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RIEMANNIAN GEOMETRY OF THE REAL FLAG MANIFOLD OF

TYPE A2 AND GEODESIC PROPERTIES OF A WEYL-EQUIVARIANT

CELLULAR DECOMPOSITION THEREOF

ARTHUR GARNIER

Abstract. Using three-dimensional spherical space forms, Chirivi, Spreafico and the au-
thor found a cellular structure on the flag manifold SO(3)/S(O(1)3), equivariant with
respect to the action of the Weyl group W = S3. In this note, we give some Riemannian
geometry properties of this decomposition.
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0. Introduction

Given a compact semisimple Lie group G and a maximal torus T of G, we can form
the flag manifold G/T . Furthermore, the factor group W := NG(T )/T is a finite group,
known as the Weyl group of G. An element w ∈ W acts naturally on G/T by multiplication
on the right by a representative of w in NG(T ). This gives a free action of W on G/T .
Moreover, the Bruhat decomposition of G/T (see [Bum13, §27]) provides G/T the structure
of a cellular complex. Since W is finite, the quotient G/T admits a W -equivariant cellular
decomposition (see [Mat73, Proposition 0.5]). Unfortunately, this is not explicit so a natural
question is to find explicitly such a cellular structure.

In [CGS20], the authors obtain an explicit cellular decomposition for the real points F(R)
of the flag manifold F := SU3(C)/T , equivariant with respect to the Weyl group W = S3,
using the so-called octahedral spherical space form S

3/O, where O is the binary octahedral
group of order 48. More precisely, they first obtain an O-equivariant cellular structure on S

3

and then, taking the intermediate quotient of S3 by the quaternion group Q8 ⊳ O, noticing
that O/Q8 ≃ S3 and that there is an S3-equivariant diffeomorphism S

3/Q8 ≃ F(R), they
get the S3-equivariant decomposition of F(R).

It is worth noticing that the cellular structure on S
3 is constructed using geodesics in S

3,
with respect to the usual metric on S

3 induced by the one on R
4. Thus, a natural question

is to look for a Riemannian metric on the real flag manifold F(R) giving ”nice” geodesic
properties to the cells in F(R); for example such that a 1-cell is the image of some (open)
geodesic in F(R). This is the aim of this note. In fact, we shall see that there is a unique
(up to scalar) bi-invariant Riemannian metric on F(R) and a suitable normalization of it
will make the equivariant diffeomorphism F(R) ≃ S

3/Q8 into an isometry. The resulting
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metric will be called the quaternionic metric on F(R) and denoted by g8.
Let us briefly outline the content of this note. First of all, we give a reminder on elemen-

tary Riemannian geometry and in particular on invariant metrics on compact Lie groups
and associated homogeneous spaces. Then we define the quaternionic metric on F(R) using
the Killing form on the Lie algebra so3(R) of skew-symmetric 3×3 matrices. Next, we prove

that, endowed with this normalized metric, the equivariant diffeomorphism S
3/Q8

∼→ F(R)
constructed in [CGS20] is isometric. Finally, we describe the cells of F(R) constructed in
[CGS20] in terms of unions of images of g8-geodesics. In particular, 1-cells are the images
in F(R) of one-parameter subgroups of SO3(R).

1. Invariant Riemannian structures on Lie groups and homogeneous spaces

We start this note by giving some reminders on Riemannian manifolds and in particular
on bi-invariant metrics on flag manifolds. For more details on Riemannian manifolds, the
reader is invited to have a look at [Lee] or [GHL04].

Recall that a Riemannian manifold is a pair (M,g), where M is a smooth manifold and
g is a symmetric positive-definite (2, 0)-tensor on M . To simplify notations, we use freely
the Einstein convention for repeated indices. For instance, we simply write xie

i to mean∑
i xie

i. Denote by X (M) := Γ(TM) the set of vector fields on M (i.e. the sections of
the tangent bundle TM of M) and recall that an affine connection on M is a bilinear map
∇ : X (M) × X (M) → X (M) which is C∞(M,R)-linear on the left and which satisfies the
Leibniz rule on the right, i.e. such that

∀f ∈ C∞(M,R), ∀X,Y ∈ X (M),

{
∇fXY = f∇XY,
∇X(fY ) = df(X)Y + f∇XY.

If (M,g) is a Riemannian manifold, then there exists a unique affine connection on M such
that {

Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY ),
∇XY −∇YX = [X,Y ].

