψi |x=2/a, i = 1, 2.

ψi |y=±1=
∂2ψi
∂y2

|y=±1= 0, i = 1, 2.

In actual ocean basins, a steady zonal jet is generated by the applied wind stress through Ekman pumping,
a Sverdrup balance and a western boundary layer flow [18]. Due to the periodic boundary conditions used here,
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such a flow cannot be captured in this model. However, the equations will allow a steady state of the form

(2.3) ψs1 = Ψ sin kπy, ψs2 = 0

which relates to the wind stress field, when F1 − τβ sin kπy = 0. In this paper, we will assume that the
wind-stress vorticity input is balanced by vorticity decay due to the linear friction term F1 = −r1∆ψ1, being
aware that a larger friction coefficient r1 is needed than can be justified from existing dissipative processes in
the ocean. In this case, it follows that

(2.4) Ψ =
τβ

(kπ)2r1
.

The parameter Ψ appearing in (2.3) can then be chosen as the control parameter as is the case in this study,
instead of τ .

By considering the perturbation ψ′i = ψi − ψsi , i = 1, 2, we can write the system in the following operator
form.

(2.5) M∂tψ = Nψ + G(ψ), ψ = (ψ1, ψ2)

where M and N are the linear operators defined as

(2.6) Mψ =

∆ψ1 + F1(ψ2 − ψ1)

∆ψ2 + F2(ψ1 − ψ2)



(2.7) Nψ =

Ψkπ cos kπy
(

(kπ)2 ∂ψ1

∂x + F1
∂ψ2

∂x + ∂∆ψ1

∂x

)
− β ∂ψ1

∂x − r1∆ψ1

−ΨkπF2
∂ψ2

∂x − β
∂ψ2

∂x − r2∆ψ2


Lastly, the bilinear nonlinearity is given explicitly by

(2.8) G(ψ) =

 −{ψ1,∆ψ1 + F1(ψ2 − ψ1)}

−{ψ2,∆ψ2 + F2(ψ1 − ψ2)}


In terms of function spaces, the operators G and N are the mappings, G : H1 → H−1 and N : H0 → H−1,

where

H1 = {ψ = (ψ1, ψ2) ∈ H4(Ω)×H4(Ω)| ψ satisfies (2.2)},
H0 = {ψ = (ψ1, ψ2) ∈ H2(Ω)×H2(Ω)| ψ satisfies (2.2)},
H−1 = L2(Ω)2.

Here Ω = (0, 2/a) × (−1, 1) and H4(Ω), H2(Ω), L2(Ω) are the usual Sobolev and Lebesgue function spaces
endowed with their natural inner products. These space account for spatial regularity of the solution ψ
for which Hp(Ω) denotes the space of square-integrable functions that possess pth-order derivatives (in the
distribution sense) that are themselves square-integrable; see e.g. [1].

3. Results

In this section, we first present the linear stability analysis of the basic shear flow and then we move on to
describe the first transitions due to the instabilities, covering both the Hopf and double Hopf bifurcations.

3.1. Linear Stability Analysis. We first investigate the linear stability of the basic solution. For this purpose,
we denote the eigenmodes of the linear problem by

ψm,j(x, y) = eiαmxYj(y), j ∈ N,m ∈ Z, αm := amπ.

with eigenvalues σm,j , i.e.

(3.1) σm,jMψm,j = Nψm,j .
Since the linear operators M and N are real, we have

σm,j = σ−m,j , ψm,j = ψ−m,j , ∀m ∈ N.
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Figure 1. Neutral stability curves Ψm,m = 1, 2, 3, 4 defined in (3.2), for wind-stress profiles
defined by k = 1, 2, 3. For values of Ψ > Ψm, the shear flow Ψs becomes unstable to a
perturbation pattern with wavenumber αm.

This eigenvalue problem is solved numerically by means of a standard Legendre-Galerkin method; see Ap-
pendix A. A typical picture of the spectrum near the criticality is given in Figure 3. This figure shows that
many eigenvalues are clustered near the imaginary axis at the critical value of Ψc as defined below.

We assume (as will be confirmed by the numerical results) that the eigenvalues are ordered so that for each
m ∈ Z, σm,1 has the largest real part among σm,j , j ∈ N.

For each m ∈ N, we define Ψm, if it exists, to be the value of Ψ for which the eigenvalue σm,1 crosses the
imaginary axis, that is

(3.2) Re(σm,1) = Re(σ−m,1) =


< 0, if Ψ < Ψm

= 0, if Ψ = Ψm

> 0, if Ψ > Ψm

Hence Ψ = Ψm defines a neutral stability curve in the a − Ψ plane. In Figure 1, these neutral curves are
plotted for zonal wave numbers m = 1, 2, 3, 4.

