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Equilibrium Propagation is a biologically-inspired algorithm that trains convergent

recurrent neural networks with a local learning rule. This approach constitutes a major

lead to allow learning-capable neuromophic systems and comes with strong theoretical

guarantees. Equilibrium propagation operates in two phases, during which the network

is let to evolve freely and then “nudged” toward a target; the weights of the network are

then updated based solely on the states of the neurons that they connect. The weight

updates of Equilibrium Propagation have been shown mathematically to approach those

provided by Backpropagation Through Time (BPTT), the mainstream approach to train

recurrent neural networks, when nudging is performed with infinitely small strength. In

practice, however, the standard implementation of Equilibrium Propagation does not

scale to visual tasks harder than MNIST. In this work, we show that a bias in the gradient

estimate of equilibrium propagation, inherent in the use of finite nudging, is responsible

for this phenomenon and that canceling it allows training deep convolutional neural

networks. We show that this bias can be greatly reduced by using symmetric nudging

(a positive nudging and a negative one). We also generalize Equilibrium Propagation

to the case of cross-entropy loss (by opposition to squared error). As a result of

these advances, we are able to achieve a test error of 11.7% on CIFAR-10, which

approaches the one achieved by BPTT and provides a major improvement with respect

to the standard Equilibrium Propagation that gives 86% test error. We also apply

these techniques to train an architecture with unidirectional forward and backward

connections, yielding a 13.2% test error. These results highlight equilibrium propagation

as a compelling biologically-plausible approach to compute error gradients in deep

neuromorphic systems.

Keywords: equilibrium propagation, energy based models, biologically plausible deep learning, neuromorphic

computing, on-chip learning, deep convolutional neural network, learning algorithms

1. INTRODUCTION

How synapses in hierarchical neural circuits are adjusted throughout learning a task remains a
challenging question called the credit assignment problem (Richards et al., 2019). Equilibrium
Propagation (EP) (Scellier and Bengio, 2017) provides a biologically plausible solution to this
problem in artificial neural networks. EP is an algorithm for convergent recurrent neural networks
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(RNNs) which, by definition, are given a static input and whose
recurrent dynamics converge to a steady state corresponding
to the prediction of the network. EP proceeds in two phases,
bringing the network to a first steady state, then nudging
the output layer of the network toward a ground-truth target
until reaching a second steady state. During the second phase
of EP, the perturbation originating from the output layer
propagates forward in time to upstream layers, creating local
error signals that match exactly those that are computed
by Backpropagation Through Time (BPTT), the canonical
approach for training RNNs (Ernoult et al., 2019). We refer
to Scellier and Bengio (2019) for a comparison between EP
and recurrent backpropagation (Almeida, 1987; Pineda, 1987).
Owing to this strong theoretical guarantee, EP can provide leads
for understanding biological learning (Lillicrap et al., 2020).
Moreover, the spatial locality of the learning rule prescribed
by EP and the possibility to make it also local in time
(Ernoult et al., 2020) is highly attractive for designing energy-
efficient neuromorphic hardware implementations of gradient-
based learning algorithms (Ernoult et al., 2020; Foroushani et al.,
2020; Ji and Gross, 2020; Kendall et al., 2020; Martin et al., 2020;
Zoppo et al., 2020).

To meet these expectations, however, EP should be able to
scale to complex tasks. Until now, works on EP (Scellier and
Bengio, 2017; O’Connor et al., 2018, 2019; Ernoult et al., 2019,
2020) limited their experiments to the MNIST classification
task and shallow network architectures. Despite the theoretical
guarantees of EP, the literature suggests that no implementation
of EP has thus far succeeded to match the performance of
standard deep learning approaches to train deep networks
on hard visual tasks. This problem is even more challenging
when using a more bio-plausible topology where the synaptic
connections of the network are unidirectional: existing proposals
of EP in this situation (Scellier et al., 2018; Ernoult et al.,
2020) lead to a degradation of accuracy on MNIST compared
to standard EP. In this work, we show that performing the
second phase of EP with nudging strength of constant sign
induces a systematic first order bias in the EP gradient estimate
which, once canceled, unlocks the training of deep convolutional
neural networks (ConvNets), with bidirectional or unidirectional
connections and with performance closely matching that of
BPTT on CIFAR-10. We also propose to implement the
neural network predictor as an external softmax readout. This
modification preserves the local nature of EP and allows us to
use the cross-entropy loss, contrary to previous approaches using
the squared error loss, and where the predictor takes part in the
free dynamics of the system.

Other biologically plausible alternatives to backpropagation
(BP) have attempted to scale to hard vision tasks. Bartunov et al.
(2018) investigated the use of feedback alignment (Lillicrap et al.,
2016) and variants of target propagation (Lecun, 1987; Bengio,
2014) on CIFAR-10 and ImageNet, showing that they perform
significantly worse than backpropagation. When the alignment
between forward and backward weights is enhanced with extra
mechanisms (Akrout et al., 2019), feedback alignment performs
better on ImageNet than sign-symmetry (Xiao et al., 2018), where
feedback weights are taken to be the sign of the forward weights,

and almost as well as backpropagation. However, in feedback
alignment and target propagation, the error feedback does not
affect the forward neural activity and is instead routed through
a distinct backward pathway, an issue that EP avoids. Payeur
et al. (2020) proposed a burst-dependent learning rule that also
addresses this problem and whose rate-based equivalent, relying
on the use of specialized synapses and complex network topology,
has been benchmarked against CIFAR-10 and ImageNet. Related
works on implicit models (Bai et al., 2019) have shown that
training deep networks can be framed as solving a fixed point
(steady state) equation, leading to an analytical backward pass.
This framework was shown to solve challenging vision tasks (Bai
et al., 2020). While the use of a steady state is common with EP,
the process to reach the steady state as well as the learning rule
are different. In comparison with these approaches, EP offers a
minimalistic circuit requirement to handle both inference and
gradient computation, which makes it an outstanding candidate
for energy-efficient neuromorphic learning hardware design.

