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Abstract 27 

The abundance of energy-dense and palatable diets in the modern food environment 28 

tightly contributes to the obesity pandemic. The reward circuit participates to the 29 

regulation of body homeostasis by integrating energy-related signals with neural 30 

substrates encoding cognitive and motivational components of feeding behaviors. 31 

Obesity and lipids-rich diets alter dopamine (DA) transmission leading to reward 32 

dysfunctions and food overconsumption. Recent reports indicate that dietary lipids can 33 

act, directly and indirectly, as functional modulators of the DA circuit. This raises the 34 

possibility that nutritional or genetic conditions affecting “lipid sensing” mechanisms might 35 

lead to maladaptations of the DA system. Here, we discuss the most recent findings 36 

connecting dietary lipid sensing with DA signaling and its multimodal influence on circuits 37 

regulating food-reward processes.   38 
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Dietary signals: all roads lead to the brain  39 

Physiological mechanisms optimizing feeding behaviors have been selected during 40 

evolution. This is exemplified by the natural tropism of mammals toward energy-dense 41 

food (rich in lipids and sugar) which represents a promise of maturation and survival. 42 

Nowadays, the ubiquitous availability of palatable and energy-dense diets challenges the 43 

highly conserved and sophisticated systems controlling food intake. It is clear that, 44 

although inheritable genetic traits might contribute as risk factors for the development of 45 

metabolic disorders, the consumption of calorie-dense food beyond metabolic needs 46 

arises as a primary culprit in the obesity pandemic.  47 

During the last decades, the brain has emerged as the master regulator of energy 48 

homeostasis by integrating metabolic demands with the reinforcing nutritional properties 49 

of food [1]. In fact, while the hypothalamic melanocortin circuit ensures the homeostatic 50 

control of ingestive behaviors and metabolism, the mesocorticolimbic dopamine (DA) 51 

system integrates and translates metabolic signals into reward values [2] so that 52 

associated cues are imbued with incentive salience and the power to drive choices and 53 

behaviors [3]. Thus metabolic and reinforcing systems are dynamically integrated so that 54 

metabolic requirement is translated into motivated behaviors to obtain nutrients [4]. The 55 

ability of organisms to store energy extends this process beyond current needs, making 56 

overconsumption adaptive throughout most of history.  57 

Dietary signals can modulate brain circuits and functions in distinct ways. In fact, nutrients 58 

sensing chemosensory mechanisms operate in compartmentalized cellular elements 59 

located throughout our body, notably in the mouth, gastrointestinal (GI) tract and brain, 60 

thereby playing a key role in the multimodal regulation and control of ingestive behavior(s) 61 

(Figure 1). This multimodal integration has been recently highlighted in humans where 62 

immediate orosensory and subsequent post-ingestive signals derived from a palatable 63 

food (milkshake) led to two temporally separated waves of DA release in the ventral and 64 

dorsal striatum, respectively [5].  65 

Among nutrients (e.g. glucose, amino acids), dietary and circulating lipids have emerged 66 

as critical modulators of brain functions. Indeed, foods rich in fat are highly reinforcing. 67 

Despite orosensory perception and organoleptic components of food are known to be 68 

intimately associated with the reinforcing values of food, novel physiological routes are 69 
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emerging as instrumental in conveying the reinforcing aspects of dietary lipids through 70 

direct and/or indirect connections with the mesolimbic DA circuit. However, dietary lipids-71 

related functions seem to strongly depend on the nature and source of circulating lipids 72 

(pre- to post-prandial availability of circulating lipids, Box 1).    73 

 74 

BOX 1: Triglycerides or free fatty acids: the physiology of timing and nutritional 75 

states.   76 

Triglyceride (TG)-rich lipoproteins and free fatty acids (FFA) bound to albumin represent 77 

the two main sources of circulating lipids in the body [6]. While FFA are released upon 78 

adipose tissue lipolysis during periods of nutrients deficiency, lipoproteins are particles 79 

released from the liver and the gut to serve as hydrophobic carriers of TG, which are 80 

glycerol-esterified long chain fatty acids (LCFA) [7]. TG-rich lipoproteins arise from the 81 

gut as chylomicrons (CM) or from the liver as very-low-density lipoproteins (VLDL). As 82 

lipoprotein lipase (LPL) hydrolyses TG to provide lipids to metabolically active tissues, 83 

CM evolve towards intermediate (IDL) and high-density lipoproteins (HDL) (Figure 1). In 84 

physiological conditions plasma FFA and TG levels fluctuate in opposite directions. 85 