Our numerical analysis suggests that for m in N, Ψm exists only for aspect ratios of the basin characteristic
lengths smaller than a threshold am, that is for a < am. The threshold am is defined by the vertical asymptote
condition,

lim
a→am−

Ψm =∞.

Moreover,

∞ > a1 > a2 > · · ·
We define the critical maximal amplitude Ψc of the steady state given in (2.3) and the critical zonal

wavenumber mc by

Ψc = min
m∈N

Ψm.
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Figure 2. Real part of the upper and lower layers of the time-periodic solution fmc
(or equiv-

alently of the dominant eigenmode ψmc,1) at t = 0 for k = 1 and a = 10 and a = 5, respectively.

mc = argmin
m∈N

Ψm.

The typical structure of the spectrum at the critical parameter Ψ = Ψc is shown in Figure 3 where a pair of
complex conjugate eigenvalues cross the imaginary axis. The eigenvalues on the real axis belong to wavenumber
m = 0 and are always stable although in Figure 3 it looks like as if there is an additional critical real eigenvalue.

−1 0
−40

−20

0

20

40

Re(σm,j)

Im
(σ
m
,j

)

m = −2mc

m = −mc

m = 0

m = mc

m = 2mc

Figure 3. The first 240 eigenvalues at the critical parameter when mc = 2, a = 10, k = 1 and
Ny = 240.

To describe the solutions near the onset of transition Ψ = Ψc, we define the spatio-temporal function

(3.3) fm(x, y, t) = 2 Re
(
ei Im(σm,1)tψm,1(x, y)

)
, m ∈ Z,
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where σm,1 is the first eigenvalue and ψm,1 is its associated eigenfunction. The spatial structure of the eigen-
modes ψmc,1 is shown in Figure 2, revealing the well-known ‘banana-shaped’ patterns characteristics of baro-
clinic instability.

The values of Ψc with respect to the aspect ratio a for k = 1, 2, 3 is shown in Figure 5. By the previous
remarks,

(3.4) lim
a→a1−

Ψc = lim
a→a1−

Ψ1 =∞.

By (3.4), for a > a1, the system is linearly stable. As is expected, the neutral stability curves (Figure 1)
approach the asymptote Ψc →∞ as a increases to the critical aspect ratio a1 over which the system is linearly
stable for all Ψ. The value of Ψc ≈ 0.09/k for small a for each k = 1, 2, 3, see Figure 5. This value of critical
maximal shear velocity corresponds to an upper layer friction, (2.4) which is approximately,

r1 ≈
τβ

k2π2Ψc
≈ 1000.0

k
,

which is indeed much larger than can be justified from dissipative processes in the ocean but, as explained in
section 2, is needed here to connect the zonal jet top the wind-stress field.

The friction term in the lower layer however is physical (Ekman friction) and for this study, it is fixed at
r2 = 5.0, see Table 1. Also, from Figure 1, we see that for small aspect ratios, many modes become unstable as
Ψc is exceeded.

For a < a1, the system has a first transition at Ψ = Ψc and exactly one of the following two principal of
exchange of stability (PES) condition holds:

(3.5)
Re(σm,1) = Re(σ−m,1)


< 0, if Ψ < Ψc

= 0, if Ψ = Ψc

> 0, if Ψ > Ψc

if m = mc

Re(σm,1) = Re(σ−m,1) < 0 if m 6= mc

(3.6)
Re(σm,1) = Re(σ−m,1)


< 0, if Ψ < Ψc

= 0, if Ψ = Ψc

> 0, if Ψ > Ψc

if m ∈ {mc,mc + 1}

Re(σm,1) = Re(σ−m,1) < 0 if m /∈ {mc,mc + 1}.

According to (3.5) and (3.6) either, two or four eigenvalues become unstable as Ψ crosses Ψc. The case of two
critical eigenvalues is generic and results in a Hopf bifurcation. The case of four critical eigenvalues results in a
double Hopf bifurcation and requires the fine-tuning of the aspect ratio a = aDH so that Ψc = Ψmc

= Ψmc+1.
The values of aDH where double Hopf transition occurs is given in Table 2. Although the double Hopf transition
is not generic, its analysis gives an insight into the moderate Ψ regime where multiple eigenvalues are unstable.
In Figure 4, we present the dominant part of the spectrum of the linearized operator at a critical aspect ratio
aDH .