More specifically, the contributions of this work are the
following:

• We introduce a newmethod to estimate the gradient of the loss
based on three steady states instead of two (section 3.1). This
approach enables us to achieve 11.68% test error on CIFAR-
10, with 0.6% performance degradation only with respect to
BPTT. Conversely, we show that using a nudging strength of
constant sign yields 86.64% test error.

• We propose to implement the output layer of the neural
network as a softmax readout, which subsequently allows us to
optimize the cross-entropy loss function with EP. This method
improves the classification performance on CIFAR-10 with
respect to the use of the squared error loss and is also closer
to the one achieved with BPTT (section 3.2).

• Finally, based on ideas of Scellier et al. (2018) and Kolen
and Pollack (1994), we adapt the learning rule of EP for
architectures with distinct (unidirectional) forward and
backward connections, yielding only 1.5% performance
degradation on CIFAR-10 compared to bidirectional
connections (section 2.4).

2. BACKGROUND

2.1. Convergent RNNs With Static Input

We consider the setting of supervised learning where we are given
an input x (e.g., an image) and want to predict a target y (e.g., the
class label of that image). To solve this type of task, Equilibrium
Propagation (EP) relies on convergent RNNs, where the input of
the RNN at each time step is static and equal to x, and the state s
of the neural network converges to a steady-state s∗. EP applies to
a wide class of convergent RNNs, where the transition function
derives from a scalar primitive1 8 (Ernoult et al., 2019). In this
situation, the dynamics of a network with parameters θ , usually

1In the original version of EP for real-time dynamical systems (Scellier and Bengio,

2017), the dynamics derive from an energy function E, which plays a similar role

to the primitive function 8 in the discrete-time setting studied here.
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synaptic weights, is given by

st+1 =
∂8

∂s
(x, st , θ), (1)

where st is the state of the RNN at time step t. After the dynamics
have converged at some time step T, the network reaches the
steady state sT = s∗, which, by definition, satisfies:

s∗ =
∂8

∂s
(x, s∗, θ). (2)

Formally, the goal of learning is to optimize θ to minimize
the loss at the steady state L

∗ = ℓ(s∗, y), where ℓ is a
differentiable cost function. While we did not investigate
theoretical guarantees ensuring the convergence of the
dynamics, we refer the reader to Scarselli et al. (2008) for
sufficient conditions on the transition function to ensure
convergence. In practice, we always observe the convergence to
a steady-state.

2.2. Training Procedures for Convergent
RNNs
2.2.1. Equilibrium Propagation (EP)
Scellier and Bengio (2017) introduced Equilibrium Propagation
in the case of real time dynamics. Subsequent work adapted
it to discrete-time dynamics, bringing it closer to conventional
deep learning (Ernoult et al., 2019). EP consists of two
distinct phases. During the first (“free”) phase, the RNN
evolves according to Equation (1) for T time steps to
ensure convergence to a first steady state s∗. During the
second (“nudged”) phase of EP, a nudging term −β ∂ℓ

∂s is
added to the dynamics, with β a small scaling factor.

Denoting s
β
0 , s

β
1 , s

β
2 ... the states during the second phase, the

dynamics reads

s
β
0 = s∗, and ∀t > 0, s

β
t+1 =

∂8

∂s
(x, s

β
t , θ)− β

∂ℓ

∂s
(s

β
t , y).

(3)
The RNN then reaches a new steady state denoted s

β
∗ . Scellier

and Bengio (2017) proposed the EP learning rule, denoting η the
learning rate applied:

1θ = η∇̂EP(β), where

∇̂EP(β)
1
=

1

β

(
∂8

∂θ
(x, s

β
∗ , θ)−

∂8

∂θ
(x, s∗, θ)

)
. (4)

They proved that this learning rule performs stochastic gradient
descent in the limit β → 0:

lim
β→0

∇̂EP(β) = −
∂L∗

∂θ
. (5)

2.2.2. Equivalence of Equilibrium Propagation and

Backpropagation Through Time (BPTT)
The convergent RNNs considered by EP can also be trained by
Backpropagation Through Time (BPTT). At each BPTT training
iteration, the first phase is performed for T time steps until

the network reaches the steady state sT = s∗. The loss at the
final time step is computed and the gradients are subsequently
backpropagated through the computational graph of the first
phase, backward in time.

Let us denote ∇BPTT(t) the gradient computed by BPTT
truncated to the last t time steps (T − t, . . . ,T), which we define
formally in Supplementary Material (section 1).

A theorem derived by Ernoult et al. (2019), inspired from
Scellier and Bengio (2019), shows that, provided convergence
in the first phase has been reached after T − K time steps (i.e.,
sT−K = sT−K+1 = . . . = sT = s∗), the gradients of EP match
those computed by BPTT in the limit β → 0, in the first K time
steps of the second phase for fully connected and convolutional
architectures including pooling operations:

∀t = 1, 2, . . . ,K,

∇̂EP(β , t)
1
=

1

β

(
∂8

∂θ
(x, s

β
t , θ)−

∂8

∂θ
(x, s∗, θ)

)
−−−→
β→0

∇BPTT(t).

