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Abstract:  Deep learning is emerging as a powerful approach for bioimage analysis, but 
its wider use is limited by the scarcity of annotated data for training. We present 
ELEPHANT, an interactive platform for cell tracking in 4D that seamlessly integrates 
annotation, deep learning, and proofreading. ELEPHANT’s user interface supports 
cycles of incremental learning starting from sparse annotations, yielding accurate, user-
validated cell lineages with a modest investment in time and effort. 
 
 
Source code: https://github.com/elephant-track/  
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Main text 

Recent progress in deep learning has led to significant advances in bioimage analysis 1-4. As 
deep learning is data-driven, it is adaptable to a variety of datasets once an appropriate model 
architecture is selected and trained with adequate data 1. In spite of its powerful performance, 
deep learning remains challenging for non-experts to utilize, for three reasons. First, pre-
trained models can be inadequate for new tasks and the preparation of new training data is 
laborious. Because the quality and quantity of the training data are crucial for the performance 
of deep learning, users must invest significant time and effort in annotation at the start of the 
project 1. Second, an interactive user interface for deep learning, especially in the context of 
cell tracking, is lacking. Third, deep learning applications are often limited by accessibility to 
computing power (high-end GPU). We have addressed these challenges by establishing 
ELEPHANT (Efficient learning using sparse human annotations for nuclear tracking), an 
interactive web-friendly platform for cell tracking, which seamlessly integrates manual 
annotation with deep learning and proofreading of the results. ELEPHANT implements two 
algorithms optimized for incremental deep learning using sparse annotations, one for 
detecting nuclei in 3D and a second for linking these nuclei across timepoints in 4D image 
datasets. Incremental learning allows models to be trained in a stepwise fashion on a given 
dataset, starting from sparse annotations that are incrementally enriched by human 
proofreading, leading to a rapid increase in performance (Figure 1a). ELEPHANT is 
implemented as an extension of Mastodon (https://github.com/mastodon-sc/mastodon), an 
open-source framework for large-scale tracking based on Fiji 5. It implements a client-server 
architecture, in which the server provides a deep learning environment equipped with 
sufficient GPU (Supplementary Figure 1). 

ELEPHANT employs the tracking-by-detection paradigm 6, which involves initially 
the detection of nuclei in 3D and subsequently their linking over successive timepoints to 
generate tracks. In both steps, the nuclei are represented as ellipsoids, using the data model of 
Mastodon (Figure 1b, c). In the detection phase, voxels are labelled as background, nucleus 
center or nucleus periphery, or left unlabelled (Figure 1b, top right). The nucleus center and 
nucleus periphery labels are generated by the annotation of nuclei, and the background can be 
annotated either manually or by intensity thresholding. Sparse annotations (e.g. of a few 
nuclei in a single timepoint) are sufficient to start training. A U-Net convolutional neural 
network (U-Net CNN; 7,8, Supplementary Figure 2) is then trained on these labels (ignoring 
the unlabelled voxels) to generate voxel-wise probability maps for background, nucleus 
center, or nucleus periphery, across the entire image dataset (Figure 1b, bottom right). Post-
processing on these probability maps yields predictions of nuclei which are available for 
visual inspection and proofreading (validation or rejection of each predicted nucleus) by the 
user (Figure 1b, bottom left). Human-computer interaction is facilitated by color coding of the 
annotated nuclei (as true positive, false positive, true negative, false negative, or unevaluated, 
see Supplementary Figure 3) based on the proofreading. The cycles of training and prediction 
are rapid because only a small amount of training data are added each time (in the order of 
seconds, see Supplementary Table 1). As a result, users can enrich the annotations by 
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proofreading the output almost simultaneously, enabling incremental training of the model in 
an efficient manner. 

In the linking phase, we found that nearest neighbour approaches for tracking nuclei 
over time 9 perform poorly in challenging datasets when the cells are dividing; hence we 
turned to optical flow modeling to improve linking 10-12. A second U-Net CNN, optimized for 
optical flow estimation (Supplementary Figure 4), is trained on manually generated/validated 
links between nuclei in successive timepoints (Figure 1c, top left). Unlabelled voxels are 
ignored, hence training can be performed on sparse linking annotations. The flow model is 
used to generate voxel-wise 3D flow maps, representing predicted x, y and z displacements 
over time (Figure 1c, bottom right), which are then combined with nearest neighbour linking 
to predict links between the detected nuclei (see Methods). Users proofread the linking results 
to finalize the tracks and to update the labels for the next iteration of training (Figure 1c, 
bottom left).  

We evaluated the performance of ELEPHANT using two types of 4D confocal 
microscopy datasets in which nuclei were visualized by fluorescent markers: the first type of 
dataset captures the embryonic development of Caenorhabditis elegans (CE datasets), which 
has been used in previous studies to benchmark tracking methods 13,14, and the second type 
captures limb regeneration in Parhyale hawaiensis (PH dataset, imaging adapted from 15), 
which presents greater challenges for image analysis (see below, Supplementary Video 1). 
For both types of dataset, we find that fewer than ten annotated nuclei are sufficient to initiate 
a virtuous cycle of training, prediction and proofreading, which efficiently yields cell tracks 
and validated cell lineages in highly dynamic tissues. 