−1 −0.5 0

·10−2

−20

0

20

Re(σm,j)

Im
(σ
m
,j

) m = −2

m = −1

m = 0

m = 1

m = 2

Figure 4. The spectrum near the double Hopf aspect ratio aDH = 11.263 for k = 1. The first
four critical eigenvalues σm,1, m ∈ {−2,−1, 1, 2}, can be seen on the imaginary axis.
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5 · 10−2

0.1
k = 1

k = 2

k = 3

a
Ψ
c

Figure 5. The critical maximal shear steady state velocity Ψc with respect to channel aspect
ratio a for k = 1, 2, 3 where the PES condition (3.5) holds.

Our numerical results in Figure 1 and Figure 5 verify the PES condition for the chosen parameter values. The
PES condition (3.5) has been rigorously verified for Kolmogorov flows in [17] via a continued fraction method.
This method has later been extended for the single layer QG model for the k = 1 case in [24] and for k ≥ 2
in [14] where k is the forcing frequency in (2.1). It is still an open problem to prove this claim for the current
problem.

3.2. Hopf Bifurcation. We first investigate the generic Hopf transition scenario based on the attractor
bifurcation theorem [15, Theorem 5.2] and the dynamical transition theorem [16, Theorem 2.1.3]. For proofs of
the following lemma and theorem, see Appendix B).

Lemma 3.1. Assume that the first critical eigenvalue is complex simple so that the PES condition (3.5) holds.
Then the transition and stability of the steady state solution (2.3) of the equation (2.5) in the vicinity of the
critical maximal shear velocity Ψ = Ψc and for any sufficiently small initial condition are equivalent to the
stability of the zero solution of the equation

(3.7)
dz

dt
= σmc,1z + Pz|z|2 + o(|z|3).

where z(t) which lies in C denotes the amplitude of the projection of the solution onto the first eigenfunction
ψmc,1 and the complex number P denotes the transition number defined in Eq. (B.8) of Appendix B.

The analysis of Lemma 3.1 yields the following theorem.

Theorem 3.1. Assume that the first critical eigenvalue has simple complex multiplicity, that is the PES con-
dition (3.5) is satisfied. Then the following assertions hold true.

(1) If Re(P ) < 0, the system (2.5) undergoes a continuous transition accompanied by a supercritical Hopf
bifurcation on Ψ > Ψc. In particular, the steady-state solution bifurcates to a stable periodic solution ψ
on Ψ > Ψc, satisfying ψ → 0 as Ψ→ Ψc and has the following approximation

(3.8) ψ(x, y, t) =

(
−Re(σmc,1)

Re(P )

) 1
2

fmc
(x, y, t) + o

(
|Ψ−Ψc|

1
2

)
.

The spatial structure of the time periodic solution ψ is shown at t = 0 for different aspect ratios a
in Figure 2.

(2) If Re(P ) > 0, the system (2.5) undergoes a jump transition on Ψ < Ψc accompanied by a subcritical
Hopf bifurcation. In particular, an unstable periodic orbit ψ given by (3.8) bifurcates on Ψ < Ψc and
there is no periodic solution bifurcating from 0 on Ψ > Ψc. Moreover, there is a singularity separation
at some Ψs < Ψc generating an attractor and an unstable periodic orbit ψ.

When the PES condition (3.5) holds, the system exhibits a Hopf bifurcation as described by Theorem 3.1.
The type of transition boils down to the determination of the transition number P given in (B.8) of Appendix
B. For the practical calculation of this number, we refer to Appendix C. Our analysis given in Figure 6 shows
that for low forcing frequencies k = 1, 2, 3, generally Re(P ) < 0 and as a result only continuous transition
(supercritical Hopf bifurcation) is possible for the parameter regime we have selected. In Figure 6, we also
display the critical wavenumber mc. In the range 4 ≤ a ≤ 20, the critical wavenumber is found to 1 ≤ mc ≤ 4.
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Figure 6. The real part of the transition number P compared to the channel aspect ratio a
normalized by the largest absolute value of ReP . The parameters are as set in Table 1.
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Im(σmc,1)

Ly

U compared to the (dimensional)

length of the channel Ldim = 2Ly/a of the both stable and unstable bifurcated time periodic
solution (3.8) in the Hopf bifurcation case. Here Ly and U are the characteristic scales defined
in Table 1. The jumps in the derivative of the time period of the bifurcated solution is due to
the change of the imaginary part Imσmc,1 of the critical eigenvalue at the double Hopf aspect
ratios aDH .

There are discontinuities in P vs a plot in Figure 6 of the transition number which are due to the changes
in the critical zonal wavenumber mc. These discontinuities take place at double Hopf bifurcation aspect ratios
where two consecutive zonal wavenumbers become critical simultaneously which is investigated in the next
section. However, there are also discontinuities in Figure 6, k = 1 case (for example near a = 16) whose origin
is mysterious.

