
HAL Id: hal-03372074
https://hal.science/hal-03372074

Preprint submitted on 9 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tracking cell lineages in 3D by incremental deep learning
Ko Sugawara, Cagri Cevrim, Michalis Averof

To cite this version:
Ko Sugawara, Cagri Cevrim, Michalis Averof. Tracking cell lineages in 3D by incremental deep learn-
ing. 2021. �hal-03372074�

https://hal.science/hal-03372074
https://hal.archives-ouvertes.fr

Tracking cell lineages in 3D by incremental deep learning

Ko Sugawara1,2,*, Cagri Cevrim1,2 and Michalis Averof1,2,*

1 Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure
de Lyon, 32 avenue Tony Garnier, 69007 Lyon, France

2 Centre National de la Recherche Scientifique (CNRS), France

* Authors for correspondence (ko.sugawara@ens-lyon.fr, michalis.averof@ens-

lyon.fr)

Abstract: Deep learning is emerging as a powerful approach for bioimage analysis, but
its wider use is limited by the scarcity of annotated data for training. We present
ELEPHANT, an interactive platform for cell tracking in 4D that seamlessly integrates
annotation, deep learning, and proofreading. ELEPHANT’s user interface supports
cycles of incremental learning starting from sparse annotations, yielding accurate, user-
validated cell lineages with a modest investment in time and effort.

Source code: https://github.com/elephant-track/

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 2

Main text

Recent progress in deep learning has led to significant advances in bioimage analysis 1-4. As
deep learning is data-driven, it is adaptable to a variety of datasets once an appropriate model
architecture is selected and trained with adequate data 1. In spite of its powerful performance,
deep learning remains challenging for non-experts to utilize, for three reasons. First, pre-
trained models can be inadequate for new tasks and the preparation of new training data is
laborious. Because the quality and quantity of the training data are crucial for the performance
of deep learning, users must invest significant time and effort in annotation at the start of the
project 1. Second, an interactive user interface for deep learning, especially in the context of
cell tracking, is lacking. Third, deep learning applications are often limited by accessibility to
computing power (high-end GPU). We have addressed these challenges by establishing
ELEPHANT (Efficient learning using sparse human annotations for nuclear tracking), an
interactive web-friendly platform for cell tracking, which seamlessly integrates manual
annotation with deep learning and proofreading of the results. ELEPHANT implements two
algorithms optimized for incremental deep learning using sparse annotations, one for
detecting nuclei in 3D and a second for linking these nuclei across timepoints in 4D image
datasets. Incremental learning allows models to be trained in a stepwise fashion on a given
dataset, starting from sparse annotations that are incrementally enriched by human
proofreading, leading to a rapid increase in performance (Figure 1a). ELEPHANT is
implemented as an extension of Mastodon (https://github.com/mastodon-sc/mastodon), an
open-source framework for large-scale tracking based on Fiji 5. It implements a client-server
architecture, in which the server provides a deep learning environment equipped with
sufficient GPU (Supplementary Figure 1).

ELEPHANT employs the tracking-by-detection paradigm 6, which involves initially
the detection of nuclei in 3D and subsequently their linking over successive timepoints to
generate tracks. In both steps, the nuclei are represented as ellipsoids, using the data model of
Mastodon (Figure 1b, c). In the detection phase, voxels are labelled as background, nucleus
center or nucleus periphery, or left unlabelled (Figure 1b, top right). The nucleus center and
nucleus periphery labels are generated by the annotation of nuclei, and the background can be
annotated either manually or by intensity thresholding. Sparse annotations (e.g. of a few
nuclei in a single timepoint) are sufficient to start training. A U-Net convolutional neural
network (U-Net CNN; 7,8, Supplementary Figure 2) is then trained on these labels (ignoring
the unlabelled voxels) to generate voxel-wise probability maps for background, nucleus
center, or nucleus periphery, across the entire image dataset (Figure 1b, bottom right). Post-
processing on these probability maps yields predictions of nuclei which are available for
visual inspection and proofreading (validation or rejection of each predicted nucleus) by the
user (Figure 1b, bottom left). Human-computer interaction is facilitated by color coding of the
annotated nuclei (as true positive, false positive, true negative, false negative, or unevaluated,
see Supplementary Figure 3) based on the proofreading. The cycles of training and prediction
are rapid because only a small amount of training data are added each time (in the order of
seconds, see Supplementary Table 1). As a result, users can enrich the annotations by

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 3

proofreading the output almost simultaneously, enabling incremental training of the model in
an efficient manner.

In the linking phase, we found that nearest neighbour approaches for tracking nuclei
over time 9 perform poorly in challenging datasets when the cells are dividing; hence we
turned to optical flow modeling to improve linking 10-12. A second U-Net CNN, optimized for
optical flow estimation (Supplementary Figure 4), is trained on manually generated/validated
links between nuclei in successive timepoints (Figure 1c, top left). Unlabelled voxels are
ignored, hence training can be performed on sparse linking annotations. The flow model is
used to generate voxel-wise 3D flow maps, representing predicted x, y and z displacements
over time (Figure 1c, bottom right), which are then combined with nearest neighbour linking
to predict links between the detected nuclei (see Methods). Users proofread the linking results
to finalize the tracks and to update the labels for the next iteration of training (Figure 1c,
bottom left).

We evaluated the performance of ELEPHANT using two types of 4D confocal
microscopy datasets in which nuclei were visualized by fluorescent markers: the first type of
dataset captures the embryonic development of Caenorhabditis elegans (CE datasets), which
has been used in previous studies to benchmark tracking methods 13,14, and the second type
captures limb regeneration in Parhyale hawaiensis (PH dataset, imaging adapted from 15),
which presents greater challenges for image analysis (see below, Supplementary Video 1).
For both types of dataset, we find that fewer than ten annotated nuclei are sufficient to initiate
a virtuous cycle of training, prediction and proofreading, which efficiently yields cell tracks
and validated cell lineages in highly dynamic tissues.