Interactive cycles of manual annotation, deep learning and proofreading on 
ELEPHANT reduce the time required to detect and validate nuclei (Figure 2a). On the CE1 
dataset, a complete cell lineage was built over 195 timepoints, from scratch, using 
ELEPHANT’s semi-automated workflow (Figure 2c). The detection model was trained 
incrementally starting from sparse annotations (four nuclei) on the first timepoint. On this 
dataset, linking could be performed using the nearest neighbor algorithm (without flow 
modeling) and manual proofreading. In this way, we were able to annotate in less than 8 hours 
a total of 23,829 nuclei (across 195 timepoints), of which ~2% were manually annotated (483 
nuclei) and the remaining nuclei were collected by validating predictions of the deep-learning 
model. 

Although ELEPHANT works efficiently without prior training, cell tracking can be 
accelerated by starting from models trained on image data with similar characteristics. To 
illustrate this, we used nuclear annotations in a separate dataset, CE2, to train a model for 
detection, which was then applied to CE1. This pre-trained model allowed us to detect nuclei 
in CE1 much more rapidly and effortlessly than with an untrained model (Figure 2a, blue 
versus orange curves). For benchmarking, the detection and linkage models trained with the 
annotations from the CE1 and CE2 lineage trees were then tested on unseen datasets with 
similar characteristics (without proofreading), as part of the Cell Tracking Challenge 6,14. In 
this test, our models with assistance of flow-based interpolation (see Methods) outperformed 
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state-of-the-art tracking algorithms 16,17 in detection (DET) and tracking (TRA) metrics 
(Figure 2b). 

The PH dataset presents greater challenges for image analysis, such as larger 
variations in the shape, intensity, and distribution of nuclei, lower temporal resolution, and 
more noise (Supplementary Figure 5). ELEPHANT has allowed us to grapple with these 
issues by supporting the continued training of the models through visual feedback from the 
user (annotation of missed nuclei, validation and rejection of predictions). Using 
ELEPHANT, we annotated and validated over 260,000 nuclei in this dataset, across 504 
timepoints spanning 168 hours of imaging. 

We observed that the conventional nearest neighbor approach was inadequate for 
linking in the PH dataset, resulting in many errors in the lineage trees (Figure 2d). This is 
likely due to the lower temporal resolution in this dataset (20 minutes in PH, versus 1-2 
minutes in CE) and the fact that daughter nuclei often show large displacements at the end of 
mitosis. We trained optical flow using 1,162 validated links collected from 10 timepoints 
(including 18 links for 9 cell divisions). These sparse annotations were sufficient to generate 
3D optical flow predictions for the entire dataset (Supplementary Video 2), which 
significantly improved the linking performance (Figure 2d, Supplementary Table 2): the 
number of false positive and false negative links decreased by ~57% (from 2,093 to 905) and 
~32% (from 1,991 to 1349), respectively, among a total of 259,071 links. 

By applying ELEPHANT’s human-in-the-loop semi-automated workflow, we 
succeeded in reconstructing 109 complete and fully-validated cell lineage trees encompassing 
the duration of leg regeneration in Parhyale, each lineage spanning a period of ~1 week (504 
timepoints, Supplementary Figure 6). Using analysis and visualization modules implemented 
in Mastodon and ELEPHANT, we could capture the distribution of cell divisions across time 
and space (Figure 2e) and produce a fate map of the regenerating leg of Parhyale (Figure 2f). 
This analysis, which would have required several months of manual annotation, was achieved 
in ~1 month of interactive cell tracking in ELEPHANT, without prior training. Applying the 
best performing models to new data could improve tracking efficiency even further. 
 
 
Methods 

Image datasets 
The PH dataset (dataset li13) was obtained by imaging a regenerating T4 leg of the crustacean 
Parhyale hawaiensis, based on the method described by 15 (Supplementary Video 1). The 
imaging was carried out on a transgenic animal carrying the Mi(3xP3>DsRed; PhHS>H2B-
mRFPRuby) construct 18, in which nuclear-localised mRFPRuby fluorescent protein is 
expressed in all cells following heat-shock. The leg was amputated at the distal end of the 
carpus. Following the amputation, continuous live imaging over a period of 1 week was 
performed on a Zeiss LSM 800 confocal microscope equipped with a Plan-Apochromat 
20x/0.8 M27 objective (Zeiss 420650-9901-000), in a temperature control chamber set to 
26˚C. Heat-shocks (45 minutes at 37˚C) were applied 24 hours prior to the amputation, and 65 
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and 138 hours post-amputation. Every 20 minutes we recorded a stack of 11 optical sections, 
with a z step of 2.48 microns. Voxel size (in xyz) was 0.31 x 0.31 x 2.48 microns. 

The CE1 and CE2 datasets were from 13, obtained via the Cell Tracking Challenge 14 
(datasets Fluo-N3DH-CE). 