(6)

2.3. Convolutional Architectures for
Convergent RNNs
A convolutional architecture for convergent RNNs with static
input was introduced by Ernoult et al. (2019) and successfully
trained with EP on the MNIST dataset. In this architecture,
presented in Figure 1, we define Nconv and Nfc the number of

convolutional and fully connected layers respectively, andNtot 1
=

Nconv + Nfc. wn+1 denotes the weights connecting sn to sn+1,
with s0 = x. To simplify notations, we use distinct operators
to differentiate whether wn is a convolutional layer or a fully
connected layer: respectively ⋆ for convolutions and · for linear
layers. The primitive function can therefore be defined as:

8(x, {sn}) =

Nconv−1∑

n=0

sn+1 • P
(
wn+1 ⋆ sn

)

+

Ntot−1∑

n=Nconv

sn+1⊤ · wn+1 · s
n, (7)

where • is the Euclidean scalar product generalized to pairs
of tensors with same arbitrary dimension, and P is a pooling
operation. Combining Equations (1) and (7), and restricting the
space of the state variables to [0, 1], yield the dynamics:

{
snt+1 = σ

(
P
(
wn ⋆ sn−1

t

)
+ w̃n+1 ⋆ P

−1
(
sn+1
t

))
, 1 ≤ n ≤ Nconv

snt+1 = σ
(
wn · s

n−1
t + w⊤

n+1 · s
n+1
t

)
,Nconv < n < Ntot (8)

where σ is an activation function bounded between 0 and
1. Transpose convolution and inverse pooling are respectively
defined through the convolution by the flipped kernel w̃ andP−1.
Plugging Equation (7) into Equation (4) yields the local learning

rule 1θij = η(s
β
i,∗s

β
j,∗ − si,∗sj,∗)/β for a parameter θij linking

neurons i and j. Supplementary Material (section 4) provides the
implementation details of this model.
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FIGURE 1 | Schematic of the architecture used. We use Equilibrium Propagation (EP) to train a recurrent ConvNet receiving a static input. Red (resp. green) arrows

depict forward (resp. backward) operations, with convolutions and transpose convolutions happening through time. At the final time step, the class prediction is carried

out. The use of RNNs is inherent in the credit assignment of EP which uses of the temporal variations of the system as error signals for the gradient computation.

2.4. Equilibrium Propagation With
Unidirectional Synaptic Connections
We have seen that in the standard formulation of EP, the
dynamics of the neural network derive from a function 8

(Equation 1) called the primitive function. This formulation
implies the existence of bidirectional synaptic connections
between neurons. For better biological plausibility, a more
general formulation of EP circumvents this requirement and
allows training networks with distinct (unidirectional) forward
and backward connections (Scellier et al., 2018; Ernoult
et al., 2020). This feature is also desirable for hardware
implementations of EP. Although some analog implementations
of EP naturally lead to symmetric weights (Kendall et al., 2020),
neural networks with unidirectional weights are in general easier
to implement in neuromorphic hardware.

In this setting, the dynamics of Equation (1) is changed into
the more general form:

st+1 = F(x, st , θ), (9)

and the conventionally proposed learning rule reads:

1θ = η∇̂VF(β), where

∇̂VF(β)
1
=

1

β

∂F

∂θ
(x, s∗, θ)

⊤ ·
(
s
β
∗ − s∗

)
, (10)

where VF stands for Vector Field (Scellier et al., 2018). If the
transition function F derives from a primitive function 8 (i.e.,

if F = ∂8
∂s ), then ∇̂VF(β) is equal to ∇̂EP(β) in the limit β → 0

(i.e., limβ→0 ∇̂
VF(β) = limβ→0 ∇̂

EP(β)).

3. IMPROVING EP TRAINING

We have seen in Equation (6) that the temporal variations of
the network over the second phase of EP exactly compute BPTT
gradients in the limit β → 0. This result appears to underpin
the use of two phases as a fundamental element of EP, but is
it really the case? In this section, we revisit EP as a gradient
estimation procedure and propose an implementation in three
phases instead of two. Moreover, we show how to optimize the
cross-entropy loss function with EP. Combining these two new
techniques enabled us to achieve the best performance on CIFAR-
10 by EP, on architectures with bidirectional and unidirectional
forward and backward connections (section 4).

3.1. Reducing Bias and Variance in the
Gradient Estimate of the Loss Function
In the foundational work on EP, Scellier and Bengio (2017)
demonstrate that:

d

dβ

∣∣∣∣
β=0

∂8

∂θ
(x, s

β
∗ , θ) = −

∂L∗

∂θ
. (11)

The traditional implementation of EP evaluates the left-hand
side of Equation (11) using the estimate ∇̂EP(β) with two points
β = 0 and β > 0, thereby calling for the need of two
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FIGURE 2 | One-sided EP gradient estimate for opposite values of β = 0.1 (black dashed curves), symmetric EP gradient estimate (green curve), and reference

gradients computed by BPTT (red curve) computed over the second phase, for a single weight chosen at random. The time step t is defined for BPTT and EP

according to Equation (6). More instances can be found in Supplementary Material (section 6).

phases—the free phase and the nudged phase. However, the use
of β > 0 in practice induces a systematic first order bias in the
gradient estimation provided by EP. In order to eliminate this
bias, we propose to perform a third phase with−β as the nudging
factor, keeping the first and second phases unchanged. We then
estimate the gradient of the loss using the following symmetric
difference estimate:

∇̂EP
sym(β)

1
=

1

2β

(
∂8

∂θ
(x, s

β
∗ , θ)−

∂8

∂θ
(x, s

−β
∗ , θ)

)
. (12)

Indeed, under mild assumptions on the function β 7→
∂8
∂θ

(x, s
β
∗ , θ), we can show that, as β → 0:

∇̂EP(β)+ ∇̂EP(−β)

2
= −

∂L∗

∂θ
+ O(β2), (13)

∇̂EP
sym(β) = −

∂L∗

∂θ
+ O(β2). (14)

This result is proved in Lemma 2 of the Supplementary Material

(section 2). Equation (13) shows that the estimate ∇̂EP(β)
possesses a first-order error term in β which the symmetric
estimate ∇̂EP

sym(β) eliminates (Equation 14). Note that the first-

order term of ∇̂EP(β) could also be canceled out on average
by choosing the sign of β at random with even probability (so
that E(β) = 0, see Algorithm 1 of the Supplementary Material,
section 3.1). Although not explicitly stated in this purpose, the
use of such randomization has been reported in some earlier
publications on the MNIST task (Scellier and Bengio, 2017;
Ernoult et al., 2020). However, in this work, we show that this
method exhibits high variance in the training procedure.

We call ∇̂EP(β) and ∇̂EP
sym(β) the one-sided and symmetric

EP gradient estimates, respectively. The qualitative difference

between these estimates is depicted in Figure 2, and the
full training procedure is depicted in Algorithm 2 of the
Supplementary Material (section 3.2).

Finally, this technique can also be applied to the Vector Field
setting introduced in section 2.4 and we denote ∇̂VF

sym(β) the
resulting symmetric estimate—see the Supplementary Material

(section 4.3) for details.

3.2. Changing the Loss Function
We also introduce a novel architecture to optimize the cross-
entropy loss with EP, narrowing the gap with conventional
deep learning architectures for classification tasks. In the next
paragraph, we denote ŷ the set of neurons that carries out the
prediction of the neural network.

3.2.1. Squared Error Loss Function
Previous implementations of EP used the squared error loss.
Using this loss function for EP is natural, as in this setting,
the output ŷ is viewed as a part of s (the state variable of the
network), which can influence the state of the network through
bidirectional synaptic connections (see Figure 3). Moreover, the
nudging term in this case can be physically interpreted since it
reads as an elastic force. The state of the network is of the form
s = (s1, . . . , sN , ŷ) where h = (s1, . . . , sN) represent the “hidden
layers,” and the corresponding cost function is

ℓ(̂y, y) =
1

2

∥∥̂y− y
∥∥2 . (15)

Frontiers in Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 633674

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Laborieux et al. Scaling EqProp to Deep ConvNets

FIGURE 3 | Free dynamics of the architectures used for the two loss functions where the blue frame delimits the system. (A) Squared Error loss function. The usual

setting where the predictor ŷ (in red) takes part in the free dynamics of the neural network through bidirectional synaptic connections. (B) Cross-entropy loss function.

The new approach proposed in this work where the predictor ŷ (also in red) is no longer involved in the system free dynamics and is implemented as a softmax readout.

The second phase dynamics of the hidden state and output layer
given by Equation (3) read, in this context:

h
β
t+1 =

∂8

∂h
(x, h

β
t , ŷ

β
t , θ),

ŷ
β
t+1 =

∂8

∂ ŷ
(x, h

β
t , ŷ

β
t , θ)+ β (y− ŷ

β
t ). (16)

3.2.2. Softmax Readout, Cross-Entropy Loss

Function
In this paper, we propose an alternative approach, where the
output ŷ is not a part of the state variable s but is instead
implemented as a read-out (see Figure 3), which is a function of
s and of a weight matrix wout of size dim(y)× dim(s). In practice,
wout reads out the last convolutional layer. At each time step t
we define:

ŷt = softmax(wout · st). (17)

The cross-entropy cost function associated with the softmax
readout is then:

ℓ(s, y,wout) = −

C∑

c=1

yc log(softmaxc(wout · s)). (18)

Using ∂ℓ
∂s (s, y,wout) = w⊤

out ·
(
softmax(wout · s)− y

)
, the second

phase dynamics given by Equation (3) read in this context:

s
β
t+1 =

∂8

∂s
(x, s

β
t , θ)+ β w⊤

out ·
(
y− ŷ

β
t

)
. (19)

Note here that the loss L
∗ = ℓ(s∗, y,wout) also depends on

the parameter wout. The Supplementary Material (section 4.2.2)
provides the learning rule applied to wout.

3.3. Changing the Learning Rule of EP With
Unidirectional Synaptic Connections
In the case of architectures with unidirectional connections,
applying the traditional EP learning rule directly, as given
by Equation (10), prescribes different forward and backward

weights updates, resulting in significantly different forward and
backward weights throughout learning. However, the theoretical
equivalence between EP and BPTT only holds for bidirectional
connections. Until now, training experiments of unidirectional
weights EP have performed worse than bidirectional weights
EP (Ernoult et al., 2020). In this work, therefore, we tailor
a new learning rule for unidirectional weights, described in
detail the Supplementary Material (section 4.3), where the
forward and backward weights undergo the same weight updates,
incorporating an equal leakage term. This way, forward and
backward weights, although they are independently initialized,
naturally converge to identical values throughout the learning
process. A similar methodology, adapted from Kolen and
Pollack (1994), has been shown to improve the performance
of Feedback Alignment in Deep ConvNets (Akrout et al.,
2019).