Interactive cycles of manual annotation, deep learning and proofreading on
ELEPHANT reduce the time required to detect and validate nuclei (Figure 2a). On the CE1
dataset, a complete cell lineage was built over 195 timepoints, from scratch, using
ELEPHANT’s semi-automated workflow (Figure 2c). The detection model was trained
incrementally starting from sparse annotations (four nuclei) on the first timepoint. On this
dataset, linking could be performed using the nearest neighbor algorithm (without flow
modeling) and manual proofreading. In this way, we were able to annotate in less than 8 hours
a total of 23,829 nuclei (across 195 timepoints), of which ~2% were manually annotated (483
nuclei) and the remaining nuclei were collected by validating predictions of the deep-learning
model.

Although ELEPHANT works efficiently without prior training, cell tracking can be
accelerated by starting from models trained on image data with similar characteristics. To
illustrate this, we used nuclear annotations in a separate dataset, CE2, to train a model for
detection, which was then applied to CE1. This pre-trained model allowed us to detect nuclei
in CE1 much more rapidly and effortlessly than with an untrained model (Figure 2a, blue
versus orange curves). For benchmarking, the detection and linkage models trained with the
annotations from the CE1 and CE2 lineage trees were then tested on unseen datasets with
similar characteristics (without proofreading), as part of the Cell Tracking Challenge 6,14. In
this test, our models with assistance of flow-based interpolation (see Methods) outperformed

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 4

state-of-the-art tracking algorithms 16,17 in detection (DET) and tracking (TRA) metrics
(Figure 2b).

The PH dataset presents greater challenges for image analysis, such as larger
variations in the shape, intensity, and distribution of nuclei, lower temporal resolution, and
more noise (Supplementary Figure 5). ELEPHANT has allowed us to grapple with these
issues by supporting the continued training of the models through visual feedback from the
user (annotation of missed nuclei, validation and rejection of predictions). Using
ELEPHANT, we annotated and validated over 260,000 nuclei in this dataset, across 504
timepoints spanning 168 hours of imaging.

We observed that the conventional nearest neighbor approach was inadequate for
linking in the PH dataset, resulting in many errors in the lineage trees (Figure 2d). This is
likely due to the lower temporal resolution in this dataset (20 minutes in PH, versus 1-2
minutes in CE) and the fact that daughter nuclei often show large displacements at the end of
mitosis. We trained optical flow using 1,162 validated links collected from 10 timepoints
(including 18 links for 9 cell divisions). These sparse annotations were sufficient to generate
3D optical flow predictions for the entire dataset (Supplementary Video 2), which
significantly improved the linking performance (Figure 2d, Supplementary Table 2): the
number of false positive and false negative links decreased by ~57% (from 2,093 to 905) and
~32% (from 1,991 to 1349), respectively, among a total of 259,071 links.

By applying ELEPHANT’s human-in-the-loop semi-automated workflow, we
succeeded in reconstructing 109 complete and fully-validated cell lineage trees encompassing
the duration of leg regeneration in Parhyale, each lineage spanning a period of ~1 week (504
timepoints, Supplementary Figure 6). Using analysis and visualization modules implemented
in Mastodon and ELEPHANT, we could capture the distribution of cell divisions across time
and space (Figure 2e) and produce a fate map of the regenerating leg of Parhyale (Figure 2f).
This analysis, which would have required several months of manual annotation, was achieved
in ~1 month of interactive cell tracking in ELEPHANT, without prior training. Applying the
best performing models to new data could improve tracking efficiency even further.

Methods

Image datasets
The PH dataset (dataset li13) was obtained by imaging a regenerating T4 leg of the crustacean
Parhyale hawaiensis, based on the method described by 15 (Supplementary Video 1). The
imaging was carried out on a transgenic animal carrying the Mi(3xP3>DsRed; PhHS>H2B-
mRFPRuby) construct 18, in which nuclear-localised mRFPRuby fluorescent protein is
expressed in all cells following heat-shock. The leg was amputated at the distal end of the
carpus. Following the amputation, continuous live imaging over a period of 1 week was
performed on a Zeiss LSM 800 confocal microscope equipped with a Plan-Apochromat
20x/0.8 M27 objective (Zeiss 420650-9901-000), in a temperature control chamber set to
26˚C. Heat-shocks (45 minutes at 37˚C) were applied 24 hours prior to the amputation, and 65

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 5

and 138 hours post-amputation. Every 20 minutes we recorded a stack of 11 optical sections,
with a z step of 2.48 microns. Voxel size (in xyz) was 0.31 x 0.31 x 2.48 microns.

The CE1 and CE2 datasets were from 13, obtained via the Cell Tracking Challenge 14
(datasets Fluo-N3DH-CE).

ELEPHANT platform architecture
ELEPHANT implements a client-server architecture (Supplementary Figure 1), which can be
set up on the same computer or on multiple connected computers. This architecture brings
flexibility: allowing the client to run Mastodon (implemented in Java) while the deep learning
module is implemented separately using Python, and releasing the client computer from the
requirements of high GPU needed to implement deep learning. The client side is implemented
by extending Mastodon, a framework for cell tracking built upon the SciJava ecosystem
(https://scijava.org/) and is available as a Fiji 5 plugin. Combining the BigDataViewer 19 with
an efficient memory access strategy (https://github.com/mastodon-
sc/mastodon/blob/master/doc/trackmate-graph.pdf), Mastodon enables fast and responsive
user interaction even for very large datasets. ELEPHANT leverages the functionalities
provided by Mastodon, including the functions for manual annotation of nuclei, and extends
them by implementing modules for deep learning-based algorithms.