ELEPHANT platform architecture 
ELEPHANT implements a client-server architecture (Supplementary Figure 1), which can be 
set up on the same computer or on multiple connected computers. This architecture brings 
flexibility: allowing the client to run Mastodon (implemented in Java) while the deep learning 
module is implemented separately using Python, and releasing the client computer from the 
requirements of high GPU needed to implement deep learning. The client side is implemented 
by extending Mastodon, a framework for cell tracking built upon the SciJava ecosystem 
(https://scijava.org/) and is available as a Fiji 5 plugin. Combining the BigDataViewer 19 with 
an efficient memory access strategy (https://github.com/mastodon-
sc/mastodon/blob/master/doc/trackmate-graph.pdf), Mastodon enables fast and responsive 
user interaction even for very large datasets. ELEPHANT leverages the functionalities 
provided by Mastodon, including the functions for manual annotation of nuclei, and extends 
them by implementing modules for deep learning-based algorithms. 

The server side is built using an integrated system of a deep learning library (PyTorch 
20), tools for tensor computing and image processing (Numpy 21, Scipy 22, Scikit Image 23) and 
web technologies (Nginx, uWSGI, Flask). The client and the server communicate by 
Hypertext Transfer Protocol (HTTP) and JavaScript Object Notation (JSON). To reduce the 
amount of data exchanged between the client and the server, the image data is duplicated and 
stored in an appropriate format on each side. An in-memory data structure (Redis) is used to 
organize the priorities of the HTTP requests sent by the client. A message queue (RabbitMQ) 
is used to notify the client that the model is updated during training. The client software is 
available as a standalone Java executable packaged with Mastodon and other dependencies 
(https://github.com/elephant-track/elephant-client). The server environment is provided as a 
Docker container to ensure easy and reproducible deployment (https://github.com/elephant-
track/elephant-server). 

Computer setup and specifications 
In this study, we set up the client and the server on the same desktop computer (Dell 
Alienware Aurora R6) with the following specifications: Intel Core i7-8700K CPU @ 
3.70GHz, Ubuntu 18.04, 4x16 GB DDR4 2666 MHz RAM, NVIDIA GeForce GTX 1080 Ti 
11 GB GDDR5X (used for deep learning), NVIDIA GeForce GTX 1650 4 GB GDDR5, 256 
GB SSD and 2 TB HDD. System requirements for the client and the server are summarized in 
the user manual (https://elephant-track.github.io/). 

Dataset preparation 
Images were loaded in the BigDataViewer (BDV, 19) format on the client software. The CE1 
and CE2 datasets were converted to the BDV format using the BigDataViewer Fiji plugin 
(https://imagej.net/BigDataViewer)without any preprocessing. Because the PH dataset 
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showed non-negligible variations in intensity during long-term imaging, the original 16-bit 
images were intensity normalized per timepoint before conversion to the BDV format; 
intensity values were re-scaled so that the minimum and maximum values at each timepoint 
become 0 and 65535, respectively. The PH dataset also showed 3D drifts due to heat-shocks. 
The xy drifts were corrected using an extended version of image alignment tool 24 working as 
an ImageJ 25 plugin, where the maximum intensity projection images were used to estimate 
the xy displacements, subsequently applied to the whole image stack 
(https://github.com/elephant-track/align-slices3d), and the z drifts were corrected manually by 
visual inspection using Fiji. 

On the server, images, annotation labels and outputs were stored in the Zarr format, 
allowing fast read/write access to subsets of image data using chunk arrays. At the beginning 
of the analysis, these data were prepared using a custom Python script that converts the 
original image data from HDF5 to Zarr and creates empty Zarr files for storing annotation 
labels and outputs (https://github.com/elephant-track/elephant-server). 

Algorithm for detection 
Detection of nuclei relies on three components: (i) a U-Net CNN that outputs probability 
maps for nucleus center, nucleus periphery, and background, (ii) a post-processing workflow 
that extracts nucleus center voxels from the probability maps, (iii) a module that reconstructs 
nuclei instances as ellipsoids. We designed a variation of 3D U-Net 8 as illustrated in 
Supplementary Figure 2. In both encoder and decoder paths, repeated sets of 3D convolution, 
ReLU activation 26 and Group Normalization 27 are employed. Max pooling in 3D is used for 
successive downsampling in the encoder path, in each step reducing the size to half the input 
size (in case of anisotropy, maintaining the z dimension until the image becomes nearly 
isotropic). Conversely, in the decoder path, upsampling with nearest-neighbor interpolation is 
applied to make the dimensions the same as in the corresponding intermediate layers in the 
encoder path. As a result, we built a CNN with 5,887,011 trainable parameters. The weights 
are initialized with the Kaiming fan-in algorithm 28 and the biases are initialized to zero for 
each convolution layer. For each group normalization layer, the number of groups is set as the 
smallest value between 32 and the number of output channels, and the weights and biases are 
respectively initialized to one and zero. When starting to train from scratch, the CNN is 
trained using the cropped out 3D volumes from the original image prior to training with 
annotations. In this prior training phase, a loss function 𝐿"#$%#is used that penalizes the 
addition of the following two mean absolute differences (MADs): (i) nucleus center 
probabilities 𝑐$ and the [0, 1] normalized intensity of the original image 𝑦$, (ii) background 
probabilities 𝑏$ and the [0, 1] normalized intensity of the intensity-inverted image 1 − 𝑦$, 
where  stands for the voxel index of an input volume with  voxels .  