Assuming general dynamics of the form of Equation (9), we
distinguish forward connections θf from backward connections
θb so that θ = {θf, θb}, with θf and θb having same dimension.
Assuming a first phase, a second phase with β > 0 and a third
phase with−β , we define:

∀i ∈ {f, b},

∇VF
θi

(β) =
1

2β

(
∂F

∂θi

⊤

(x, s
β
∗ , θ) · s

β
∗ −

∂F

∂θi

⊤

(x, s
−β
∗ , θ) · s

−β
∗

)

(20)

and we propose the following update rules:





1θf = η

(
∇̂KP−VF
sym (β)− λθf

)

1θb = η

(
∇̂KP−VF
sym (β)− λθb

) ,

with ∇̂KP−VF
sym (β) =

1

2
(∇VF

θf
(β)+ ∇VF

θb
(β)) (21)

where η is the learning rate and λ a leakage parameter. The
estimate ∇̂KP−VF

sym (β) can be thought of a generalization of
Equation (12), as highlighted in the Supplementary Material

(section 4.3) with an explicit application of Equation (21) to a
ConvNet. In the case of a fully connected layer, both terms in
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TABLE 1 | Hyper-parameters used for the CIFAR-10 experiments.

Hyper-parameter Squared error Cross-entropy

T 250 250

K 30 25

β 0.5 1.0

Batch size 128 128

Initial learning rates

(Layer-wise)
0.25 - 0.15 - 0.1 - 0.08 - 0.05 0.25 - 0.15 - 0.1 - 0.08 - 0.05

Final learning rates 10−5 10−5

Weight decay

(All layers)
3 · 10−4 3 · 10−4

Momentum 0.9 0.9

Epoch 120 120

Cosine annealing

Decay time (epochs)
100 100

TABLE 2 | Performance comparison on CIFAR-10 between BPTT and EP with

several gradient estimation schemes.

Loss function EP gradient EP error (%) BPTT error (%)

estimate Test Train Test Train

Squared error

2-Phase/∇̂EP 86.64 (5.82) 84.90

11.10 (0.21) 3.69Random Sign 21.55 (20.00) 20.01

3-Phase/∇̂EP
sym 12.45 (0.18) 7.83

Cross-Ent. 3-Phase/∇̂EP
sym 11.68 (0.17) 4.98 11.12 (0.21) 2.19

Cross-Ent. (Dropout) 3-Phase/∇̂EP
sym 11.87 (0.29) 6.46 10.72 (0.06) 2.99

Cross-Ent.
3-Phase/∇̂VF

sym 75.47 (4.72) 78.04
9.46 (0.17) 0.80

3-Phase/∇̂KP−VF
sym 13.15 (0.49) 8.87

Note that the different gradient estimates only apply to EP. We indicate over five trials the

mean and standard deviation in parenthesis for the test error, and the mean train error.

the sum in the right hand side of Equation (21) are equal: ∂F/∂θi
only depends on the neuron activations and not on θi, in the same
way, as seen at the end of section 2.3, that Equation (8) yields a
fully local learning rule. The case of convolutional layers is a little
more subtle, due to presence of themaximumpooling operations.
The forward weights are involved in a pooling operation while
the backward weights are involved in an unpooling operation.
However, for the parameter update to be the same, the pooling
and unpooling operations need to share information regarding
the indices of maxima. Therefore, there is indeed a need for
information transfer between backward and forward parameters,
but this exchange is limited to the index of the maximum
identified in the maximum pooling operation (this can be seen
from Equation 24).

4. RESULTS

In this section, we implement EP with the modifications
described in section 3 and successfully train deep ConvNets
on the CIFAR-10 vision task (Krizhevsky et al., 2009).

The convolutional architecture used consists of four 3 × 3
convolutional layers of respective feature maps 128–256–512–
512.We use a stride of one for each convolutional layer, and zero-
padding of one for each layer except for the last layer. Each layer
is followed by a 2× 2 Max Pooling operation with a stride of two.
The resulting flattened feature vector is of size 512. The weights
are initialized using the default initialization of PyTorch, which
is the uniform Kaiming initialization of He et al. (2015). The data
is normalized and augmented with random horizontal flips and
random crops. The training is performed with stochastic gradient
descent with momentum and weight decay. We use the learning
rate scheduler introduced by Loshchilov and Hutter (2016) to
speed up convergence.

The hyper-parameters are reported in Table 1. All
experiments are performed using PyTorch 1.4.0. (Paszke
et al., 2017). The simulations were carried across several servers
consisting of 14 Nvidia GeForce RTX 2080 TI GPUs in total.
Each run was performed on a single GPU for an average run time
of 2 days.

4.1. ConvNets With Bidirectional
Connections
Wefirst consider the bidirectional weight setting of section 2.3. In
Table 2, we compare the performance achieved by the ConvNet
for each EP gradient estimate introduced in section 3.1 with the
performance achieved by BPTT.