This connection is called the Levi-Civita connection on M . It may be implicitly defined by
the Koszul formula

2g(∇XY,Z) = X(g(Y,Z)) + Y (g(Z,X)) − Z(g(X,Y ))

+ g([X,Y ], Z) + g([Z,X], Y )− g([Y,Z],X).
(1)

It may be useful to express these objects in local charts. If p ∈ M , take (x1, . . . , xn) a
local system of coordinates around p and define the metric coefficients

gij := g

(
∂

∂xi
,

∂

∂xj

)

as well as (gij) the inverse matrix of (gij). If ∇ is the Levi-Civita connection on M , we

define the Christoffel symbols Γk
ij by

∇ ∂

∂xi

(
∂

∂xj

)
=: Γk

ij

∂

∂xk
,

i.e.

Γk
ij =

1

2
gkl

(
∂gli
∂xj

+
∂glj
∂xi

− ∂gij
∂xl

)
.

Now, a curve γ :]a, b[→ M is a geodesic if and only if the covariant derivative of γ′ =: γ̇
vanishes, that is

∇γ̇ γ̇ = 0, where ∇γ̇ := (γ∗∇) d
dt
.

Here, the connection γ∗∇ is defined as the only connection on γ∗(TM) such that, for
x ∈]a, b[, v ∈ R = Tx(]a, b[) and for a vector field X ∈ X (M), one has

(2) (γ∗∇)v (γ
∗X) = γ∗

(
∇dxγ(v)(X)

)
.
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Using the Christoffel symbols, this can be rephrased in the following differential system of
dimM equations:

d2γk

dt2
+ Γk

ij

dγi

dt

dγj

dt
= 0.

Using the Picard-Lindelöf theorem, given m0 ∈ M , there exists an open neighborhood
U ⊂ M of m0 and ε > 0 such that, for m ∈ U and v ∈ TpM with |v| < ε, there is a unique
geodesic cv :] − 1, 1[→ M such that cv(0) = m and c′v(0) = v. Like the maximal solutions
of an ordinary differential equation, the maximal geodesics need not to be defined for all
t ∈ R. If so, the manifold M is said to be geodesically complete.

Next, we define the length of a curve γ : [a, b] → M by the integral

L(γ) :=

∫ b

a

√
g(γ̇(t), γ̇(t))dt =

∫ b

a

‖γ̇(t)‖gdt.

For p, q ∈ M two points on a connected Riemannian manifold (M,g), denote by C(p, q) the
set of piecewise smooth curves γ : [0, 1] → M such that γ(0) = p and γ(1) = q and define
the quantity

dg(p, q) := inf
γ∈C(p,q)

L(γ).

This is well-defined since C(p, q) 6= ∅ (see [Lee, Proposition 2.50]) and it is easy to see that
the function dg : M × M → R+ is a distance on M , making (M,dg) into a metric space.
Furthermore, we say that a geodesic γ between two points p and q of M is minimal if
L(γ) = dg(p, q). Moreover, the topology induced by this distance is the original topology of
M (see [GHL04, Definition-Proposition 2.91]). In fact, according to the Theorem 6.15 from
[Lee], every geodesic is locally minimal and every minimal curve is a geodesic, when it is
given the unit-speed parametrization ([Lee, Theorem 6.4]). However, it is typically not true
that any two points of M can be joined by a minimal geodesic.

A local isometry between Riemannian manifolds (M,g) and (N,h) is a smooth map
f : M → N such that

∀p ∈ M, ∀u, v ∈ TpM, hf(p)(dpf(u),dpf(v)) = gp(u, v).

Note that this condition implies that f is a local diffeomorphism, by the inverse function
theorem. Moreover, a local isometry is called an isometry if it is a diffeomorphism. Note
that an isometry preserves Riemannian distances between points.

Let π : (M̃ , g̃) → (M,g) be a smooth submersion between Riemannian manifolds. For

x ∈ M̃ , we define the following subspaces of TxM̃

Vx := ker(dxπ) = Tx(π
−1(π(x))) and Hx := Vx

⊥,

the orthogonal being taken with respect to the inner product g̃x. These are respectively
called the vertical and horizontal tangent spaces. We say that π is a Riemannian submersion
if dxπ restricts to a linear isometry from Hx to Tπ(x)M , i.e.

∀u, v ∈ Hx, g̃x(u, v) = gπ(x)(dxπ(u),dxπ(v)).

We say that π is a Riemannian covering map if it is a covering map, that is also a Riemannian
submersion.

Proposition 1.1. ([GHL04, Proposition 2.81]) If π : M̃ → M is a Riemannian covering

map, then the geodesics of M are the projections of the geodesics of M̃ and conversely, every

geodesic of M lifts to a geodesic of M̃ .

Finally, recall the Hopf-Rinow theorem:

Theorem 1.2. (Hopf-Rinow, [Lee, Theorem 6.19])
Metric and geodesic completeness are equivalent in a connected Riemannian manifold. More-
over, if the manifold is complete, then any two points can be joined by a minimal geodesic.

