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Abstract. Semantic Web Reasoning on streaming data is a challenging
issue, especially on constrained devices on the Web of Things. In this
position paper, we propose some architectural clues to deploy reasoning
on such devices in fog or edge paradigms, compliant with the W3C WoT
specification. In particular, we discuss both an asynchronous architecture
and a less resource-consuming synchronous one.

Keywords: IoT - WoT - semantic WoT - constrained objects - servient
architecture - embedded reasoning - distributed reasoning.

1 Introduction

Internet of Things (IoT) applications often leverage various distributed devices,
such as sensors, actuators and intermediate network nodes. Semantic Web tech-
nologies aim to bridge the interoperability gap among these devices, giving birth
to the Semantic Web of Things (SWoT). SWoT servientsﬂ allow to describe, dis-
cover and use heterogeneous devices as well as to process application data at the
semantic level. On edge and fog computing infrastructures, applications optimize
the use of the more or less constrained devices computing capabilities [2] and re-
duce network load by processing data as close as possible to their sources and/or
destinations, instead of transferring them back and forth to distant platforms [9].

Stream reasoning (SR) has ingredients from Data Stream Management Sys-
tems, Complex Event Processors (CEPs), Knowledge Representation (KR) and
Semantic Web (incl. reasoning) [45]. SR usually relies on time windows and/or
fades data as they get old. This is not the case for incremental reasoners.
IMaRS [6] performs the incremental maintenance of window materializations
over RDF streams. IMaRS assumes that RDF streams consist of timestamped
triples; it processes triples using a time window. The approach extends the DRed
algorithm [§] by adding an expiration timestamp to each fact. Cascade reason-
ing [BUI] uses a hierarchy of reasoners. At lower levels, high frequency data are
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filtered with very less reasoning in order to reduce the data frequency. At higher
levels, more complex reasoning is performed on the filtered data stream.

In the Constrained Semantic Web of Things (CoSWoT) projectEI7 we aim
at pushing incremental rule-based reasoning on to the nodes of edge or fog in-
frastructures. This paper addresses design questions for the modular CoSWoT
servient architecture and for the reasoning components in servients.

2 Possible architectures for constrained stream reasoning

2.1 Servient architecture

In the W3C WoT Architecture specification, a servient is an abstract entity of
a WoT platform, which comprises components dedicated to several concerns in-
cluding behavior, interactions / API, security, networking, etc. CoOSWoT relies on
the deployment of servients on devices with a variety of computing, networking
and energy capabilities.

All CoSWoT servients are semantic by nature and embed a local in-memory
Knowledge Base (KB). Servients are implemented in an asynchronous manner
that relies on a Semantic Service Bus (SSB) component. Other components can
post RDF fragments to the SSB message queue and subscribe to the SSB fact
pattern registry. Only the SSB is allowed to write RDF facts into the KB. Other
components can be notified of KB updates (insert or delete) and are allowed to
read it. According to the device architecture capabilities, asynchronism can be
implemented using microservices, OS multitasking, or a basic on-purpose event
loop. This way, CoSWoT applications can perform various non-blocking tasks
with little overhead.
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Fig. 1. Two possible CoSWoT servient architectures.
The other optional components are:

— Application Runtime: executes (part of) the application control flow, which
consists in coordinating the other components behaviors. Decisions may be
taken according to the reasoner outputs.

2 https://coswot.gitlab.io/
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— Input/Output: interacts with sensors by either querying data or handling
data streams and with actuators by calling their APIs.

— Inter-Servients Communication: handles the distributed aspects of the ap-
plication, including exchanging semantic data with persistence systems and
communicating with other servients to collaboratively perform application
and reasoning tasks.

— Data Aggregation: generates new explicit facts to be added to the KB (and
removes old ones) by performing timely operations on raw measurement data
such as sums or averages on sliding temporal windows [5/12]. This component
could be directly derived from existing work in CEP such as [10].

— Reasoner: the reasoner is detailed hereafter.

— Real Time clock: to timestamp RDF fragments, perform aggregations, add
timeouts to processing tasks and synchronize with other servients, we assume
that each device possesses its own Real-Time clock. All components can
access this clock, even if this is not represented on the figures for the sake of
clarity.

2.2 Reasoner architecture

We identified two ways to include the reasoner in a CoSWoT servient.

The reasoner as an autonomous component (Fig. ): in this configuration, the
reasoner is asynchronous and decoupled from the KB, like other components.
It is an optional component that one can easily place or not on a given object.
This configuration requires a publish-subscribe API mechanism as well as the
duplication of some submodules, namely parser/serializer and index. From the
SR point of view, asynchronism can prevent the reasoner from blocking the
servient, and can also be used to skip reasoning tasks when overloaded. However,
this can hamper application execution if it depends on implicit facts that are
not synchronized with the explicit ones in the KB.

The reasoner as a decorator (Fig. ): the reasoner is part of the KB component
and exposes the same API [7]. This approach ensures consistency with the KB,
as both explicit and implicit facts are updated simultaneously. It also avoids
duplication of parsing/serializing and indexing mechanisms. It also makes fil-
tering easier within the reasoning task. However, this solution is synchronous
and requires all reasoning tasks to be performed before writing facts in the KB.
Hence it can block the servient when the frequency and complexity of updates
increases.

3 Discussion

Given the two possible architectures described above, the component-based ar-
chitecture requires the duplication of the parser/serializer, the index and the
addition of a message handling function. It implies more resource consumption
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than the decorator-based architecture regarding code size, messages manage-
ment, etc. Nevertheless, this section examines whether it can bring interesting
trade-offs in terms of optimization and ways to handle data overflow.

When reasoning tasks become too time-consuming, the event loop can be
optimized with specific low-cost strategies such as task prioritization, turn-taking
or event timeouts. We are also currently working on how to split the reasoning
algorithm itself into several sub-tasks that could be separately pushed into the
loop message queue.

The next question is how to handle sensor data overflow through an asyn-
chronous event loop. In case of reasoning overflow, explicit and implicit facts
stored in the KB may not correspond: an implicit fact may be inserted after
the deletion of one of its explicit causes. As other components are supposed to
base their decisions on implicit facts, such problems may cause latency issues,
causing the servient to react to events after they are outdated. One possible
solution to mitigate this issue is to avoid recomputing incremental maintenance
in reoccurring situations, as done in [I1]. This can for example be done in con-
junction with the aggregation component, which decides which explicit facts to
insert and delete in the KB.

When data stream velocity becomes even more intense, there is not even
enough time to synchronize the local KB with all explicit facts. In such cases,
some clues include a feedback loop to the I/O manager if the sensors can handle
it, or even to switch off some other components. Another possible adaptation re-
moves data processing tasks from a too constrained node and sends it to another
more powerful servient.

4 Conclusion

In this paper, we analyse two possible servient architectures to deploy reasoning
capabilities onto constrained objects. One is totally asynchronous and favors ease
of deployment and error-proneness, while the other spares device resources and
favors coherence between the reasoner and the KB. We are currently developing
both prototypes so as to evaluate their behavior in different conditions of data
stream overflow. Along with these architectural concerns, we are also working on
optimizations that fit incremental reasoners embedded in constrained objects, as
well as on the distribution of reasoning tasks among collaborating servients.
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