Indeed, plasma FFA drop in post-prandial periods due to the antilipolytic action of insulin 86 

onto adipose tissue. On the other hand, plasma TG rise due to lipid re-esterification and 87 

complexification into CM in enterocytes after a meal [7].  88 

Both FFA and TG-particles were shown to access the brain. The transport of FFA in the 89 

brain was demonstrated using radiolabeled lipids [8] and an increased in brain FFA 90 

transport was found associated to metabolic disease  [9].  91 

How TG-rich particles access the brain is still debated. CM are likely too large to cross 92 

the blood brain barrier (BBB), but smaller HDL and remnant CM (rCM) were shown to 93 

access the brain [6]. The brain expresses high levels of receptors for VLDL, low-density 94 

lipoprotein (LDL), oxidized HDL or LDL receptor-related protein (LRP) [6]. Thus, the 95 

presence of membrane and mitochondrial machineries dedicated respectively to the 96 

transport and oxidation of lipids in neurons suggest a role for FFA as signaling molecules 97 

[10]. For example, the TG-processing enzyme LPL is expressed in very defined brain 98 

structures [6,11] suggesting that LPL-expressing neurons are selectively equipped to 99 

detect and respond to TG-rich particles. Since circulating FFA and TG can access the 100 
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brain during pre- or post-prandial periods, dietary lipids under either forms seem good 101 

candidates to regulate feeding behaviors through a continuum process embedding 102 

signals staring from taste buds, gut-brain axis and/or through direct actions on brain cells 103 

(neurons and astrocytes).  104 

 105 

From the mouth to the brain: a taste for fat  106 

Taste is a sense assessing the nature, quality, texture and composition of food, thereby 107 

driving either consumption or avoidance. Although five taste modalities are commonly 108 

recognized (sour, salty, sweet, bitter, and umami), several studies have shown that 109 

dietary LCFA can trigger brain responses and affect digestive functions and feeding 110 

behavior [12,13] through the interaction with dedicated receptors located on taste bud 111 

cells (TBC) [14] (Figure 2). The ability of TG to be locally and rapidly hydrolyzed into FFA 112 

represents the major stimulus for the perception of fat-containing food in both humans 113 

and rodents [15,16]. Importantly, fat sensing requires complex inter-organized 114 

mechanisms since FFA of different chains length can elicit different behavioral responses 115 

(consumption vs avoidance/irritation) [17].  116 

In the lingual epithelium, taste buds are highly specialized bulb-like structures composed 117 

of 50-100 TBC organized into cell types-assembled clusters functionally connected to 118 

sensory afferent fibers of cranial nerves VII and IX, also known as the chorda tympani 119 

(CT) and glossopharyngeal (GL) nerves (Figure 2). At the cytoarchitectural level, the 120 

nutrients-exposed apical region of taste buds is mainly composed of type I (glia-like cells), 121 

II (gustatory receptors-expressing cells) and III (neuron-like cells) TBC which, through a 122 

complex and dynamic inter-TBC networks of transmitters (ATP, acetylcholine, 123 

endocannabinoids, serotonin, GABA and norepinephrine), represent the main 124 

chemosensory processors [18].  125 

Ingestion of very-low concentration of LCFA elicits DA release in the nucleus accumbens 126 

(NAc) [19] and fat consumption is rapidly accompanied by the activation of limbic, hedonic 127 

and motivational circuits in rodents and humans [12,20–22]. Therefore, it is unsurprising 128 

that a preference for high-fat foods is a widely shared and conserved trait in mammals.  129 

How do TBCs sense fat? During the prandial period, although TG are the major 130 

components of dietary fats, TG-hydrolyzed LCFA seem to drive the oral chemosensory 131 
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stimulation and its associated behavioral outputs [23,24]. This chemosensory 132 

detection/reception of dietary lipids relies, at least in part, on TBC-expressing membrane 133 

proteins, notably: GPR40 (or FFA1), GPR120 (or FFA4), CD36 and TRPM5 [17,25–27] 134 

(Figure 2). While Gq-coupled receptors GPR40/FFA1 (rodent TBCs) and GPR120/FFA4 135 

(human and rodent TBCs) have been reported to mediate fat-induced behavioral and 136 

cellular responses [25,28], other studies have not led to the same conclusions [29,30], 137 

thus complicating the molecular view of fat taste. More is known about the functions of 138 

lingual CD36 (also known as fatty acid translocase (FAT)), a transmembrane glycoprotein 139 

with high affinity for FFA and whose single nucleotide polymorphism (rs1761667) lowers 140 