We shall need the following fundamental result:
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Theorem 1.3. Let (M,g) be a connected Riemannian manifold and G be a Lie group acting
freely, properly and isometrically on M . Then, there exists a unique Riemannian metric g
on M/G such that the projection π : M ։ M/G is a Riemannian submersion.

If moreover M and M/G are geodesically complete (which is the case for instance if M
is compact and G is finite, by the Hopf-Rinow theorem), then the geodesic distance on M/G
is given by

∀x, y ∈ M, dg(π(x), π(y)) = inf
h∈G

dg(x, hy).

Proof. The existence and uniqueness of g is a standard fact and can be found for instance
in [Lee], Corollary 2.29 or in [Bes87, §9.12]. Only the statement about distance remains to
be proved. Take x, y ∈ M and x := π(x), y := π(y). Fix some h ∈ G. Since M is complete,
there exists a minimizing geodesic arc γ : [0, 1] → M such that γ(0) = x and γ(1) = hy.
Then π ◦ γ is a geodesic linking x and y and since π is a Riemannian submersion, it is a
local isometry so one has

L(γ)
def
=

∫ 1

0

√
gγ(t)(γ′(t), γ′(t))dt = L(π ◦ γ).

Hence, π ◦ γ is a geodesic between x and y of the same length as γ, so by definition of
the geodesic distance, one gets dg(x, y) ≤ dg(x, hy). Because h ∈ G is arbitrary, we get
dg(x, y) ≤ infh dg(x, hy). We have to prove the converse inequality to conclude. Consider
then a minimizing geodesic arc γ̃ : [0, 1] → M/G between x and y. Using again the
Proposition 1.1, there exists a geodesic arc γ : [0, 1] → M such that π ◦ γ = γ̃ and we
have L(γ) = L(γ̃) = dg(x, y). By construction, there exist h0, h1 ∈ G such that γ(0) = h0x

and γ(1) = h1y we have dg(x, h
−1
0 h1y) = dg(h0x, h1y) ≤ L(γ) = dg(x, y). �

Remark 1.4. If we take M = S
2n+1 endowed with its natural round metric and G = Z/2Z

acting on S
2n+1 as the antipode, then M/G = P

n(C) and there is a unique metric on P
n(C)

making the projection S
2n+1 ։ P

n(C) into a Riemannian submersion. This metric is called
the Fubini-Study metric. Using the previous Theorem, we can easily see that the induced
distance dFS on P

n(C) is given by the following

∀p, q ∈ P
n(C), dFS(p, q) = arccos

|〈p, q〉|
‖p‖‖q‖ .

We now review some basic facts about invariant Riemannian metrics on Lie groups and
their flag manifolds. Let G be a Lie group and g := T1G be its Lie algebra. For an element
p ∈ G, denote by Lp : G → G and Rp : G → G left multiplication maps q 7→ pq and q 7→ qp,
respectively. Recall Of course, there may exists many Riemannian metrics on G, but a
natural restriction is to look for invariant metrics. More precisely, a Riemannian metric g
on G is said to be left-invariant if

∀p ∈ G, ∀X,Y ∈ g, gp(d1Lp(X),d1Lp(Y )) = g1(X,Y ).

Denoting by Xℓ(G) the set of left-invariant vector fields on G (i.e. the set of all X ∈ X (G)
such that dqLp(Xq) = Xpq for all p, q ∈ G) and using the bijection Xℓ(G) → g defined by
X 7→ X1, we see that g is left-invariant if and only if the following is true:

∀p ∈ G, ∀X,Y ∈ Xℓ(G), gp(Xp, Yp) = g1(X1, Y1).

Analogously, g is right-invariant if the above condition is verified for right-invariant vector
fields on G. Finally, the metric g is bi-invariant if it is both left and right-invariant.

Lemma 1.5. Let G be a Lie group.
The map g 7→ g1 is a bijective correspondence between the set of left-invariant (resp.

right-invariant) metrics on G and the set of inner products on g.
Furthermore, the same map restricts to a bijective correspondence between the set bi-

invariant metrics on G and the set of ad-invariant inner products on g.
In particular, if G is compact then the Killing form κ(X,Y ) := tr (ad(X) ◦ ad(Y )) on g

is negative definite ([Bes87, Lemma 7.36]) and thus there exists a bi-invariant metric on G.
4
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A first convenient fact about bi-invariant metrics is that the associated Levi-Civita con-
nection is easily computed on invariant vector fields.

Lemma 1.6. If g is a bi-invariant Riemannian metric on a Lie group G and if ∇ is the
associated Levi-Civita connection, then

∀X,Y ∈ Xℓ(G), ∇XY =
1

2
[X,Y ].