As detailed in Appendix B, the transition number P accounts for two types of nonlinear interactions between
the eigenmodes, and is written

P = P0 + P2,

where P0 accounts for nonlinear interactions between the critical modes and the zonally homogeneous modes
m = 0 (see (B.9) below), while P2 accounts for the interactions between the critical modes and the modes
having wavenumbers twice that of the critical modes (see (B.10) below). A comparison of typical numerical
values of P0 and P2 shows that P2 is several orders of magnitudes smaller than P0; see Figure 8. We refer
to [3, Theorem III.1] for a transition number diagnosing also the type of Hopf bifurcations arising, generically,
in delay differential equations, and whose nature is also characterized by the interactions of linearized modes
through the model’s non-linear terms.
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Figure 8. The effect of P0 (of m = 0 modes) compared to the effect P2 (of 2mc modes) on
the transition number.
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Figure 9. P0,j/|P0,2| for even values of j. P0,j = 0 for odd values of j.

Moreover

P0 =

∞∑
j=0

P0,j

where P0,j measures the contribution of the j-th mode with zero wavenumber. Figure 9 shows that the decay
of P0,j as j →∞ is essentially linear. We believe the results in Figure 8 and Figure 9 may help when choosing
the modes to include in a simulation when the maximal shear velocity is well above the criticality.

We also compare the dimensional time period of the bifurcated solution (3.8) to the (dimensional) length of
the channel in Figure 3.2. With the default parameters as chosen in Table 1, our simulations yield a solution
with time period of 180-380 days depending on the channel length of 100-700kms.

3.3. Double Hopf Bifurcation. In this section we are interested in the transitions that take place at the
critical aspect ratios aDH where four modes with consecutive wavenumbers mc, mc + 1 become unstable as
given by the PES condition (3.6).

We first present the reduced equations in this case (for proofs, see Appendix D).

Lemma 3.2. Assume that the first critical eigenvalues have complex multiplicity 2 so that the assumption (3.6)
holds. Then, the transition and stability of the steady state solution (2.3) of the equations (2.5) in the vicinity
of the critical Reynolds number Ψ = Ψc and for any sufficiently small initial condition are equivalent to the
stability of the zero solution of the following equations

(3.9)

dz1

dt
= σmc,1z1 + z1(A|z1|2 +B|z2|2) + o(|z|)3),

dz2

dt
= σmc+1,1z2 + z2(C|z1|2 +D|z2|2) + o(|z|)3),

where z1(t), z2(t) ∈ C denote the amplitudes of the projection of the solution onto the first eigenfunctions
ψmc,1, ψmc+1,1 and the transition numbers A,B,C,D are determined by the nonlinear interactions of the
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Figure 10. The regions in the λ1–λ2 plane with different dynamical behaviors. In region
V, the basic steady state is locally asymptotically stable. In regions IV and VI, the system
undergoes a supercritical Hopf bifurcation. The dynamics in regions I, II and III is the
double Hopf bifurcation scenario and the details are given in Figure 11. The lines T1 and T2 in
the Figure have slopes 1/θ and δ (as defined in (3.12)) respectively.

first eigenfunction with higher modes given by (D.2). More precisely, the terms A and D account for the
self-interactions among the critical modes, while the terms B and C account for the cross-interactions between
the critical modes with the higher modes.

It is known that the equation (3.9) exhibit a zoo of dynamical behaviors. We refer to [11] for a detailed
analysis of all possible cases. Here, we restrict our attention to the case

(3.10) Re(A) < 0, Re(B) < 0,Re(B) + Re(C) < 0,Re(D) < 0,

which is the only case we observe in our numerical experiments, see Table 2. Under these conditions it is known
that the transition is continuous (see Theorem 2.3 in [12]). For the next theorem, let us define the numbers

(3.11) λ1 = Re(σmc,1), λ2 = Re(σmc+1,1).

(3.12) δ =
Re(C)

Re(A)
, θ =

Re(B)

Re(D)

η1 =

(
λ1 − θλ2)

(θδ − 1) Re(A)

) 1
2

, η2 =

(
λ2 − δλ1

(θδ − 1) Re(D)

) 1
2

.

Recalling fmc defined in (3.3) (with m = mc), we define the following spatio-temporal profiles

(3.13)

ψmc
p (x, y, t) =

(
− λ1

Re(A)

) 1
2

fmc
(x, y, t) + o

(
|Ψ−Ψc|

1
2

)
,

ψmc+1
p (x, y, t) =

(
λ2

Re(D)

) 1
2

fmc+1(x, y, t) + o
(
|Ψ−Ψc|

1
2

)
,

ψqp(x, y, t) = η1fmc
(x, y, t) + η2fmc+1(x, y, t) + o

(
|Ψ−Ψc|

1
2

)
Theorem 3.2. Assume that the conditions of Lemma 3.2 as well as the condition (3.10) hold. Then the
equations (2.5) undergo a continuous transition at Ψ = Ψc, and an S3 attractor Σ bifurcates on Ψ > Ψc, which
converges to 0 as Ψ ↓ Ψc. Depending on the values of θ and δ, there are three transition scenarios as shown in
Figure 10. In each scenario, near the onset of transition (λ1, λ2) = (0, 0), λ1−λ2 plane is dissected into several
regions with distinct topological structures for the attractor Σ as given in Figure 11.

