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Introduction

Given a compact semisimple Lie group G and a maximal torus T of G, we can form the flag manifold G/T . Furthermore, the factor group W := N G (T )/T is a finite group, known as the Weyl group of G. An element w ∈ W acts naturally on G/T by multiplication on the right by a representative of w in N G (T ). This gives a free action of W on G/T . Moreover, the Bruhat decomposition of G/T (see [START_REF] Bump | Lie groups[END_REF]§27]) provides G/T the structure of a cellular complex. Since W is finite, the quotient G/T admits a W -equivariant cellular decomposition (see [Mat73, Proposition 0.5]). Unfortunately, this is not explicit so a natural question is to find explicitly such a cellular structure.

In [START_REF] Chirivi | Cellularization for exceptional spherical space forms and application to flag manifolds[END_REF], the authors obtain an explicit cellular decomposition for the real points F(R) of the flag manifold F := SU 3 (C)/T , equivariant with respect to the Weyl group W = S 3 , using the so-called octahedral spherical space form S 3 /O, where O is the binary octahedral group of order 48. More precisely, they first obtain an O-equivariant cellular structure on S 3 and then, taking the intermediate quotient of S 3 by the quaternion group Q 8 ⊳ O, noticing that O/Q 8 ≃ S 3 and that there is an S 3 -equivariant diffeomorphism S 3 /Q 8 ≃ F(R), they get the S 3 -equivariant decomposition of F(R).

It is worth noticing that the cellular structure on S 3 is constructed using geodesics in S 3 , with respect to the usual metric on S 3 induced by the one on R 4 . Thus, a natural question is to look for a Riemannian metric on the real flag manifold F(R) giving "nice" geodesic properties to the cells in F(R); for example such that a 1-cell is the image of some (open) geodesic in F(R). This is the aim of this note. In fact, we shall see that there is a unique (up to scalar) bi-invariant Riemannian metric on F(R) and a suitable normalization of it will make the equivariant diffeomorphism F(R) ≃ S 3 /Q 8 into an isometry. The resulting metric will be called the quaternionic metric on F(R) and denoted by g 8 .

Let us briefly outline the content of this note. First of all, we give a reminder on elementary Riemannian geometry and in particular on invariant metrics on compact Lie groups and associated homogeneous spaces. Then we define the quaternionic metric on F(R) using the Killing form on the Lie algebra so 3 (R) of skew-symmetric 3× 3 matrices. Next, we prove that, endowed with this normalized metric, the equivariant diffeomorphism [START_REF] Chirivi | Cellularization for exceptional spherical space forms and application to flag manifolds[END_REF] is isometric. Finally, we describe the cells of F(R) constructed in [START_REF] Chirivi | Cellularization for exceptional spherical space forms and application to flag manifolds[END_REF] in terms of unions of images of g 8 -geodesics. In particular, 1-cells are the images in F(R) of one-parameter subgroups of SO 3 (R).

S 3 /Q 8 ∼ → F(R) constructed in

Invariant Riemannian structures on Lie groups and homogeneous spaces

We start this note by giving some reminders on Riemannian manifolds and in particular on bi-invariant metrics on flag manifolds. For more details on Riemannian manifolds, the reader is invited to have a look at [Lee] or [START_REF] Hulin | Riemannian geometry[END_REF].

Recall that a Riemannian manifold is a pair (M, g), where M is a smooth manifold and g is a symmetric positive-definite (2, 0)-tensor on M . To simplify notations, we use freely the Einstein convention for repeated indices. For instance, we simply write x i e i to mean i x i e i . Denote by X (M ) := Γ(T M ) the set of vector fields on M (i.e. the sections of the tangent bundle T M of M ) and recall that an affine connection on M is a bilinear map ∇ : X (M ) × X (M ) → X (M ) which is C ∞ (M, R)-linear on the left and which satisfies the Leibniz rule on the right, i.e. such that

∀f ∈ C ∞ (M, R), ∀X, Y ∈ X (M ), ∇ f X Y = f ∇ X Y, ∇ X (f Y ) = df (X)Y + f ∇ X Y.
If (M, g) is a Riemannian manifold, then there exists a unique affine connection on M such that