Proof. Let Z ∈ Xℓ(G) and note that, since g is bi-invariant, the function g(X,Y ) is constant
on G and hence Z(g(X,Y )) = 0. Also, since g1 is ad-invariant on g, we have g(X, [Y,Z]) =
g([X,Y ], Z). Hence, the Koszul formula (1) reads

2g(∇XY,Z) = X(g(Y,Z))+Y (g(Z,X))−Z(g(X,Y ))+g([X,Y ], Z)+g([Z,X], Y )−g([Y,Z],X)

= g([X,Y ], Z)− g([X,Z], Y ) + g(X, [Z, Y ]) = g([X,Y ], Z).

Since this is true for arbitrary Z, the result follows. �

We now come to the following important result:

Theorem 1.7. [YWL19, Theorem 2.5]
If G is a compact Lie group endowed with a bi-invariant metric g and H ≤ G is a closed
subgroup then the orbit space G/H, endowed with the induced Riemannian metric given by
the Theorem 1.3, is a geodesic orbit space, meaning that every geodesic on G/H is the orbit
of a one-parameter subgroup of G.

Proof. Using [GHL04, Proposition 2.81], we only have to prove that G is a geodesic orbit
space. Denote by g the Lie algebra of G. Let γ be the curve defined on R by γ : t 7→ petX .

Then γ is an X-integral curve, i.e. γ′ = X̃ ◦ γ, where X̃ ∈ Xℓ(G) is the left-invariant vector
field associated to X ∈ g. Then, one calculates

∀t ∈ R, ∇γ̇ γ̇(t)
def
= (γ∗∇) d

dt
(γ∗X̃)(t)

(2)
=

(
γ∗

(
∇γ̇(t)X̃

))
(t) =

(
∇

X̃
X̃
)
(γ(t)) = 0,

since ∇
X̃
(X̃) = 1

2 [X̃, X̃ ] = 0 by the Lemma 1.6, we get that ∇γ̇ γ̇ = 0 and hence γ is
a geodesic and by the Picard-Lindelöf theorem, this is the only geodesic on G such that
γ(0) = p and γ′(0) = pX = d1Lp(X). Then, we have proved that any geodesic on G is of
the form t 7→ petX for some p ∈ G and X ∈ g and hence is a one-parameter subgroup of
G. �

2. The quaternionic bi-invariant Riemannian metric on the flag manifold of
SL3(R)

We shall now equip the manifold F(R) with a bi-invariant Riemannian metric. An SU3-
invariant Riemannian metric on F = SU3(C)/T is easily seen to be determined by its value
on the tangent space T1F (this is a general fact about homogeneous spaces which relies on
Lemma 1.5). Now,

sl3(C) = h⊕
⊕

δ∈Φ+

(Ceδ ⊕ Cfδ)

is the root spaces decomposition of sl3, with (eδ , fδ, hδ)δ∈Φ+ the Serre basis of sl3, and
Φ+ = {α, β, α + β} is the set of positive roots, then one has the Cartan decomposition

su3(C) = t⊕
⊕

δ∈Φ+

pδ , with pδ := R(eδ − fδ︸ ︷︷ ︸
uδ

)⊕ R i(eδ + fδ)︸ ︷︷ ︸
vδ

and t =
⊕

δ∈Φ+

Rihδ .

Now, one has T1F ≃ ⊕
δ∈Φ+ pδ =: p and recalling that the Killing form κ(X,Y ) :=

6tr (ad(X) ◦ ad(Y )) = 6tr (XY ) on su3(C) is a negative-definite symmetric bilinear form
(since SU3 is compact, see [Bes87, Lemma 7.36]), any left SU3-invariant metric g on F may
be written as

g = −
∑

δ∈Φ+

xδ · κ(·, ·)|pδ , with xδ ∈ R
+, ∀δ ∈ Φ+
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and this metric is bi-invariant if and only if xδ = xδ′ for all δ, δ′ ∈ Φ+. Thus there is only
one bi-invariant metric on F , up to scalar. These standard considerations can be found in
[Sak99] or [PS97]. Then, we take the quaternionic bi-invariant metric

g8 := − 1

48
(κ|pα + κ|pβ + κ|pα+β

) = − 1

48
κ|p

on F , and restrict it to F(R). The reason of taking such a normalization will appear soon.
Notice that this metric is Einstein, meaning that the Ricci tensor is a scalar multiple of the
metric tensor, i.e. there exists a function λ such that Ricg8 = λg8 everywhere.

Proposition 2.1. The metric g8 on SO(3) defined above induces a Riemannian metric
g8 on F(R) making (F(R), g8) into a geodesic orbit space. Moreover, for p ∈ SO(3) and
X ∈ so(3) := so3(R), the arc-length of the geodesic γ : s 7→ pesX · S(O(1)3) is given by

∀t ≥ 0, L(γ|[0,t]) =
t‖X‖F
2
√
2

,

where ‖ · ‖F is the Frobenius norm, defined by ‖(ai,j)i,j‖F =
√∑

i,j |ai,j |2.