CD36 expression and fat gustatory perception in humans [24]. At the transductional level, 141 

LCFA-activated CD36 and GPR120 both lead to increased Ca2+ levels, through two 142 

different but complementary intracellular signaling paths [31]. In particular, activation of 143 

CD36 promotes PLC-dependent hydrolysis of PIP2 which gives rise to IP3 and DAG. In 144 

turn, IP3, by binding to its endoplasmic reticulum receptor, promotes Ca2+ release. The 145 

rise in Ca2+ participates in activating the TRPM5 ion channel which, by 146 

depolarizing/activating TBCs, mediates the detection and transmission of gustatory 147 

signals [27,32].      148 

Fat signal transduction also relies on the activation of MAP kinase cascade (MEKs-ERKs) 149 

via a mechanism requiring Ca2+ signaling [33]. Importantly, down-regulation of ERK1/2 150 

signaling cascade significantly decreased fat preference in mice [33], thereby indicating 151 

that chemosensory oral detection of fat requires both Ca2+ and ERK dynamics.      152 

Once stimulated, TBCs activate sensory afferent fibers conveying fat-taste information to 153 

the rostral nucleus tractus solitarius (NTS) which in turn relays such information to 154 

secondary brain structures, allowing integration and elaboration of fat signals and 155 

encoding of their rewarding/reinforcement values.      156 

 157 

From the gut to the brain: interoceptive and integrative fat-sensing mechanisms 158 

Food palatability, which promotes positive reinforcement and overeating, is traditionally 159 

described in terms of sensory (smell, taste) pleasantness, thereby embracing into the 160 

definition of “reward” conscious features such as liking, wanting, predictive value and 161 

insensitive salience [3]. However, it is of paramount importance to mention that 162 
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reinforcement mechanisms can also derive, at least in part, from unconscious and 163 

interoceptive processes which rely on the detection of “reinforcers” (nutrients, energy 164 

contents, circulating signals) from specialized internal detectors/sensors usually 165 

inaccessible to conscious palatable features [2]. This can be easily summarized by the 166 

fact that food consumption, preference and/or seeking, although facilitated by sensory 167 

pleasantness, tightly depend on energy availability and contents which, by acting as 168 

secondary reinforcers, represent conditioned signals predictive of the metabolic effects 169 

of ingested nutrients  [34–36].     170 

The gastrointestinal (GI) tract, a highly heterogeneous chemosensory organ, is 171 

specialized in sensing and absorbing nutrients, and, in virtue of its complex 172 

endocrine/paracrine networks, initiates several physiological processes (Figure 3). 173 

Dietary lipids occupy a key place in the complex GI functions that control energy 174 

homeostasis and feeding behaviors. Once in the GI lumen and upon the action of 175 

intestinal lipases, TG-derived lipids (diacylglycerol, monoacylglycerol and FFA) stimulate 176 

specialized gut cells [37], notably enteroendocrine cells (EEC), which initiate hormonal 177 

and gut-to-brain responses [38]. Indeed, EEC types are well-equipped with dietary fat 178 

cellular sensors as they express FFA1, FFA4, GPR119 and CD36 [39–42] (Figure 3). In 179 

line with this evidence, post-oral delivery of dietary lipids triggers the release of GLP-1 180 

and CCK [35,43]. Such capability of EEC to detect dietary lipids contributes to their 181 

modulatory functions. 182 

Originally believed to be specific to distinct secretory mediators (CCK, GLP-1, GIP, 183 

secretin, PYY), recent breakthroughs have shown that this “one mediator-one cell type” 184 

theory is outdated as EEC located throughout the GI tract express and actively co-release 185 

a combination of different hormonal mediators and neurotransmitters [44–47] and even 186 

signal using specialized entero-neuronal synapses named neuropods [48,49]. Overall, 187 

these recent evidence indicate that fat-sensing at EEC level may trigger multiple 188 

modulatory responses.     189 

Beside EEC, dietary lipids are also sensed, absorbed and metabolized by enterocytes 190 

(Figure 3). In fact, after gastric TG hydrolysis, FFA and 2-monoacylglycerol (2-MAG) are 191 

transported into the enterocytes either by passive diffusion or by protein-dependent 192 

mechanisms (CD36, FATP4). Within the enterocytes, 2-MAG and the majority of LCFA 193 
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are re-esterified as TG, and either stored as cytosolic lipid droplets or packaged into 194 

lipoproteins (mostly CM). Lipoproteins are therefore secreted into the circulation through 195 

the lymphatic system to ultimately reach all organs [50].  196 

Aside of FFA transport and metabolism, lipids can directly signal onto specialized 197 

receptors. In that regards, studies using intragastric fat infusions have highlighted several 198 

redundant mechanisms through which dietary lipid sensing in the gut regulates feeding 199 