The one-sided gradient estimate leads to unstable training
behavior where the network is unable to fit the data, as shown
by the purple curve of Figure 4A, with 86.64% test error on
CIFAR-10. When the bias in the gradient estimate is averaged out
by choosing at random the sign of β during the second phase,
the average test error over five runs goes down to 21.55% (see
Table 2). However, one run among the five yielded instability
similar to the one-sided estimate, whereas the four remaining
runs lead to 12.61% test error and 8.64% train error. This method
for estimating the loss gradient thus presents high variance—
further experiments shown in the Supplementary Material

(section 4.4) confirm this trend.
Conversely, the three-phase symmetric estimate enables EP to

consistently reach 12.45% test error, with only 1.35% degradation
with respect to BPTT (see Figure 4A). Therefore, removing
the first-order error term in the gradient estimate is critical
for scaling to deeper architectures. Proceeding to this end
deterministically (with three phases) rather than stochastically
(with a randomized nudging sign) appears more reliable.

The results of Table 2 also show that the readout scheme
introduced in section 3.2 to optimize the cross-entropy loss
function enables EP to narrow the performance gap with BPTT
down to 0.56% while outperforming the Squared Error setting
by 0.77%. However, we observe that the test errors reached by
BPTT are similar for the squared error and the cross-entropy
loss. The fact that only EP benefits from the cross-entropy
loss is due to the output not being part of the dynamics,
which reduces the number of layers following the dynamics
by one.
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FIGURE 4 | (A) Train (dashed) and test (solid) errors on CIFAR-10 with the Squared Error loss function. (B) Train (dashed) and test (solid) errors on CIFAR-10 with the

Cross-Entropy loss function. The curves are averaged over 5 runs and shadows stand for ±1 × standard deviation. The change in error rate around epochs 85–90 is

due to the end of the learning rate scheduler decay phase (Cosine annealing).

We also adapted dropout (Srivastava et al., 2014)
to convergent RNNs (see the Supplementary Material,
section 4.5 for implementation details) to see if the
performance could be improved further. However, we
can observe from Table 2 and Figure 4B that contrary
to BPTT, the EP test error is not improved by adding
a 0.1 dropout probability in the neuron layer after
the convolutions.

4.2. ConvNets With Unidirectional
Connections
We now present the accuracy achieved by EP when the
architecture uses distinct forward and backward weights, using a
softmax readout. For this architecture, the backward weights are
defined for all convolutional layers, except the first convolutional
layer connected to the static input. The forward and backward
weights are initialized randomly and independently at the
beginning of training. The backward weights have no bias
contrary to their forward counterparts. The hyper-parameters
such as learning rate, weight decay and momentum are shared
between forward and backward weights.

As seen in Table 2, we find that the estimate ∇̂VF
sym(β) leads to

a poor performance with 75.47% test-error. We concomitantly
observed that forward and backward weight did not align well,
as shown by the dashed curves in Figure 5. Conversely, when
using our new estimate ∇̂KP−VF

sym (β) defined in section 3.3, a
good performance is recovered with only 1.5% performance
degradation with respect to the architecture with bidirectional
connections, and a 3% degradation with respect to BPTT
(see Table 2). The discrepancy between the BPTT test error
achieved by the architecture with bidirectional (11.12%) and
unidirectional (9.46%) connections comes from the increase
in parameters provided by backward weights. As observed
in the weight alignment curves in Figure 5, forward and
backward weights are well-aligned by epoch 50 when using
the new estimate. These results suggest that enhancing forward

and backward weights alignment can help EP training in
deep ConvNets.

5. DISCUSSION

Our results unveil the necessity, in order to scale EP to deep
convolutional neural networks on hard visual tasks, to compute
better gradient estimates than the conventional implementation
of EP. This traditional implementation incorporates a first order
gradient estimate bias, which severely impedes the training
of deep architectures. Conversely, we saw that the three-
phase EP proposed here removes this bias and brings EP
performance on CIFAR-10 close to the one achieved by BPTT.
Additionally, our new technique to train EP with softmax
readout reduces the gap between EP and BPTT further down
to 0.56%, while maintaining the locality of the learning rule of
all parameters.

While the test accuracy of BPTT and our adapted EP are
very close, we can notice in Table 2 that BPTT fits the training
data better than EP by at least 2.8%. Also, the introduction
of dropout improves BPTT performance, while it has no
significant effect on the test accuracy of EP. These two insights
combined suggest that EP training may have a self-regularizing
effect applied throughout the network, similar to the effects of
dropout. We hypothesize this effect to be not only due to the
residual estimation bias of the BPTT gradients by EP, but also
to an additional inherent error term due to the fact that in
practice, the fixed point is approached with a precision that
depends on the number of time steps at inference. While the
exactness of the fixed point is crucial for EP, BPTT computes
exact gradients regardless of whether the fixed point is not
exactly reached.

We also saw that employing a new training technique that
still preserves the spatial locality of EP computations—and
therefore its suitability for neuromorphic implementations—
our results extend to the case of an architecture with
distinct forward and backward synaptic connections.
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FIGURE 5 | Angle between forward and backward weights for the new estimate ∇̂KP−VF
sym introduced (solid) and ∇̂VF

sym (dashed). The angle is not defined for the first

layer because the input layer is clamped.

We only observe a 1.5% performance degradation
with respect to the bidirectional architecture. This
result demonstrates the scalability of EP without the
biologically implausible requirement of a bidirectional
connectivity pattern.

Our three steady states-based gradient estimate comes
at a computational cost with regards to the conventional
EP implementation, as an additional phase is needed. Even
though the steady state of the free phase s∗ is not used
to compute the gradient estimate in Equation (12), we
experimentally found that s∗ is needed as a starting point
for the second and third phases. In terms of simulation
time, EP is 20% slower than BPTT due to the dynamics
performed in second and third phases. However, the memory
requirement to store the computational graph unfolded in
time in the case of BPTT far outweighs the memory needed
by EP, which consists only of the steady states reached by
the neurons.