The server side is built using an integrated system of a deep learning library (PyTorch
20), tools for tensor computing and image processing (Numpy 21, Scipy 22, Scikit Image 23) and
web technologies (Nginx, uWSGI, Flask). The client and the server communicate by
Hypertext Transfer Protocol (HTTP) and JavaScript Object Notation (JSON). To reduce the
amount of data exchanged between the client and the server, the image data is duplicated and
stored in an appropriate format on each side. An in-memory data structure (Redis) is used to
organize the priorities of the HTTP requests sent by the client. A message queue (RabbitMQ)
is used to notify the client that the model is updated during training. The client software is
available as a standalone Java executable packaged with Mastodon and other dependencies
(https://github.com/elephant-track/elephant-client). The server environment is provided as a
Docker container to ensure easy and reproducible deployment (https://github.com/elephant-
track/elephant-server).

Computer setup and specifications
In this study, we set up the client and the server on the same desktop computer (Dell
Alienware Aurora R6) with the following specifications: Intel Core i7-8700K CPU @
3.70GHz, Ubuntu 18.04, 4x16 GB DDR4 2666 MHz RAM, NVIDIA GeForce GTX 1080 Ti
11 GB GDDR5X (used for deep learning), NVIDIA GeForce GTX 1650 4 GB GDDR5, 256
GB SSD and 2 TB HDD. System requirements for the client and the server are summarized in
the user manual (https://elephant-track.github.io/).

Dataset preparation
Images were loaded in the BigDataViewer (BDV, 19) format on the client software. The CE1
and CE2 datasets were converted to the BDV format using the BigDataViewer Fiji plugin
(https://imagej.net/BigDataViewer)without any preprocessing. Because the PH dataset

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 6

showed non-negligible variations in intensity during long-term imaging, the original 16-bit
images were intensity normalized per timepoint before conversion to the BDV format;
intensity values were re-scaled so that the minimum and maximum values at each timepoint
become 0 and 65535, respectively. The PH dataset also showed 3D drifts due to heat-shocks.
The xy drifts were corrected using an extended version of image alignment tool 24 working as
an ImageJ 25 plugin, where the maximum intensity projection images were used to estimate
the xy displacements, subsequently applied to the whole image stack
(https://github.com/elephant-track/align-slices3d), and the z drifts were corrected manually by
visual inspection using Fiji.

On the server, images, annotation labels and outputs were stored in the Zarr format,
allowing fast read/write access to subsets of image data using chunk arrays. At the beginning
of the analysis, these data were prepared using a custom Python script that converts the
original image data from HDF5 to Zarr and creates empty Zarr files for storing annotation
labels and outputs (https://github.com/elephant-track/elephant-server).

Algorithm for detection
Detection of nuclei relies on three components: (i) a U-Net CNN that outputs probability
maps for nucleus center, nucleus periphery, and background, (ii) a post-processing workflow
that extracts nucleus center voxels from the probability maps, (iii) a module that reconstructs
nuclei instances as ellipsoids. We designed a variation of 3D U-Net 8 as illustrated in
Supplementary Figure 2. In both encoder and decoder paths, repeated sets of 3D convolution,
ReLU activation 26 and Group Normalization 27 are employed. Max pooling in 3D is used for
successive downsampling in the encoder path, in each step reducing the size to half the input
size (in case of anisotropy, maintaining the z dimension until the image becomes nearly
isotropic). Conversely, in the decoder path, upsampling with nearest-neighbor interpolation is
applied to make the dimensions the same as in the corresponding intermediate layers in the
encoder path. As a result, we built a CNN with 5,887,011 trainable parameters. The weights
are initialized with the Kaiming fan-in algorithm 28 and the biases are initialized to zero for
each convolution layer. For each group normalization layer, the number of groups is set as the
smallest value between 32 and the number of output channels, and the weights and biases are
respectively initialized to one and zero. When starting to train from scratch, the CNN is
trained using the cropped out 3D volumes from the original image prior to training with
annotations. In this prior training phase, a loss function 𝐿"#$%#is used that penalizes the
addition of the following two mean absolute differences (MADs): (i) nucleus center
probabilities 𝑐$ and the [0, 1] normalized intensity of the original image 𝑦$, (ii) background
probabilities 𝑏$ and the [0, 1] normalized intensity of the intensity-inverted image 1 − 𝑦$,
where stands for the voxel index of an input volume with voxels .

The prior training is performed on three cropped out 3D volumes generated from the

4D datasets, where the timepoints are randomly picked, and the volumes are randomly

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 7

cropped with random scaling in the range (0.8, 1.2). The training is iterated for three epochs
with decreasing learning rates (0.01, 0.001, and 0.0001, in this order) with the Adam
optimizer 29. The prior training can be completed in ~20 seconds for each dataset.

Training with sparse annotations is performed in the following steps. First, the client
application extracts the timepoint, 3D coordinates and covariances representing ellipsoids of
all the annotated nuclei in the specified time range. Subsequently, these data, combined with
user-specified parameters for training, are embedded in JSON and sent to the server in an
HTTP request. On the server side, training labels are generated from the received information
by rendering nucleus center, nucleus periphery, background and unlabeled voxels with
distinct values. The background labels are generated either by explicit manual annotation or
intensity thresholding, resulting in the label images as shown in Figure 1b. To render
ellipsoids in the anisotropic dimension, we extended the draw module in the scikit-image
library 23 (https://github.com/elephant-track/elephant-server). Training of the CNN is
performed using the image volumes as input and the generated labels as target with a loss
function that consists of three terms: (i) a class-weighted negative log-likelihood
(NLL) loss, (ii) a term computed as 1 minus the dice coefficient for the nucleus center voxels,
and (iii) a term that penalizes the roughness of the nucleus center areas. We used the
empirically-defined class weights for the NLL loss: nucleus center = 10, nucleus
periphery = 10, background = 1; the unlabelled voxels are ignored. The first two terms accept
different weights for the true annotations (i.e. true positive and true negative) and the false
annotations (i.e. false positive and false negative). The third term is defined as the MAD
between the voxel-wise probabilities for nucleus center and its smoothed representations,
which are calculated by the Gaussian filter with downsampling () and upsampling (
). Let stand for the voxel index of an input volume with voxels ,
for the input voxel value, for the output from the CNN before the last activation layer for
the three classes, for the voxel class label (1: nucleus center, 2: nucleus
periphery, 3: background, respectively), and for the
voxel annotation label. We define the following subsets: the voxel index with true labels