Proof. The first statement is just a particular case of the Theorem 1.7. For the second
statement we just calculate, for t ∈ R+,

L(γ|[0,t])
def
=

∫ t

0

√
g8
γ(s)(γ

′(s), γ′(s))ds =
∫ t

0

√
g8
γ(s)(pXexp(sX), pXexp(sX))ds

=

∫ t

0

√
g81(X,X)ds = t

√
g81(X,X) = t

√
tr (tXX)

8
=

t‖X‖F
2
√
2

.

�

3. Isometry between F(R) and the quaternionic spherical space form S
3/Q8

Recall the isomorphism
σ : O/Q8

∼−→ S3
1+i√

2
7−→ sβ

1+k√
2

7−→ sα

We now equip S
3/Q8 with the quotient metric qQ8

induced by the standard round metric
on S

3 and we shall prove that φ is in fact an isometry. For this, we need the following
lemma:

Lemma 3.1. The map

S
3 B−→ SO(3)
q 7−→ Mat(i,j,k)(L(q)R(q))

is smooth and we have

R
3 d1B−→ so(3)

(x, y, z) 7−→ 2

(
0 z −y
−z 0 x
y −x 0

)

In particular, if S3 is equipped with the standard round metric induced from R
4 and SO(3)

with the bi-invariant metric g8 defined above, then we have an isometry

B : S3/{±1} ∼−→ SO(3).

Proof. Recall the space V := Ri ⊕ Rj ⊕ Rk of pure quaternions. For u, h ∈ V ≃ R
3, we

simply compute

d1B(u) · h =
d

dt
B(1 + tu)(h)|t=0 =

d

dt
(1 + tu)h(1 + tu)

∣∣∣
t=0

=
d

dt
(h+ thu+ tuh+ t2uhu)

∣∣
t=0

= hu+ uh = uh− hu = [u, h].

6
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Hence, by computing the matrix of d1B(u) with respect to the canonical basis (i, j, k) of V ,
one obtains the matrix from the first statement.

Now, since {±1} acts freely and isometrically on S
3, the map S

3 ։ S
3/{±1} is a Rie-

mannian covering, hence a local isometry (in particular, a local diffeomorphism). Therefore,
if we prove that B is a local isometry, then B will be a bijective local isometry, hence an
isometry by the inverse function theorem, as required. But since B is a homomorphism of
Lie groups, it suffices to show that d1B is a linear isometry. This is where the normaliza-
tion by 1

48 comes into the game. Since we have endowed S
3 with the round metric, we can

compute for u := (x, y, z) ∈ R
3 = T1S

3,

g81(d1B(u),d1B(u))
df
= −6tr (d1B(u)

2)

48
= −4

8
tr






0 z −y
−z 0 x
y −x 0




2


= −1

2
tr



−y2 − z2 xy xz

xy −x2 − z2 yz
xz yz −x2 − y2


 = x2 + y2 + z2 = gS

3

1 (u, u).

�

Proposition 3.2. If we endow respectively S
3/Q8 and F(R) with the metrics gQ8

and g8,
then the map φ of Lemma ?? is an isometry.

Proof. The quotient map

S
3/{±1} ։ (S3/{±1})/K4 ≃ S

3/Q8

is a Riemannian covering, hence a local isometry. On the other hand, the map

SO(3) ։ SO(3)/S(O(1)3) = F(R)

is a Riemannian covering too. Now, since B : S3/{±1} → SO(3) is an isometry by the
previous Lemma and since the following diagram commutes

S
3/{±1}

��
��

B
∼

// SO(3)

��
��

S
3/Q8

∼
φ

// F(R)

one concludes that φ is a bijective local isometry, hence a global isometry. �

In particular, combining Proposition 3.2 and Theorem 1.3 yields the following corollary:

Corollary 3.3. For q := a+ bi+ cj + dk ∈ S
3, one has

dg8(1,B(q)) = min
ε=±1

dS3(1, εq) = arccos |a|

and

d
g8
(1, φ(q)) = min

g∈Q8

dS3(1, gq) = min
x=±a,±b,±c,±d

(arccos(x)) = min
x=a,b,c,d

(arccos |x|).