(Figure 3):  200 

(1) Luminal TG-hydrolyzed oleic acid is transported into enterocytes via a CD36-201 

dependent mechanism and converted into oleoylethanolamide (OEA). OEA acts as a 202 

satiety signal through a mechanism that is still not fully elucidated, mostly via the 203 

activation of the  lipid-activated transcription factor peroxisome proliferator-activated 204 

receptors-α (PPAR-α) and the mediation of the vagus nerve [51–54]. However, some 205 

studies have also suggested alternative mechanisms by which LCFA and byproducts of 206 

TG (FFA and 2-MAG), rather than OEA, may function as immediate signals of feeding 207 

onto the DA system [35], while non-vagal afferent mechanisms could relay OEA-induced 208 

satiety effects [55].  209 

(2) The inhibition of gastric emptying by lipids-triggered GPCRs-dependent 210 

enteroendocrine release of GLP-1, CCK and PYY [39,42,56].  211 

(3) The action of lipid oxidation byproducts from enterocytes or microbiota, such as ketone 212 

bodies/beta-hydroxy butyrate (BHB), which signal through spinal afferent fibers [57]. 213 

 214 

Lipid sensing in the gut-brain axis can shape how hypothalamic hunger-activated neurons 215 

respond to food cues. A recent study using cell type-specific in vivo Ca2+ dynamics in 216 

Agouti-related protein (AgRP)-expressing neurons provides evidence that glucose- and 217 

lipids-dependent signals initiated in the gut are routed through redundant and segregated 218 

nervous afferent routes to impinge on hypothalamic responses to food cues [58]. This 219 

selectivity to nutrients was ascribed to distinct nervous routes of the gut-brain axis where 220 

vagal afferents transmitted intestinal lipid detection and spinal gut-brain inputs from the 221 

intestinal and hepatic portal vein signaled glucose detection. Both paths serve as 222 

modulators of AgRP-neurons activity, thereby promoting fullness and satiation [58]. Of 223 

note, obesity and exposure to high-fat have been shown to selectively impair lipids, but 224 
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not carbohydrates, signaling from gut�AgRP-neurons [59,60]. These results suggest that 225 

gut-brain fat sensing represents a privileged substrate for obesity-induced 226 

maladaptations. 227 

Interestingly, despite promoting satiation, intragastric infusion of lipids elicits dopamine 228 

release [35,61], suggesting that reward/reinforcement encoding and satiation are not 229 

functional antagonists.     230 

Beside their endocrine actions, gut hormones released upon intestinal lipid sensing can 231 

also act on sensory vagal afferents which highly express receptors for GLP-1, CCK and 232 

PYY [62]. Interestingly, in addition to detecting hormonal and mechanical signals [63], 233 

vagal sensory afferents can be directly modulated by dietary signals. In fact, vagal 234 

neurons express the molecular machinery required to sense circulating lipids, notably 235 

long- and medium-chain fatty acids [64,65], and through a polysynaptic gut-brain circuit 236 

they may convey signals that are translated into reinforcement by DA-neurons [66].  237 

One would therefore argue that the blunting action of OEA over food intake (satietogenic 238 

signal) may also reduce the hedonic drive to food consumption. However, recent 239 

breakthroughs have elegantly shown that OEA promotes DA release in the striatum, 240 

through a PPARα-mediated vagus-dependent action [61]. This DA release depends on241 

metabolic states (low-fat vs high-fat fed mice), and rerouting of the GI tract by Roux-en-242 

Y Gastric Bypass (RYGB) mobilized small intestine OEA, an affect associated with a 243 

vagus-dependent and diet-mediated enhancement in striatal dopamine release [53]. 244 

Beside the peripheral OEA-mediating actions onto central DA release, intra-gastric or 245 

intraperitoneal administration of fat emulsions also trigger DA activity [34,36,61,67]. This 246 

indicates that dietary and diet-derived lipids engage vagus-dependent periphery-to-brain 247 

circuits which regulate dopamine release and reward events.   248 

Although the detailed mechanisms underlying how gut sensing of dietary lipids may 249 

dampen food intake despite promoting reinforcement-like events are not fully elucidated, 250 

it is worth to mention that both vagal and spinal sensory afferents may collaborate in 251 

detecting food constituents through heterogeneous neuronal networks [68–70]. 252 

Therefore, according to their intrinsic cell type-specificity, regionalized arborization into 253 