 
The prior training is performed on three cropped out 3D volumes generated from the 

4D datasets, where the timepoints are randomly picked, and the volumes are randomly 
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cropped with random scaling in the range (0.8, 1.2). The training is iterated for three epochs 
with decreasing learning rates (0.01, 0.001, and 0.0001, in this order) with the Adam 
optimizer 29. The prior training can be completed in ~20 seconds for each dataset. 

Training with sparse annotations is performed in the following steps. First, the client 
application extracts the timepoint, 3D coordinates and covariances representing ellipsoids of 
all the annotated nuclei in the specified time range. Subsequently, these data, combined with 
user-specified parameters for training, are embedded in JSON and sent to the server in an 
HTTP request. On the server side, training labels are generated from the received information 
by rendering nucleus center, nucleus periphery, background and unlabeled voxels with 
distinct values. The background labels are generated either by explicit manual annotation or 
intensity thresholding, resulting in the label images as shown in Figure 1b. To render 
ellipsoids in the anisotropic dimension, we extended the draw module in the scikit-image 
library 23 (https://github.com/elephant-track/elephant-server). Training of the CNN is 
performed using the image volumes as input and the generated labels as target with a loss 
function  that consists of three terms: (i) a class-weighted negative log-likelihood 
(NLL) loss, (ii) a term computed as 1 minus the dice coefficient for the nucleus center voxels, 
and (iii) a term that penalizes the roughness of the nucleus center areas. We used the 
empirically-defined class weights  for the NLL loss: nucleus center = 10, nucleus 
periphery = 10, background = 1; the unlabelled voxels are ignored. The first two terms accept 
different weights for the true annotations  (i.e. true positive and true negative) and the false 
annotations  (i.e. false positive and false negative). The third term is defined as the MAD 
between the voxel-wise probabilities for nucleus center and its smoothed representations, 
which are calculated by the Gaussian filter with downsampling ( ) and upsampling (
). Let  stand for the voxel index of an input volume with  voxels ,  
for the input voxel value,  for the output from the CNN before the last activation layer for 
the three classes,  for the voxel class label (1: nucleus center, 2: nucleus 
periphery, 3: background, respectively), and  for the 
voxel annotation label. We define the following subsets: the voxel index with true labels 

, with false labels , and the nucleus 
center . In the calculation of the , a constant  is used 
to prevent zero division. Using these components and the empirically-defined weights for 
each loss term ( ), we defined the  as below. 
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Training of the CNN is performed on the image volumes generated from the 4D 

datasets, where the volumes are randomly cropped with/without random scaling, random 
contrast and random rotation, which are specified at runtime. There are two modes for 
training: (i) an interactive mode that trains a model incrementally, as the annotations are 
updated, and (ii) a batch mode that trains a model with a fixed set of annotations. In the 
interactive training mode, sparse annotations in a given timepoint are used to generate crops 
of image and label volumes, with which training is performed using the Adam optimizer with 
a learning rate specified by the user. In the batch training mode, a set of crops of image and 
label volumes per timepoint is generated each iteration, with which training is performed for a 
number of epochs specified by the user (ranging from 1 to 1,000) using the Adam optimizer 
with the specified learning rates. In the prediction phase, the input volume can be cropped 
into several blocks with smaller size than the original size to make the input data compatible 
with available GPU memory. To stitch the output blocks together, the overlapping regions are 
seamlessly blended by weighted linear blending.  

As post-processing for the CNN output, voxel-wise probabilities for nucleus center 
class are denoised by subtracting edges of background class that are calculated with the 
Gaussian filter and the Prewitt operation for each z-slice. After denoising, the voxels with 
nucleus center probabilities greater than a user defined value are thresholded and extracted as 
connected components, which are then represented as ellipsoids (from their central moments). 
These ellipsoids representing the nucleus center regions are enlarged so that they cover the 
original nucleus size (without excluding its periphery), where the ellipsoids with radii smaller 
than  are removed and the radii are clamped to  specified by the user, generating a list 
of center positions and covariances that can be used to reconstruct the nuclei. On the client 
application, the detection results are converted to Mastodon spots and rendered on the BDV 
view, where the existing and predicted nuclei are tagged based on its status: labeled as 
positive and predicted (true positive), labeled as positive and not predicted (false negative), 
labeled as negative and not predicted (true negative), labeled as negative and predicted (false 
positive) and newly predicted (non-validated). If more than one nucleus is predicted within a 
user-specified threshold, the one with human annotation is given priority, followed by the one 
with the largest volume. 