4. Geodesics in F(R) as projections of geodesics in S
3

Now that we know what geodesics look like and that we can compute the distance between
two flags, we can start describing the cells. But before that, we have to adapt the curved
join construction to F(R). This is not as easy as in the case of S3, since there can exist
many minimizing geodesics between two points in F(R) (as for two antipodal points in S

3).
Since SO(3) acts transitively by isometries on F(R), it suffices to look at geodesics starting
at 1 and translate them. It turns out that, if a matrix in SO(3), seen as a rotation, has
angle different from π, then there will be a unique minimizing geodesic linking it to 1. For
this, we shall use the matrix logarithm.
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Recall that, given X ∈ so(3) and θ ∈ [0, 2π], we have the Rodrigues formula (see[CL10,
§2])

eθX = I3 + sin(θ)X + (1− cos(θ))X2,

hence we obtain sin(θ)X = eθX−t(eθX)
2 and if θ 6= 0, π, then

X =
1

2 sin(θ)
(eθX − e−θX).

Thus, if R ∈ SO(3) is a rotation with tr (R) 6= −1, 3, then there is a unique X ∈ so(3) such
that eX = R and X is given by

X =
θ

2 sin(θ)
(R− tR), θ = arccos

(
tr (R)− 1

2

)
.

We shall denote X := log(R). This is uniquely defined as soon as θ 6= 0, π. If θ = 0, we can

just take log(R) = 0. With this notion, we see that the curve γR : t 7→ et log(R) is a geodesic

from 1 to R in SO(3) and hence its projection γR : t 7→ et log(R)S(O(1)3) is a geodesic from
1 to R · S(O(1)3) in F(R).

Now, we have to prove that the images of the geodesics we used in S
3 to construct our

O-cellular decomposition go to geodesics in F(R). Denote by πQ8
: S3 ։ S

3/Q8 the natural
projection and recall the isometry φ : S3/Q8 → F(R). We have the following result:

Proposition 4.1. Let

q := (cosω, sinω cosϕ, sinω sinϕ cos θ, sinω sinϕ sin θ) ∈ S
3

be a point expressed in spherical coordinates, with 0 ≤ ω,ϕ ≤ π and 0 ≤ θ ≤ 2π. Suppose
0 < ω < π

2 and denote by γ̃q the unique minimizing geodesic such that γ̃q(0) = 1 and
γ̃q(1) = q. Then one has

∀0 ≤ t ≤ 1, (φ ◦ πQ8
)γ̃q(t) = exp(tXq) · S(O(1)3) =: γq(t),

where

Xq := 2ω




0 − sin(ϕ) sin(θ) sin(ϕ) cos(θ)
sin(ϕ) sin(θ) 0 − cos(ϕ)

− sin(ϕ) cos(θ) cos(ϕ) 0


 ∈ so(3).

In particular, one has
L(γq) = L(γ̃q) = ω.

Moreover, B ◦ γ̃q is the only geodesic (up to reparametrization) in SO(3) from 1 to B(q).

Proof. The round metric on S
3 is given in spherical coordinates (around 1) by the matrix

(gij) where gij = 0 for i 6= j and

gωω = 1, gϕϕ = sin2 ω, gθθ = sin2 ω sin2 ϕ.

hence, the Christoffel symbols Γk
ij are easily computed and the geodesic equations γ̈k +

Γk
ij γ̇

iγ̇j = 0 for a curve t 7→ (ω(t), ϕ(t), θ(t)) are given by the system




ω̈ − sin(ω) cos(ω)(ϕ̇2 + sin2(ϕ)θ̇2) = 0,

ϕ̈+ cot(ω)ϕ̇ω̇ − sin(ϕ) cos(ϕ)θ̇2 = 0,

θ̈ + θ̇(cot(ϕ)ϕ̇ + cot(ω)ω̇) = 0.

Hence, the curve

γ̃q : t 7→ (cos(tω), sin(tω) cosϕ, sin(tω) sinϕ cos θ, sin(tω) sinϕ sin θ)

is a geodesic, with γ̃q(0) = (1, 0, 0, 0) and γ̃q(1) = q. Moreover, it is minimizing since

L(γ̃q) =

∫ 1

0

√
gS

3

γ̃q(t)
( ˙̃γq(t), ˙̃γq(t))dt =

∫ 1

0

√√√√ω̇(t)2 + sin2 ω(t)
(
ϕ̇(t)2 + sin2 ϕ(t)θ̇(t)2

)

︸ ︷︷ ︸
=0

dt
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=

∫ 1

0
ω̇(t)dt = ω = dS3(1, q).

Now, since 0 < ω < π
2 , we have 2tω < π and hence, we can compute

tr (B(γ̃q(t))) = 2 cos2(tω)− 1 = cos(2tω) 6= −1.

Thus, the logarithm log(B(γ̃q(t))) is well-defined and the Rodrigues formula yields

log(B(γ̃q(t))) = 2tω




0 − sin(ϕ) sin(θ) sin(ϕ) cos(θ)
sin(ϕ) sin(θ) 0 − cos(ϕ)

− sin(ϕ) cos(θ) cos(ϕ) 0


 def

= tXq,

so that B(γ̃q(t)) = etXq . Finally, since φ◦πQ8
= π ◦B where π : SO(3) ։ F(R), we have the

result. The statement about uniqueness follows immediately from the fact that log(B(q)) is
uniquely defined and that SO(3) is a geodesic-orbit space. �

Recall that in the Section ??, we have denoted D̂O :=
⋃

i ∆̂i and F̂O := pr(D̂O).