Z(g(X, Y )) = g(∇ Z X, Y ) + g(X, ∇ Z Y ), ∇ X Y -∇ Y X = [X, Y
]. This connection is called the Levi-Civita connection on M . It may be implicitly defined by the Koszul formula

2g(∇ X Y, Z) = X(g(Y, Z)) + Y (g(Z, X)) -Z(g(X, Y )) + g([X, Y ], Z) + g([Z, X], Y ) -g([Y, Z], X). (1)
It may be useful to express these objects in local charts. If p ∈ M , take (x 1 , . . . , x n ) a local system of coordinates around p and define the metric coefficients

g ij := g ∂ ∂x i , ∂ ∂x j
as well as (g ij ) the inverse matrix of (g ij ). If ∇ is the Levi-Civita connection on M , we define the Christoffel symbols Γ k ij by

∇ ∂ ∂x i ∂ ∂x j =: Γ k ij ∂ ∂x k , i.e. Γ k ij = 1 2 g kl ∂g li ∂x j + ∂g lj ∂x i - ∂g ij ∂x l . Now, a curve γ :]a, b[→ M is a geodesic if and only if the covariant derivative of γ ′ =: γ vanishes, that is ∇ γ γ = 0, where ∇ γ := (γ * ∇) d dt .
Here, the connection γ * ∇ is defined as the only connection on γ * (T M ) such that, for

x ∈]a, b[, v ∈ R = T x (]a, b[) and for a vector field X ∈ X (M ), one has (2) (γ * ∇) v (γ * X) = γ * ∇ dxγ(v) (X) .
Using the Christoffel symbols, this can be rephrased in the following differential system of dim M equations:

d 2 γ k dt 2 + Γ k ij dγ i dt dγ j dt = 0.
Using the Picard-Lindelöf theorem, given m 0 ∈ M , there exists an open neighborhood U ⊂ M of m 0 and ε > 0 such that, for m ∈ U and v ∈ T p M with |v| < ε, there is a unique geodesic c

v :] -1, 1[→ M such that c v (0) = m and c ′ v (0) = v.
Like the maximal solutions of an ordinary differential equation, the maximal geodesics need not to be defined for all t ∈ R. If so, the manifold M is said to be geodesically complete.

Next, we define the length of a curve γ : [a, b] → M by the integral

L(γ) := b a g( γ(t), γ(t))dt = b a γ(t) g dt.
For p, q ∈ M two points on a connected Riemannian manifold (M, g), denote by C(p, q) the set of piecewise smooth curves γ : [0, 1] → M such that γ(0) = p and γ(1) = q and define the quantity

d g (p, q) := inf γ∈C(p,q) L(γ).
This is well-defined since C(p, q) = ∅ (see [Lee, Proposition 2.50]) and it is easy to see that the function d g : M × M → R + is a distance on M , making (M, d g ) into a metric space. Furthermore, we say that a geodesic γ between two points p and q of M is minimal if L(γ) = d g (p, q). Moreover, the topology induced by this distance is the original topology of M (see [GHL04, Definition-Proposition 2.91]). In fact, according to the Theorem 6.15 from [Lee], every geodesic is locally minimal and every minimal curve is a geodesic, when it is given the unit-speed parametrization ([Lee, Theorem 6.4]). However, it is typically not true that any two points of M can be joined by a minimal geodesic.

A local isometry between Riemannian manifolds (M, g) and (N, h) is a smooth map

f : M → N such that ∀p ∈ M, ∀u, v ∈ T p M, h f (p) (d p f (u), d p f (v)) = g p (u, v).
Note that this condition implies that f is a local diffeomorphism, by the inverse function theorem. Moreover, a local isometry is called an isometry if it is a diffeomorphism. Note that an isometry preserves Riemannian distances between points.

Let π : ( M , g) → (M, g) be a smooth submersion between Riemannian manifolds. For x ∈ M , we define the following subspaces of

T x M V x := ker(d x π) = T x (π -1 (π(x))) and H x := V x ⊥ ,
the orthogonal being taken with respect to the inner product g x . These are respectively called the vertical and horizontal tangent spaces. We say that π is a Riemannian submersion if d x π restricts to a linear isometry from

H x to T π(x) M , i.e. ∀u, v ∈ H x , g x (u, v) = g π(x) (d x π(u), d x π(v)).
We say that π is a Riemannian covering map if it is a covering map, that is also a Riemannian submersion.