NTS territories and specific synaptic contacts onto distinct NTS cell types, they may 254 

convey different integrative information to the brainstem. In turn, NTS cell types, by 255 
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projecting to second order brain regions [71–73], may signal to different downstream 256 

structures involved in the regulation of homeostatic (hypothalamus) and hedonic feedings 257 

(mesolimbic and nigrostriatal dopamine circuits). Finally, the precise timing by which lipids 258 

(and glucose) pass through and signal into digestive segments, might directly account for 259 

the different phases by which each nutrient triggers specific brain responses. 260 

  261 

Central action of dietary lipids: between reward and satiety   262 

Dietary and diet-derived signals can also directly act on distinct brain circuits and discrete 263 

cell types which regulate hunger/satiety and reinforcement. In fact, although the 264 

mechanisms underlying their entry into the brain remain largely unknown, pioneering 265 

studies have indicated that circulating lipids can reach the brain and be uptaken by 266 

neurons by crossing the BBB [8,74] (Figure 4). Moreover, although not specifically 267 

demonstrated for lipids, new evidence highlight the key role of the lymphatic system in 268 

allowing brain access to large and small molecules [75]. Neurons are fully equipped with 269 

the molecular components capable of recognizing and metabolizing dietary lipids [76].  270 

Indeed, among central brain regions, the hypothalamus has been long recognized as a 271 

key sensor of circulating lipids [10]. Notably, hypothalamic cells (neurons and/or 272 

astrocytes) express a variety of membrane proteins capable of detecting and handling 273 

extracellular FFAs [77,78] and also respond to circulating TG [79]. Importantly, 274 

hypothalamic cells also contain the lipoprotein lipase LPL which, by locally hydrolyzing 275 

TG into 2-MAG and FFAs, contributes to the regulation of food intake and energy balance 276 

[80,81]. In fact, downregulation of LPL in hypothalamic astrocytes and/or neurons leads 277 

to increased body weight and glucose intolerance [81,82]. Beyond LPL, the hormone-278 

sensitive lipase (HSL), hydrolyzing tri- and diglycerides within the hypothalamus, may 279 

also play a fundamental role in regulating food intake and body homeostasis [83]. In fact, 280 

HSL deficiency triggers sustained food intake in high-fat diet (HFD)-fed mice, resulting in 281 

increased body weight gain [83]. Overall, these results strongly indicate that lipids-282 

sensing functions of hypothalamic cells are pivotal in regulating energy homeostasis as 283 

their silencing exacerbates pro-obesity features.    284 

Beside the hypothalamus, recent studies have clearly pointed to the midbrain dopamine 285 

system as a central target where circulating dietary TG may act by influencing molecular, 286 



Dietary lipids and reward processes 

11 

cellular and behavioral reinforcement features [11,84–86]. This dopamine (reward) circuit, 287 

consists of midbrain nuclei, notably the ventral tegmental area (VTA) and the substantia 288 

nigra pars compacta (SNc), densely projecting to dopaminoceptive structures such as the 289 

nucleus accumbens (NAc) and the dorsal striatum (DS). This brain circuit is strongly 290 

impaired by both short- and long-term exposure to HFD [87–89] as well as by perinatal 291 

dietary exposure to maternal HFD feeding [90,91].  292 

Although the consequences of HFD exposure on the dopaminergic system are well-293 

studied, whether and how dietary lipids as such can modulate the activity of the dopamine 294 

circuit is still a matter of intense investigations. Interestingly, VTA DA-neurons contain 295 

FFA-associated proteins, such as the fatty acid transport proteins (FATP1 and FATP4), 296 

fatty acid-binding proteins (FABP3) [86], as well as LPL [11], thereby highlighting the 297 

capacity of DA-neurons to detect and metabolize circulating lipids. In fact, LCFA, such as 298 

the oleic and palmitic acids (OA, PA), and/or long-term central delivery of TG, modulate 299 

the activity of VTA DA-neurons by reducing their neuronal firing rate and therefore by 300 

modulating reward-associated events [11,85,86]. Hence, the presence of LPL in 301 

dopamine and dopaminoceptive neurons might represent an additional arsenal to 302 

selectively respond to postprandially released TG. It is interesting to note that while 303 

sensory information routed by the vagus nerve was shown to modulate DA release from 304 

SNc DA-neurons [66], Lpl mRNA was found to be among the 5 most robust markers 305 

differentially expressed in the VTA compared to the SNc [92], thereby suggesting that 306 