, with false labels , and the nucleus
center . In the calculation of the , a constant is used
to prevent zero division. Using these components and the empirically-defined weights for
each loss term (), we defined the as below.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 8

Training of the CNN is performed on the image volumes generated from the 4D

datasets, where the volumes are randomly cropped with/without random scaling, random
contrast and random rotation, which are specified at runtime. There are two modes for
training: (i) an interactive mode that trains a model incrementally, as the annotations are
updated, and (ii) a batch mode that trains a model with a fixed set of annotations. In the
interactive training mode, sparse annotations in a given timepoint are used to generate crops
of image and label volumes, with which training is performed using the Adam optimizer with
a learning rate specified by the user. In the batch training mode, a set of crops of image and
label volumes per timepoint is generated each iteration, with which training is performed for a
number of epochs specified by the user (ranging from 1 to 1,000) using the Adam optimizer
with the specified learning rates. In the prediction phase, the input volume can be cropped
into several blocks with smaller size than the original size to make the input data compatible
with available GPU memory. To stitch the output blocks together, the overlapping regions are
seamlessly blended by weighted linear blending.

As post-processing for the CNN output, voxel-wise probabilities for nucleus center
class are denoised by subtracting edges of background class that are calculated with the
Gaussian filter and the Prewitt operation for each z-slice. After denoising, the voxels with
nucleus center probabilities greater than a user defined value are thresholded and extracted as
connected components, which are then represented as ellipsoids (from their central moments).
These ellipsoids representing the nucleus center regions are enlarged so that they cover the
original nucleus size (without excluding its periphery), where the ellipsoids with radii smaller
than are removed and the radii are clamped to specified by the user, generating a list
of center positions and covariances that can be used to reconstruct the nuclei. On the client
application, the detection results are converted to Mastodon spots and rendered on the BDV
view, where the existing and predicted nuclei are tagged based on its status: labeled as
positive and predicted (true positive), labeled as positive and not predicted (false negative),
labeled as negative and not predicted (true negative), labeled as negative and predicted (false
positive) and newly predicted (non-validated). If more than one nucleus is predicted within a
user-specified threshold, the one with human annotation is given priority, followed by the one
with the largest volume.

Algorithm for linking
Linking of nuclei relies on two components: (i) estimation of the positions of nuclei at the
previous timepoint by optical flow estimation using deep learning, which is skipped in the
case of the nearest neighbor algorithm without flow support, (ii) association of nuclei based

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 9

on the nearest neighbor algorithm. We designed a variation of 3D U-Net for flow estimation
as illustrated in Supplementary Figure 4. In the encoder path, the residual blocks 30 with 3D
convolution and LeakyReLU 31 activation are applied, in which the outputs are divided by
two after the sum operation to keep the consistency of the scale of values. In the decoder path,
repeated sets of 3D convolution and LeakyReLU activation are employed. Downsampling and
upsampling are applied as described for the detection model. Tanh activation is used as a final
activation layer. As a result, we built a CNN with 5,928,051 trainable parameters. The
weights and biases for convolution layers are initialized as described for the detection model.
Training of the flow model with sparse annotations is performed in a similar way as for the
detection model. First, on the client application, for each annotated link, which connects the
source and target nuclei, the following information gets extracted: the timepoint, the
backward displacements in each of the three dimensions, and the properties of the target
nucleus (3D coordinates and covariances). Subsequently, these data, combined with
parameters for training, are embedded in JSON and sent to the server in an HTTP request. On
the server side, flow labels are generated from the received information by rendering
backward displacements for each target nucleus in each of three dimensions, where the
displacements are scaled to fit the range (-1, 1). In this study, we used fixed scaling factors
(1/80, 1/80, 1/10) for each dimension, but they can be customized to the target dataset.
Foreground masks are generated at the same time to ignore unlabelled voxels during loss
calculation. Ellipsoid rendering is performed as described for the detection training. Training
of the CNN for flow estimation is performed using the two consecutive image volumes (,

) as input, and the generated label as target. A loss function is defined with the
following three terms; (i) a dimension-weighted MAD between the CNN outputs and the flow
labels, (ii) a term computed as 1 minus the structural similarity (SSIM) 32 of and ,
where the estimated flow is applied to 33, (iii) a term penalizing the roughness of the CNN
outputs. Let stand for the voxel index of an input volume with voxels

, for the input voxel value, for the output of the CNN, for the
flow label, for the index of the annotated voxels, for the
dimension index for three dimensions and for the dimension weights. In the SSIM
calculation, we defined a function as a 3D Gaussian filter with the window size (7, 7,
3) and standard deviation of 1.5. Using these components and the empirically-defined
weights for each loss term (), we defined the as below.

,

, ,

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 10

, where and .
The training is performed on the image volumes generated from the 4D datasets,

where the sets of two consecutive images and corresponding flow labels are randomly
cropped with/without random scaling and random rotation, which are specified at runtime.
The training is performed for a fixed number of epochs using the Adam optimizer and with
learning rates specified by the user, generating a set of images and labels for each timepoint in
each epoch. The CNN outputs are rescaled to the original physical scale and used to calculate
the estimated coordinate of each nucleus center at the previous timepoint. Let stands
for a subset of voxel index of a nucleus and for its center coordinate. Using the output of the
CNN and the scaling factor , the estimated coordinate at the previous timepoint is
calculated.