Algorithm for linking 
Linking of nuclei relies on two components: (i) estimation of the positions of nuclei at the 
previous timepoint by optical flow estimation using deep learning, which is skipped in the 
case of the nearest neighbor algorithm without flow support, (ii) association of nuclei based 
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on the nearest neighbor algorithm. We designed a variation of 3D U-Net for flow estimation 
as illustrated in Supplementary Figure 4. In the encoder path, the residual blocks 30 with 3D 
convolution and LeakyReLU 31 activation are applied, in which the outputs are divided by 
two after the sum operation to keep the consistency of the scale of values. In the decoder path, 
repeated sets of 3D convolution and LeakyReLU activation are employed. Downsampling and 
upsampling are applied as described for the detection model. Tanh activation is used as a final 
activation layer. As a result, we built a CNN with 5,928,051 trainable parameters. The 
weights and biases for convolution layers are initialized as described for the detection model. 
Training of the flow model with sparse annotations is performed in a similar way as for the 
detection model. First, on the client application, for each annotated link, which connects the 
source and target nuclei, the following information gets extracted: the timepoint, the 
backward displacements in each of the three dimensions, and the properties of the target 
nucleus (3D coordinates and covariances). Subsequently, these data, combined with 
parameters for training, are embedded in JSON and sent to the server in an HTTP request. On 
the server side, flow labels are generated from the received information by rendering 
backward displacements for each target nucleus in each of three dimensions, where the 
displacements are scaled to fit the range (-1, 1). In this study, we used fixed scaling factors 
(1/80, 1/80, 1/10) for each dimension, but they can be customized to the target dataset. 
Foreground masks are generated at the same time to ignore unlabelled voxels during loss 
calculation. Ellipsoid rendering is performed as described for the detection training. Training 
of the CNN for flow estimation is performed using the two consecutive image volumes ( , 

) as input, and the generated label as target. A loss function  is defined with the 
following three terms; (i) a dimension-weighted MAD between the CNN outputs and the flow 
labels, (ii) a term computed as 1 minus the structural similarity (SSIM) 32 of  and , 
where the estimated flow is applied to  33, (iii) a term penalizing the roughness of the CNN 
outputs. Let  stand for the voxel index of an input volume with  voxels 

,  for the input voxel value,  for the output of the CNN,  for the 
flow label,  for the index of the annotated voxels,  for the 
dimension index for three dimensions and  for the dimension weights. In the SSIM 
calculation, we defined a function  as a 3D Gaussian filter with the window size (7, 7, 
3) and standard deviation of 1.5. Using these components and the empirically-defined 
weights for each loss term ( ), we defined the as below. 

 
 

 

 
,  

, ,  
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, where  and . 
The training is performed on the image volumes generated from the 4D datasets, 

where the sets of two consecutive images and corresponding flow labels are randomly 
cropped with/without random scaling and random rotation, which are specified at runtime. 
The training is performed for a fixed number of epochs using the Adam optimizer and with 
learning rates specified by the user, generating a set of images and labels for each timepoint in 
each epoch. The CNN outputs are rescaled to the original physical scale and used to calculate 
the estimated coordinate of each nucleus center at the previous timepoint. Let  stands 
for a subset of voxel index of a nucleus and  for its center coordinate. Using the output of the 
CNN  and the scaling factor , the estimated coordinate at the previous timepoint   is 
calculated. 

 
These estimated coordinates are subsequently used to find the parent of the nucleus at the 
previous timepoint by the nearest neighbor algorithm (a similar concept was introduced for 
2D phase contrast microscopy data; 34,35). The pairs with a distance smaller than  are 
considered as link candidates, where the closer the Euclidean distance between the two points, 
the higher their priority of being the correct link. Each nucleus accepts either one or two links, 
determined by the estimated displacements and actual distances. Briefly, given that a single 
nucleus has two possible links, it can accept both if at least one of the estimated 
displacements is larger than the threshold  or both distances are smaller than the threshold 

. In this study, we used ad hoc thresholds  and . If there are 
competing links beyond the allowed maximum of two links, the links with smaller  are 
adopted and the remaining nucleus looks for the next closest nucleus up to neighbors. 
The links are generated by repeating the above procedure until all the nuclei get linked or the 
iteration count reaches to five. We optionally implement an interpolation algorithm, in which 
each orphan nucleus tries to find its source up to  timepoints back and is linked with a 
nucleus at the estimated coordinate based on the flow prediction, interpolating the points in 
between. 

Detection and tracking in the CE datasets 
On the CE1 and CE2 datasets, training of detection and flow models was performed with 
volumes of 384 x 384 x 16 voxels that were generated by preprocessing with random scaling 
in the range (0.5, 2) and random cropping. For training of a detection model, preprocessing 
with random contrast in the range (0.5, 1) was also applied. In the label generation step, the 
center ratio was set to 0.3 and the background threshold was set to 0.1 and 1 (i.e. all voxels 
without manual annotations are background), for the interactive mode and the batch training 
mode, respectively. In the interactive training of detection models, 10 labelled cropped out 
volumes were generated per iteration, with which training was performed using the Adam 
optimizer with a learning rate between 5x10-5 and 5x10-6. In the batch training of detection 
models, training was performed for 100 epochs using the Adam optimizer with learning rates 
of 5x10-5. In the training of a flow model, training was performed for 100 epochs using the 
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Adam optimizer with learning rates of 5x10-5 for the first 50 epochs and 5x10-6 for the last 50 
epochs.  and  were set to 1 and 5, respectively, and  was set  to (1/3, 1/3, 1/3). In the 
prediction phase, the input volumes were cropped into 2x2x2 blocks with size (544, 384, 28) 
for CE1 or (544, 384, 24) for CE2, and stitched together to reconstruct the whole image of 
(708, 512, 35) for CE1 or (712, 512, 31) for CE2. In the preprocessing of the prediction for 
detection, we corrected the uneven background levels across the z-slices by shifting the slice-
wise median value to the volume-wise median value. In the postprocessing of the prediction 
for detection, a threshold for the nucleus center probabilities were set to 0.3, and  and 