Proposition 1.1. ([GHL04, Proposition 2.81]) If π : M → M is a Riemannian covering map, then the geodesics of M are the projections of the geodesics of M and conversely, every geodesic of M lifts to a geodesic of M .

Finally, recall the Hopf-Rinow theorem:

Theorem 1.2. (Hopf-Rinow, [Lee, Theorem 6.19]) Metric and geodesic completeness are equivalent in a connected Riemannian manifold. Moreover, if the manifold is complete, then any two points can be joined by a minimal geodesic.

We shall need the following fundamental result:

Theorem 1.3. Let (M, g) be a connected Riemannian manifold and G be a Lie group acting freely, properly and isometrically on M . Then, there exists a unique Riemannian metric g on M/G such that the projection π : M ։ M/G is a Riemannian submersion.

If moreover M and M/G are geodesically complete (which is the case for instance if M is compact and G is finite, by the Hopf-Rinow theorem), then the geodesic distance on M/G is given by ∀x, y ∈ M, d g (π(x), π(y)) = inf h∈G d g (x, hy).

Proof. The existence and uniqueness of g is a standard fact and can be found for instance in [Lee], Corollary 2.29 or in [Bes87, §9.12]. Only the statement about distance remains to be proved. Take x, y ∈ M and x := π(x), y := π(y). Fix some h ∈ G. Since M is complete, there exists a minimizing geodesic arc γ : [0, 1] → M such that γ(0) = x and γ(1) = hy.

Then π • γ is a geodesic linking x and y and since π is a Riemannian submersion, it is a local isometry so one has

L(γ) def = 1 0 g γ(t) (γ ′ (t), γ ′ (t))dt = L(π • γ).
Hence, π • γ is a geodesic between x and y of the same length as γ, so by definition of the geodesic distance, one gets d g (x, y) ≤ d g (x, hy). Because h ∈ G is arbitrary, we get d g (x, y) ≤ inf h d g (x, hy). We have to prove the converse inequality to conclude. Consider then a minimizing geodesic arc γ : [0, 1] → M/G between x and y. Using again the Proposition 1.1, there exists a geodesic arc γ :

[0, 1] → M such that π • γ = γ and we have L(γ) = L( γ) = d g (x, y). By construction, there exist h 0 , h 1 ∈ G such that γ(0) = h 0 x and γ(1) = h 1 y we have d g (x, h -1 0 h 1 y) = d g (h 0 x, h 1 y) ≤ L(γ) = d g (x, y). Remark 1.4.
If we take M = S 2n+1 endowed with its natural round metric and G = Z/2Z acting on S 2n+1 as the antipode, then M/G = P n (C) and there is a unique metric on P n (C) making the projection S 2n+1 ։ P n (C) into a Riemannian submersion. This metric is called the Fubini-Study metric. Using the previous Theorem, we can easily see that the induced distance d F S on P n (C) is given by the following ∀p, q ∈ P n (C), d F S (p, q) = arccos | p, q | p q .

We now review some basic facts about invariant Riemannian metrics on Lie groups and their flag manifolds. Let G be a Lie group and g := T 1 G be its Lie algebra. For an element p ∈ G, denote by L p : G → G and R p : G → G left multiplication maps q → pq and q → qp, respectively. Recall Of course, there may exists many Riemannian metrics on G, but a natural restriction is to look for invariant metrics. More precisely, a Riemannian metric g on G is said to be left-invariant

if ∀p ∈ G, ∀X, Y ∈ g, g p (d 1 L p (X), d 1 L p (Y )) = g 1 (X, Y ).
Denoting by X ℓ (G) the set of left-invariant vector fields on G (i.e. the set of all X ∈ X (G) such that d q L p (X q ) = X pq for all p, q ∈ G) and using the bijection X ℓ (G) → g defined by X → X 1 , we see that g is left-invariant if and only if the following is true:

∀p ∈ G, ∀X, Y ∈ X ℓ (G), g p (X p , Y p ) = g 1 (X 1 , Y 1 ).
Analogously, g is right-invariant if the above condition is verified for right-invariant vector fields on G. Finally, the metric g is bi-invariant if it is both left and right-invariant.