VTA could directly detect postprandial circulating TG while SNc DA-neurons would rather 307 

respond to gut-borne stimuli routed by vagal afferents. 308 

309 

At the postsynaptic level and throughout the rostro-caudal axis, DS and NAc 310 

dopaminoceptive neurons, also known as GABAergic spiny projection neurons (SPNs), 311 

are anatomically and functionally segregated into two major families according to the 312 

expression of either DA D1 or D2 receptors (D1R- and D2R-SPNs) [93–95]. Recently, 313 

striatal and accumbal SPNs, in both humans and rodents, have been shown to express 314 

the LPL and respond to circulating TG [11]. Notably, central delivery of dietary TG resulted 315 

in a blunted activity of DA-dependent intracellular signaling pathways (MAPK, PKA and 316 

mTOR) and concomitant increase of β-arrestin-dependent signaling (GSK3-β) within the317 
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DS/NAc territories. In addition, TG were shown to reduce the excitability of D2R-SPNs, 318 

sparing D1R-SPNs [11] (Figure 4). Importantly, cell type-specific deletion of LPL in D2R-319 

SPNs increased neuronal excitability [11], thereby indicating that local metabolism of TG 320 

may be critical in gating the neuronal activity of dopaminoceptive neurons. Of interest, 321 

central delivery of dietary TG, although associated to dampened food intake and reduced 322 

responses to psychostimulants [11,84], was accompanied by enhanced reward sensitivity 323 

and positive reinforcement [11], indicating that circulating TG may possess reward-like 324 

properties. This evidence suggests that dietary TG, and eventually their TG-derived FFA, 325 

may inhibit D2R-SPNs, therefore bypassing the inhibitory action of endogenous DA onto 326 

D2R of D2R-SPNs and disinhibiting D2R-SPNs-downstream targets. Such dietary 327 

inhibition of D2R-SPNs may then participate in promoting reinforcement as reported by 328 

cell type-specific manipulation of D2R-SPNs [96–98]. Of note, D1R-SPNs also express 329 

LPL but they do not seem to respond to TG concentrations capable of modulating DRD2-330 

SPNs excitability [11]. In line with that view, cognitive impairments caused by PUFAs 331 

deficiency could be corrected by restoring PUFAs balance in D2R-SPNs but not D1R-332 

SPNs [99]. 333 

It is worth to mention that D2R is also expressed in DS/NAc cholinergic interneurons 334 

(ChINs [100]) but that this cell type seems to lack Lpl mRNA [11]. Nevertheless, future 335 

investigations aimed at unbiasedly studying the impact of dietary lipids on the cellular 336 

physiology of distinct striatal cell types are definitely needed.         337 

Overall, these recent studies suggest an evolutionary acquired ability of D2R-SPNs to 338 

directly respond to circulating dietary lipids. This hypothesis nicely fits with other studies 339 

indicating that D2R-neurons are highly susceptible substrates for central maladaptations 340 

induced by obesogenic environments and altered cognitive functions. In fact, the D2R is 341 

commonly pointed as a molecular culprit potentially involved in the development and/or 342 

maintenance of food-related reward deficits and associated metabolic alterations [101–343 

106].  344 

D2R abundance predicts compulsive susceptibility in rats [103] and exposure to lipid-rich 345 

diet triggers impulsive feeding independently from body weight changes [101]. Moreover, 346 

knock down of striatal D2R expression leads to compulsive eating in rats exposed to high-347 

fat food [103]. 348 
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This observation is also supported by studies in humans showning that TG metabolism 349 

correlates with brain responses to food cues in a direction that is influenced by genetic 350 

traits affecting D2R signaling [11,107].  351 

Whether dietary lipids as such may directly and causally be involved in promoting the 352 

dysfunctions of D2R-SPNs and D2R-coupled signaling remains to be fully established. It 353 

is interesting to note that central increase of circulating TG counteracts D2R-dependent 354 

signaling pathways but does not impact D1R-coupled signaling events [11]. Although 355 

molecular mechanistic insights are still under investigation, it is worth to mention that a 356 

role for the fatty acid binding protein FABP3 has been highlighted in modulating D2R 357 

striatal functions [108]. Indeed, how striatal SPNs compute lipids-carried information at 358 

the cellular and circuit level represent the next step in the understanding of neuronal lipid 359 

sensing mechanisms.                 360 

 361 

Concluding remarks and future perspectives 362 

In this review, we have highlighted and discussed the most recent discoveries 363 

related to whether and how dietary lipids control ingestive behavior. Overall, dietary lipids, 364 