 were set to 1 and 3, respectively. In the nearest-neighbor linking with/without flow 
prediction,  was set to 5 µm and  was set to 3. In the results submitted to the CTC 
organizer (Figure 2b), the linking was performed by the nearest-neighbor linking with flow 
support and an optional interpolation module, where  was set to 5. 

Detection and tracking in the PH dataset 
On the PH dataset, training of detection and flow models was performed with volumes of 384 
x 384 x 12 voxels generated by preprocessing with random rotation in the range of +/− 180 
degrees and random cropping. For training a detection model, preprocessing with random 
contrast in the range (0.5, 1) was also applied. In the label generation step, the center ratio 
was set to 0.3, and the background threshold was set to 0.03. In the interactive training of a 
detection model, 10 crops of image and label volumes were generated per iteration, with 
which training was performed using the Adam optimizer with a learning rate between 5x10-5 
and 5x10-6. In the batch training of a detection model, training was performed for 100 epochs 
using the Adam optimizer with learning rates of 5x10-5. In the training of a flow model, 
training was performed for 100 epochs using the Adam optimizer with learning rates of 5x10-5 
for the first 50 epochs and 5x10-6 for the last 50 epochs.  and  were set to 1 and 3, 
respectively, and  was set  to (1, 1, 8). In the prediction phase, the input volumes were fed 
into the CNNs without cropping or further preprocessing. In the postprocessing of the 
prediction for detection, a threshold for the nucleus center probabilities were set to 0.3, and 

 and  were set to 1 and 3, respectively. In the nearest-neighbor linking with/without 
flow prediction,  was set to 5 µm and  was set to 3. 

Analysis of CE and PH datasets 
On the CE1 and CE2 datasets, the detection and link annotations were made starting from 
timepoint 0 and proceeding forward until timepoints 194 (CE1) and 189 (CE2), respectively. 
In the CE1 dataset, the detection was made from scratch, based on manual annotation and 
incremental training, and the linking was performed by the nearest neighbor algorithm 
without flow prediction. After completing annotation from timepoint 0 to 194 on the CE1 
dataset, the detection and flow models were trained by the batch mode with the fully-labeled 
annotations. In the CE2 dataset, the detection was performed in a similar way as for CE1, by 
extending the model trained with CE1, and the linking was performed by the nearest neighbor 
algorithm with flow support using the pre-trained model followed by proofreading. 
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Incremental training of the detection model was performed when there were annotations from 
nuclei that were not properly predicted. 

On the PH dataset, the annotations were made by iterating the semi-automated 
workflow. In general, the nuclei with high signal-to-noise ratio (SNR) were annotated early, 
while the nuclei with low SNR were annotated in a later phase. The detection model was 
updated frequently to fit the characteristics of each region and timepoint being annotated, 
while the flow model was updated less frequently. The CE1 dataset was used to evaluate the 
speed of detection and validation (Figure 2a). All workflows started at timepoint 0 and 
proceeded forward in time, adding and/or validating all the nuclei found in each timepoint. To 
evaluate the manual workflow, we annotated nuclei using hotkeys that facilitate the 
annotation of a given nucleus at successive timepoints. To evaluate the ELEPHANT from 
scratch workflow, we performed prediction with the latest model, followed by proofreading, 
including add, modify or delete operations, and incremental training. At each timepoint, the 
model was updated with the new annotations added manually or by proofreading. To evaluate 
the ELEPHANT pre-trained workflow, we performed predictions with a model trained on the 
CE2 dataset, followed by proofreading without additional training. The numbers of validated 
nuclei associated with time were counted from the log data. We measured the counts over 30 
minutes after the start of each workflow and plotted them in Figure 2a. 

To compare the linking performances (Figure 2d), we trained the flow model with 
1,162 validated links, including 18 links corresponding to 9 cell divisions, from 108 lineage 
trees collected between timepoints 150 and 159. It took around 30 hours to train the flow 
model from scratch using these links. Starting from a pre-trained model, the training time can 
be decreased to a few minutes, providing a major increase in speed compared with training 
from scratch (Supplementary Table 2). 

The results shown in Figure 2e and Figure 2f were generated based on the tracking 
results with 260,600 validated nuclei and 259,071 validated links. In the analysis for Figure 
2e, nuclei were categorised as dividing or non-dividing depending on whether the lineages to 
which they belong contain at least one cell division or not during the period of cell 
proliferation (timepoints 100 to 350). Nuclei that did not meet these criteria were left 
undetermined. For Figure 2f, the complete lineages of 109 nuclei were tracked through the 
entire duration of the recording, from 0 to 167 hours post-amputation, with no missing links. 