Lemma 1.5. Let G be a Lie group.

The map g → g 1 is a bijective correspondence between the set of left-invariant (resp. right-invariant) metrics on G and the set of inner products on g.

Furthermore, the same map restricts to a bijective correspondence between the set biinvariant metrics on G and the set of ad-invariant inner products on g.

In particular, if G is compact then the Killing form κ(X, Y ) := tr (ad(X) • ad(Y )) on g is negative definite ([Bes87, Lemma 7.36]) and thus there exists a bi-invariant metric on G.

A first convenient fact about bi-invariant metrics is that the associated Levi-Civita connection is easily computed on invariant vector fields.

Lemma 1.6. If g is a bi-invariant Riemannian metric on a Lie group G and if ∇ is the associated Levi-Civita connection, then

∀X, Y ∈ X ℓ (G), ∇ X Y = 1 2 [X, Y ].
Proof. Let Z ∈ X ℓ (G) and note that, since g is bi-invariant, the function g(X, Y ) is constant on G and hence Z(g(X, Y )) = 0. Also, since g 1 is ad-invariant on g, we have g(X, [Y, Z]) = g([X, Y ], Z). Hence, the Koszul formula (1) reads

2g(∇ X Y, Z) = X(g(Y, Z))+Y (g(Z, X))-Z(g(X, Y ))+g([X, Y ], Z)+g([Z, X], Y )-g([Y, Z], X) = g([X, Y ], Z) -g([X, Z], Y ) + g(X, [Z, Y ]) = g([X, Y ], Z
). Since this is true for arbitrary Z, the result follows.

We now come to the following important result:

Theorem 1.7. [YWL19, Theorem 2.5]
If G is a compact Lie group endowed with a bi-invariant metric g and H ≤ G is a closed subgroup then the orbit space G/H, endowed with the induced Riemannian metric given by the Theorem 1.3, is a geodesic orbit space, meaning that every geodesic on G/H is the orbit of a one-parameter subgroup of G.

Proof. Using [GHL04, Proposition 2.81], we only have to prove that G is a geodesic orbit space. Denote by g the Lie algebra of G. Let γ be the curve defined on R by γ : t → pe tX . Then γ is an X-integral curve, i.e. γ ′ = X • γ, where X ∈ X ℓ (G) is the left-invariant vector field associated to X ∈ g. Then, one calculates

∀t ∈ R, ∇ γ γ(t) def = (γ * ∇) d dt (γ * X)(t) (2) = γ * ∇ γ(t) X (t) = ∇ X X (γ(t)) = 0, since ∇ X ( X) = 1
2 [ X, X] = 0 by the Lemma 1.6, we get that ∇ γ γ = 0 and hence γ is a geodesic and by the Picard-Lindelöf theorem, this is the only geodesic on G such that γ(0) = p and γ ′ (0) = pX = d 1 L p (X). Then, we have proved that any geodesic on G is of the form t → pe tX for some p ∈ G and X ∈ g and hence is a one-parameter subgroup of G.

The quaternionic bi-invariant Riemannian metric on the flag manifold of SL 3 (R)

We shall now equip the manifold F(R) with a bi-invariant Riemannian metric. An SU 3invariant Riemannian metric on F = SU 3 (C)/T is easily seen to be determined by its value on the tangent space T 1 F (this is a general fact about homogeneous spaces which relies on Lemma 1.5). Now,

sl 3 (C) = h ⊕ δ∈Φ + (Ce δ ⊕ Cf δ )
is the root spaces decomposition of sl 3 , with (e δ , f δ , h δ ) δ∈Φ + the Serre basis of sl 3 , and Φ + = {α, β, α + β} is the set of positive roots, then one has the Cartan decomposition

su 3 (C) = t ⊕ δ∈Φ + p δ , with p δ := R(e δ -f δ u δ ) ⊕ R i(e δ + f δ ) v δ and t = δ∈Φ + Rih δ .
Now, one has T 1 F ≃ δ∈Φ + p δ =: p and recalling that the Killing form κ(X, Y ) := 6tr (ad(X) • ad(Y )) = 6tr (XY ) on su 3 (C) is a negative-definite symmetric bilinear form (since SU 3 is compact, see [Bes87, Lemma 7.36]), any left SU 3 -invariant metric g on F may be written as g = -