Remark 3.1. (1) If z2 = 0 or z1 = 0, the equations (3.9) reduce to the equation (3.7) with A = P or
D = P respectively. Thus Lemma 3.1 and Theorem 3.1 are special cases of Lemma 3.2 and Theorem 3.2
respectively.
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Figure 11. The dynamics in the regions given in the first quadrant of Figure 10. ψmc
p , ψmc+1

p

are time-periodic with zonal wavenumbers mc and mc+ 1 respectively. ψqp is the quasiperiodic
solution given in (3.13).

(2) We note that the features of the spatial structures of upper vs lower layer of the bifurcated periodic
solutions in Figure 2 and the quasi-periodic solution in Figure 12 do not alter much. We expect that
the situation would be different if bottom topography is included.

The transition scenario of double Hopf transition is given by Theorem 3.2 by Figure 10 and Figure 11. We
find that near the onset of transition, depending on the fluctuations the basic state transitions either to a
time periodic solution or a quasi periodic solution. Our results in Table 2 show that all three of the scenarios
presented in Figure 10 are realizable.

In particular, near a double Hopf transition point, one of the following three possibilities must occur post
transition, Ψ > Ψc:

• there is only a single stable limit cycle,
• there are two distinct stable limit cycles, and an unstable quasi-periodic solution
• there is a stable quasi-periodic solution and either one or two unstable limit cycles.

For the double Hopf transition, Theorem 3.2 basically tells that all of the above local structures, the time periodic
solution and the 2D torus, if they exist, reside in a local attractor homeomorphic to the three dimensional sphere.
The existence of this attracting 3D sphere is guaranteed by the attractor bifurcation theorem, Theorem 6.1 in
[15].

4. Summary and Discussion

In this paper, we investigated the stability of a parallel zonal jet forced by a Kolmogorov-type wind stress
in a periodic zonal channel, using a two-layer quasi-geostrophic (QG) model. This problem is, in terms of
complexity, situated between the horizontally unbounded problem [20, 27] and the fully bounded gyre problem
[6]. More precisely, the effect of boundaries is captured by the interactions of only a few modes (solutions of
the linear stability problem), while still keeping a parallel flow which is connected to the wind-stress field.

Our numerical results show that, as expected based on earlier one ([10, 2, 8, 14]), the zonal shear flow is linearly
stable if its maximal amplitude Ψ (or equivalently the maximal amplitude τ of the wind-stress curl) is below a
critical threshold Ψc. Moreover, as this critical threshold is exceeded, generically a Hopf bifurcation occurs. We
approach the problem using dynamic transition theory determining all the attractors near a transition. Under
characteristic values of parameters which describe the midlatitude ocean we find that a continuous transition in
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Figure 12. Real part of the upper and lower layers of the time quasi-periodic solution ψqp
given in Theorem 3.2 at t = 0 for k = 1 and a = 5.722 where the first two critical wavenumbers
are mc = 1 and mc = 2.

the form of supercritical Hopf bifurcation occurs. The numerical results also show that instead of infinitely many
modes which effect the type of transition (supercritical vs subcritical Hopf), the transition is indeed determined
by the interaction of the first two critical modes with only the first few zonally homogeneous (m = 0) modes.

We also investigated the double Hopf bifurcation scenario which takes place at critical length scales where
four modes with consecutive wavenumbers become critical. By a rigorous center manifold analysis, we obtain the
coefficients of the 4D-ODE system. Our results show that for the parameters we have considered, there exists
a quasi-periodic solution which is a linear combination of two periodic solutions and may be stable depending
on the parameters. From a transition point of view, in the double Hopf transition, an attractor homeomorphic
to 3D sphere bifurcates. This attractor contains stable/unstable limit cycles and an stable/unstable invariant
torus (a quasi-periodic solution).

The results add more detail to the nonlinear development of baroclinic instabilities on a non-constant parallel
zonal jet, in that the periodic orbits can become unstable to torus bifurcations and give rise to quasi-periodic
behavior. Such a scenario was also found for the barotropic double gyre flow [28], but only in a weakly nonlinear
framework using a set of (reduced) amplitude equations. The transition scenario found for the zonally periodic
zonal jet is likely to be more relevant for the ocean circulation than the sideband instabilities in the zonally
unbounded zonal jet case which require a nearby band of wavenumbers to be unstable.