The full potential of EP will be best envisioned on
neuromorphic hardware. Multiple works have investigated
the implementation of EP on such systems (Ernoult et al.,
2019, 2020; Foroushani et al., 2020; Ji and Gross, 2020;
Zoppo et al., 2020), in both rate based (Kendall et al., 2020)
and spiking approaches (Martin et al., 2020). Most of these
approaches employ analog circuits that exploit device physics
to implement the dynamics of EP intrinsically. The spatially
local nature of EP computations, on top of its connection

with physical equations, make this mapping between EP and
neuromorphic hardware natural. Our prescription to run two
nudging phases with opposite nudging strengths could be
implemented naturally in neuromorphic systems. In fact, the
use of differential operation to cancel inherent biases is a
technique widely used in electronics, and in neuromorphic
computing in particular (Hirtzlin et al., 2019). Overall, our work
provides evidence that EP is a compelling approach to scale
neuromorphic on-chip training to real-world tasks in a fully
local fashion.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are publicly
available. This data can be found here: https://github.com/
Laborieux-Axel/Equilibrium-Propagation.

AUTHOR CONTRIBUTIONS

AL developed the PyTorch code for the project and performed
the simulations. ME supervised the work, helped debug the code,
guided hyperparameter search, and designed the experiments
with unidirectional connections. BS proposed the ideas of
unbiasing the gradient estimate and of using a softmax readout.
DQ, JG, and YB provided additional guidance and support. All

Frontiers in Neuroscience | www.frontiersin.org 9 February 2021 | Volume 15 | Article 633674

https://github.com/Laborieux-Axel/Equilibrium-Propagation
https://github.com/Laborieux-Axel/Equilibrium-Propagation
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Laborieux et al. Scaling EqProp to Deep ConvNets

authors participated in data analysis, discussed the results, and
co-edited the manuscript.

FUNDING

This work was supported by European Research Council
Starting Grant NANOINFER (reference: 715872), European
Research Council Grant bioSPINspired (reference: 682955),
CIFAR, NSERC, and Samsung.

ACKNOWLEDGMENTS

The authors would like to thank Thomas Fischbacher for useful
feedback and discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.633674/full#supplementary-material

REFERENCES

Akrout, M., Wilson, C., Humphreys, P., Lillicrap, T., and Tweed, D. B. (2019).

“Deep learning without weight transport,” in Advances in Neural Information

Processing Systems (Vancouver, BC), 974–982.

Almeida, L. B. (1987). “A learning rule for asynchronous perceptrons with

feedback in a combinatorial environment,” in Proceedings of the IEEE First

International Conference on Neural Networks (San Diego, CA), Vol. II

(Piscataway, NJ: IEEE), 609–618.

Bai, S., Kolter, J. Z., and Koltun, V. (2019). “Deep equilibriummodels,” inAdvances

in Neural Information Processing Systems (Vancouver, BC), 690–701.

Bai, S., Koltun, V., and Kolter, J. Z. (2020). Multiscale deep equilibrium models.

arXiv preprint arXiv:2006.08656.

Bartunov, S., Santoro, A., Richards, B., Marris, L., Hinton, G. E., and Lillicrap,

T. (2018). “Assessing the scalability of biologically-motivated deep learning

algorithms and architectures,” in Advances in Neural Information Processing

Systems (Vancouver, BC), 9368–9378.

Bengio, Y. (2014). How auto-encoders could provide credit assignment in deep

networks via target propagation. arXiv preprint arXiv:1407.7906.

Ernoult, M., Grollier, J., Querlioz, D., Bengio, Y., and Scellier, B. (2019). “Updates

of equilibrium prop match gradients of backprop through time in an RNNwith

static input,” in Advances in Neural Information Processing Systems (Vancouver,

BC), 7081–7091.

Ernoult, M., Grollier, J., Querlioz, D., Bengio, Y., and Scellier, B. (2020).

Equilibrium propagation with continual weight updates. arXiv preprint

arXiv:2005.04168.

Foroushani, A. N., Assaf, H., Noshahr, F. H., Savaria, Y., and Sawan,

M. (2020). “Analog circuits to accelerate the relaxation process in the

equilibrium propagation algorithm,” in 2020 IEEE International Symposium on

Circuits and Systems (ISCAS) (Séville), 1–5. doi: 10.1109/ISCAS45731.2020.91

81250

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:

surpassing human-level performance on imagenet classification,” in Proceedings

of the IEEE International Conference on Computer Vision (Santiago),

1026–1034. doi: 10.1109/ICCV.2015.123

Hirtzlin, T., Bocquet, M., Penkovsky, B., Klein, J.-O., Nowak, E., Vianello, E.,

et al. (2019). Digital biologically plausible implementation of binarized neural

networks with differential hafnium oxide resistive memory arrays. Front.

Neurosci. 13:1383. doi: 10.3389/fnins.2019.01383

Ji, Z., and Gross, W. (2020). “Towards efficient on-chip learning using equilibrium

propagation,” in 2020 IEEE International Symposium on Circuits and Systems

(ISCAS) (Séville), 1–5. doi: 10.1109/ISCAS45731.2020.9180548

Kendall, J., Pantone, R., Manickavasagam, K., Bengio, Y., and Scellier, B. (2020).

Training end-to-end analog neural networks with equilibrium propagation.

arXiv preprint arXiv:2006.01981.