δ∈Φ + x δ • κ(•, •) |p δ , with x δ ∈ R + , ∀δ ∈ Φ +
and this metric is bi-invariant if and only if x δ = x δ ′ for all δ, δ ′ ∈ Φ + . Thus there is only one bi-invariant metric on F, up to scalar. These standard considerations can be found in [START_REF] Sakane | Homogeneous einstein metrics on flag manifolds[END_REF] or [START_REF] Park | Invariant einstein metrics on certain homogeneous spaces[END_REF]. Then, we take the quaternionic bi-invariant metric

g 8 := - 1 48 (κ |pα + κ |p β + κ |p α+β ) = - 1 48 κ |p
on F, and restrict it to F(R). The reason of taking such a normalization will appear soon.

Notice that this metric is Einstein, meaning that the Ricci tensor is a scalar multiple of the metric tensor, i.e. there exists a function λ such that Ric g 8 = λg 8 everywhere.

Proposition 2.1. The metric g 8 on SO(3) defined above induces a Riemannian metric g 8 on F(R) making (F(R), g 8 ) into a geodesic orbit space. Moreover, for p ∈ SO(3) and X ∈ so(3) := so 3 (R), the arc-length of the geodesic γ : s → pe sX • S(O(1) 3 ) is given by

∀t ≥ 0, L(γ |[0,t] ) = t X F 2 √ 2 ,
where • F is the Frobenius norm, defined by (a i,j ) i,j F = i,j |a i,j | 2 .

Proof. The first statement is just a particular case of the Theorem 1.7. For the second statement we just calculate, for

t ∈ R + , L(γ |[0,t] ) def = t 0 g 8 γ(s) (γ ′ (s), γ ′ (s))ds = t 0 g 8 γ(s) (pXexp(sX), pXexp(sX))ds = t 0 g 8 1 (X, X)ds = t g 8 1 (X, X) = t tr ( t XX) 8 = t X F 2 √ 2 .
3. Isometry between F(R) and the quaternionic spherical space form

S 3 /Q 8 Recall the isomorphism σ : O/Q 8 ∼ -→ S 3 1+i √ 2 -→ s β 1+k √ 2 -→ s α
We now equip S 3 /Q 8 with the quotient metric q Q 8 induced by the standard round metric on S 3 and we shall prove that φ is in fact an isometry. For this, we need the following lemma:

Lemma 3.1. The map S 3 B -→ SO(3) q -→ Mat (i,j,k) (L(q)R(q)) is smooth and we have R 3 d 1 B -→ so(3) (x, y, z) -→ 2 0 z -y -z 0 x y -x 0
In particular, if S 3 is equipped with the standard round metric induced from R 4 and SO(3) with the bi-invariant metric g 8 defined above, then we have an isometry

B : S 3 /{±1} ∼ -→ SO(3).
Proof. Recall the space V := Ri ⊕ Rj ⊕ Rk of pure quaternions. For u, h ∈ V ≃ R 3 , we simply compute

d 1 B(u) • h = d dt B(1 + tu)(h)| t=0 = d dt (1 + tu)h(1 + tu) t=0 = d dt (h + thu + tuh + t 2 uhu) t=0 = hu + uh = uh -hu = [u, h].
Hence, by computing the matrix of d 1 B(u) with respect to the canonical basis (i, j, k) of V , one obtains the matrix from the first statement. Now, since {±1} acts freely and isometrically on S 3 , the map S 3 ։ S 3 /{±1} is a Riemannian covering, hence a local isometry (in particular, a local diffeomorphism). Therefore, if we prove that B is a local isometry, then B will be a bijective local isometry, hence an isometry by the inverse function theorem, as required. But since B is a homomorphism of Lie groups, it suffices to show that d 1 B is a linear isometry. This is where the normalization by 1 48 comes into the game. Since we have endowed S 3 with the round metric, we can compute for u := (x, y, z