These estimated coordinates are subsequently used to find the parent of the nucleus at the
previous timepoint by the nearest neighbor algorithm (a similar concept was introduced for
2D phase contrast microscopy data; 34,35). The pairs with a distance smaller than are
considered as link candidates, where the closer the Euclidean distance between the two points,
the higher their priority of being the correct link. Each nucleus accepts either one or two links,
determined by the estimated displacements and actual distances. Briefly, given that a single
nucleus has two possible links, it can accept both if at least one of the estimated
displacements is larger than the threshold or both distances are smaller than the threshold

. In this study, we used ad hoc thresholds and . If there are
competing links beyond the allowed maximum of two links, the links with smaller are
adopted and the remaining nucleus looks for the next closest nucleus up to neighbors.
The links are generated by repeating the above procedure until all the nuclei get linked or the
iteration count reaches to five. We optionally implement an interpolation algorithm, in which
each orphan nucleus tries to find its source up to timepoints back and is linked with a
nucleus at the estimated coordinate based on the flow prediction, interpolating the points in
between.

Detection and tracking in the CE datasets
On the CE1 and CE2 datasets, training of detection and flow models was performed with
volumes of 384 x 384 x 16 voxels that were generated by preprocessing with random scaling
in the range (0.5, 2) and random cropping. For training of a detection model, preprocessing
with random contrast in the range (0.5, 1) was also applied. In the label generation step, the
center ratio was set to 0.3 and the background threshold was set to 0.1 and 1 (i.e. all voxels
without manual annotations are background), for the interactive mode and the batch training
mode, respectively. In the interactive training of detection models, 10 labelled cropped out
volumes were generated per iteration, with which training was performed using the Adam
optimizer with a learning rate between 5x10-5 and 5x10-6. In the batch training of detection
models, training was performed for 100 epochs using the Adam optimizer with learning rates
of 5x10-5. In the training of a flow model, training was performed for 100 epochs using the

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 11

Adam optimizer with learning rates of 5x10-5 for the first 50 epochs and 5x10-6 for the last 50
epochs. and were set to 1 and 5, respectively, and was set to (1/3, 1/3, 1/3). In the
prediction phase, the input volumes were cropped into 2x2x2 blocks with size (544, 384, 28)
for CE1 or (544, 384, 24) for CE2, and stitched together to reconstruct the whole image of
(708, 512, 35) for CE1 or (712, 512, 31) for CE2. In the preprocessing of the prediction for
detection, we corrected the uneven background levels across the z-slices by shifting the slice-
wise median value to the volume-wise median value. In the postprocessing of the prediction
for detection, a threshold for the nucleus center probabilities were set to 0.3, and and

 were set to 1 and 3, respectively. In the nearest-neighbor linking with/without flow
prediction, was set to 5 µm and was set to 3. In the results submitted to the CTC
organizer (Figure 2b), the linking was performed by the nearest-neighbor linking with flow
support and an optional interpolation module, where was set to 5.

Detection and tracking in the PH dataset
On the PH dataset, training of detection and flow models was performed with volumes of 384
x 384 x 12 voxels generated by preprocessing with random rotation in the range of +/− 180
degrees and random cropping. For training a detection model, preprocessing with random
contrast in the range (0.5, 1) was also applied. In the label generation step, the center ratio
was set to 0.3, and the background threshold was set to 0.03. In the interactive training of a
detection model, 10 crops of image and label volumes were generated per iteration, with
which training was performed using the Adam optimizer with a learning rate between 5x10-5
and 5x10-6. In the batch training of a detection model, training was performed for 100 epochs
using the Adam optimizer with learning rates of 5x10-5. In the training of a flow model,
training was performed for 100 epochs using the Adam optimizer with learning rates of 5x10-5
for the first 50 epochs and 5x10-6 for the last 50 epochs. and were set to 1 and 3,
respectively, and was set to (1, 1, 8). In the prediction phase, the input volumes were fed
into the CNNs without cropping or further preprocessing. In the postprocessing of the
prediction for detection, a threshold for the nucleus center probabilities were set to 0.3, and

 and were set to 1 and 3, respectively. In the nearest-neighbor linking with/without
flow prediction, was set to 5 µm and was set to 3.

Analysis of CE and PH datasets
On the CE1 and CE2 datasets, the detection and link annotations were made starting from
timepoint 0 and proceeding forward until timepoints 194 (CE1) and 189 (CE2), respectively.
In the CE1 dataset, the detection was made from scratch, based on manual annotation and
incremental training, and the linking was performed by the nearest neighbor algorithm
without flow prediction. After completing annotation from timepoint 0 to 194 on the CE1
dataset, the detection and flow models were trained by the batch mode with the fully-labeled
annotations. In the CE2 dataset, the detection was performed in a similar way as for CE1, by
extending the model trained with CE1, and the linking was performed by the nearest neighbor
algorithm with flow support using the pre-trained model followed by proofreading.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 12

Incremental training of the detection model was performed when there were annotations from
nuclei that were not properly predicted.

On the PH dataset, the annotations were made by iterating the semi-automated
workflow. In general, the nuclei with high signal-to-noise ratio (SNR) were annotated early,
while the nuclei with low SNR were annotated in a later phase. The detection model was
updated frequently to fit the characteristics of each region and timepoint being annotated,
while the flow model was updated less frequently. The CE1 dataset was used to evaluate the
speed of detection and validation (Figure 2a). All workflows started at timepoint 0 and
proceeded forward in time, adding and/or validating all the nuclei found in each timepoint. To
evaluate the manual workflow, we annotated nuclei using hotkeys that facilitate the
annotation of a given nucleus at successive timepoints. To evaluate the ELEPHANT from
scratch workflow, we performed prediction with the latest model, followed by proofreading,
including add, modify or delete operations, and incremental training. At each timepoint, the
model was updated with the new annotations added manually or by proofreading. To evaluate
the ELEPHANT pre-trained workflow, we performed predictions with a model trained on the
CE2 dataset, followed by proofreading without additional training. The numbers of validated
nuclei associated with time were counted from the log data. We measured the counts over 30
minutes after the start of each workflow and plotted them in Figure 2a.