In our set-up, the linear friction coefficient in the upper layer is relatively large and as explained needed to
balance the vorticity input by the wind stress for generating the zonal jet. When this friction is decreased, more
modes will become unstable near the critical point and their interaction will allow to give a detailed view on
the eddy formation process due to baroclinic instabilities. In this way, the dynamic transition theory approach,
possibly with extensions as in [4], provides a way forward to develop a mathematical theory of such ocean-eddy
formation processes.

Acknowledgments: This work has been partially supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant agreement No. 810370). This
study was also supported by a Ben May Center grant.
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Appendix A. Numerical treatment of the linear stability problem

To solve the eigenvalue problem numerically, we first plugin the ansatz

(A.1) ψ(x, y) = eiαmxYj(y), j ∈ N,m ∈ Z, αm := amπ.

into the eigenvalue problem

σMψ(x, y) = N (y)ψ(x, y),

to obtain

(A.2) σM̃Y (y) = Ñ (y)Y (y), Y (y) = (Y1(y), Y2(y))

Here the linear operators M̃ and Ñ (y) are defined as

(A.3) M̃ =

∆m − F1 F1

F2 ∆m − F2

 , Ñ (y) =

N11 N12

N21 N22


where

(A.4)

N11 = c1 cos kπy
(
(kπ)2 + ∆m

)
− βiαm − r1∆m

N12 = c1F1 cos kπy

N21 = 0

N22 = −c1F2 cos kπy − βiαm − r2∆m

∆m = D2 − α2
m, D =

∂

∂y

c1 = Ψkπiαm.

The eigenvalue problem (A.2) is supplemented with the following boundary conditions

(A.5) Yi(±1) = D2Yi(±1) = 0, i = 1, 2.

We use Legendre-Galerkin method to discretize and solve the (A.2) with boundary conditions (A.5). We refer
to [23] for the details of the Legendre-Galerkin method and to [8] for its use in dynamical transition problems.

Let {Lj} be the Legendre polynomials and consider compact combinations of the Legendre polynomials

fj(y) = Lj(y) +

4∑
k=1

cjkLj+k(y)

with cjk chosen so that fj satisfy the boundary conditions (A.5), i.e.

fj(±1) = D2fj(±1) = 0.

To discretize the eigenvalue problem, we plug

(A.6) Y
Ny

i (y) =

Ny−1∑
j=0

y
(i)
j fj(y), Ŷi = [y

(i)
0 , . . . , y

(i)
Ny−1]T , i = 1, 2.

into (A.2) to obtain

(A.7) σ

∆̂m − F1A3 F1A3

F2A3 ∆̂m − F2A3

Ŷ1

Ŷ2

 =

N̂11 N̂12

N̂21 N̂22

Ŷ1

Ŷ2



(A.8)

N̂11 = c1(kπ)2A5 + c1
(
AT4 − α2

mA5

)
− βiαmA3 − r1∆̂m

N̂12 = c1F1A5

N̂21 = 0

N̂22 = −c1F2A5 − βiαmA3 − r2∆̂m
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Here

(A.9)

A1 = (D4fj , fk), A2 = (D2fj , fk), A3 = (fj , fk),

A4 = (cos kπyD2fj , fk), A5 = (cos kπyfj , fk),

∆̂m = A2 − α2
mA3,

with (f, g) =
∫ 1

−1
f(y)g(y) dy. The explicit expression of the matrices Ai, i = 1, . . . , 5 can be found in [8].

Appendix B. Proof of Lemma 3.1 and Theorem 3.1

We first proceed with the proof of Lemma 3.1 For this, we denote the adjoint modes by

ψ∗m,j = eiαmxY ∗m(y).

We denote the critical eigenmode and the critical eigenvalue by

ψc = ψmc,1, σc = σmc,1.

We denote the bilinear operator G as

G(u) = G2(u, u)

where G2(u, v) is linear in each component. Let us define now

(B.1) Gs(u, v) = G2(u, v) +G2(v, u).

The center part of the solution is

(B.2) uc = z(t)ψc + c.c.

where c.c. stands for complex conjugate of the terms before.
The evolution of z(t) near the onset of transition is obtained by the projection onto the critical mode ψc.

(B.3) ż = σcz +
1

〈Mψc, ψ∗c 〉
〈G(uc + Φ), ψ∗c 〉.

where Φ is the center manifold function. We will obtain its quadratic approximation Φ2 given by

Φ = Φ2(z, z) + o(2)

Here

o(n) = o (|(z, z)|n)

denotes higher than n-th order terms in z, z.
Using the notation (B.1), the reduced equation (B.3) can be written

(B.4) ż = σcz +
1

〈Mψc, ψ∗c 〉
〈Gs(uc,Φ2), ψ∗c 〉+ o(3).