notably TG and their derived FFA, can govern appetite and reinforcement through the 365 

modulation of DA release/signaling by multimodal mechanisms of lipid sensing. These 366 

mechanisms involve nervous inputs arising from the oral cavity and from various 367 

compartments of digestive tract (mouth-to-brain and gut-to-brain signals) as well as direct 368 

neuromodulatory actions of dietary TG/FFA on cell type-specific neurons of the 369 

mesolimbic circuit (central detection). Traditionally believed to solely serve as energy 370 

substrates, dietary lipids are nowadays also functionally involved in regulating brain 371 

systems. Dietary lipid-dependent actions encompass a variety of intracellular 372 

mechanisms ranging from GPCR signaling, direct and indirect allosteric regulation of 373 

receptors and channels, release of byproduct messengers from mitochondrial lipid 374 

oxidation and transcriptional regulation via lipid sensing transcription factors. This is 375 

ensured by the presence of lipids-associated molecular detectors in key cellular elements 376 

located at different strategic levels: mouth, gut, brain. Such complexity of integrative 377 

mechanisms reveals a highly sophisticated regulation of pre-prandial, prandial and post-378 

prandial fat signals which collectively contribute to the reinforcing aspects of food, and 379 
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most probably also to cognitive functions associated with the encoding of food cues. It is 380 

interesting to highlight that at the physiological level dietary lipid sensing mechanisms 381 

may follow a time-dependent process: fast (mouth-to-brain, taste), intermediate (gut-to-382 

brain, interoception) and slow (neuronal sensing) actions. Moreover, this may strongly 383 

depend on nutritional/metabolic states and endogenous/exogenous sources of lipids as 384 

during postprandial and fed states circulating TG represent the main source of lipids, 385 

whilst in fasting and energy-deprived conditions circulating FFAs are increased. However, 386 

in conditions of abnormal circulating lipids including (but not restricted to) obesity, neural 387 

substrates involved in reward and cognitive processing are altered.  388 

It is therefore tempting to hypothesize that dietary lipid sensing mechanisms within neural 389 

circuits supporting appetite and reinforcing behaviors may undergo functional 390 

maladaptations during obesity, as already observed in the tongue [109], gut [110] and 391 

hypothalamic arcuate nucleus [59,60]. In fact, whether long-term maladaptive lipids-392 

induced molecular and synaptic responses may occur within the reward system during 393 

obesity remain to be established. In line with this hypothesis we have shown that short-394 

term binge consumption of palatable diet was able to downregulate the expression of LPL 395 

mRNA in the nucleus accumbens [11]. Future studies are now warranted to unveil in-396 

depth mechanisms of cellular lipid sensing in physiological and pathological contexts. 397 

Moreover, the emerging field of lipid sensing could also pave the way to explore the 398 

etiopathology of other reward-related psychiatric and metabolic disorders such as 399 

anorexia nervosa, bulimia and binge eating [111]. Indeed, recent discoveries and current 400 

hypotheses also raise new interesting challenges that need to be tackled to fully depict a 401 

novel conceptual framework that sees dietary lipids as key modulators of integrative 402 

functions (see Outstanding Questions).        403 
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Figure legends 664 

 665 

Figure 1. The physiology of fat sensing throughout the body. 666 

Oral perception of dietary fat requires the action of lingual lipases which hydrolyze TG 667 

into free fatty acids (FFA) whose presence is detected by taste bud cells. Encoded 668 

information is then rapidly sent toward the brain via the chorda tympani (VII) and 669 

glossopharyngeal (IX) nerves. After ingestion/digestion, dietary lipids can promote gut-to-670 

brain communication and/or enter into the gut-liver transformative cycles. In the latter, 671 

FFA transported and re-esterified by enterocytes are packaged into TG-rich chylomicrons 672 

(CM) and released into the lymphatic and circulatory systems. The breakdown of 673 

lipoproteins through the action of lipoprotein lipase (LPL) allows the extraction of TG from 674 

large CM/VLDL leading to intermediate or high-density particles (IDL, HDL) and 675 

chylomicron remnants (rCM) recaptured by the liver. FFA and TG directly or indirectly 676 

signal to the brain. This figure was created using BioRender.  677 

 678 

Figure 2. Fat sensing by taste bud cells. 679 

Type 3 taste bud cells (TBC) express gustatory receptors for sweet, umami and bitter 680 

tastes. However, they also express receptors that can be activated by FFA released from 681 

dietary TG by the action of lingual lipases. FFA can activate lipid sensor CD36 and G-682 

coupled receptor 40 (GPR40/FFAR1) and 120 (GPR120/FFAR1). The activation of Src 683 

kinase as a consequence of CD36 activation leads the recruitment of phospholipase C 684 