) ∈ R 3 = T 1 S 3 , g 8 1 (d 1 B(u), d 1 B(u)) df = - 6tr (d 1 B(u) 2 ) 48 = - 4 8 tr     0 z -y -z 0 x y -x 0   2   = - 1 2 tr   -y 2 -z 2 xy xz xy -x 2 -z 2 yz xz yz -x 2 -y 2   = x 2 + y 2 + z 2 = g S 3 1 (u, u).
Proposition 3.2. If we endow respectively S 3 /Q 8 and F(R) with the metrics g Q 8 and g 8 , then the map φ of Lemma ?? is an isometry.

Proof. The quotient map

S 3 /{±1} ։ (S 3 /{±1})/K 4 ≃ S 3 /Q 8
is a Riemannian covering, hence a local isometry. On the other hand, the map

SO(3) ։ SO(3)/S(O(1) 3 ) = F(R)
is a Riemannian covering too. Now, since B : S 3 /{±1} → SO(3) is an isometry by the previous Lemma and since the following diagram commutes

S 3 /{±1} B ∼ / / SO(3) S 3 /Q 8 ∼ φ / / F(R)
one concludes that φ is a bijective local isometry, hence a global isometry.

In particular, combining Proposition 3.2 and Theorem 1.3 yields the following corollary:

Corollary 3.3. For q := a + bi + cj + dk ∈ S 3 , one has 

d g 8 (1, B(q)) = min ε=±1 d S 3 (1, εq) = arccos |a| and d g 8 (1, φ(q)) = min g∈Q 8 d S 3 (1, gq) = min x=±a,±b,±c,±d (arccos(x) 

Geodesics in F(R) as projections of geodesics in S 3

Now that we know what geodesics look like and that we can compute the distance between two flags, we can start describing the cells. But before that, we have to adapt the curved join construction to F(R). This is not as easy as in the case of S 3 , since there can exist many minimizing geodesics between two points in F(R) (as for two antipodal points in S 3 ). Since SO(3) acts transitively by isometries on F(R), it suffices to look at geodesics starting at 1 and translate them. It turns out that, if a matrix in SO(3), seen as a rotation, has angle different from π, then there will be a unique minimizing geodesic linking it to 1. For this, we shall use the matrix logarithm.

Recall that, given X ∈ so(3) and θ ∈ [0, 2π], we have the Rodrigues formula (see [START_REF] Cardoso | Exponentials of skew-symmetric matrices and logarithm of orthogonal matrices[END_REF]§2])

e θX = I 3 + sin(θ)X + (1 -cos(θ))X 2 ,
hence we obtain sin(θ)X = e θX -t (e θX ) 2 and if θ = 0, π, then X = 1 2 sin(θ) (e θXe -θX ).

Thus, if R ∈ SO(3) is a rotation with tr (R) = -1, 3, then there is a unique X ∈ so(3) such that e X = R and X is given by

X = θ 2 sin(θ) (R -t R), θ = arccos tr (R) -1 2 .
We shall denote X := log(R). This is uniquely defined as soon as θ = 0, π. If θ = 0, we can just take log(R) = 0. With this notion, we see that the curve γ R : t → e t log(R) is a geodesic from 1 to R in SO(3) and hence its projection γ R :

t → e t log(R) S(O(1) 3 ) is a geodesic from 1 to R • S(O(1) 3 ) in F(R)
. Now, we have to prove that the images of the geodesics we used in S 3 to construct our O-cellular decomposition go to geodesics in F(R). Denote by π Q 8 : S 3 ։ S 3 /Q 8 the natural projection and recall the isometry φ : S 3 /Q 8 → F(R). We have the following result: Proposition 4.1. Let q := (cos ω, sin ω cos ϕ, sin ω sin ϕ cos θ, sin ω sin ϕ sin θ) ∈ S 3 be a point expressed in spherical coordinates, with 0 ≤ ω, ϕ ≤ π and 0 ≤ θ ≤ 2π. Suppose 0 < ω < π 2 and denote by γ q the unique minimizing geodesic such that γ q (0) = 1 and γ q (1) = q. Then one has In particular, one has L(γ q ) = L( γ q ) = ω. Moreover, B • γ q is the only geodesic (up to reparametrization) in SO(3) from 1 to B(q).