Evaluation of cell tracking performance 
We submitted our results and executable software to the Cell Tracking Challenge organizers, 
who evaluated our algorithm’s performance, validated its reproducibility using the executable 
software that we submitted, and provided us with the scores. The details of the detection 
accuracy (DET), tracking accuracy (TRA), and segmentation accuracy (SEG) metrics can be 
found in the original paper 36 and the website (http://celltrackingchallenge.net/evaluation-
methodology/). Briefly, the DET score evaluates how many split, delete and add operations 
are required to achieve the ground truth starting from the predicted nuclei, reflecting the 
accuracy of detection; the TRA score evaluates how many split, delete and add operations for 
nuclei, and delete, add and alter the semantics operations for links are required to reconstruct 
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the ground truth lineage trees from the predicted lineage trees, reflecting the accuracy of 
linking; the SEG score evaluates the overlap of the detected ellipsoids with fully segmented 
nuclei, reflecting the precision of nucleus segmentation. All three scores range from 0 
(poorest) to 1 (best). 
 
Code availability 
The source code for the ELEPHANT client is available at https://github.com/elephant-
track/elephant-client, for the ELEPHANT server at https://github.com/elephant-
track/elephant-server, and for the Align Slices 3D+t extension ImageJ plugin at 
https://github.com/elephant-track/align-slices3d. The user manual for ELEPHANT is 
available at https://elephant-track.github.io/. 
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Figure 1.  Overview of ELEPHANT 

a, Schematic illustration of incremental learning with ELEPHANT. Imaging data are fed into 
a cycle of annotation, training, prediction and proofreading to generate cell lineages. At each 
iteration, model parameters are updated and saved. This workflow applies to both detection 
and linking phases.  b, Detection workflow, illustrated with orthogonal views on the CE1 
dataset. Top left: The user annotates nuclei with ellipsoids in 3D; newly generated annotations 
are colored in cyan. Top right: The detection model is trained with the labels generated from 
the sparse annotations of nuclei and from the annotation of background (in this case by 
intensity thresholding); background, nucleus center, nucleus periphery and unlabelled voxels 
are indicated in magenta, blue, green and black, respectively. Bottom right: The trained model 
generates voxel-wise probability maps for background (magenta), nucleus center (blue), or 
nucleus periphery (green). Bottom left: The user validates or rejects the predictions; predicted 
nuclei are shown in green, predicted and validated nuclei in cyan.  c, Linking workflow, 
illustrated on the CE1 dataset. Top left: The user annotates links by connecting detected 
nuclei in successive timepoints; annotated/validated nuclei and links are shown in cyan, non-
validated ones in green. Top right: The flow model is trained with optical flow labels coming 
from annotated nuclei with links (voxels indicated in the label mask), which consist of 
displacements in X, Y and Z; greyscale values indicate displacements along a given axis, 
annotated nuclei with link labels are outlined in red. Bottom right: The trained model 
generates voxel-wise flow maps for each axis; greyscale values indicate displacements, 
annotated nuclei are outlined in red. Bottom left: The user validates or rejects the predictions; 
predicted links are shown in green, predicted and validated links in cyan. 
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Figure 2.  Evaluation of performance and applications 

a, Comparison of the speed of detection and validation of nuclei on the CE1 dataset, by 
manual annotation (magenta), semi-automated detection without a pre-trained model (orange) 
and semi-automated detection using a pre-trained model (blue) using ELEPHANT.  b, 
Performance of ELEPHANT compared with two state-of-the-art algorithms 16,17, using the 
metrics of the Cell Tracking Challenge on unseen CE datasets. ELEPHANT outperforms the 
other methods in detection and linking accuracy (DET and TRA metrics); it performs less 
well in segmentation accuracy (SEG).  c, Tracking results obtained with ELEPHANT. Left 
panels: Tracked nuclei in the CE1 and CE2 datasets at timepoints 194 and 189, respectively. 
Representative optical sections are shown with tracked nuclei shown in green; out of focus 
nuclei are shown as green spots. Right panels: Corresponding lineage trees. d, Comparison of 
tracking results obtained on the PH dataset, using the nearest neighbor algorithm (NN) with 
and without optical flow prediction (left panels); linking errors are highlighted in red on the 
correct lineage tree. The panels on the right focus on the nuclear division that is marked by a 
dashed line rectangle. Without optical flow prediction, the dividing nuclei (in magenta) are 
linked incorrectly.  e, Spatial and temporal distribution of dividing cells in the regenerating 
leg of Parhyale over a 1-week time course (PH dataset), showing that cell proliferation is 
concentrated at the distal part of the regenerating leg stump and peaks after a period of 
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proliferative quiescence, as described in 15. Top: Nuclei in lineages that contain at least one 
division are colored in magenta, nuclei in non-dividing lineages are in cyan, and nuclei in 
which the division status is undetermined are blank (see Methods). Bottom: Heat map of the 
temporal distribution of nuclear divisions; hpa, hours post amputation. The number of 
divisions per 20-minute time interval ranges from 0 (purple) to 9 (yellow).  f, Fate map of 
regenerating leg of Parhyale, encompassing 109 fully tracked lineage trees (202 cells at 167 
hpa). Each clone is assigned a unique color and contains 1-9 cells at 167 hpa. Partly tracked 
nuclei are blank. In panels e and f, the amputation plane (the distal end of the limb) is located 
on the left. 
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Supplementary Table 1: Processing speed of the detection model 
 