(PLC), the increase of intracellular Ca2+ and the activation of ERK1/2 through the 685 

calmodulin activated kinase (CaMKII). PLC promotes the release of intracellular Ca2+ 686 

through inositol 3 phosphate (IP3). Delayed Rectifying K+(DRK, Kv1.5) channels can 687 

directly or indirectly respond to FFA. Once activated by the detection of dietary lipids, TBC 688 

will release neurotransmitters and messengers allowing the transfer of lipids-associated 689 

information to the nucleus tactus solitarius (NTS) through the cranial nerves VII et IX. This 690 

figure was created using BioRender. 691 

 692 

Figure 3. Gut lipid sensing: mechanisms and circuits. 693 
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During intestinal transit, dietary TG are hydrolyzed by luminal lipases. Released 2-694 

monoacylglycerol (2-MAG) and FFA will act on lipid sensors expressed onto 695 

enteroendocrine cells (EEC) (1, yellow circles). While TG-derived FFA can initiate 696 

signaling events by binding to CD36, G-coupled receptor 40 (GPR40/FFAR1) and 120 697 

(GPR120/FFAR4), 2-MAG can signal by GPR119 (2, red circles). Upon activation of lipid 698 

receptors located on EEC membranes, gut hormones and neurotransmitters can be 699 

released from EEC (3, blue circles). In turn, gut hormones can enter the general 700 

circulation or directly stimulate vagal afferents.  701 

Within the enterocytes, FFA are re-esterified and packaged into chylomicrons (CM) to 702 

ultimately reach the lymphatic system (4, green circles). A portion of FFA entering the 703 

enterocytes can serve either as substrate for the synthesis of N-acylethanolamines and 704 

produce the bioactive N-oleoylethanolamine (OEA) (5, grey circles), or enter lipid 705 

oxidation processes whom beta-hydroxy butyrate (BHB) byproduct (6, brown circles) can 706 

also signal through the circulation and/or afferent fibers. Vagal afferent fibers, ascending 707 

through the nodose ganglia (NG), respond to OEA while spinal afferent fibers routed 708 

through the dorsal root ganglia (DRG) respond to BHB produced by enterocytes and 709 

microbiota. OEA, BHB, gut hormones and nutrients also signal through portal vein 710 

metabolic sensors and liver-brain afferent fibers. This figure was created using 711 

BioRender. 712 

713 

Figure 4. Direct and indirect physiological routes of lipid sensing in the reward 714 

system.  715 

(A) Dietary lipid sensing modulates dopamine (DA) release and signaling through716 

segregated direct and indirect physiological routes. Intestinal detection of lipids is 717 

conveyed to the striatum via a vagus�nucleus tractus solitarius (NTS)�parabrachial 718 

nucleus (PBN)� substantia nigra (SNc) path (blue). Circulating lipids can also directly 719 

modulate DA-neurons in the ventral tegmental area (VTA) and dopaminoceptive neurons 720 

in the dorsal striatum (DS) and nucleus accumbens (NAc). (B) The lipoprotein lipase 721 

(LPL) in the brain microvasculature releases free fatty acids (FFA) from triglyceride (TG)-722 

rich circulating particles such as chylomicrons (CM). Smaller in size, high-density 723 

lipoprotein (HDL) can cross the capillaries through transcytosis and via astrocyte endfeet. 724 
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(C) FFA can enter the neuron through membrane fatty acids transporter (FATP1/4) or via 725 

the hydrolysis of TG from TG-particle docked on lipoprotein receptor (LDL-R). In the VTA, 726 

TG/FFA-mediated signaling was shown to decrease firing activity. In the striatum, 727 

dopamine D2 receptor (D2R)-expressing spiny projection neurons (SPNs) respond to 728 

TG/FFA through a mechanism that involves the LPL. TG/FFA modulate bona fide D2R-729 

coupled intracellular signaling events and reduce neuronal excitability. Altogether, lipids-730 

regulated circuits and neuronal responses concur in scaling reward-driven behaviors. 731 

Abbreviations: protein kinase A (PKA), extracellular signal-regulated kinase (ERK), 732 

ribosomal protein S6 (rpS6), ribosomal protein S6 kinase (S6K), mechanistic target of 733 

rapamycin (mTOR), dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-734 

32), glycogen synthase kinase 3 beta (GSK-3b). This figure was created using 735 

BioRender. 736 
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