∀0 ≤ t ≤ 1, (φ • π Q 8 ) γ q (t) = exp(tX q ) • S(O(1) 3 ) =: γ q (t),
Proof. The round metric on S 3 is given in spherical coordinates (around 1) by the matrix (g ij ) where g ij = 0 for i = j and g ωω = 1, g ϕϕ = sin 2 ω, g θθ = sin 2 ω sin 2 ϕ. hence, the Christoffel symbols Γ k ij are easily computed and the geodesic equations γk + Γ k ij γi γj = 0 for a curve t → (ω(t), ϕ(t), θ(t)) are given by the system    ωsin(ω) cos(ω)( φ2 + sin 2 (ϕ) θ2 ) = 0, φ + cot(ω) φ ωsin(ϕ) cos(ϕ) θ2 = 0, θ + θ(cot(ϕ) φ + cot(ω) ω) = 0.

Hence, the curve γ q : t → (cos(tω), sin(tω) cos ϕ, sin(tω) sin ϕ cos θ, sin(tω) sin ϕ sin θ) is a geodesic, with γ q (0) = (1, 0, 0, 0) and γ q (1) = q. Moreover, it is minimizing since

L( γ q ) = 1 0 g S 3 γq(t) ( ˙ γ q (t), ˙ γ q (t))dt = 1 0 ω(t) 2 + sin 2 ω(t) φ(t) 2 + sin 2 ϕ(t) θ(t) 2 =0 dt = 1 0 ω(t)dt = ω = d S 3 (1, q).
Now, since 0 < ω < π 2 , we have 2tω < π and hence, we can compute tr (B( γ q (t))) = 2 cos 2 (tω) -1 = cos(2tω) = -1.

Thus, the logarithm log(B( γ q (t))) is well-defined and the Rodrigues formula yields log(B( γ q (t))) = 2tω   0 sin(ϕ) sin(θ) sin(ϕ) cos(θ) sin(ϕ) sin(θ) 0 cos(ϕ) sin(ϕ) cos(θ) cos(ϕ) 0   def = tX q , so that B( γ q (t)) = e tXq . Finally, since φ • π Q 8 = π • B where π : SO(3) ։ F(R), we have the result. The statement about uniqueness follows immediately from the fact that log(B(q)) is uniquely defined and that SO(3) is a geodesic-orbit space.

Recall that in the Section ??, we have denoted

D O := i ∆ i and F O := pr( D O ).
Corollary 4.2. For every q ∈ F O , the logarithm log(B(q)) ∈ so(3) is well-defined and the curve t → exp(t log B(q)) is the only minimal geodesic in SO(3) from 1 to B(q). Furthermore, its projection γ q is a geodesic in F(R).

Proof. In view of Proposition 4.1, we only have to prove that ℜ(q) > 0, because in this case we will have ω q = arccos(ℜ(q)) < π 2 . Hence, we have to prove that for 1 ≤ i ≤ 6 and for x = (x 1 , x 2 , x 3 , x 4 ) ∈ ∆ i , we have x 1 > 0; given that the ∆ i 's are defined as convex hulls, it suffices to show that their vertices have positive first coordinates. But since these vertices are among

1 2 (1, ±1, ±1, ±1), 1 √ 2 (1, -1, 0, 0), 1 √ 2 (1, 0, -1, 0), 1 √ 2 (1, 0, 0, -1) ,
the result is now clear.