Kolen, J. F., and Pollack, J. B. (1994). “Backpropagation without weight transport,”

in Proceedings of 1994 IEEE International Conference on Neural Networks

(ICNN’94), Vol. 3 (Orlando, FL), 1375–1380. doi: 10.1109/ICNN.1994.3

74486

Krizhevsky, A., Hinton, G., et al. (2009). Learning Multiple Layers of Features

From Tiny Images. Available online at: https://www.semanticscholar.

org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/

5d90f06bb70a0a3dced62413346235c02b1aa086

Lecun, Y. (1987).Modeles connexionnistes de l’apprentissage (connectionist learning

models) (Ph.D. thesis). IAAI Laboratory, Paris, France.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016).

Random synaptic feedback weights support error backpropagation

for deep learning. Nat. Commun. 7, 1–10. doi: 10.1038/ncomm

s13276

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J.,

and Hinton, G. (2020). Backpropagation and the brain.

Nat. Rev. Neurosci. 21, 335–346. doi: 10.1038/s41583-020-0

277-3

Loshchilov, I., and Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm

restarts. arXiv preprint arXiv:1608.03983.

Martin, E., Ernoult, M., Laydevant, J., Li, S., Querlioz, D., Petrisor, T.,

and Grollier, J. (2020). Eqspike: spike-driven equilibrium propagation

for neuromorphic implementations. arXiv preprint arXiv:2010.0

7859.

O’Connor, P., Gavves, E., and Welling, M. (2018). “Initialized equilibrium

propagation for backprop-free training” in International Conference on

Learning Representations 2019.

O’Connor, P., Gavves, E., and Welling, M. (2019). “Training a spiking neural

network with equilibrium propagation,” in The 22nd International Conference

on Artificial Intelligence and Statistics (Montreal, QC), 1516–1523.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).

“Automatic differentiation in pytorch,” in NeurIPS 2017 Workshop Autodiff

Decision Program.

Payeur, A., Guerguiev, J., Zenke, F., Richards, B., and Naud, R. (2020).

Burst-dependent synaptic plasticity can coordinate learning in

hierarchical circuits. bioRxiv [Preprint]. doi: 10.1101/2020.03.30.01

5511

Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural

networks. Phys. Rev. Lett. 59, 2229–2232. doi: 10.1103/PhysRevLett.59.

2229

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen,

A., et al. (2019). A deep learning framework for neuroscience. Nat. Neurosci.

22, 1761–1770. doi: 10.1038/s41593-019-0520-2

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008).

The graph neural network model. IEEE Trans. Neural Netw. 20, 61–80.

doi: 10.1109/TNN.2008.2005605

Scellier, B., and Bengio, Y. (2017). Equilibrium propagation: bridging the gap

between energy-based models and backpropagation. Front. Comput. Neurosci.

11:24. doi: 10.3389/fncom.2017.00024

Scellier, B., and Bengio, Y. (2019). Equivalence of equilibrium propagation

and recurrent backpropagation. Neural Comput. 31, 312–329.

doi: 10.1162/neco_a_01160

Scellier, B., Goyal, A., Binas, J., Mesnard, T., and Bengio, Y. (2018).

Generalization of equilibrium propagation to vector field dynamics. arXiv

preprint arXiv:1808.04873.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. J.

Mach. Learn. Res. 15, 1929–1958.

Xiao, W., Chen, H., Liao, Q., and Poggio, T. (2018). Biologically-plausible

learning algorithms can scale to large datasets. arXiv preprint arXiv:1811.

03567.

Frontiers in Neuroscience | www.frontiersin.org 10 February 2021 | Volume 15 | Article 633674

https://www.frontiersin.org/articles/10.3389/fnins.2021.633674/full#supplementary-material
https://doi.org/10.1109/ISCAS45731.2020.9181250
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.3389/fnins.2019.01383
https://doi.org/10.1109/ISCAS45731.2020.9180548
https://doi.org/10.1109/ICNN.1994.374486
https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086
https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086
https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1101/2020.03.30.015511
https://doi.org/10.1103/PhysRevLett.59.2229
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.1162/neco_a_01160
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Laborieux et al. Scaling EqProp to Deep ConvNets

Zoppo, G., Marrone, F., and Corinto, F. (2020). Equilibrium propagation

for memristor-based recurrent neural networks. Front. Neurosci. 14:240.

doi: 10.3389/fnins.2020.00240

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Laborieux, Ernoult, Scellier, Bengio, Grollier and Querlioz. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 February 2021 | Volume 15 | Article 633674

https://doi.org/10.3389/fnins.2020.00240
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing Its Gradient Estimator Bias
	1. Introduction
	2. Background
	2.1. Convergent RNNs With Static Input
	2.2. Training Procedures for Convergent RNNs
	2.2.1. Equilibrium Propagation (EP)
	2.2.2. Equivalence of Equilibrium Propagation and Backpropagation Through Time (BPTT)

	2.3. Convolutional Architectures for Convergent RNNs
	2.4. Equilibrium Propagation With Unidirectional Synaptic Connections

	3. Improving EP Training
	3.1. Reducing Bias and Variance in the Gradient Estimate of the Loss Function
	3.2. Changing the Loss Function
	3.2.1. Squared Error Loss Function
	3.2.2. Softmax Readout, Cross-Entropy Loss Function

	3.3. Changing the Learning Rule of EP With Unidirectional Synaptic Connections

	4. Results
	4.1. ConvNets With Bidirectional Connections
	4.2. ConvNets With Unidirectional Connections

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