To compare the linking performances (Figure 2d), we trained the flow model with
1,162 validated links, including 18 links corresponding to 9 cell divisions, from 108 lineage
trees collected between timepoints 150 and 159. It took around 30 hours to train the flow
model from scratch using these links. Starting from a pre-trained model, the training time can
be decreased to a few minutes, providing a major increase in speed compared with training
from scratch (Supplementary Table 2).

The results shown in Figure 2e and Figure 2f were generated based on the tracking
results with 260,600 validated nuclei and 259,071 validated links. In the analysis for Figure
2e, nuclei were categorised as dividing or non-dividing depending on whether the lineages to
which they belong contain at least one cell division or not during the period of cell
proliferation (timepoints 100 to 350). Nuclei that did not meet these criteria were left
undetermined. For Figure 2f, the complete lineages of 109 nuclei were tracked through the
entire duration of the recording, from 0 to 167 hours post-amputation, with no missing links.

Evaluation of cell tracking performance
We submitted our results and executable software to the Cell Tracking Challenge organizers,
who evaluated our algorithm’s performance, validated its reproducibility using the executable
software that we submitted, and provided us with the scores. The details of the detection
accuracy (DET), tracking accuracy (TRA), and segmentation accuracy (SEG) metrics can be
found in the original paper 36 and the website (http://celltrackingchallenge.net/evaluation-
methodology/). Briefly, the DET score evaluates how many split, delete and add operations
are required to achieve the ground truth starting from the predicted nuclei, reflecting the
accuracy of detection; the TRA score evaluates how many split, delete and add operations for
nuclei, and delete, add and alter the semantics operations for links are required to reconstruct

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 13

the ground truth lineage trees from the predicted lineage trees, reflecting the accuracy of
linking; the SEG score evaluates the overlap of the detected ellipsoids with fully segmented
nuclei, reflecting the precision of nucleus segmentation. All three scores range from 0
(poorest) to 1 (best).

Code availability
The source code for the ELEPHANT client is available at https://github.com/elephant-
track/elephant-client, for the ELEPHANT server at https://github.com/elephant-
track/elephant-server, and for the Align Slices 3D+t extension ImageJ plugin at
https://github.com/elephant-track/align-slices3d. The user manual for ELEPHANT is
available at https://elephant-track.github.io/.

Acknowledgements
We are grateful to Anna Kreshuk and Constantin Pape for training in machine learning, to
Jean-Yves Tinevez and Tobias Pietzsch for support in developing ELEPHANT as a Mastodon
plugin, to the NEUBIAS community for feedback on the software, to the Cell Tracking
Challenge organizers for support in our submission to the challenge, and to Sebastien Tosi for
extensive feedback on the manuscript. We also thank Jan Funke, Carsten Wolff, Martin
Weigert, Jean-Yves Tinevez, Philipp Keller, Irepan Salvador-Martínez, Severine Urdy, and
Mathilde Paris for comments on the manuscript. This research was supported by the European
Research Council, under the European Union Horizon 2020 programme, grant ERC-2015-
AdG #694918; CC was supported by a doctoral fellowship from Boehringer Ingelheim Fonds.

Author contributions
KS and MA conceived the project; KS designed and produced the software, and evaluated its
performance; CC acquired the image dataset on regenerating limbs; KS and CC generated the
annotations and tested the software; KS and MA wrote the manuscript.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 14

References

1. Moen, E. et al. Deep learning for cellular image analysis. Nat Methods 16, 1233–1246

(2019).
2. Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning massively

accelerates super-resolution localization microscopy. Nat Biotechnol 36, 460–468
(2018).

3. Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence
microscopy. Nat Methods 15, 1090–1097 (2018).

4. Caicedo, J. C. et al. Nucleus segmentation across imaging experiments: the 2018 Data
Science Bowl. Nat Methods 16, 1247–1253 (2019).

5. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat
Methods 9, 676–682 (2012).

6. Maška, M. et al. A benchmark for comparison of cell tracking algorithms.
Bioinformatics 30, 1609–1617 (2014).

7. Ronneberger, O., Fischer, P. & Brox, T. in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015 234–241 (Springer, Cham, 2015).
doi:10.1007/978-3-319-24574-4_28

8. Cicek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. in Medical
Image Computing and Computer-Assisted Intervention - MICCAI (eds. Ourselin, S.,
Joskowicz, L., Sabuncu, M. R., Unal, G. & Wells, W.) 1–9 (2016). doi:10.1007/978-3-
319-46723-8

9. Crocker, J. C. & Grier, D. G. Methods of Digital Video Microscopy for Colloidal
Studies. Journal of Colloid and Interface Science 179, 298–310 (1996).

10. Horn, B. & Schunck, B. G. Determining Optical Flow Artificial Intelligence Vol. 17.
Artificial Intelligence 17, 185–203 (1981).

11. Lucas, B. D. & Kanade, T. An iterative image registration technique with an
application to stereo vision. Proceedings of the international joint conference on
Artificial intelligence 2, 674–679 (1981).

12. Amat, F., Myers, E. W. & Keller, P. J. Fast and robust optical flow for time-lapse
microscopy using super-voxels. Bioinformatics 29, 373–380 (2012).

13. Murray, J. I. et al. Automated analysis of embryonic gene expression with cellular
resolution in C. elegans. Nat Methods 5, 703–709 (2008).

14. Ulman, V. et al. An objective comparison of cell-tracking algorithms. Nat Methods 14,
1141–1152 (2017).

15. Alwes, F., Enjolras, C. & Averof, M. Live imaging reveals the progenitors and cell
dynamics of limb regeneration. Elife 5, 73 (2016).