The cells of the S 3 -equivariant cellular structure of F(R) as unions of open geodesics

We shall now describe the cells in F(R) from Theorem 3.4.6 of [START_REF] Chirivi | Cellularization for exceptional spherical space forms and application to flag manifolds[END_REF] as unions of images of geodesics in F(R), with respect to the quaternionic metric g 8 . First, we briefly recall the curved join construction. Given two points x and y = -x in S 3 , we write x * y to denote the image γ x,y ([0, 1]) of the unique minimal geodesic γ x,y : [0, 1] → S 3 joining them. The resulting curve is called the curved join of x and y. Also, x

• * y denotes the image γ x,y (]0, 1[) that is, the image of the geodesic γ x,y with endpoints removed. We can extend the curved join to subsets of S

3 : if U, V ⊂ S 3 are such that U ∩ (-V ) = ∅, then we can define U * V := u∈U v∈V u * v.
This is easily seen to be associative on subsets. We may also define U

• * V := u,v u

• * v. We take some notation. If q ∈ S 3 with tr (q) > 0, recall the unique geodesic γ q from 1 to q on S 3 and its image γ q := φ • π Q 8 • γ q on F(R) defined by γ q (t) = exp(t log(B(q)))S(O(1) 3 ). We shall denote by Γ q := γ q (]0, 1[) the image of the open geodesic (γ q ) |]0,1[ . Next, for u = v ∈ {i, j, k}, let

e u v := q∈τu • * ωv γ q -1 (]0, 1[) and e uv := q∈τu • * τv γ q -1 (]0, 1[),
as well as

e u v := φ(π Q 8 (e u v )) = q∈τu • * ωv Γ q -1 and e uv := φ(π Q 8 (e uv )) = q∈τu • * τv Γ q -1 .
Note that we may of course define also, for u ∈ {i, j, k}, Remark 5.1. We have used quaternions to define these subsets, however, it should be remarked that one can write them using only the exponential. For instance, one has To see this, first notice that

e i j = q∈τ i • * ω j Γ q -1 =        exp    
e i j = q∈τ j • * ω i Γ q -1 = q∈τ -1 j • * ω -1 i Γ q =
q∈(1

• * τ -1 i )•ω -1 i Γ q = q∈im • γ τ -1 i Γ qω -1 i .
But, one has that q ∈ im (

• γ τ -1 i
) if there exists 0 < t < 1 such that q = cos tπ 4i sin tπ 4 . To simplify notations, denote c t := cos tπ 4 and s t := sin tπ 4 . Then, one has qω -1 i = (c t + s t ) + i(c ts t )j(c t + s t )k(c ts t ) 2 = cos(ω t ) + i sin(ω t ) cos(ϕ t ) + j sin(ω t ) sin(ϕ t ) cos(θ t ) + k sin(ω t ) sin(ϕ t ) sin(θ t ), where and we find indeed the announced description.

ω t =
We are now in a position to state the main result:

  ) = min x=a,b,c,d (arccos |x|).



  ϕ) sin(θ) sin(ϕ) cos(θ) sin(ϕ) sin(θ) 0 cos(ϕ) sin(ϕ) cos(θ) cos(ϕ) 0 ∈ so(3).

γ• * ω 0 Γ q - 1 .

 01 q -1 (]0, 1[) and e u 0 := φ(π Q 8 (e u 0 )) = q∈τuWith this notation we can determine the images ∆ i := φ(π Q 8 ( ∆ i )) as 

PROPERTIES OF A WEYL-EQUIVARIANT CELLULAR DECOMPOSITION THEREOF Theorem 5.2. With the above notation, the real flag manifold F(R) = SO(3)/S(O(1) 3 ) admits an S 3 -equivariant cellular decomposition with orbit representatives cells given by

as well as

Moreover, the closures of the 1-cells e 1 j are minimal geodesics from e 0 to e 0 • s β , e 0 • w 0 and e 0 • s α , respectively.

Proof. We just have to check that, if e i j is a cell of the analogue of the cellular decomposition provided by the Theorem ?? for the action of O on S 3 by multiplication on the right, then one has φ • π Q 8 ( e i j ) = e i j , in other words, e i j = φ π Q 8 (e i j ) -1 , but we have defined the cells e i j in this way. Next, take for instance the closure e 1 1 = γ τ -1 i ([0, 1]), the other two being treated in the same way. By the Corollary 4.2, γ τ -1 i is a geodesic in F(R) and by the Corollary 3.3, we

, arccos(0) = π 4 . Thus, we have to show that

2 log( ṡβ ) F = π 4 = d g 8 (1, s β ), as required. Remark 5.3. We can also describe more explicitly the 1-cells as Notice that the closure e 3 is a fundamental domain for S 3 acting on F(R).