To obtain a closed system, we need to approximate the center manifold function. The approximation of the
center manifold in this case reads, see [22],

(B.5) Φ2 = (2σc − L)−1ΠsG2(zψc, zψc) + (σc + σc − L)−1ΠsG2(zψc, zψc) + c.c.

where L = ΠsM−1N and Πs is the projection on the stable space. Using the formula (B.5), we obtain the
expansion of the center manifold as

(B.6) Φ2 = z2
∑
j≥1

g2mc,jψ2mc,j + |z|2
∑
j≥1

g0,jψ0,j + c.c.

Here

(B.7)

g0,j =
1

(σc + σc − σ0,j)〈Mψ0,j , ψ∗0,j〉
〈G2(ψc, ψc), ψ

∗
0,j〉

g2mc,j =
1

(2σc − σ2mc,j)〈Mψ2mc,j , ψ
∗
2mc,j

〉
〈G2(ψc, ψc), ψ

∗
2mc,j〉,

are the coefficients of the center manifold function.
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We write (B.4) as (3.7), that is

ż = σcz + Pz|z|2 + o(3).

which finishes the proof of Lemma 3.1.
Recalling the definition of Gs given in (B.1), the transition number P can then be written as

(B.8) P = P0 + P2,

where

(B.9) P0 =
∑
j≥1

P0,j , P0,j =
1

〈Mψc, ψ∗c 〉
(g0,j + c.c.)〈Gs(ψc, ψ0,j), ψ

∗
c 〉,

denotes the contribution of m = 0 modes ψ0,j while

(B.10) P2 =
∑
j≥1

P2,j , P2,j =
1

〈Mψc, ψ∗c 〉
g2mc,j〈Gs(ψc, ψ2mc,j), ψ

∗
c 〉,

denotes the contribution of 2mc modes ψ2mc,j on the transition number respectively. The transition depends on
the real part of the transition number P . The proof of Theorem 3.1 follows from the standard Hopf bifurcation
analysis of the reduced equation.

Appendix C. Practical aspects for the calculation of the transition number

The practical calculation of the P0-term in (B.9) and the P2-term in (B.10), boils down to the efficient
calculation of the inner and trilinear products involved therein. In that respect, we provide here explicit
expressions of the latter. They are given by

〈Mψm,j , ψ
∗
m,j〉 = iαm

∫ 1

−1

(
(D2 − α2

m − F1)Y 1
m,j + F1DY

2
m,j

)
Y ∗1m,j dy

+iαm

∫ 1

−1

(
(D2 − α2

m − F2)Y 2
m,j + F2DY

1
m,j

)
Y ∗2m,j dy,

and

〈G2(ψm,j , ψn,k), ψ∗p,l〉 = −δm+n−p

(∫ 1

−1

G1
2Y
∗,1
p,l +G2

2Y
∗,2
p,l

)
dy,

G1
2 = iαmY

1
m,j

(
D(D2 − α2

n − F1)Y 1
n,k + F1DY

2
n,k

)
− iαn

(
(D2 − α2

n − F1)Y 1
n,k + F1Y

2
n,k

)
DY 1

m,j

G2
2 = iαmY

2
m,j

(
D(D2 − α2

n − F2)Y 2
n,k + F2DY

1
n,k

)
− iαn

(
(D2 − α2

n − F2)Y 2
n,k + F2Y

1
n,k

)
DY 2

m,j .

In practice, the integrals can be evaluated by any commonly used quadrature rules in which the values of
the integrand are evaluated at quadrature points. In our calculations, we use∫ 1

−1

f(y) dy =

Ny∑
n=0

f(yn)ωn,

where yn and ωn are Legendre-Gauss-Lobatto quadrature points and weights respectively.

Appendix D. Proof of Lemma 3.2 and Theorem 3.2

As the reduction in the case of (3.6) is similar to the case of (3.5) given in the previous section, we will only
mention the differences between these two cases. Under the assumption (3.6), we write the center part of the
solution as

uc = z1(t)ψ1 + z2(t)ψ2 + c.c.

where the first two critical modes are

ψ1 = ψmc,1, ψ2 = ψmc+1,1, ψ−1 = ψ−mc,1, ψ−2 = ψ−mc−1,1.
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with corresponding eigenvalues

σ1 = σmc,1, σ2 = σmc+1,1, σ−1 = σ−mc,1, σ−2 = σ−mc−1,1

The equation (B.4) becomes the system

(D.1) żj = σjzj +
1

〈Mψj , ψ∗j 〉
〈G(uc + Φ2), ψ∗j 〉+ o(3), j = 1, 2.

and the center manifold function (B.5) is replaced by

Φ2 =

2∑
|j|,|k|=1

zjzkΨj,k + o(2), Ψj,k = (σj + σk − L)−1ΠsG2(ψj , ψk).