16. Scherr, T., Löffler, K., Böhland, M. & Mikut, R. Cell Segmentation and Tracking using
CNN-Based Distance Predictions and a Graph-Based Matching Strategy. arXiv.org
(2020).

17. Magnusson, K. E. G., Jaldén, J., Gilbert, P. M. & Blau, H. M. Global linking of cell
tracks using the Viterbi algorithm. IEEE Trans Med Imaging 34, 911–929 (2015).

18. Wolff, C. et al. Multi-view light-sheet imaging and tracking with the MaMuT software
reveals the cell lineage of a direct developing arthropod limb. Elife 7, 375 (2018).

19. Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P. BigDataViewer: visualization
and processing for large image data sets. Nat Methods 12, 481–483 (2015).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 15

20. Paszke, A. et al. PyTorch: An imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems 32, (2019).

21. Harris, C. R. et al. Array programming with NumPy. Nature Publishing Group 585,
357–362 (2020).

22. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nat Methods 17, 261–272 (2020).

23. van der Walt, S. et al. scikit-image: Image processing in Python. Peer J cs.MS, e453
(2014).

24. Tseng, Q. et al. A new micropatterning method of soft substrates reveals that different
tumorigenic signals can promote or reduce cell contraction levels. Lab Chip 11, 2231–
2240 (2011).

25. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of
image analysis. Nat Methods 9, 671–675 (2012).

26. Nair, V. & Hinton, G. E. Rectified linear units improve Restricted Boltzmann
machines. ICML 2010 - Proceedings, 27th International Conference on Machine
Learning (2010).

27. Wu, Y. & He, K. Group Normalization. International Journal of Computer Vision 128,
(2020).

28. He, K., Zhang, X., Ren, S. & Sun, J. Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification. IEEE International Conference on
Computer Vision 1026–1034 (2015). doi:doi:10.1109/ICCV.2015.123

29. Kingma, D. P. & Ba, J. L. Adam: A method for stochastic optimization. 3rd
International Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings (2015).

30. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition.
arXiv.org (2015).

31. Maas, A. L., Hannun, A. Y. & Ng, A. Y. Rectifier nonlinearities improve neural
network acoustic models. in ICML Workshop on Deep Learning for Audio, Speech and
Language Processing (2013).

32. Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment:
from error visibility to structural similarity. IEEE Trans Image Process 13, 600–612
(2004).

33. Ilg, E. et al. Flownet 2.0: Evolution of optical flow estimation with deep networks. in
1647–1655 (2017).

34. Hayashida, J. & Bise, R. Cell tracking with deep learning for cell detection and motion
estimation in low-frame-rate. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2019).

35. Hayashida, J., Nishimura, K. & Bise, R. MPM: Joint representation of motion and
position map for cell tracking. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (2020).
doi:10.1109/CVPR42600.2020.00388

36. Matula, P. et al. Cell Tracking Accuracy Measurement Based on Comparison of
Acyclic Oriented Graphs. PLoS ONE 10, e0144959 (2015).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 16

Figure 1. Overview of ELEPHANT

a, Schematic illustration of incremental learning with ELEPHANT. Imaging data are fed into
a cycle of annotation, training, prediction and proofreading to generate cell lineages. At each
iteration, model parameters are updated and saved. This workflow applies to both detection
and linking phases. b, Detection workflow, illustrated with orthogonal views on the CE1
dataset. Top left: The user annotates nuclei with ellipsoids in 3D; newly generated annotations
are colored in cyan. Top right: The detection model is trained with the labels generated from
the sparse annotations of nuclei and from the annotation of background (in this case by
intensity thresholding); background, nucleus center, nucleus periphery and unlabelled voxels
are indicated in magenta, blue, green and black, respectively. Bottom right: The trained model
generates voxel-wise probability maps for background (magenta), nucleus center (blue), or
nucleus periphery (green). Bottom left: The user validates or rejects the predictions; predicted
nuclei are shown in green, predicted and validated nuclei in cyan. c, Linking workflow,
illustrated on the CE1 dataset. Top left: The user annotates links by connecting detected
nuclei in successive timepoints; annotated/validated nuclei and links are shown in cyan, non-
validated ones in green. Top right: The flow model is trained with optical flow labels coming
from annotated nuclei with links (voxels indicated in the label mask), which consist of
displacements in X, Y and Z; greyscale values indicate displacements along a given axis,
annotated nuclei with link labels are outlined in red. Bottom right: The trained model
generates voxel-wise flow maps for each axis; greyscale values indicate displacements,
annotated nuclei are outlined in red. Bottom left: The user validates or rejects the predictions;
predicted links are shown in green, predicted and validated links in cyan.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 17

Figure 2. Evaluation of performance and applications

a, Comparison of the speed of detection and validation of nuclei on the CE1 dataset, by
manual annotation (magenta), semi-automated detection without a pre-trained model (orange)
and semi-automated detection using a pre-trained model (blue) using ELEPHANT. b,
Performance of ELEPHANT compared with two state-of-the-art algorithms 16,17, using the
metrics of the Cell Tracking Challenge on unseen CE datasets. ELEPHANT outperforms the
other methods in detection and linking accuracy (DET and TRA metrics); it performs less
well in segmentation accuracy (SEG). c, Tracking results obtained with ELEPHANT. Left
panels: Tracked nuclei in the CE1 and CE2 datasets at timepoints 194 and 189, respectively.
Representative optical sections are shown with tracked nuclei shown in green; out of focus
nuclei are shown as green spots. Right panels: Corresponding lineage trees. d, Comparison of
tracking results obtained on the PH dataset, using the nearest neighbor algorithm (NN) with
and without optical flow prediction (left panels); linking errors are highlighted in red on the
correct lineage tree. The panels on the right focus on the nuclear division that is marked by a
dashed line rectangle. Without optical flow prediction, the dividing nuclei (in magenta) are
linked incorrectly. e, Spatial and temporal distribution of dividing cells in the regenerating
leg of Parhyale over a 1-week time course (PH dataset), showing that cell proliferation is
concentrated at the distal part of the regenerating leg stump and peaks after a period of