Dataset CE1 CE2 PH  

Input size 
voxels 

timepoints 

 
708x512x35 
195 

 
712x512x31 
190 

 
1024x500x12 
504 

Prediction 

Patch size 544x384x28 544x384x24 1024x500x12 

Number of patches 8 8 1 

Speed 6 sec/timepoint 5 sec/timepoint 2 sec/timepoint 

Training 

Patch size 384x384x16 384x384x16 384x384x12 

Number of patches per epoch 10 10 10 

Speed 24 sec/epoch 23 sec/epoch 22 sec/epoch 

 
The table shows a summary of the processing speed of the deep learning model for the 
detection of nuclei, applied to three datasets. The training speed is affected by the distribution 
of annotations because the algorithm contains a try-and-error process for cropping, in which 
the nucleus periphery labels are forced to appear with the nucleus center labels. 
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Supplementary Table 2: Comparison of linking performances 
 

 
Training from scratch Incremental training 

from pre-trained model 
Nearest neighbour 

False 
positive 

all 905 959 2,093 

cell division 11 16 16 

False 
negative 

all 1,349 1,329 1,991 

cell division 232 306 327 

Training time 31 h 4 min - 

 
The table shows a summary of linking performances tested on the PH dataset, on a total 
number of 259,071 links (including 688 links on cell divisions). Incremental training was 
performed by transferring the training parameters from the model pre-trained with the CE 
datasets. Linking performance on dividing cells is scored separately. 
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Supplementary Figure 1: ELEPHANT client-server architecture 
The client provides an interactive user interface for annotation, proofreading and 
visualization. The server performs training and prediction with deep learning. The client and 
server communicate using HTTP and JSON. 
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Supplementary Figure 2: 3D U-Net architecture for detection 
Schematic illustration of the 3D U-Net architecture for detection, using an input image with a 
size of 384x384x12 and a ratio of lateral-to-axial resolution of 8 as an example. Rectangles 
show the input/intermediate/output layers, with the sizes shown on the left of each row and 
the number of channels shown above each rectangle. Block arrows represent different 
operations as described in the figure. The resolution of the z dimension is maintained until the 
image becomes nearly isotropic (ratio of lateral-to-axial resolution of 1, in the bottom layers 
in this example). 
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Supplementary Figure 3: Proofreading in detection 
The ellipses show the sections of nuclear annotations in the xy plane and the dots represent 
the projections of the center position of the annotated nuclei, drawn in distinct colours; colour 
code explained on the right. Nuclei that are out of focus in this view appear only as dots. 
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Supplementary Figure 4: 3D U-Net architecture for flow 
Schematic illustration of the 3D U-Net architecture for the flow model, depicted as in 
Supplementary Figure 2. The structure of ResBlock is shown on the bottom. 
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Supplementary Figure 5: Image quality issues in the PH dataset 
Snapshots represent the image characteristics of the PH dataset that render cell tracking more 
challenging: fluorescence from cellular debris, low signal, variations in nuclear fluorescence 
intensity and nuclear shape, and variations in image quality across the imaged sample. The 
top panels show parts of a field of view indicated with red squares; the bottom panel shows an 
entire xy plane. 
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Supplementary Figure 6: Complete and fully-validated cell lineage trees in a 
regenerating leg of Parhyale 
The displayed trees contain 109 complete and fully-validated cell lineages in a regenerating 
leg of Parhyale (PH dataset), corresponding to Figure 2f. 
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Captions for Supplementary Videos 
 
Supplementary Video 1: Live imaging of Parhyale leg regeneration (PH dataset) 
https://doi.org/10.5281/zenodo.4557870 
A maximum intensity projection of the PH dataset captures the regeneration of a Parhyale T4 
leg amputated at the distal end of the carpus, over a period of 1 week. hpa, hours post 
amputation 
 
Supplementary Video 2: Incremental training of the detection model in ELEPHANT 
https://doi.org/10.5281/zenodo.4557867 
A cycle of incremental training of the ELEPHANT detection model is shown, including the 
annotation, training and prediction steps. The color-coding of the annotations is the same as 
shown in Supplementary Figure 3. 
 
Supplementary Video 3: ELEPHANT flow predictions in 3D 
https://doi.org/10.5281/zenodo.4557858 
The PH dataset is shown in parallel with the corresponding flow predictions of the 
ELEPHANT optical flow model (in three dimensions), over the entire duration of the 
recording. Gray values for flow predictions represent displacements between timepoints as 
introduced in Figure 1c. 
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