Corollary 4.2. For every q ∈ F̂O, the logarithm log(B(q)) ∈ so(3) is well-defined and the
curve t 7→ exp(t log B(q)) is the only minimal geodesic in SO(3) from 1 to B(q). Further-
more, its projection γq is a geodesic in F(R).

Proof. In view of Proposition 4.1, we only have to prove that ℜ(q) > 0, because in this case
we will have ωq = arccos(ℜ(q)) < π

2 . Hence, we have to prove that for 1 ≤ i ≤ 6 and for

x = (x1, x2, x3, x4) ∈ ∆̂i, we have x1 > 0; given that the ∆̂i’s are defined as convex hulls, it
suffices to show that their vertices have positive first coordinates. But since these vertices
are among {

1

2
(1,±1,±1,±1),

1√
2
(1,−1, 0, 0),

1√
2
(1, 0,−1, 0),

1√
2
(1, 0, 0,−1)

}
,

the result is now clear. �

5. The cells of the S3-equivariant cellular structure of F(R) as unions of
open geodesics

We shall now describe the cells in F(R) from Theorem 3.4.6 of [CGS20] as unions of
images of geodesics in F(R), with respect to the quaternionic metric g8. First, we briefly
recall the curved join construction. Given two points x and y 6= −x in S

3, we write x ∗ y to
denote the image γx,y([0, 1]) of the unique minimal geodesic γx,y : [0, 1] → S

3 joining them.

The resulting curve is called the curved join of x and y. Also, x
◦∗ y denotes the image

γx,y(]0, 1[) that is, the image of the geodesic γx,y with endpoints removed. We can extend
the curved join to subsets of S3: if U, V ⊂ S

3 are such that U ∩ (−V ) = ∅, then we can
define

U ∗ V :=
⋃

u∈U
v∈V

u ∗ v.

This is easily seen to be associative on subsets. We may also define U
◦∗V :=

⋃
u,v u

◦∗v.
We take some notation. If q ∈ S

3 with tr (q) > 0, recall the unique geodesic γ̃q from 1 to q
on S

3 and its image γq := φ ◦πQ8
◦ γ̃q on F(R) defined by γq(t) = exp(t log(B(q)))S(O(1)3).

We shall denote by Γq := γq (]0, 1[) the image of the open geodesic (γq)|]0,1[ . Next, for
u 6= v ∈ {i, j, k}, let

euv :=
⋃

q∈τu◦∗ωv

γ̃q−1(]0, 1[) and euv :=
⋃

q∈τu◦∗τv

γ̃q−1(]0, 1[),

as well as

euv := φ(πQ8
(euv )) =

⋃

q∈τu◦∗ωv

Γq−1 and euv := φ(πQ8
(euv)) =

⋃

q∈τu◦∗τv

Γq−1 .

9
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Note that we may of course define also, for u ∈ {i, j, k},
eu0 :=

⋃

q∈τu◦∗ω0

γ̃q−1(]0, 1[) and eu0 := φ(πQ8
(eu0 )) =

⋃

q∈τu◦∗ω0

Γq−1 .

With this notation we can determine the images ∆̃i := φ(πQ8
(∆̂i)) as





∆̃1 =
⋃

q∈ekj Γqτj ,

∆̃2 =
⋃

q∈ei
k
Γqτk ,

∆̃3 =
⋃

q∈eji
Γqτi ,

and





∆̃4 =
⋃

q∈eij Γqτj ,

∆̃5 =
⋃

q∈ej
k

Γqτk ,

∆̃6 =
⋃

q∈ek
i
Γqτi .

Remark 5.1. We have used quaternions to define these subsets, however, it should be
remarked that one can write them using only the exponential. For instance, one has

eij =
⋃

q∈τi
◦∗ωj

Γq−1

=















exp









2s arccos
(

cos tπ

4
+sin tπ

4

2

)

√

3− sin tπ
2









0
√

1− sin tπ
2

− cos tπ
4
− sin tπ

4

−

√

1− sin tπ
2

0 sin tπ
4
− cos tπ

4

cos tπ
4
+ sin tπ

4
cos tπ

4
− sin tπ

4
0

















S(O(1)3), 0 < s, t < 1















To see this, first notice that

eij =
⋃

q∈τj
◦∗ωi

Γq−1 =
⋃

q∈τ−1

j

◦∗ω−1

i

Γq =
⋃

q∈(1◦∗τ−1

i )·ω−1

i

Γq =
⋃

q∈im
◦

γ̃
τ
−1
i

Γqω−1

i
.