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 18

proliferative quiescence, as described in 15. Top: Nuclei in lineages that contain at least one
division are colored in magenta, nuclei in non-dividing lineages are in cyan, and nuclei in
which the division status is undetermined are blank (see Methods). Bottom: Heat map of the
temporal distribution of nuclear divisions; hpa, hours post amputation. The number of
divisions per 20-minute time interval ranges from 0 (purple) to 9 (yellow). f, Fate map of
regenerating leg of Parhyale, encompassing 109 fully tracked lineage trees (202 cells at 167
hpa). Each clone is assigned a unique color and contains 1-9 cells at 167 hpa. Partly tracked
nuclei are blank. In panels e and f, the amputation plane (the distal end of the limb) is located
on the left.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Information

Supplementary Table 1: Processing speed of the detection model

Supplementary Table 2: Comparison of linking performances

Supplementary Figure 1: ELEPHANT client-server architecture

Supplementary Figure 2: 3D U-Net architecture for detection

Supplementary Figure 3: Proofreading in detection

Supplementary Figure 4: 3D U-Net architecture for flow

Supplementary Figure 5: Image quality issues in the PH dataset

Supplementary Figure 6: Complete and fully-validated cell lineage trees in a regenerating
leg of Parhyale

Captions for Supplementary Videos

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 20

Supplementary Table 1: Processing speed of the detection model

Dataset CE1 CE2 PH

Input size
voxels

timepoints

708x512x35
195

712x512x31
190

1024x500x12
504

Prediction

Patch size 544x384x28 544x384x24 1024x500x12

Number of patches 8 8 1

Speed 6 sec/timepoint 5 sec/timepoint 2 sec/timepoint

Training

Patch size 384x384x16 384x384x16 384x384x12

Number of patches per epoch 10 10 10

Speed 24 sec/epoch 23 sec/epoch 22 sec/epoch

The table shows a summary of the processing speed of the deep learning model for the
detection of nuclei, applied to three datasets. The training speed is affected by the distribution
of annotations because the algorithm contains a try-and-error process for cropping, in which
the nucleus periphery labels are forced to appear with the nucleus center labels.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 21

Supplementary Table 2: Comparison of linking performances

Training from scratch Incremental training

from pre-trained model
Nearest neighbour

False
positive

all 905 959 2,093

cell division 11 16 16

False
negative

all 1,349 1,329 1,991

cell division 232 306 327

Training time 31 h 4 min -

The table shows a summary of linking performances tested on the PH dataset, on a total
number of 259,071 links (including 688 links on cell divisions). Incremental training was
performed by transferring the training parameters from the model pre-trained with the CE
datasets. Linking performance on dividing cells is scored separately.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 22

Supplementary Figure 1: ELEPHANT client-server architecture
The client provides an interactive user interface for annotation, proofreading and
visualization. The server performs training and prediction with deep learning. The client and
server communicate using HTTP and JSON.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 23

Supplementary Figure 2: 3D U-Net architecture for detection
Schematic illustration of the 3D U-Net architecture for detection, using an input image with a
size of 384x384x12 and a ratio of lateral-to-axial resolution of 8 as an example. Rectangles
show the input/intermediate/output layers, with the sizes shown on the left of each row and
the number of channels shown above each rectangle. Block arrows represent different
operations as described in the figure. The resolution of the z dimension is maintained until the
image becomes nearly isotropic (ratio of lateral-to-axial resolution of 1, in the bottom layers
in this example).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 24

Supplementary Figure 3: Proofreading in detection
The ellipses show the sections of nuclear annotations in the xy plane and the dots represent
the projections of the center position of the annotated nuclei, drawn in distinct colours; colour
code explained on the right. Nuclei that are out of focus in this view appear only as dots.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 25

Supplementary Figure 4: 3D U-Net architecture for flow
Schematic illustration of the 3D U-Net architecture for the flow model, depicted as in
Supplementary Figure 2. The structure of ResBlock is shown on the bottom.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 26

Supplementary Figure 5: Image quality issues in the PH dataset
Snapshots represent the image characteristics of the PH dataset that render cell tracking more
challenging: fluorescence from cellular debris, low signal, variations in nuclear fluorescence
intensity and nuclear shape, and variations in image quality across the imaged sample. The
top panels show parts of a field of view indicated with red squares; the bottom panel shows an
entire xy plane.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 27

Supplementary Figure 6: Complete and fully-validated cell lineage trees in a
regenerating leg of Parhyale
The displayed trees contain 109 complete and fully-validated cell lineages in a regenerating
leg of Parhyale (PH dataset), corresponding to Figure 2f.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sugawara et al. 28

Captions for Supplementary Videos

Supplementary Video 1: Live imaging of Parhyale leg regeneration (PH dataset)
https://doi.org/10.5281/zenodo.4557870
A maximum intensity projection of the PH dataset captures the regeneration of a Parhyale T4
leg amputated at the distal end of the carpus, over a period of 1 week. hpa, hours post
amputation

Supplementary Video 2: Incremental training of the detection model in ELEPHANT
https://doi.org/10.5281/zenodo.4557867
A cycle of incremental training of the ELEPHANT detection model is shown, including the
annotation, training and prediction steps. The color-coding of the annotations is the same as
shown in Supplementary Figure 3.

Supplementary Video 3: ELEPHANT flow predictions in 3D
https://doi.org/10.5281/zenodo.4557858
The PH dataset is shown in parallel with the corresponding flow predictions of the
ELEPHANT optical flow model (in three dimensions), over the entire duration of the
recording. Gray values for flow predictions represent displacements between timepoints as
introduced in Figure 1c.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.26.432552doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by-nc-nd/4.0/