Now, the equations (D.1) become (3.9) with the coefficients defined as below.

(D.2)

A = g1,1,−1,1 + g1,−1,1,1 + g−1,1,1,1

B = g1,2,−2,1 + g1,−2,2,1 + g2,1,−2,1 + g2,−2,1,1 + g−2,1,2,1 + g−2,2,1,1

C = g2,1,−1,2 + g2,−1,1,2 + g1,2,−1,2 + g1,−1,2,2 + g−1,2,1,2 + g−1,1,2,2

D = g2,2,−2,2 + g2,−2,2,2 + g−2,2,2,2

gi,j,k,l =
1

〈Mψl, ψ∗l 〉
〈Gs(ψi,Ψj,k, ψ

∗
l )〉,

Ψj,k = (σj + σk − L)−1ΠsG2(ψj , ψk)

We note that the above coefficients contain only gi,j,k,l for which i + j + k = l. The expansion of the center
manifold coefficients can be written more explicitly as

Ψj,k =

∞∑
i=1

〈G2(ψmj
, ψmk

), ψ∗mj+mk,i
〉

〈Mψmj+mk,i, ψ
∗
mj+mk,i

〉
(σj + σk − σmj+mk

)−1ψmj+mk,i

Now we analyze the equations (3.9) by first putting them in polar form

zj = ρie
iγj , j = 1, 2

which yields

(D.3)
ρ̇1 = Re(σ1)ρ1 + ρ1(Re(A)ρ2

1 +Re(B)ρ2
2) + h.o.t.

ρ̇2 = Re(σ2)ρ2 + ρ2(Re(C)ρ2
1 +Re(D)ρ2

2) + h.o.t.

and
γ̇1 = Im(σ1) + h.o.t.

γ̇2 = Im(σ2) + h.o.t.

For the specific case of (3.10), the equations (D.3) always admit the solutions which represent the periodic
solutions

(ρ1, ρ2) =

(
−Re(σ1)

Re(A)
, 0

)
,

(ρ1, ρ2) =

(
0,−Re(σ2)

Re(D)

)
,

with respective eigenvalues

κ1 = −2σ1, κ2 = σ2 − δσ1

κ1 = −2σ2, κ2 = σ1 − θσ2

Also, the equations (D.3) admit the following solution which represents a quasi-periodic solution

(ρ1, ρ2) =

(
σ1 − θσ2

Re(A)(θδ − 1)
,

σ2 − δσ1

Re(D)(θδ − 1)

)
.
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Since the Jacobian matrix of the right hand side of (D.3) at the quasi-periodic solution has determinant

−4(σ2 − δσ1)(σ1 − θσ2)

θδ − 1
.

With this information, the transition scenarios summarized in Figure 10 and Figure 11 can be obtained by a
standard analysis. To prove the claim on the bifurcation of an S3-attractor, we need to prove that (ρ1, ρ2) =
(0, 0) is locally stable equilibrium of (D.3) at Ψ = Ψc, that is when Re(σ1) = Re(σ2) = 0. In this case by
assumption (3.10), from (D.3), we can obtain

d

dt
(ρ2

1 + ρ2
2) = Re(A)ρ4

1 + (Re(B) + Re(C))ρ2
1ρ

2
2 + Re(D)ρ4

2 < 0

which proves the claim.

Ly meridional length scale 106 m

H1 upper layer depth 250m

H2 upper layer depth 750m

∆ρ density difference ρ2 − ρ1 = 1 kgm−3

U characteristic velocity τ0/(ρ0H1β0Ly) = 0.02 m s−1

τ0 characteristic zonal wind stress 0.1 Pa

β0 planetary vorticity gradient 2× 10−11 (ms)−1

f0 reference Coriolis parameter 10−4 s−1

ε0 bottom friction coefficient 10−7 s−1

g gravitational acceleration 9.8 ms−2

g′ reduced gravity g∆ρ/ρ0 = 0.01 ms−2

ρ0 reference density 103 kgm−3

F1 upper layer Froude number f2
0L

2
y/(g

′H1) = 4000

F2 lower layer Froude number f2
0L

2
y/(g

′H2) = 4000/3

β planetary vorticity factor β0L
2
y/U = 1000

τ wind-stress parameter 1.0

r2 lower layer linear friction coefficient r2 = ε0Ly/U = 5.0

Table 1. Model parameters.
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