But, one has that q ∈ im (
◦

γ̃τ−1

i
) if there exists 0 < t < 1 such that q = cos tπ

4 − i sin tπ
4 . To

simplify notations, denote ct := cos tπ
4 and st := sin tπ

4 . Then, one has

qω−1
i =

(ct + st) + i(ct − st)− j(ct + st)− k(ct − st)

2

= cos(ωt) + i sin(ωt) cos(ϕt) + j sin(ωt) sin(ϕt) cos(θt) + k sin(ωt) sin(ϕt) sin(θt),

where

ωt = arccos

(
ct + st

2

)
, ϕt = arccos


 ct − st√

3− sin tπ
2


 , θt = arccos

(
ct + st√

2

)
− π.

Now, we have that z ∈ Γqω−1

i
= im

◦

γqω−1

i
if there exists 0 < s < 1 such that z = e

sX
qω

−1
i ·

S(O(1)3) and since we have

Xqω−1

i
= 2ωt




0 − sin(ϕt) sin(θt) sin(ϕt) cos(θt)
sin(ϕt) sin(θt) 0 − cos(ϕt)

− sin(ϕt) cos(θt) cos(ϕt) 0




=
2arccos

(
ct+st

2

)
√
3− sin tπ

2




0
√

1− sin tπ
2 −ct − st

−
√
1− sin tπ

2 0 st − ct

ct + st ct − st 0




and we find indeed the announced description.

We are now in a position to state the main result:
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Theorem 5.2. With the above notation, the real flag manifold F(R) = SO(3)/S(O(1)3)
admits an S3-equivariant cellular decomposition with orbit representatives cells given by

e0 := {1 · S(O(1)3)},
e11 := Γ

τ−1

i
, e12 := Γ

τ−1

j
, e13 := Γ

τ−1

k
,

and

e21 :=
⋃

q∈(τi
◦∗ωk)∪(ωk

◦∗τj)

Γq−1 , e22 :=
⋃

q∈(τj
◦∗ωi)∪(ωi

◦∗τk)

Γq−1 , e23 :=
⋃

q∈(τk
◦∗ωj)∪(ωj

◦∗τi)

Γq−1 ,

as well as

e3 := ∆̃4 ∪ eij ∪ ∆̃1 ∪ ej0 ∪ ∆̃2 ∪ ejk ∪ ∆̃5 ∪ ek0 ∪ ∆̃3 ∪ eki ∪ ∆̃6 ∪ ei0.

Moreover, the closures of the 1-cells e1j are minimal geodesics from e0 to e0 · sβ, e0 · w0

and e0 · sα, respectively.
Proof. We just have to check that, if êij is a cell of the analogue of the cellular decomposition

provided by the Theorem ?? for the action of O on S
3 by multiplication on the right, then

one has φ ◦ πQ8
(êij) = eij , in other words,

eij = φ
(
πQ8

(
(eij)

−1
))

,

but we have defined the cells eij in this way.

Next, take for instance the closure e11 = γτ−1

i
([0, 1]), the other two being treated in the

same way. By the Corollary 4.2, γ
τ−1

i
is a geodesic in F(R) and by the Corollary 3.3, we

have dg8(1, φ(τ
−1
i )) = min

(
arccos

(
±

√
2
2

)
, arccos(0)

)
= π

4 . Thus, we have to show that

L(γτ−1

i
) = π

4 . But since γτ−1

i
(1) = πQ8

(τ−1
i ) = sβ and

log(ṡβ) =
π

2

(
0 0 0
0 0 −1
0 1 0

)
,

by the Proposition 2.1, we get L(γ
τ−1

i
) = 1

2
√
2
‖ log(ṡβ)‖F = π

4 = dg8(1, sβ), as required. �

Remark 5.3. We can also describe more explicitly the 1-cells as

e11 =

{
exp

( 0 0 0
0 0 − tπ

2

0 tπ
2

0

)
S(O(1)3), 0 < t < 1

}
=

{
e

tπ
2
uβ · S(O(1)3), 0 < t < 1

}
,

e12 =

{
exp

(
0 0 − tπ

2

0 0 0
tπ
2

0 0

)
S(O(1)3), 0 < t < 1

}
=

{
e

tπ
2
uα+β · S(O(1)3), 0 < t < 1

}
,

e13 =

{
exp

(
0 − tπ

2
0

tπ
2

0 0
0 0 0

)
S(O(1)3), 0 < t < 1

}
=

{
e

tπ
2
uα · S(O(1)3), 0 < t < 1

}
.

Notice that the closure e3 is a fundamental domain for S3 acting on F(R).
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